Article Dans Une Revue Mathematical Control and Related Fields Année : 2025

Shape optimization for contact problem involving Signorini unilateral conditions

Résumé

This paper investigates a shape optimization problem involving the Signorini unilateral conditions in a linear elastic model, without any penalization procedure. The shape sensitivity analysis is performed using tools from convex and variational analysis such as proximal operators and the notion of twice epi-differentiability. We prove that the solution to the Signorini problem admits a directional derivative with respect to the shape, and we characterize it as the solution to another Signorini problem. Then, the shape gradient of the corresponding energy functional is explicitly characterized which allows us to perform numerical simulations to illustrate this methodology.
Fichier principal
Vignette du fichier
Shape_optimization_for_contact_problem_involving_Signorini_unilateral_conditions.pdf (1.27 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04046683 , version 1 (26-03-2023)
hal-04046683 , version 2 (12-01-2024)
hal-04046683 , version 3 (15-04-2024)

Identifiants

Citer

Aymeric Jacob de Cordemoy. Shape optimization for contact problem involving Signorini unilateral conditions. Mathematical Control and Related Fields, 2025, ⟨10.3934/mcrf.2025003⟩. ⟨hal-04046683v3⟩
231 Consultations
233 Téléchargements

Altmetric

Partager

More