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Shape optimization for contact problem involving Signorini
unilateral conditions

Aymeric Jacob de Cordemoy∗
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Abstract

This paper investigates a shape optimization problem involving the Signorini unilateral
conditions in a linear elastic model, without any penalization procedure. The shape sensitiv-
ity analysis is performed using tools from convex and variational analysis such as proximal
operators and the notion of twice epi-differentiability. We prove that the solution to the
Signorini problem admits a directional derivative with respect to the shape which moreover
coincides with the solution to another Signorini problem. Then, the shape gradient of the cor-
responding energy functional is explicitly characterized which allows us to perform numerical
simulations to illustrate this methodology.

Keywords: Shape optimization, shape sensitivity analysis, variational inequalities, contact
mechanics, Signorini unilateral conditions, proximal operator, twice epi-differentiability.

AMS Classification: 49Q10, 49J40, 35J86, 74M15, 74P10.

1 Introduction
Motivation. On the one hand, mechanical contact models are used to study the deformation
of solids that touch each other on parts of their boundaries. One of the mechanical setting con-
sists in a deformable body which is in contact with a rigid foundation without penetrating it
and frictionless. From the mathematical point of view, the non-permeability conditions take the
form of inequalities on the contact surface called Signorini unilateral conditions (see, e.g., [37, 38]).
Thus, those mechanical contact problems are usually investigated through the theory of variational
inequalities, and the Signorini unilateral conditions cause nonlinearities in the corresponding vari-
ational formulations. On the other hand, shape optimization is the mathematical field aimed at
finding the optimal shape of a given object for a given criterion, that is the shape which mini-
mizes a certain cost functional while satisfying given constraints. In order to numerically solve a
shape optimization problem, the standard gradient descent method requires to compute the shape
gradient of the cost functional.

Shape optimization problems with mechanical contact models involving Signorini unilateral
conditions have been studied in the literature, and classical techniques to compute material and
shape derivatives are based on Mignot’s theorem (see [27]) about the conical differentiability of
projection operators on nonempty polyhedric closed convex sets (see, e.g, [17, 26, 39]). The material
and shape derivatives are usually characterized with abstract variational inequalities, thus cause
difficulties to compute a suitable shape gradient of the cost functional. These difficulties are usually
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solved in the literature using a penalization procedure (see, e.g., [23]), which consists in adding a
penalty functional in the optimization problem associated with the model, in order to handle the
constraints due to the Signorini unilateral conditions. Hence, the optimality condition is described
by a variational equality (see, e.g., [6, 9, 22, 24]). However this penalization method does not take
into account the exact characterization of the solution and may perturb the original nature of the
model.

In this paper we investigate a shape optimization problem involving the Signorini unilateral
conditions, using a new methodology based on tools from convex and variational analysis such as
the notion of proximal operator introduced by J.J. Moreau in 1965 (see [29]) and the notion of twice
epi-differentiability introduced by R.T. Rockafellar in 1985 (see [32]). Note that we have studied
the feasibility of this methodology on a shape optimization problem involving the scalar Tresca
friction law (see [3]). First this new methodology allows us to recover the results obtained in [9], [26,
Chapter 5 Section 5.2 p.111] and [39, Chapter 4 Section 4.6 p.205]. Indeed, if a nonempty closed
convex set is polyhedric, then from Mignot’s theorem the projection operator on this set is conically
differentiable, and its conical derivative coincides with the proximal operator associated with the
second-order epi-derivative of the appropriate indicator function, and thus our approach coincides
with that used in the literature. Second the main novelty of the present work is that, under
appropriate assumptions, our method permits to characterize the material and shape derivatives
of the solution to the Signorini problem as the solutions to other Signorini problems. This point,
to the best of our knowledge, has never been noticed in the literature. Furthermore, by using this
new characterization, we obtain an explicit expression of the shape gradient of the corresponding
energy functional. This shape gradient generalizes the one obtained in [15, Section 5.5] where the
Signorini unilateral conditions are on a rectilinear boundary part. Therefore, without using any
penalization procedure, the present work can be seen as a complement and an extension of the
previous articles on this subject.

Description of the shape optimization problem and methodology. In this paragraph,
we use standard notations which are recalled in Section 2. Let d ∈ {2, 3} which represents the
dimension, f be a function in H1(Rd,Rd), Ωref be a nonempty connected bounded open subset
of Rd with Lipschitz boundary Γref := ∂Ωref , such that Γref = ΓD ∪ ΓSref

, where ΓD and ΓSref
are

two measurable pairwise disjoint subsets of Γref , and ΓD has a positive measure.
In this paper we consider the shape optimization problem given by

minimize
Ω∈Uref

|Ω|=|Ωref |

J (Ω), (1.1)

where

Uref :=

{
Ω ⊂ Rd | Ω nonempty connected bounded open subset of Rd

with Lipschitz boundary Γ := ∂Ω such that ΓD ⊂ Γ

}
, (1.2)

with the volume constraint |Ω| = |Ωref | > 0, Ω is an elastic solid satisfying the linear elastic model,
for all Ω ∈ Uref , and where J : Uref → R is the Signorini energy functional defined by

J (Ω) :=
1

2

∫
Ω

Ae (uΩ) : e (uΩ)−
∫
Ω

f · uΩ, (1.3)
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where uΩ ∈ H1
D(Ω,Rd) stands for the unique solution to the Signorini problem given by

−div(Ae(u)) = f in Ω,
u = 0 on ΓD,

στ (u) = 0 on ΓS,
un ≤ 0, σn(u) ≤ 0 and unσn(u) = 0 on ΓS,

(SPΩ)

where, for all Ω ∈ Uref , Γ := ∂Ω, ΓS := Γ\ΓD, and n is the outward-pointing unit normal vector
to Γ. In the linear elasticity model, A is the stiffness tensor, e is the infinitesimal strain tensor, σn is
the normal stress, στ is the shear stress, and f models volume forces (see Section 2 for details). The
normal boundary condition on ΓS is known as the Signorini unilateral conditions which described
the non-permeability of ΓS (that is un ≤ 0), and that there are only compressive stresses exerted
on ΓS (that is σn(u) ≤ 0). Note that we focus here on minimizing the energy functional (as
in [16, 20, 40]) which corresponds to maximize the compliance (see [5]).

For any Ω ∈ Uref , the unique solution uΩ to (SPΩ) satisfies∫
Ω

Ae(uΩ) : e(v − uΩ) ≥
∫
Ω

f · (v − uΩ), ∀v ∈ K1(Ω),

where K1(Ω) is the nonempty closed convex subset of H1
D(Ω,Rd) given by

K1(Ω) :=
{
v ∈ H1

D(Ω,Rd) | vn ≤ 0 a.e. on ΓS

}
,

and is characterized by uΩ = projK1(Ω)(FΩ), where FΩ ∈ H1
D(Ω,Rd) is the unique solution to the

Dirichlet-Neumann problem −div(Ae(F )) = f in Ω,
F = 0 on ΓD,

Ae(F )n = 0 on ΓS,

and where projK1(Ω) stands for the projection operator on K1(Ω). We refer for instance to [2] for
details on existence/uniqueness and characterization of the solution to Problem (SPΩ). In order to
use our methodology, which is based, in particular, on the proximal operator, we characterize uΩ

as (see Remark A.8)
uΩ = proxιK1(Ω)

(FΩ),

where proxιK1(Ω)
is the proximal operator associated with the Signorini indicator function ιK1(Ω),

which is defined by ιK1(Ω)(v) := 0 if v ∈ K1(Ω), and ιK1(Ω)(v) := +∞ otherwise. To deal with the
numerical treatment of the above shape optimization problem, a suitable expression of the shape
gradient of J is required. To this aim, we follow the classical strategy developed in the shape
optimization literature (see, e.g., [5, 21]). Consider Ω0 ∈ Uref and a direction θ ∈ C2,∞

D (Rd,Rd),
where

C2,∞
D (Rd,Rd) :=

{
θ ∈ C2(Rd,Rd) ∩W2,∞(Rd,Rd) | θ = 0 on ΓD

}
. (1.4)

Then, for any t ≥ 0 sufficiently small such that id + tθ is a C2-diffeomorphism of Rd, we denote
by Ωt := (id + tθ)(Ω0) ∈ Uref and by ut := uΩt

∈ H1
D(Ωt,Rd), where id : Rd → Rd stands for

the identity operator. To get an expression of the shape gradient of J at Ω0 in the direction θ,
the first step naturally consists in obtaining an expression of the derivative of the map t ∈ R+ 7→
ut ∈ H1

