Sensitivity analysis and optimal control for a contact problem with friction in the linear elastic model - Université de Pau et des Pays de l'Adour
Pré-Publication, Document De Travail Année : 2023

Sensitivity analysis and optimal control for a contact problem with friction in the linear elastic model

Fabien Caubet
Loïc Bourdin
  • Fonction : Auteur
  • PersonId : 1125560

Résumé

This paper investigates, without any regularization procedure, the sensitivity analysis of a mechanical contact problem involving the (nonsmooth) Tresca friction law in the linear elastic model. To this aim a recent methodology based on advanced tools from convex and variational analyses is used. Precisely we express the solution to the so-called Tresca friction problem thanks to the proximal operator associated with the corresponding Tresca friction functional. Then, using an extended version of twice epi-differentiability, we prove the differentiability of the solution to the parameterized Tresca friction problem, characterizing its derivative as the solution to a boundary value problem involving tangential Signorini’s unilateral conditions. Finally our result is used to investigate and numerically solve an optimal control problem associated with the Tresca friction model.
Fichier principal
Vignette du fichier
Sensitivity_analysis_and_optimal_control_problem_involving_the_Tresca_friction_law_in_the_linear_elastic_model (3).pdf (605.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04127512 , version 1 (13-06-2023)
hal-04127512 , version 2 (14-06-2023)
hal-04127512 , version 3 (20-06-2023)
hal-04127512 , version 4 (08-07-2023)
hal-04127512 , version 5 (03-08-2023)
hal-04127512 , version 6 (29-01-2024)
hal-04127512 , version 7 (02-08-2024)

Identifiants

  • HAL Id : hal-04127512 , version 1

Citer

Aymeric Jacob de Cordemoy, Fabien Caubet, Loïc Bourdin. Sensitivity analysis and optimal control for a contact problem with friction in the linear elastic model. 2023. ⟨hal-04127512v1⟩
259 Consultations
262 Téléchargements

Partager

More