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Abstract

In this paper, we first provide a review of different non-parametric estimators
for the cumulative distribution function under left-censoring. We then pro-
pose a new estimator based on a non-parametric likelihood approach using
reversed hazard rate. Finally, we conclude with an application to a real data.
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1. Introduction

When dealing with data analysis, we often have to deal with some censor-
ing situations which arise when, for some units, one has only partial informa-
tion. For instance, when dealing with lifetime data, some duration may not
be observed exactly since the event occurs later than a certain time point.
A typical case is when one perform a medical study over a given period: all
the lifetimes longer than this period then get censored. Such a situation is
known as right-censoring and it has been investigated rather extensively in
the literature. Sometimes, censoring may occur on the left. For instance,
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when dealing with concentration measurements with an analytical method,
one will observe an exact measurement only if it is larger than a certain
threshold, called limit of detection; otherwise, one has only the information
that the concentration lies between zero and this limit. Such a situation
is called left-censoring. However, statistical methods and models for data
subject to left censoring have received comparatively less attention in the
literature.

In this paper, we consider both time- and random left-censoring schemes.
For n experimental units, the quantity of interest (lifetime, concentration,
etc.) is observed exactly only if it is greater than a certain threshold value.
It is assumed that the observations are independent and are drawn from the
same unknown distribution. Let T1, . . . , Tn be a sample from an unknown
underlying distribution F . Let C1, . . . , Cn be the censoring values: these
could be either deterministic in the case of time left-censoring or random in
the case of random left-censoring. In the former case, the censors may be
all equal or may not be equal (for instance, if there is multiple sources of
censoring). In the latter case, C1, . . . , Cn are assumed to be sample from an
unknown underlying distribution, and are independent of T1, . . . , Tn. Thus,
observations are (X1,∆1), . . . , (Xn,∆n), where

∀i ∈ {1, . . . , n}, Xi = max(Ti, Ci) and ∆i = ITi⩾Ci
.

To deal with left-censored data, an easy, but a naive, approach involves
replacing the censored data by anything between 0 and this censored value.
To fix the idea, let us consider the case of measuring concentrations. The used
instrumentation may not provide exact value if it is below a certain known
level, called limit of detection (LOD). Assume that there is a single LOD.
Then, the main substitution methods are the following ones: replace any
observation below the LOD by 0, by LOD/2, by LOD/

√
2 or by LOD (see,

for instance, Hornung and Reed [8]). Of course, if one wishes to estimate the
mean concentration, the first method will clearly under-estimate it, while the
last method will over-estimate it. In 2010, Helsel [7] recommended against
using such an approach.

Since most of the papers deal with right-censoring, some alternative so-
lutions have been proposed in the literature by transforming the data in
order to switch left- to right-censoring. For instance, the following trans-
formations have been considered: (a) Yi = A − Xi with A large enough;
(b) Yi = 1/Xi; (c) Yi = −Xi. Here, we prefer to consider a direct analysis
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of data with left-censoring. For the right-censoring case, the most popular
non-parametric estimator of the survival function has been the one due to
Kaplan and Meier [9]. Mimicking the construction of this estimator, several
authors have proposed the so-called product-limit estimator for the cumu-
lative distribution function under left-censoring situations. As we will see,
some of these papers contain some mistakes. Further, some researchers have
derived a non-parametric estimator for the cumulative distribution function
by using a counting process approach.

The rest of this paper proceeds as follows. In Section 2, we introduce
several notations that will be used subsequently. Section 3 is devoted to
a review of some non-parametric estimators for the cumulative distribution
function under time- and random left-censoring. A pointwise estimation of
the variance of the estimator is also provided. In Section 4, we introduce a
new non-parametric estimator for the cumulative distribution function based
on non-parametric likelihood function. This estimator is then compared to
the existing ones. Finally, in Section 6, a real-life data is analysed using the
proposed estimators.

2. Notations

In this section, we introduce some notations that we will be used in the
sequel.