D(Ωt,Rd) at t = 0. To overcome the issue that ut is defined on the moving domain Ωt, the
classical change of variables id+tθ is considered, and we prove that ut := ut◦(id+tθ) ∈ H1

D(Ω0,Rd)
is the unique solution to the parameterized variational inequality∫

Ω0

JtA
[
∇ut (I + t∇θ)

−1
]
: ∇(v − ut) (I + t∇θ)

−1 ≥
∫
Ω0

ftJt · (v − ut) ,
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for all v ∈ K1
t (Ω0) :=

{
v ∈ H1

D(Ω0,Rd) | v · (I + t∇θ⊤)−1n ≤ 0 a.e. on ΓS0

}
, where n refers now to

the outward-pointing unit normal vector to Γ0, ft := f ◦(id+tθ) ∈ H1(Rd,Rd), Jt := det(I+t∇θ) ∈
L∞(Rd,R) is the Jacobian, ∇θ stands for the standard Jacobian matrix of θ and I is the identity
matrix of Rd×d. Thus ut = proxι

K1
t (Ω0)

(Ft) ∈ K1
t (Ω0), where Ft ∈ H1(Ω0,Rd) is the unique solution

to the parameterized variational equality∫
Ω0

JtA
[
∇Ft (I + t∇θ)

−1
]
: ∇v (I + t∇θ)

−1
=

∫
Ω0

ftJt · v, ∀v ∈ H1
D(Ω0,Rd),

and proxι
K1

t (Ω0)
is the proximal operator associated with the indicator function ιK1

t (Ω0) considered

on the Hilbert space H1
D(Ω0,Rd) endowed with a perturbed scalar product (see details in Subsec-

tion 3.1). Now, the next step is to obtain an expression of the derivative of the map t ∈ R+ 7→ ut ∈
H1

D(Ω0,Rd) at t = 0, which will be denoted by u′
0 ∈ H1

D(Ω0,Rd) and called material derivative.
Since, for all t ≥ 0, ut ∈ K1

t (Ω0), the main difficulty to compute u′
0 is that K1

t (Ω0) depends on the
parameter t ≥ 0. To overcome it, we consider, for any t ≥ 0 sufficiently small, a second change of
variables (I + t∇θ)−1 and we characterize ut := (I + t∇θ)−1ut as ut = proxιK1(Ω0)

(Et) ∈ K1(Ω0)

where Et ∈ H1
D(Ω0,Rd) is the unique solution to a specific variational equality (see details in

Subsection 3.1). Since K1(Ω0) is independant on t ≥ 0, we can now focus on the derivative of the
map t ∈ R+ 7→ ut ∈ H1

D(Ω0,Rd), denoted by u
′
0 ∈ H1

D(Ω0,Rd).
To deal with the differentiability (in a generalized sense) of the proximal operator proxιK1(Ω0)

:

H1
D(Ω0,Rd) → H1

D(Ω0,Rd), we invoke the notion of twice epi-differentiability for convex functions
(see [32] or Definition A.11), which leads to the protodifferentiability of the corresponding proximal
operators. Precisely, using a result proved by C. N. Do about the twice epi-differentiability of a
indicator function (see [13, Chapter 2, Example 2.10 p.287] or Lemma A.12), we characterize u

′
0 ∈

H1
D(Ω0,Rd) as u

′
0 = proxd2

eιK1(Ω0)(u0|E0−u0)(E
′
0), where d2eιK1(Ω0)(u0|E0 − u0) is the second-order

epi-derivative of ιK1(Ω0) at u0 for E0 − u0, and E′
0 ∈ H1

D(Ω0,Rd) is the derivative of the map t ∈
R+ 7→ Et ∈ H1

D(Ω0,Rd) at t = 0. Then one deduces that

u′
0 = proxd2

eιK1(Ω0)(u0|E0−u0)(E
′
0) +∇θu0,

and we characterize it as the unique solution to a variational inequality, which is next used to
obtain the shape gradient of J .

Let us emphasize that, in this paper, we do not prove theoretically the existence of a solution
to the shape optimization problem (1.1). The interested reader can find some related existence
results (for very specific geometries in the two dimensional case) in [18].

Main theoretical results. We summarize here our main theoretical results (given in Theo-
rems 3.6 and 3.11). However, to make their expressions more explicit and elegant, we present
them under certain additional assumptions, within the framework of Corollaries 3.7, 3.9 and 3.12,
making them more suitable for this introduction.

(i) Under some appropriate assumptions described in Corollary 3.7, the map t ∈ R+ 7→ ut ∈
H1

D(Ω0,Rd) is differentiable at t = 0, and the material derivative u′
0 ∈ H1

D(Ω0,Rd) is the
unique weak solution to the Signorini problem

−div(Ae(u′
0)) = ℓ(θ) in Ω0,
u′
0 = 0 on ΓD,

στ (u′
0) = hm(θ)τ on ΓS0

,
σn(u′

0) = hm(θ)n on Γ
S
u0n
0,N

,

u′
0n = (∇θu0)n on Γ

S
u0n
0,D

,

u′
0n ≤ (∇θu0)n , σn(u′

0) ≤ hm(θ)n and
(
u′
0n − (∇θu0)n

) (
σn(u′

0)− hm(θ)n
)
= 0 on Γ

S
u0n
0,S

,
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where:
• ℓ(θ) = −div(Ae(∇u0θ)) ∈ L2(Ω0,Rd);

• hm(θ) := ((Ae(u0))∇θ⊤ +A(∇u0∇θ)− σn(u0)(div(θ)I +∇θ⊤))n ∈ L2(ΓS0
,Rd);

and ΓS0 is decomposed, up to a null set, as ΓS
u0n
0,N

∪ΓS
u0n
0,D

∪ΓS
u0n
0,S

(see details in Corollary 3.7).

(ii) We deduce in Corollary 3.9 that, under appropriate assumptions, the shape derivative, defined
by u′

0 := u′
0 −∇u0θ ∈ H1

D(Ω0,Rd) (which corresponds, roughly speaking, to the derivative of
the map t ∈ R+ 7→ ut ∈ H1

D(Ωt,Rd) at t = 0), is the unique weak solution to the Signorini
problem

−div(Ae(u′
0)) = 0 in Ω0,
u′
0 = 0 on ΓD,

στ (u
′
0) = hs(θ)τ on ΓS0 ,

σn(u
′
0) = hs(θ)n on Γ

S
u0n
0,N

,

u′
0n = W (θ)n on Γ

S
u0n
0,D

,

u′
0n ≤ W (θ)n, σn(u

′
0) ≤ hs(θ)n and (u′

0n −W (θ)n) (σn(u
′
0)− hs(θ)n) = 0 on Γ

S
u0n
0,S

,

where:
• W (θ) := (∇θu0)− (∇u0θ) ∈ H1/2(Γ0,Rd);

• hs(θ) := θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)−∇(Ae(u0)n)θ

− σn(u0)
(
divτ (θ)I +∇θ⊤

)
n ∈ L2(ΓS0

,Rd).

(iii) Finally the two previous items are used to obtain Corollary 3.12 asserting that, under ap-
propriate assumptions, the shape gradient of J at Ω0 in the direction θ is given by

J ′(Ω0)(θ) =

∫
ΓS0

(
θ · n

(
Ae(u0) : e(u0)

2
− f · u0

)
+Ae(u0)n · (∇θu0 −∇u0θ)

)
.

One can notice that J ′(Ω0) depends only on u0 (and not on u′
0), thus its expression is

explicit and linear with respect to the direction θ (see Remark 3.13 for details) and allows
us to exhibit a descent direction of J . Hence, using this descent direction together with a
basic Uzawa algorithm to take into account the volume constraint, we perform in Section 4
numerical simulations to solve the shape optimization problem (1.1) on a two-dimensional
example.

Organization of the paper. The paper is organized as follows. In section 2 we describe the
functional framework and recall some classical boundary value problem involved all along the paper.
Section 3 is the core of the present work where the main theoretical results are stated and proved.
In Section 4, numerical simulations are performed to solve the shape optimization problem (1.1)
on a two-dimensional example. Finally Appendix A is dedicated to some basic recalls from convex,
variational and functional analysis, capacity theory and differential geometry.

