Sensitivity analysis and optimal control for a friction problem in the linear elastic model - Université de Pau et des Pays de l'Adour
Article Dans Une Revue Applied Mathematics and Optimization Année : 2023

Sensitivity analysis and optimal control for a friction problem in the linear elastic model

Loïc Bourdin
  • Fonction : Auteur
  • PersonId : 1125560
Fabien Caubet

Résumé

This paper investigates, without any regularization procedure, the sensitivity analysis of a mechanical contact problem involving the (nonsmooth) Tresca friction law in the linear elastic model. To this aim a recent methodology based on advanced tools from convex and variational analyses is used. Precisely we express the solution to the so-called Tresca friction problem thanks to the proximal operator associated with the corresponding Tresca friction functional. Then, using an extended version of twice epi-differentiability, we prove the differentiability of the solution to the parameterized Tresca friction problem, characterizing its derivative as the solution to a boundary value problem involving tangential Signorini’s unilateral conditions. Finally our result is used to investigate and numerically solve an optimal control problem associated with the Tresca friction model.
Fichier principal
Vignette du fichier
AMOP.pdf (723.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04127512 , version 1 (13-06-2023)
hal-04127512 , version 2 (14-06-2023)
hal-04127512 , version 3 (20-06-2023)
hal-04127512 , version 4 (08-07-2023)
hal-04127512 , version 5 (03-08-2023)
hal-04127512 , version 6 (29-01-2024)
hal-04127512 , version 7 (02-08-2024)

Identifiants

Citer

Loïc Bourdin, Fabien Caubet, Aymeric Jacob de Cordemoy. Sensitivity analysis and optimal control for a friction problem in the linear elastic model. Applied Mathematics and Optimization, 2023, 90 (1), pp.29. ⟨10.1007/s00245-024-10156-z⟩. ⟨hal-04127512v6⟩
259 Consultations
262 Téléchargements

Altmetric

Partager

More