� n is the number of observations (exact or left-censored);

� T1, . . . , Tn are the exact measurements (not always observed);

� C1, . . . , Cn are the censoring values (not always observed);

� X1, . . . , Xn are the observed values (exact or left-censored);

� δ1, . . . , δn are the indicators of the observation of exact values;

� m is the number of distinct (exact or not) observations;

� x(1) < · · · < x(n) are the ordered distinct (exact or not) observations:

x(1) = min{xi} < x(2) < · · · < x(m) = max{xi};
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� for any k ∈ {1, . . . ,m}, dk is the number of exact and observed mea-
surements equal to x(k):

dk = #{i ∈ {1, . . . , n} : xi = x(k) and δi = 1};

� for any k ∈ {1, . . . ,m}, qk is the number of left-censored and observed
measurements equal to x(k):

qk = #{i ∈ {1, . . . , n} : xi = x(k) and δi = 0};

� for any k ∈ {1, . . . ,m}, yk is the number of observations less than or
equal to x(k):

yk = #{i ∈ {1, . . . , n} : xi ⩽ x(k)} =
k∑

j=1

(dj + qj);

� l is the number of distinct exact observations;

� x⋆
(1) < · · · < x⋆

(l) are the ordered distinct exact observations:

x⋆
(1) = min{xi ; δi = 1} < x⋆

(2) < · · · < x⋆
(l) = max{xi ; δi = 1};

� for any k ∈ {1, . . . , l}, d⋆k is the number of exact measures equal to x⋆
(k):

d⋆k = #{i ∈ {1, . . . , n} : xi = x⋆
(k) and δi = 1};

note that d⋆k > 0 since, by definition, there is at least one exact obser-
vation equal to x⋆

(k);

� for any k ∈ {1, . . . , l}, y⋆k is the number of observations less than or
equal to x(k):

y⋆k = #{i ∈ {1, . . . , n} : xi ⩽ x⋆
(k)};

� for any k ∈ {1, . . . , l}, d̃⋆k is the number of (exact or not) measures
equal to x⋆

(k):

d̃⋆k = #{i ∈ {1, . . . , n} : xi = x⋆
(k) and δi = 1} ⩾ d⋆k.
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3. Review of some non-parametric estimators of cumulative distri-
bution function

For time- and random-censored data, many different non-parametric es-
timators have been discussed for the cumulative distribution function (CDF)
in the literature. Here, we present a brief review of estimators detailing two
different approaches, with the first one being based on the chain rule and
the second being based on counting processes. As we will see, these two
approaches lead to the same estimator.

3.1. Estimator(s) based on the chain rule

Using chain rule, we can express the cumulative distribution function at
point x(j) with j ∈ {1, . . . ,m−1}, based on points x(j+1), . . . , x(m), as follows:

F (x(j)) = P[T ⩽ x(j)] =
m−1∏
k=j

P[T ⩽ x(k)|T ⩽ x(k+1)] =
m−1∏
k=j

pk.

Hence, a natural estimator can be obtained by replacing p1, . . . , pm−1 by
some estimators p̂1, . . . , p̂m−1 (since p1 + · · · + pm = 1, p̂m = 1 − p̂1 − · · · −
p̂m−1). Following the seminal work of Miller [11], Blackwood [2] proposed
the following estimator for pj:

p̂j =

(
1− dj

yj

)δ(j)

,

where yj and dj are as defined in Section 2, and

δ(j) =

{
1 if at least one observation at time x(j) is uncensored
0 if all observations at time x(j) are censored.

Notice that δ(j) = 1 (resp. δ(j) = 0) if, and only if, dj ⩾ 1 (resp. dj =
0). Blackwood [2] claimed that p̂j is the maximum likelihood estimator of
pj (since it is the case for the right-censoring situation). Following what
is classically done for the right-censoring case (see, for instance, [11]), we
can consider dj to be a realization of a random variable Dj, assumed to be
binomially distributed with parameters yj (observed) and pj (unobserved and
unknown). It leads to the following estimator of the CDF:

∀t ⩾ 0, F̂ (t) =
∏

j;x(j)>t

(
1− dj

yj

)δ(j)

. (1)
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As δ(j) = 0 is equivalent to dj = 0, then this estimator can be expressed
only by considering unique uncensored observations. Using the notations
introduced earlier in Section 2, we have

∀t ⩾ 0, F̂ (t) =
∏

k;x⋆
(k)

>t

(
1− d⋆k

y⋆k

)
. (2)

Blackwood [2] also presented an estimator of the variance by applying
the same approach as the one leading to the Greenwood formula for the
right-censoring case. He provided the following expression:

v̂ar
[
F̂ (t)

]
=
[
F̂ (t)

]2 ∑
j;x(j)>t

djδ(j)
yj(yj − dj)

. (3)

It should be mentioned that Blackwood [2] also proposed non-parametric
estimators for the means and the quantiles based on the non-parametric
estimator of the CDF.