2 Functional framework and some required boundary value
problems

As mentioned in Introduction, the major part of the present work consists in performing the
sensitivity analysis of a Signorini problem with respect to shape perturbation. To this aim, we
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present in this section the functional framework and we recall some classical boundary value prob-
lems used throughout the paper: a Dirichlet-Neumann problem and a Signorini problem. We
present some basic notions and results concerning these boundary value problems for the reader’s
convenience. Since the proofs are very similar to the ones detailed in the paper [2], they will be
omitted here.

Let d ∈ {2, 3} and Ω be a nonempty bounded connected open subset of Rd with a Lipschitz-
boundary Γ := ∂Ω and n the outward-pointing unit normal vector to Γ. In the whole paper we
denote by D(Ω,Rd) the set of functions that are infinitely differentiable with compact support
in Ω, by D′(Ω,Rd) the set of distributions on Ω, for (m, p) ∈ N× N∗, by Wm,p(Ω,Rd), L2(Γ,Rd),
H1/2(Γ,Rd), H−1/2(Γ,Rd), the usual Lebesgue and Sobolev spaces endowed with their standard
norms, and we denote by Hm(Ω,Rd) := Wm,2(Ω,Rd) and by Hdiv(Ω,Rd×d) := {w ∈ L2(Ω,Rd×d) |
div(w) ∈ L2(Ω,Rd)}, where div(w) is the vector whose the i-th component is defined by div(w)i :=
div(wi) ∈ L2(Ω,R), and where wi ∈ L2(Ω,Rd) is the i-th line of w, for all i ∈ [[1, d]] and for
all w ∈ Hdiv(Ω,Rd×d). Moreover, all along this paper we denote by : the scalar product defined
by B : C =

∑d
i=1 Bi · Ci, for all B,C ∈ Rd×d, where Bi ∈ Rd (resp. Ci ∈ Rd) is the i-th line of B

(resp. C) for all i ∈ [[1, d]]. Let us assume that Γ is decomposed as ΓD ∪ ΓS, where ΓD and ΓS are
two measurable pairwise disjoint subsets of Γ, such that ΓD has a positive measure. In that case
we denote H1

D(Ω,Rd) the linear subspace of H1(Ω,Rd) defined by

H1
D(Ω,Rd) :=

{
w ∈ H1(Ω,Rd) | w = 0 a.e. on ΓD

}
.

Moreover, we assume that Ω is an elastic solid satisfying the linear elastic model (see, e.g., [35])

σ(v) = Ae(v),

where σ is the Cauchy stress tensor, A the stiffness tensor, and e is the infinitesimal strain tensor
defined by

e(v) :=
1

2
(∇v +∇v⊤),

for all displacement field v ∈ H1(Ω,Rd). We also assume that all coefficients of A are constant
(denoted by aijkl for all (i, j, k, l) ∈ {1, ..., d}4), and there exists one constant α > 0 such that all
coefficients of A and e (denoted by ϵij for all (i, j) ∈ {1, ..., d}2) satisfy

aijkl = ajikl = alkij ,
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

aijklϵij(v1)(x)ϵkl(v2)(x) ≥ α

d∑
i=1

d∑
j=1

ϵij(v1)(x)ϵij(v2)(x),

for all displacement field v1, v2 ∈ H1(Ω,Rd) and for almost all x ∈ Ω. Moreover, since ΓD has a
positive measure, then

⟨·, ·⟩H1
D(Ω,Rd) :

(
H1

D(Ω,Rd)
)2 −→ R

(v1, v2) 7−→
∫
Ω

Ae(v1) : e(v2),

is a scalar product on H1
D(Ω,Rd) (see, e.g., [14, Chapter 3]), and we denote by ∥·∥H1

D(Ω,Rd) the
corresponding norm. Moreover, from the assumptions on A, note that Ae(v) = A∇v, for all v ∈
H1

D(Ω,Rd).
For any v ∈ L2(Γ,Rd), one writes v = vnn+vτ , where vn := v ·n ∈ L2(Γ,R) and vτ := v−vnn ∈

L2(Γ,Rd). In particular, if for some v ∈ H1(Ω,Rd), the stress vector Ae(v)n is in L2(ΓS,Rd), then
we use the notation

Ae(v)n = σn(v)n + στ (v),
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where σn(v) ∈ L2(ΓS,R) is the normal stress and στ ∈ L2(ΓS,Rd) the shear stress. We also
denote, for all (x, y) ∈ Rd × Rd, by xy⊤ the matrix whose the i-th line is given by the vector xiy,
where xi ∈ R is the i-th component of x, for all i ∈ [[1, d]].

In the sequel, consider k ∈ L2(Ω,Rd), h ∈ L2(ΓS,Rd) and w ∈ H1
D(Ω,Rd).

2.1 A Problem with Dirichlet-Neumann Conditions
Consider the Dirichlet-Neumann problem given by−div(Ae(F )) = k in Ω,

F = 0 on ΓD,
Ae(F )n = h on ΓS.

(DN)

Definition 2.1 (Strong solution to the Dirichlet-Neumann problem). A (strong) solution to
the Dirichlet-Neumann problem (DN) is a function F ∈ H1(Ω,Rd) such that −div(Ae(F )) = k
in D′(Ω,Rd), F = 0 a.e. on ΓD, Ae(F )n ∈ L2(ΓS,Rd) with Ae(F )n = h a.e. on ΓS.

Definition 2.2 (Weak solution to the Dirichlet-Neumann problem). A weak solution to the
Dirichlet-Neumann problem (DN) is a function F ∈ H1

D(Ω,Rd) such that∫
Ω

Ae(F ) : e(v) =

∫
Ω

k · v +
∫
ΓS

h · v, ∀v ∈ H1
D(Ω,Rd).

Proposition 2.3. A function F ∈ H1(Ω,Rd) is a (strong) solution to the Dirichlet-Neumann
problem (DN) if and only if F is a weak solution to the Dirichlet-Neumann problem (DN).

Using the Riesz representation theorem, we obtain the following existence/uniqueness result.

Proposition 2.4. The Dirichlet-Neumann problem (DN) admits a unique solution F ∈ H1
D(Ω,Rd).

2.2 A Signorini problem
In this part, let us assume that ΓS is decomposed, up to a null set, as ΓSN ∪ ΓSD ∪ ΓSS ,

where ΓSN , ΓSD and ΓSS are three measurable pairwise disjoint subsets of ΓS. Consider the Signorini
problem given by

−div(Ae(u)) = k in Ω,
u = 0 on ΓD,

στ (u) = hτ on ΓS,
σn(u) = hn on ΓSN

,
un = wn on ΓSD

,
un ≤ wn, σn(u) ≤ hn and (un − wn) (σn(u)− hn) = 0 on ΓSS

,

(SiP)

where the data are given at the beginning of Section 2.

Definition 2.5 (Strong solution). A (strong) solution to the problem (SiP) is a function u ∈
H1(Ω,Rd) such that −div(Ae(u)) = k in D′(Ω,Rd), u = 0 a.e. on ΓD, un = wn a.e. on ΓSD

,
Ae(u)n ∈ L2(ΓS,Rd) with στ (u) = hτ a.e. on ΓS, σn = hn a.e. on ΓSN

, un ≤ wn, σn(u) ≤
hn and (un − wn)(σn(u)− hn) = 0 a.e. on ΓSS

.

Definition 2.6 (Weak solution). A weak solution to problem (SiP) is a function u ∈ K1
w(Ω) such

that ∫
Ω

Ae(u) : e(v − u) ≥
∫
Ω

k · (v − u) +

∫
ΓS

h · (v − u) , ∀v ∈ K1
w(Ω),
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where K1
w(Ω) is the nonempty closed convex subset of H1

D(Ω,Rd) defined by

K1
w(Ω) :=

{
v ∈ H1

D(Ω,Rd) | vn = wn a.e. on ΓSD and vn ≤ wn a.e. on ΓSS

}
.

One can prove that a (strong) solution is a weak solution but, to the best of our knowledge,
without additional assumption, one cannot prove the converse. To get the equivalence, we need
to assume, in particular, that the decomposition ΓD ∪ ΓSN

∪ ΓSD
∪ ΓSS

of Γ is consistent in the
following sense.

