A new non-parametric estimator of the cumulative distribution function under time-and random-censoring
Résumé
In this paper, we first provide a review of different non-parametric estimators for the cumulative distribution function under left-censoring. We then propose a new estimator based on a non-parametric likelihood approach using reversed hazard rate. Finally, we conclude with an application to a real data.
Origine | Fichiers produits par l'(les) auteur(s) |
---|