Despite this work of Blackwood [2], some researchers from other fields
such as environmental science and physics have come up with the same es-
timator. Besides, Pajek et al. [12] have also considered another estima-
tor based on a non-parametric estimator of the cumulative hazard function
(CHF), such as the Nelson-Aalen and the Harrington-Flemming estimators.
Unfortunately, this work contains some mistakes. It starts with an impre-
cise definition of the cumulative hazard function Λ (bounds of the integral
are not given and a confusion caused by using the same variable for the
function Λ and the integrand). According to Equation (5) in [12] providing

a non-parametric estimator Λ̂ of Λ, it seems that, in fact, they are rather
considering the cumulative reversed hazard function (CRHF). It can be seen

through the fact that Λ̂ is a decreasing function, which is not the case for
the CHF, but is true in fact for the CRHF. As a consequence, the estimator
proposed in Equation (6) in [12] is incorrect. Indeed, they have used the rela-
tionship between the CHF and the survival function (as is usually done in the
right censoring case, from Nelson-Aalen estimator to Harrington-Flemming
estimator). But, since they have in fact an estimator of the CRHF, they
should have used the relationship between the CRHF and the CDF. This
way, the correct estimator should be (using our notations) as

∀t ⩾ 0, F̂ (t) =
∏

k;x⋆
(k)

>t

exp

(
−d⋆k
y⋆k

)
.
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3.2. Estimator based on counting processes

To the best of our knowledge, it seems that Gomez et al. [5] (see also [6])
were the first to propose an estimator based on counting processes. Quite
surprisingly, they have derived a non-parametric estimator for the survival
function of T (and not for the cumulative distribution function which is
more natural to consider when dealing with left censored data). They have
expressed the survival function as an integral equation. By replacing other
unknown functions involved in this integral equation by their empirical coun-
terparts, they defined an estimator of the survival function of T . In this way,
this estimator appears to be the solution of a backward Doléans equation for
which the solution can be determined explicitly in the present case. Later
on, Tressou [16] proposed a new formulation of this estimator using the for-
malism developed by Gill and Johansen [3]. Tressou [16] considered only the
case of random left-censoring and denotes by G the CDF for the censoring
part. For any t ⩾ 0, let

Hn =
1

n

n∑
i=1

Ixi⩽t and H1,n =
1

n

n∑
i=1

Ixi⩽t;δi=1

be, respectively, the empirical versions of H(t) = P[X ⩽ t], the CDF of
the (uncensored or censored) observations, and H1(t) = P[X ⩽ t; ∆ = 1],
the CDF of the uncensored observations. The reversed hazard rate can be
defined as

R(t) =

∫
]t,∞]

dF

F
=

∫
]t,∞]

dH1

H
.

Now, using the product integral function Ψ, we have F = Ψ(R); see [3]. It
then follows that a non-parametric estimator of F is given by

F̂ = R
]·,∞]

(
1− dR̂

)
= R

]·,∞]

(
1− dH1,n

Hn

)
.

From the above expression for Hn and for H1,n, we get

∀t ⩾ 0, F̂ (t) =
l∏

k=1

(
1− d⋆k

y⋆k

)Ix⋆
(k)

>t

.

Notice that this estimator coincides with the one given by Patilea and Rolin
[14] under the double censoring scheme when there are no right-censored
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observations. Using the framework of Gill and Johansen [3], we can derive

an estimate for the variance of F̂ (t) as

v̂ar
(
F̂ (t)

)
=
[
F̂ (t)

]2 l∑
k=1

d⋆kIx⋆
(k)

>t

y⋆k(y
⋆
k − d⋆k)

.

Observe that this estimator based on counting processes is indeed the same
as the one obtained by using the chain rule.

4. A new non-parametric estimator

Our goal here is to develop an estimator of the CDF based on non-
parametric likelihood function; it has been done for the survival function
in the case of right-censoring, but not an estimator for the CDF based on
left-censoring. After providing an expression of the non-parametric likelihood
function in terms of reversed hazard rate (RHR), we derive an estimator for
the CDF.