Definition 2.7 (Consistent decomposition). The decomposition ΓD ∪ΓSN
∪ΓSD

∪ΓSS
of Γ is said

to be consistent if

1. for almost all s ∈ ΓSS
, s ∈ intΓ(ΓSS

);

2. the nonempty closed convex subset K1/2
w (Γ) of H1/2(Γ,Rd) defined by

K1/2
w (Γ) :=

{
v ∈ H1/2(Γ,Rd) | v = 0 a.e. on ΓD, vn = wn a.e. on ΓSD

and vn ≤ wn a.e. on ΓSS

}
,

is dense in the nonempty closed convex subset K0
w(Γ) of L2(Γ,Rd) defined by

K0
w(Γ) :=

{
v ∈ L2(Γ,Rd) | v = 0 a.e. on ΓD, vn = wn a.e. on ΓSD

and vn ≤ wn a.e. on ΓSS

}
.

Proposition 2.8. Let u ∈ H1(Ω,Rd).

1. If u is a (strong) solution to the problem (SiP), then u is a weak solution to the problem (SiP).

2. If u is a weak solution to the problem (SiP) such that Ae(u)n ∈ L2(ΓS,Rd) and the de-
composition ΓD ∪ ΓSN ∪ ΓSD ∪ ΓSS of Γ is consistent, then u is a (strong) solution to the
problem (SiP).

Proposition 2.9. The problem (SiP) admits a unique weak solution u ∈ H1
D(Ω,Rd) which is given

by
u = proxιK1

w(Ω)
(F ),

where F ∈ H1
D(Ω,Rd) is the unique solution to the Dirichlet-Neumann problem (DN), and proxιK1

w(Ω)

stands for the proximal operator associated with the indicator function ιK1
w(Ω) considered on the

Hilbert space (H1
D(Ω,Rd), ⟨·, ·⟩H1

D(Ω,Rd)).

Remark 2.10. Note that, from Remark A.8, the unique weak solution u ∈ H1
D(Ω,Rd) to the

problem (SiP) is also characterized by the projection operator since proxιK1
w(Ω)

= projK1
w(Ω).

8



3 Main results
Let d ∈ {2, 3} and f ∈ H1(Rd,Rd). Let Ωref be a nonempty connected bounded open subset

of Rd with Lipschitz boundary Γref := ∂Ωref . We assume that Γref = ΓD∪ΓSref
, where ΓD and ΓSref

are two measurable pairwise disjoint subsets of Γref , such that ΓD has a positive measure. We
consider the set of admissible shapes Uref defined in (1.2). Note that, all shapes in Uref have ΓD as
common boundary part. We assume that, for all Ω ∈ Uref , Ω is an elastic solid satisfying the linear
elastic model with all the same assumptions and notations described at the beginning of Section 2.

We consider the shape optimization problem (1.1). From Subsection 2.2, note that the Signorini
energy functional J , given by (1.3), can also be expressed as

J (Ω) = −1

2

∫
Ω

Ae (uΩ) : e (uΩ) ,

for all Ω ∈ Uref .
In the whole section let us fix Ω0 ∈ Uref . Our aim here is to prove that, under appropriate

assumptions, the functional J is shape differentiable at Ω0, in the sense that the map

C2,∞
D (Rd,Rd) −→ R

θ 7−→ J ((id + θ)(Ω0)),

is Gateaux differentiable at 0, where C2,∞
D (Rd,Rd) is defined by (1.4), and to give an expression

of the Gateaux differential, denoted by J ′(Ω0), which is called the shape gradient of J at Ω0. To
this aim we have to perform the sensitivity analysis of the Signorini problem (SPΩ) with respect
to the shape, and then to characterize the material and shape derivatives.

This section is separated as follows. In Subsection 3.1, we perturb the Signorini problem
with respect to the shape. In Subsection 3.2 we characterize the material derivative as solution
to a variational inequality (see Theorem 3.6). Then, with additional regularity assumptions, we
characterize the material and shape derivatives as being weak solutions to Signorini problems (see
Corollaries 3.7 and 3.9). Finally, in Subsection 3.3, we prove that the Signorini energy functional J
is shape differentiable at Ω0, and we provide an expression of its shape gradient (see Theorem 3.11
and Corollary 3.12).

3.1 Setting of the shape perturbation
Consider θ ∈ C2,∞

D (Rd,Rd) and, for all t ≥ 0 sufficiently small such that id + tθ is a C2-
diffeomorphism of Rd, consider the shape perturbed Signorini problem given by

−div(Ae(ut)) = f in Ωt,
ut = 0 on ΓD,

στt(ut) = 0 on ΓSt
,

ut,nt ≤ 0, σnt(ut) ≤ 0 and ut,ntσnt(ut) = 0 on ΓSt ,

(SPt)

where Ωt := (id + tθ)(Ω0) ∈ Uref , Γt := (id + tθ)(Γ0) and nt is the outward-pointing unit normal
vector to Γt. From Subsection 2.2, there exists a unique solution ut ∈ H1(Ωt,Rd) to (SPt) which
satisfies ∫

Ωt

Ae(ut) : e(v − ut) ≥
∫
Ωt

f · (v − ut), ∀v ∈ K1(Ωt),

where
K1(Ωt) :=

{
v ∈ H1

D(Ωt,Rd) | vnt
≤ 0 a.e. on ΓSt

}
.
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Following the usual strategy in shape optimization literature (see, e.g., [5, 21]), using the change
of variables id + tθ and the equality

nt ◦ (id + tθ) =
(I + t∇θ⊤)−1n

∥(I + t∇θ⊤)−1n∥
,

where n := n0 (see, e.g., [39, Chapter 2, Proposition 2.48 p.79]) and || · || is the Euclidean norm
on Rd, we prove that ut := ut ◦ (id + tθ) ∈ K1

t (Ω0) ⊂ H1
D(Ω0,Rd) satisfies∫

Ω0

JtA
[
∇ut (I + t∇θ)

−1
]
: ∇(v − ut) (I + t∇θ)

−1 ≥
∫
Ω0

ftJt · (v − ut) , ∀v ∈ K1
t (Ω0), (3.1)

where K1
t (Ω0) := {v ∈ H1

D(Ω0,Rd) | v · (I + t∇θ⊤)−1n ≤ 0 a.e. on ΓS0
}, ft := f ◦ (id + tθ) ∈

H1(Rd,Rd) and Jt := det(I + t∇θ) ∈ L∞(Rd,R) is the Jacobian. Thus, using the characterization
of the proximal operator (see Definition A.7), ut can be expressed as

ut = proxι
K1

t (Ω0)
(Ft),

where Ft ∈ H1(Ω0,Rd) is the unique solution to the parameterized variational equality∫
Ω0

JtA
[
∇Ft (I + t∇θ)

−1
]
: ∇v (I + t∇θ)

−1
=

∫
Ω0

ftJt · v, ∀v ∈ H1
D(Ω0,Rd),

and proxι
K1

t (Ω0)
is the proximal operator associated with the indicator function ιK1

t (Ω0) considered

on the space H1
D(Ω0,Rd) endowed with the perturbed scalar product

(v1, v2) ∈
(
H1

D(Ω0,Rd)
)2 7→

∫
Ω0

JtA
[
∇v1 (I + t∇θ)

−1
]
: ∇v2 (I + t∇θ)

−1 ∈ R.

Here, the main difficulty is that the indicator function ιK1
t (Ω0) depends on the parameter t,

thus it would required an extended notion of twice epi-differentiability depending on a parameter
in order to apply the Proposition A.13. Nevertheless, it is not necessary since, for all v ∈ K1

t (Ω0),
one has (similarly to [26, Chapter 5 p.111] and [39, Chapter 4 Section 4.6 p.205])

(I + t∇θ)
−1

v ∈ K1(Ω0),

and conversely, for all φ ∈ K1(Ω0),

(I + t∇θ)φ ∈ K1
t (Ω0).

Thus, from Inequality (3.1), one proves that ut := (I + t∇θ)−1ut ∈ K1(Ω0) satisfies∫
Ω0

JtA
[
∇
(
(I + t∇θ)ut

)
(I + t∇θ)

−1
]
: ∇

(
(I + t∇θ)

(
φ− ut

))
(I + t∇θ)

−1

≥
∫
Ω0

(
I + t∇θ⊤

)
ftJt ·

(
φ− ut

)
, ∀φ ∈ K1(Ω0), (3.2)

and can be expressed as
ut = proxιK1(Ω0)

(Gt),

where Gt ∈ H1
D(Ω0,Rd) is the unique solution to the parameterized variational equality
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∫
Ω0

JtA
[
∇((I + t∇θ)Gt) (I + t∇θ)

−1
]
: ∇((I + t∇θ)φ) (I + t∇θ)

−1

=

∫
Ω0

(
I + t∇θ⊤

)
ftJt · φ, ∀φ ∈ H1

D(Ω0,Rd),

and proxιK1(Ω0)
is the proximal operator associated with the Signorini indicator function ιK1(Ω0)

considered on the perturbed Hilbert space (H1
D(Ω0,Rd), ⟨·, ·⟩t), where ⟨·, ·⟩t is the scalar product

defined by

(v1, v2) ∈
(
H1

D(Ω0,Rd)
)2 7→∫

Ω0

JtA
[
∇((I + t∇θ) v1) (I + t∇θ)

−1
]
: ∇((I + t∇θ) v2) (I + t∇θ)

−1 ∈ R.