Let data = {(x1, δ1), . . . , (x1, δn)} be the set of all observations. We can
then write the likelihood function as

L(p1, . . . , pm; data) =
n∏

i=1

pδixi
F 1−δi
xi

,

where Fk = p1+ · · ·+pk is the CDF of the discrete distribution. Let us recall
that F0 = 0 and Fm = 1. Using the notations introduced in Section 2, we
can now express L as

L(p1, . . . , pm; data) =
m∏
k=1

pdkk F qk
k =

m∏
k=1

pdkk

(
k∑

j=1

pj

)qk

. (4)

However, this expression is not tractable for optimizing with respect to
p1, . . . , pm. Instead of expressing the likelihood function in term of mass
probabilities, we will rather use the notion of RHR defined as in [1]:

∀k ∈ {1, . . . ,m}, rk =
P[T = x(k)]

P[T ⩽ x(k)]
=

pk
Fk

.

Note that we have r1 = 1 and rm = pm. As we have pk = Fk − Fk−1, with
the convention that F0 = 0, we have the following relationship:

∀k ∈ {1, . . . ,m}, rk =
Fk − Fk−1

Fk

= 1− Fk−1

Fk

.
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By induction, we then obtain

Fk−1 = (1− rk)Fk = (1− rk)(1− rk+1)Fk+1 = · · · =
m∏
j=k

(1− rj)

since Fm = 1. We can now rewrite the likelihood function with respect to
r2, . . . , rm (keeping in mind that r1 = 1). Because pk = rkFk, Equation (4)
turns to be

L(r2, . . . , rm; data) =
m∏
k=2

rdkk F dk+qk
k =

m−1∏
k=2

rdkk

[
m∏

j=k+1

(1− rj)

]dk+qk

=
m∏
k=2

rdkk (1−rk)
yk−1 .

Hence, the log-likelihood function takes os the following form:

ℓ(r2, . . . , rm; data) =
m∑
k=2

{dk log rk + yk−1 log(1− rk)}.

It turns that the value of rk that maximizes the log-likelihood function to be

∀k ∈ {2, . . . ,m}, r̂k =
dk

dk + yk−1

=
dk

yk − qk

since yk = yk−1 + dk + qk. We thus obtain the following estimator for Fk−1:

F̂k−1 =
m∏
j=k

(
1− dj

dj + yj−1

)
=

m∏
j=k

yj−1

dj + yj−1

=
m∏
j=k

(
1− dj

yj − qj

)
,

using which we obtain the following non-parametric estimator of the CDF:

∀t ⩾ 0, F̂ (1)(t) =
∏

j;x(j)>t

(
1− dj

dj + yj−1

)
(5)

with the convention that
∏

∅ = 0 (meaning that if t < x(1), then F̂ (1)(t) =
0). Observe that for all j such that dj = 0 (and, of course, qj > 0), then
1− dj/(dj + yj−1) = 1. Thence, the estimator can be defined only at points
x⋆
(1), . . . , x

⋆
(l), and we then obtain

∀t ⩾ 0, F̂ (1)(t) =
∏

k;x⋆
(k)

>t

(
1− d⋆k

d⋆k + y⋆k−1

)
=

∏
k;x⋆

(k)
>t

(
1− d⋆k

y⋆k − q⋆k

)
. (6)
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The last expression can be interpreted as follows. As claimed in some papers
cited in Section 2 (see [4] and [15], for instance), if there is a tie between a
censored and an uncensored observations, then it is assumed that the cen-
sored value is slightly smaller than the uncensored value. In such a case,
when considering y⋆k − q⋆k, we remove these censored observations of the set
of individuals at-risk.

Let us compare this new estimator with the one reviewed in the last
section (recall that the two approaches considered previously lead to the
same estimator). Let t ⩾ 0 be fixed and let us then consider the ratio

F̂ (1)(t)

F̂ (t)
=

∏
k;x⋆

(k)
>t

(
1− d⋆k

d⋆k + y⋆k−1

)
/

(
1− d⋆k

y⋆k

)

Because y⋆k−1 + d⋆k = y⋆k − q⋆k ⩽ y⋆k for any k ∈ {1, . . . , l}, one can easily

see that F̂ (1)(t) ⩽ F̂ (t). Let us consider the special case when there are no
censored measurements. In such a case, we have q⋆k = 0 for all k ∈ {1, . . . , l}
(and l = m). In this case, the two estimators, F̂ (1) and F̂ are identical.