The previous difficulty is solved since the Signorini indicator function ιK1(Ω0) does not depend
on the parameter t ≥ 0. Nevertheless, we face here to a perturbed Hilbert space due to the scalar
product ⟨·, ·⟩t that is t-dependent, thus we could not apply Theorem A.13. To overcome this
difficulty, let us rewrite Inequality (3.2) as (using the equality B : CD = BD⊤ : C for all B,C,D ∈
Rd×d)∫

Ω0

JtA
[
∇
(
(I + t∇θ)ut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇
(
(I + t∇θ)

(
φ− ut

))
≥

∫
Ω0

(
I + t∇θ⊤

)
ftJt ·

(
φ− ut

)
, ∀φ ∈ K1(Ω0),

then adding to both members
〈
ut, φ− ut

〉
H1

D(Ω0,Rd)
, one deduces that

〈
ut, φ− ut

〉
H1

D(Ω0,Rd)
≥

∫
Ω0

(
I + t∇θ⊤

)
ftJt · (φ− ut)

−
∫
Ω0

(
JtA

[
∇ut (I + t∇θ)

−1
] (

I + t∇θ⊤
)−1 −A∇ut

)
: ∇

(
φ− ut

)
− t

∫
Ω0

JtA
[
∇ut (I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇
(
∇θ

(
φ− ut

))
− t

∫
Ω0

JtA
[
∇
(
∇θut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇
(
φ− ut

)
− t2

∫
Ω0

JtA
[
∇
(
∇θut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇
(
∇θ

(
φ− ut

))
, ∀φ ∈ K1(Ω0).

Thus ut is also expressed as
ut = proxιK1(Ω0)

(Et),

where Et ∈ H1
D(Ω0,Rd) stands for the unique solution to the parameterized variational equality

⟨Et, φ⟩H1
D(Ω0,Rd) =

∫
Ω0

(
I + t∇θ⊤

)
ftJt · φ

−
∫
Ω0

(
JtA

[
∇ut (I + t∇θ)

−1
] (

I + t∇θ⊤
)−1 −A∇ut

)
: ∇φ

− t

∫
Ω0

JtA
[
∇ut (I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇(∇θφ)
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− t

∫
Ω0

JtA
[
∇
(
∇θut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇φ

− t2
∫
Ω0

JtA
[
∇
(
∇θut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇(∇θφ), ∀φ ∈ H1
D(Ω0,Rd), (3.3)

and where proxιK1(Ω0)
is the proximal operator associated with the Signorini indicator func-

tion ιK1(Ω0) considered on the Hilbert space (H1
D(Ω0,Rd), ⟨·, ·⟩H1

D(Ω0,Rd)), which is t-independent.

Remark 3.1. Note that, for the parameter t = 0, one has E0 = F0 ∈ H1
D(Ω0,Rd), which is the

unique solution to the Dirichlet-Neumann problem−div(Ae(F0)) = f in Ω0,
F0 = 0 on ΓD,

Ae(F0)n = 0 on ΓS0
.

Now the next step is to derive the differentiability of the map t ∈ R+ 7→ Et ∈ H1
D(Ω0,Rd)

at t = 0. To this aim let us recall first that (see, e.g., [21]):

(i) the map t ∈ R+ 7→ Jt ∈ L∞(Rd) is differentiable at t = 0 with derivative given by div(θ);

(ii) the map t ∈ R+ 7→ (I + t∇θ)
−1 ∈ L∞(Rd,Rd×d) is differentiable at t = 0 with derivative

given by −∇θ;

(iii) the map t ∈ R+ 7→
(
I + t∇θ⊤

)−1 ∈ L∞(Rd,Rd×d) is differentiable at t = 0 with derivative
given by −∇θ⊤;

(iv) the map t ∈ R+ 7→
(
I + t∇θ⊤

)
ftJt ∈ L2(Rd,Rd) is differentiable at t = 0 with derivative

given by fdiv(θ) +∇fθ +∇θ⊤f .

Lemma 3.2. The map t ∈ R+ 7→ Et ∈ H1
D(Ω0,Rd) is differentiable at t = 0 and its derivative,

denoted by E′
0 ∈ H1

D(Ω0,Rd), is the unique solution to the variational equality given by

⟨E′
0, φ⟩H1

D(Ω0,Rd) =

∫
Ω0

(
fdiv(θ) +∇fθ +∇θ⊤f

)
· φ

+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
: ∇φ

−
∫
Ω0

Ae(u0) : e (∇θφ)−
∫
Ω0

Ae (∇θu0) : e (φ) , ∀φ ∈ H1
D(Ω0,Rd). (3.4)

Proof. Using the Riesz representation theorem, we denote by Z ∈ H1
D(Ω0,Rd) the unique solution

to the above variational equality (3.4). From linearity and using differentiability results (i), (ii),
(iii), (iv), one gets∥∥∥∥Et − E0

t
− Z

∥∥∥∥
H1

D(Ω0,Rd)

≤

C(Ω0, d,A, θ)

(∥∥∥∥∥
(
I + t∇θ⊤

)
ftJt − f

t
−

(
fdiv(θ) +∇fθ +∇θ⊤f

)∥∥∥∥∥
L2(Rd,Rd)

+
∥∥ut − u0

∥∥
H1

D(Ω0,Rd)
+

o(θ, t)

t

∥∥ut

∥∥
H1

D(Ω0,Rd)

)
,
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for all t ≥ 0 sufficiently small, where C(Ω0,A, θ, d) > 0 is a constant which depends on Ω0,A, θ, d,
and where o stands for the standard Bachmann–Landau notation, with |o(θ,t)|

t → 0 when t → 0+.
Therefore, to conclude the proof, we only need to prove the continuity of the map t ∈ R+ 7→
ut ∈ H1

D(Ω0,Rd) at t = 0. To this aim let us take φ = u0 in the variational formulation of ut

and φ = ut in the variational formulation of u0 to get that∥∥ut − u0

∥∥
H1

D(Ω0,Rd)
≤

C(Ω0,A, θ, d)
(∥∥(I + t∇θ⊤

)
ftJt − f

∥∥
L2(Rd,Rd)

+
∥∥ut

∥∥
H1

D(Ω0,Rd)
(t+ o(θ, t))

)
,

for all t ≥ 0 sufficiently small. Then, to conclude the proof, we only need to prove that the
map t ∈ R+ 7→

∥∥ut

∥∥
H1

D(Ω0,Rd)
∈ R is bounded for t ≥ 0 sufficiently small. Let us take φ = 0 in the

variational formulation of ut to get that∥∥ut

∥∥2
H1

D(Ω0,Rd)
≤ C(Ω0,A, θ, d)

∥∥(I + t∇θ⊤
)
ftJt

∥∥
L2(Rd,Rd)

∥∥ut

∥∥
H1

D(Ω0,Rd)

+ C(Ω0,A, θ, d)
∥∥ut

∥∥2
H1

D(Ω0,Rd)
(t+ o(θ, t)) ,

for all t ≥ 0 sufficiently small. Thus, one deduces

∥∥ut

∥∥
H1

D(Ω0,Rd)
≤

C(Ω0,A, θ, d)(
∥∥(I + t∇θ⊤

)
ftJt

∥∥
L2(Rd,Rd)

1− C(Ω0,A, θ, d) (t+ o(θ, t))
,

for all t ≥ 0 sufficiently small, and using the continuity of the map t ∈ R+ 7→ (I + t∇θ⊤)ftJt ∈
L2(Rd,Rd), one concludes the proof.

3.2 Twice epi-differentiability, material and shape derivatives
Consider the framework of Subsection 3.1. Our goal in this subsection is to characterize the

derivative of the map t ∈ R+ 7→ ut ∈ H1
D(Ω0,Rd) at t = 0, denoted u

′
0 ∈ H1

D(Ω0,Rd), then to
characterize the material derivative u′

0 (that is the derivative of the map t ∈ R+ 7→ ut ∈ H1
D(Ω0,Rd)

at t = 0), and finally to conclude with an expression of the shape directional derivative defined
by u′

0 := u′
0 − ∇u0θ (which roughly corresponds to the derivative of the map t ∈ R+ 7→ ut ∈

H1(Ωt,Rd) at t = 0).
To this aim, our idea is to use Proposition A.13. Since we have expressed ut = proxιK1(Ω0)

(Et)

and characterized in Lemma 3.2 the derivative of the map t ∈ R+ 7→ Et ∈ H1
D(Ω0,Rd) at t = 0, the

next step is to investigate the twice epi-differentiability of the Signorini indicator function ιK1(Ω0).
In [13], the author proved that the indicator function of a nonempty closed convex set is twice
epi-differentiable if the set is polyhedric (see also Lemma A.12). The polyhedricity of K1(Ω0) has
been proved in [26, Lemma 5.2.9 p.116] involving some concepts from convex analysis and capacity
theory, reminded in Subsections A.1 and A.2.

Lemma 3.3. The nonempty closed convex subset K1(Ω0) of H1
D(Ω0,Rd) is polyhedric at u0 ∈

K1(Ω0) for E0 − u0 ∈ NK1(Ω0)(u0), and one has

TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥

=
{
φ ∈ H1

D(Ω0,Rd) | φn ≤ 0 q.e. on Γu0n

S0
and ⟨E0 − u0, φ⟩H1

D(Ω0,Rd) = 0
}
,

where Γu0n

S0
:= {s ∈ ΓS0

| u0n(s) = 0}.
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Remark 3.4. Note that one can easily prove that ∂ιK1(Ω0)(u0) = NK1(Ω0)(u0). Therefore,
since u0 = proxιK1(Ω0)

(E0), it follows from the definition of the proximal operator (see Defini-
tion A.7) that E0 − u0 ∈ NK1(Ω0)(u0).

Since K1(Ω0) of H1
D(Ω0,Rd) is polyhedric at u0 ∈ K1(Ω0) for E0 − u0 ∈ NK1(Ω0)(u0), one can

now deduce from Lemma A.12 that ιK1(Ω0) is twice epi-differentiable.

Lemma 3.5. The Signorini indicator function ιK1(Ω0) is twice epi-differentiable at u0 ∈ K1(Ω0)
for E0 − u0 ∈ NK1(Ω0)(u0) and

d2eιK1(Ω0)(u0|E0 − u0) = ιTNK1(Ω0)
(u0)∩(R(E0−u0))

⊥ .

The twice epi-differentiability of the Signorini indicator function allows us to state and prove
the first main result of this paper that characterizes the material derivative.

Theorem 3.6 (Material derivative). The map t ∈ R+ 7→ ut ∈ H1
D(Ω0,Rd) is differentiable at t =

0, and its derivative u′
0 ∈ TNK1(Ω0)

(u0) ∩ (R (E0 − u0))
⊥
+ ∇θu0 is the unique solution to the

variational inequality

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (φ− u′
0)

+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
: ∇(φ− u′

0)

− ⟨Ae(u0)n,∇θ (φ− u′
0)⟩H−1/2(Γ0,Rd)×H1/2(Γ0,Rd) , (3.5)

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0, where

TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0 ={

φ ∈ H1
D(Ω0,Rd) | φn ≤ (∇θu0)n q.e. on Γu0n

S0
and ⟨E0 − u0, φ−∇θu0⟩H1

D(Ω0,Rd) = 0
}
.

Proof. For all t ≥ 0, ut ∈ H1
D(Ω0,Rd) is given by

ut = proxιK1(Ω0)
(Et),

where Et ∈ H1(Ω0,Rd) stands for the unique solution to the parameterized variational equal-
ity (3.3). Moreover the map t ∈ R+ 7→ Et ∈ H1

D(Ω0,Rd) is differentiable at t = 0 with its deriva-
tive E′

0 ∈ H1
D(Ω0,Rd) solution to the variational equality (3.4). Therefore, from Lemma 3.5 one

can apply Proposition A.13 to deduce the differentiability of the map t ∈ R+ 7→ ut ∈ H1
D(Ω0,Rd),

with its derivative u
′
0 ∈ H1

D(Ω0,Rd) given by

u
′
0 = proxd2

eιK1(Ω0)(u0|E0−u0)(E
′
0).

Since ut = (I + t∇θ)ut, then one deduces that

u′
0 = proxd2

eιK1(Ω0)(u0|E0−u0)(E
′
0) +∇θu0,

which, from definition of the proximal operator (see Definition A.7), leads to

⟨E′
0 − u′

0 +∇θu0, v − u′
0 +∇θu0⟩H1

D(Ω0,Rd) ≤
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d2eιK1(Ω0)(u0|E0 − u0)(v)− d2eιK1(Ω0)(u0|E0 − u0)(u
′
0 −∇θu0),

for all v ∈ H1
D(Ω0,Rd), i.e.,

⟨E′
0 − u′

0 +∇θu0, φ− u′
0⟩H1

D(Ω0,Rd) ≤ 0,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0. Using the variational equality satisfied by E′

0

(see (3.4)), one gets

⟨u′
0 −∇θu0, φ− u′

0⟩H1
D(Ω0,Rd) ≥

∫
Ω0

(
fdiv(θ) +∇fθ +∇θ⊤f

)
· (φ− u′

0)

+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
: ∇(φ− u′

0)

−
∫
Ω0

Ae(u0) : e (∇θ (φ− u′
0))−

∫
Ω0

Ae (∇θu0) : e (φ− u′
0) ,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0, which is also (see the notations introduced at

the beginning of Section 2)

⟨u′
0 −∇θu0, φ− u′

0⟩H1
D(Ω0,Rd) ≥

∫
Ω0

div(fθ⊤) · (φ− u′
0) +

∫
Ω0

f · ∇θ (φ− u′
0)

+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
: ∇(φ− u′

0)

−
∫
Ω0

Ae(u0) : e (∇θ (φ− u′
0))−

∫
Ω0

Ae (∇θu0) : e (φ− u′
0) ,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+ ∇θu0. Using the divergence formula (see Proposi-

tion A.20) and the equality div (Ae(u0)) = −f in H1(Ω0,Rd), we obtain the result.

In [9], [26, Chapter 5 Section 5.2 p.111] and [39, Chapter 4 Section 4.6 p.205], the authors
get a similar result using the conical differentiability of the projection operator. Since K1(Ω0) is
polyhedric at u0 ∈ K1(Ω0) for E0 − u0 ∈ NK1(Ω0)(u0), then from Mignot’s theorem (see [27]) the
projection operator on K1(Ω0) is conically differentiable at u0 for E0 − u0, and its conical deriva-
tive is given by projTNK1(Ω0)

(u0)∩(R(E0−u0))
⊥(E′

0), which is exactly proxι
TK1(Ω0)

(u0)∩(R(E0−u0))⊥
(E′

0).

Nevertheless, to the best of our knowledge, it has not been observed in the literature that it was
possible to improve this result under additional assumptions, in order to characterize the material
derivative as weak solution to a boundary value problem. Indeed, as mentioned in [9, 22], it is
possible to replace q.e. in the set TNK1(Ω0)

(u0) ∩ (R (E0 − u0))
⊥ by a.e. under some hypotheses,

like, for instance, if Γu0n

S0
= intΓS0

(Γu0n

S0
). Moreover, if we assume that the decomposition ΓD ∪ ΓS0

of Γ0 is consistent (see Definition 2.7 with ΓSS := ΓS0 and w = 0) and some regularity assumptions
on u0 and θ, then the material derivative can be characterized as weak solution to a Signorini
problem.