The factors in the two products defining the former estimator and this new
estimator differ only at points where there is both censored and uncensored
measurements. It can be expected that this may occur essentially when
dealing with random censoring (and with rounded values). Because products
are defined from right to left, these two estimators will be different only on
the lower tail. However, for left-censoring, the main issue is to estimate
accurately the left tail.

We now seek an estimator for the variance of F̂
(1)
T (t) for a given value of t.

For this, we assume that (r̂2, . . . , r̂m) is an asymptotically normal estimator
of (r2, . . . , rm), with asymptotic covariance matrix equal to the inverse of the
Fisher information. For every k ∈ {2, . . . ,m}, we have

∂2ℓ

∂r2k
(r̂2, . . . , r̂m; data) = − (yk − qk)

3

dk(yk − dk − qk)
.

So, we can conclude that

var[r̂k] ≈
dk(yk − dk − qk)

(yk − qk)3
.

Using classical approximations for the variance based on the delta method,
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one can get that

v̂ar
[
F̂ (1)(t)

]
=
[
F̂ (1)(t)

]2 ∑
k:X(k)>t

dk
yk−1(yk − qk)

.

Note that, as for the Nelson-Aalen estimator of the CHF, one can use the
above results to derive a non-parametric estimator of the CRHF and deduce
another non-parametric estimator of the CDF (corresponding to Harrington-
Flemming estimator in the right-censoring case) thanks to the relation be-
tween CRHF and CDF.

5. Application to a real-life data

In this section, we use the different estimators discussed in the previous
sections to analyze a real data relating to pollutants in water, with measure-
ments being subject to left-censoring with one or multiple limit of detection
(LOD) values. Here, we consider copper concentrations in shallow groundwa-
ter samples from a Basin-Through zone in the San Joaquin Valley, California
(see [10]), while studying groundwater quality. This dataset includes five
different limits of detection: 1, 2, 5, 10 and 15. There are multiple limits of
detection because it depends on the method used for measuring the amount
of dilution and also because it may be decreasing over time as measurement
gets improved. In Table 1, we have reported pointwise estimation of the CDF
and its standard deviation, for the Blackwood estimator and for the newly
proposed estimator. We observe that at some points, the two estimators are
slightly different, these points corresponding to values with both censored
and uncensored measurements. As we can observe, the two estimators are
the same on the right part and differ from point 15, which is the largest value
corresponding to both an exact measurement and a LOD. Below this point,
the newly proposed estimator is slightly lower than the Blackwood estima-
tor. This means that the estimate of the mean concentration will be less
than the one obtained with the Blackwood estimator. As 15 is the largest
value corresponding to a LOD, the two estimators of the variance are equal
for the same reason as stated above. Below this point, the estimate of the
variance of the newly proposed estimator is slightly larger than the estimate
of the variance of the Blackwood estimator, except for t = x⋆

(2).

11



t F̂ (t) F̂ (1)(t) σ̂(F̂ (t)) σ̂(F̂ (1)(t))

1 0.2981959 0.2799105 0.07438262 0.07541081
2 0.4066308 0.4043151 0.07924497 0.07922304
3 0.6235005 0.6199498 0.07582786 0.07644654
4 0.7590441 0.7547215 0.06362657 0.06510580
5 0.7820455 0.7816759 0.06125617 0.06159916
6 0.8280481 0.8276568 0.05555525 0.05598826
8 0.8510495 0.8506473 0.05211982 0.05261188
9 0.8970522 0.8966282 0.04362071 0.04428404
12 0.9179138 0.9174800 0.03933148 0.03953237
14 0.9387755 0.9383319 0.03424881 0.03449597
15 0.9591837 0.9591837 0.02826635 0.02826635
17 0.9795918 0.9795918 0.02019884 0.02019884

Table 1: Pointwise estimation of the CDF and its standard deviation, for the Blackwood
estimator and for the newly proposed estimator.
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1. Empirical evaluation

We conduct here a numerical comparison of the estimators, based on
Monte Carlo simulations. We consider two cases, here. The first one deals
with multiple deterministic limit of detection (LOD) values corresponding
to time left-censoring scheme. The second one corresponds to random left-
censoring scheme in which censored values are assumed to be realizations of
random variables.

1.1. Time left-censoring

For the exact measurements T1, . . . , Tn, we have used the log-normal dis-
tribution with parameters (µ, σ), and several values of the parameters are
then considered. For the LOD C, three possible levels, namely 0.5, 1, and
2, are used in order to consider the case of multiple LODs. For each unit
in the sample, one of these LODs have been selected randomly with equal
probability. The sample size n has been fixed to be 50.

First, we fixed µ and then considered different values of σ. For each set
of parameters, we computed the estimator in Equation (??) of the CDF of T

Preprint submitted to Elsevier March 16, 2023
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Figure 1: (a) Time-censoring on the left with the choices of µ = 0 and σ ∈ (0, 20); (b)
Time-censoring on the left with the choices of µ = 0 and σ ∈ (0, 2.25)

and the one in Equation (??). In order to compare the performance of these
two estimators, we computed the Kolmogorov-Smirnov distance between each
estimator and the exact CDF as follows :

dks = sup
t∈{x?

(1)
,··· ,x?

(l)
}
|F (t)− F̂ (t)|

and
d
(1)
ks = sup

t∈{x?
(1)

,··· ,x?
(l)
}
|F (t)− F̂ (1)(t)|,

where F is the CDF of the log-normal distribution with parameters (µ, σ).
We repeated these steps m = 10, 000 times and then calculated the average
of the difference dks − d

(1)
ks resulting from the m simulations. If this aver-

age difference is positive (resp. negative), it means that globally the newly
proposed estimator of F is more (resp. less) accurate than the Blackwood
estimator. To observe the behaviour, we first fixed µ to a given value and let
σ vary and, next, we fixed σ to a given value and let µ vary.

In Figure 1, we have plotted this average difference when µ = 0 and σ
is varying between 0.1 and 20. We observe that the average difference is
positive, next turns to be negative and then converges to zero as σ increases.

In Figures 2 and 3, we have fixed σ respectively to 1 and 2, while µ varies
between -2 and 4. We observe that when σ = 1 (see Figure 2), the average

2
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Figure 2: (a) Time-censoring on the left with the choices of σ = 1 and µ ∈ (−2, 4); (b)
Time-censoring on the left with the choices of σ = 1 and µ ∈ (−2, 2)

difference is always positive and goes to zero as µ increases. The situation is
quite different when σ = 2 (see Figure 3). In this case, the average difference
is negative, turns to be positive and then goes to zero as µ increases.

We thus see that when one of the two parameters of the log-normal dis-
tribution is fixed, the average difference tends to zero as the other parameter
increases. This can be explained as follows. The expectation of T is equal
to exp(µ + σ2/2). Hence, when µ and/or σ is increasing, the expectation
of T is increasing and thus one will observe more exact measurements (in
other words, the probability of censoring decreases). It will make the two
estimators to be closer since there will be less values under the LOD.

We obtained similar plots for n = 100, and the sample size does not seem
to affect this behaviour.

1.2. Random left-censoring

As explained above, in the case of random left-censoring, we assume that
the censoring value C is also random. We consider log-normal distribution
with parameters µC = 0 and σC = 1 for the variable C. As in the previous
case, we will observe how the average difference evolves according to µ and
σ. In Figure 4, with µ = 0 and σ ∈ (0, 20), as in the first situation of time
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Figure 3: (a) Time-censoring on the left with the choices of σ = 2 and µ ∈ (−2, 4); (b)
Time-censoring on the left with the choices of σ = 2 and µ ∈ (−2, 2.5)

left-censoring, we observe exactly the same behaviour (positive, negative and
limit to zero).

In Figure 5, we have set σ = 1 and µ ∈ (−2, 4). It should be noted that
too small values of µ will lead to a data with only censored values in which
case no estimator can be proposed. In this case, we observe the difference to
be positive (still with a limit to zero).
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Figure 4: (a) Random left-censoring with the choices of µ = 0 and σ ∈ (0, 20); (b) Random
left-censoring with the choices of µ = 0 and σ ∈ (0, 4.5).
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Figure 5: (a) Random left-censoring with the choices of σ = 1 and µ ∈ (−2, 4); (b)
Random left-censoring with the choices of σ = 1 and µ ∈ (−2, 4).
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