Corollary 3.7. Assume that the decomposition ΓD ∪ ΓS0
of Γ0 is consistent, u0 ∈ H3(Ω0,Rd)

and Γu0n

S0
= intΓS0

(Γu0n

S0
). Then the material derivative u′

0 ∈ TNK1(Ω0)
(u0)∩ (R (E0 − u0))

⊥
+∇θu0
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is the unique weak solution to the Signorini problem

−div(Ae(u′
0)) = −div(Ae(∇u0θ)) in Ω0,
u′
0 = 0 on ΓD,

στ (u′
0) = hm(θ)τ on ΓS0

,
σn(u′

0) = hm(θ)n on Γ
S
u0n
0,N

,

u′
0n = (∇θu0)n on Γ

S
u0n
0,D

,

u′
0n ≤ (∇θu0)n , σn(u′

0) ≤ hm(θ)n and
(
u′
0n − (∇θu0)n

) (
σn(u′

0)− hm(θ)n
)
= 0 on Γ

S
u0n
0,S

,

where hm(θ) := ((Ae(u0))∇θ⊤ +A(∇u0∇θ)− σn(u0)(div(θ)I +∇θ⊤))n ∈ L2(ΓS0
,Rd), and ΓS0

is
decomposed, up to a null set, as ΓS

u0n
0,N

∪ ΓS
u0n
0,D

∪ ΓS
u0n
0,S

, where

ΓS
u0n
0,N

:= {s ∈ ΓS0
| u0n(s) ̸= 0} ,

ΓS
u0n
0,D

:= {s ∈ ΓS0 | u0n(s) = 0 and σn(u0)(s) < 0} ,
ΓS

u0n
0,S

:= {s ∈ ΓS0 | u0n(s) = 0 and σn(u0)(s) = 0} .

Proof. Since u0 ∈ H2(Ω0,Rd) and θ ∈ C2,∞
D (Rd,Rd), one deduces that

div
(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
∈ L2(Ω0,Rd).

Moreover, since Ae(u0)n ∈ L2(Γ0,Rd) and that the decomposition ΓD ∪ ΓS0
of Γ0 is consistent,

then u0 is a (strong) solution to the Signorini problem (SPt) for the parameter t = 0 (see Propo-
sition 2.8). Thus στ (u0) = 0 a.e. on ΓS0 , and using the divergence formula (see Proposition A.20)
in Inequality (3.5), we get that

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥

∫
ΓS0

hm(θ) · (φ− u′
0)

−
∫
Ω0

div
(
div(Ae(u0))θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)
)
· (φ− u′

0) , (3.6)

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+ ∇θu0. Furthermore, one has div (Ae (∇u0θ)) ∈

L2(Ω0,Rd) from u0 ∈ H3(Ω0,Rd). Thus, using the equality

div (Ae (∇u0θ)) = div
(
div(Ae(u0))θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)
)
,

in L2(Ω0,Rd), it follows that

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥ −

∫
Ω0

div (Ae (∇u0θ)) · (φ− u′
0) +

∫
ΓS0

hm(θ) · (φ− u′
0) ,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0. Moreover, since

H :=
{
vn ∈ H1/2(ΓS0 ,R) | v ∈ H1

D(Ω0,Rd)
}
,

is a Dirichlet space (see Example A.19), then, for all v ∈ H1
D(Ω0,Rd), vn ∈ H1/2(ΓS,R) admits

a unique quasi-continuous representative for the q.e equivalence relation (see Proposition A.17),
thus it follows that (see [9, Remark 3.12 p.13] for details)

TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥

=
{
φ ∈ H1

D(Ω0,Rd) | φn ≤ 0 a.e. on Γu0n

S0
and ⟨E0 − u0, φ⟩H1

D(Ω0,Rd) = 0
}
.
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Furthermore, since u0 is a (strong) solution, it follows from the Signorini unilateral conditions that

⟨E0 − u0, φ⟩H1
D(Ω0,Rd) =

∫
Γ0

Ae(E0 − u0)n · φ = −
∫
ΓS0

σn(u0)φn = −
∫
Γ
S
u0n
0,D

σn(u0)φn = 0,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥, and since σn(u0)φn ≤ 0 a.e. on ΓS
u0n
0,D

and σn(u0) < 0

a.e. on ΓS
u0n
0,D

, one deduces that φn = 0 a.e. on ΓS
u0n
0,D

. From Subsection 2.2, one concludes the
proof.

Remark 3.8. If Γ0 is smooth, the best known regularity result guarantees that u0 ∈ C1,1/2
loc

(see [7, 36]). Nevertheless, we consider here that we are in a favorable situation where u0 ∈
H3(Ω0,Rd), which can obviously appear for some particular cases. Note that, from the proof
of Corollary 3.7, one can get, under the weaker assumption u0 ∈ H2(Ω0,Rd), that the material
derivative u′

0 is the solution to the variational inequality (3.6) which is, from Subsection 2.2, the
weak formulation of a Signorini problem, with the source term given by −div(div(Ae(u0))θ

⊤ +
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)) ∈ L2(Ω0,Rd).

Thanks to Corollary 3.7, we are now in a position to characterize the shape derivative.

Corollary 3.9 (Shape derivative). Consider the framework of Corollary 3.7 with the additional
assumption that Γ0 is of class C3. Then the shape derivative, defined by u′

0 := u′
0 − ∇u0θ ∈

TNK1(Ω0)
(u0)∩ (R (E0 − u0))

⊥
+∇θu0−∇u0θ is the unique weak solution to the Signorini problem

−div(Ae(u′
0)) = 0 in Ω0,
u′
0 = 0 on ΓD,

στ (u
′
0) = hs(θ)τ on ΓS0 ,

σn(u
′
0) = hs(θ)n on Γ

S
u0n
0,N

,

u′
0n = W (θ)n on Γ

S
u0n
0,D

,

u′
0n ≤ W (θ)n, σn(u

′
0) ≤ hs(θ)n and (u′

0n −W (θ)n) (σn(u
′
0)− hs(θ)n) = 0 on Γ

S
u0n
0,S

,

where:
• W (θ) := (∇θu0)− (∇u0θ) ∈ H1/2(Γ0,Rd);

• hs(θ) := θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)−∇(Ae(u0)n)θ

− σn(u0)
(
divτ (θ)I +∇θ⊤

)
n ∈ L2(ΓS0

,Rd);

and where ∂n (Ae(u0)n) := ∇(Ae(u0)n)n stands for the normal derivative of Ae(u0)n, ∂n (Ae(u0))
is the matrix whose the i-th line is the vector ∂n (Ae(u0)i) := ∇(Ae(u0)i)n, where Ae(u0)i is the i-th
line of the matrix Ae(u0), for all i ∈ [[1, d]].

Proof. Since u′
0 := u′

0 − ∇u0θ ∈ H1
D(Ω0,Rd), one deduces from the weak formulation of u′

0 and
using the divergence formula that,

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥∫

Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇(φ− u′

0)

−
∫
Ω0

div(θ)Ae(u0) : e (φ− u′
0)−

∫
ΓS0

Ae(u0)n · ∇θ (φ− u′
0)−

∫
Γ0

(θ · n) div (Ae(u0)) · (φ− u′
0) ,
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for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0 −∇u0θ. Moreover, one has∫

Ω0

div (Ae(u0)) θ
⊤ : ∇v =

∫
Ω0

div (Ae(u0)) · ∇vθ = −
∫
Ω0

Ae(u0) : ∇(∇vθ) +

∫
Γ0

Ae(u0)n · ∇vθ,

and also

−
∫
Ω0

div(θ)Ae(u0) : e(v) =

∫
Ω0

θ · ∇(Ae(u0) : e(v))−
∫
Γ0

θ · n (Ae(u0) : e(v)) ,

for all v ∈ C∞(Ω0,Rd). Therefore, using the equality(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)

)
: ∇v + θ · ∇(Ae(u0) : e(v))−Ae(u0) : ∇(∇vθ) = 0,

a.e. on Ω0, one deduces using the divergence formula that∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇v

−
∫
Ω0

div(θ)Ae(u0) : e (v)−
∫
Γ0

∇θ⊤ (Ae(u0)n) · v −
∫
Γ0

(θ · n) div (Ae(u0)) · v

=

∫
Γ0

θ · n (−Ae(u0) : e(v)− div (Ae(u0)) · v) +∇v⊤(Ae(u0)n) · θ −∇θ⊤(Ae(u0)n) · v,

for all v ∈ C∞(Ω0,Rd). Furthermore, since Γ0 is of class C3 and u0 ∈ H3(Ω0,Rd), Ae(u0)n
can be extended into a function defined in Ω0 such that Ae(u0)n ∈ H2(Ω0,Rd). Thus, it holds
that Ae(u0)n · v ∈ W2,1(Ω0,Rd), for all v ∈ C∞(Ω0,Rd), and one can use Proposition A.21 to get
that∫

Γ0

θ · n (−Ae(u0) : e(v)− div (Ae(u0)) · v) +∇v⊤(Ae(u0)n) · θ −∇θ⊤(Ae(u0)n) · v

=

∫
Γ0

θ · n (−Ae(u0) : e(v)− div (Ae(u0)) · v + ∂n (Ae(u0)n · v) +HAe(u0)n · v)

−
∫
Γ0

(
∇(Ae(u0)n)θ +∇θ⊤(Ae(u0)n) + divτ (θ)Ae(u0)n

)
· v,

for all v ∈ C∞(Ω0,Rd). Moreover, from Proposition A.22 it follows that∫
Γ0

θ · n (−div (Ae(u0)) +HAe(u0)n) · v =

∫
Γ0

Ae(u0) : ∇τ (v (θ · n))− (θ · n) ∂n (Ae(u0)) n · v,

for all v ∈ C∞(Ω0,Rd). Therefore, using the following equalities

Ae(u0) : ∇τ (v (θ · n)) = θ · n (Ae(u0) : ∇τv) + Ae(u0)∇τ (θ · n) · v,

a.e. on Γ0, and
Ae(u0) : ∇τv = Ae(u0) : e(v)−∇v⊤(Ae(u0)n) · n,

a.e. on Γ0, it holds that∫
Γ0

θ · n (−Ae(u0) : e(v)− div (Ae(u0)) · v + ∂n (Ae(u0)n · v) +HAe(u0)n · v)
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−
∫
Γ0

(
∇(Ae(u0)n)θ +∇θ⊤(Ae(u0)n) + divτ (θ)Ae(u0)n

)
· v

=

∫
Γ0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · v

−
∫
Γ0

(
∇(Ae(u0)n)θ +

(
divτ (θ)I +∇θ⊤

)
Ae(u0)n

)
· v,

for all v ∈ C∞(Ω0,Rd). Thus,∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇v

−
∫
Ω0

div(θ)Ae(u0) : e (v)−
∫
Γ0

∇θ⊤ (Ae(u0)n) · v −
∫
Γ0

(θ · n) div (Ae(u0)) · v

=

∫
Γ0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · v

−
∫
Γ0

(
∇(Ae(u0)n)θ +

(
divτ (θ)I +∇θ⊤

)
Ae(u0)n

)
· v,

for all v ∈ C∞(Ω0,Rd), and one deduces by density of C∞(Ω0,Rd) in H1(Ω0,Rd) that

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥

∫
ΓS0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · (φ− u′
0)

−
∫
ΓS0

(
∇(Ae(u0)n)θ + σn(u0)

(
divτ (θ)I +∇θ⊤

)
n
)
· (φ− u′

0) ,

for all φ ∈ TNK1(Ω0)
(u0)∩ (R (E0 − u0))

⊥
+∇θu0 −∇u0θ, which concludes the proof from Subsec-

tion 2.2.

Remark 3.10. Note that u′
0 and u′

0 are not linear with respect to the direction θ. This nonlinearity
is standard in shape optimization for variational inequalities (see, e.g., [3, 22] or [39, Section 4]).

3.3 Shape gradient of the Signorini energy functional
Consider the framework of Subsection 3.1. Thanks to the characterization of the material

and shape derivatives obtained in Subsection 3.2, we are now in a position to prove the shape
differentiability of the Signorini energy functional (1.3).

Theorem 3.11. The Signorini energy functional J admits a shape gradient at Ω0 in the direc-
tion θ ∈ C2,∞

D (Rd,Rd) given by

J ′(Ω0)(θ) =

∫
Ω0

div (θ)
Ae (u0) : e (u0)

2
−
∫
Ω0

div (Ae (u0)) · ∇u0θ −
∫
Ω0

Ae (u0) : ∇u0∇θ

−
∫
ΓS0

θ · n (f · u0) + ⟨Ae(u0)n,∇θu0⟩H−1/2(Γ0,Rd)×H1/2(Γ0,Rd) .

Proof. By following the usual strategy developed in the shape optimization literature (see, e.g., [5,
21]) to compute the shape gradient of J at Ω0 in the direction θ ∈ C2,∞

D (Rd,Rd), one gets from
Theorem 3.6,

J ′(Ω0)(θ) = −1

2

∫
Ω0

div(θ)Ae(u0) : e(u0) +

∫
Ω0

Ae(u0) : ∇u0∇θ − ⟨u′
0, u0⟩

H1
D

(Ω0,Rd)
.
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Moreover, since u′
0±u0 ∈ TNK1(Ω0)

(u0)∩ (R (E0 − u0))
⊥
+∇θu0, one deduces from the variational

formulation of u′
0 (see Inequality (3.5)) and the divergence formula that

⟨u′
0, u0⟩H1

D(Ω0,Rd) =

∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)
)
: ∇u0

+

∫
ΓS0

θ · n(f · u0)− ⟨Ae(u0)n,∇θu0⟩H−1/2(Γ0,Rd)×H1/2(Γ0,Rd) .

Finally, using the equality div (Ae(u0)) θ
⊤ : ∇u0 = div (Ae(u0)) · ∇u0θ a.e. on Ω0, one concludes

the proof.

As we did for the material derivative, the presentation of Theorem 3.11 can be improved under
additional assumption.

Corollary 3.12. Assume that u0 ∈ H2(Ω0,Rd). Then the Signorini energy functional J admits
a shape gradient at Ω0 in the direction θ ∈ C2,∞

D (Rd,Rd) given by

J ′(Ω0)(θ) =

∫
ΓS0

(
θ · n

(
Ae(u0) : e(u0)

2
− f · u0

)
+Ae(u0)n · (∇θu0 −∇u0θ)

)
.

Proof. Let θ ∈ C2,∞
D (Rd,Rd). Since u0 ∈ H2(Ω0,Rd), it follows from Theorem 3.11 that

J ′(Ω0)(θ) = −1

2

∫
Ω0

θ · ∇(Ae(u0) : e(u0)) +

∫
Γ0

θ · nAe(u0) : e(u0)

2
+

∫
Ω0

Ae (u0) : e (∇u0θ)

−
∫
Γ0

Ae (u0) n · ∇u0θ −
∫
Ω0

Ae (u0) : ∇u0∇θ −
∫
ΓS0

θ · n (f · u0) +

∫
ΓS0

Ae(u0)n · ∇θu0.

Moreover, since

Ae(u0) : e (∇u0θ) = Ae(u0) : ∇u0∇θ +
1

2
θ · ∇(Ae(u0) : e(u0)) a.e. on Ω0,

it holds that

J ′(Ω0)(θ) =

∫
Γ0

θ·n
(
Ae(u0) : e(u0)

2

)
−
∫
Γ0

Ae(u0)n·∇u0θ−
∫
ΓS0

θ·n(f ·u0)+

∫
Γ0

Ae(u0)n·∇θu0,

which completes the proof since θ = 0 on ΓD.

Remark 3.13. Consider the framework of Theorem 3.11. It is interesting to note that the scalar
product ⟨u′

0, u0⟩H1
D(Ω0,Rd) is linear with respect to the direction θ, while u′

0 is not. This leads to an
expression of the shape gradient J ′(Ω0)(θ) that is linear with respect to the direction θ, thus to
the shape differentiability of the Signorini energy functional J at Ω0. Note that, in the context of
cracks and variational inequalities involving unilateral conditions, it can already be observed that
the shape gradient of the energy functional is linear with respect to θ (see, e.g., [15, Theorem 2.22
or Theorem 4.20]). Furthermore note that the shape gradient J ′(Ω0)(θ) depends only on u0 (and
not on u′

0), therefore its expression is explicit with respect to the direction θ, and there is no need
to introduce any adjoint problem to perform numerical simulations. Nevertheless, for other cost
functionals, some difficulties can appear to correctly define an adjoint problem due to nonlinearities
in shape gradients, and may constitute an interesting area for future researches.

Remark 3.14. Note that an expression of the shape gradient of the Signorini energy functional
has been obtained in [15, Section 5.5] in the particular case where ΓS0 is a rectilinear boundary
part. Therefore, Theorem 3.11 can be seen as a generalisation of this result.
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4 Numerical simulations
In this section we numerically solve an example of the shape optimization problem (1.1) in the

two-dimensional case d = 2, by making use of our theoretical results obtained in Section 3. The
numerical simulations have been performed using Freefem++ software [19] with P1-finite elements
and standard affine mesh. We could use the expression of the shape gradient of J obtained in
Theorem 3.11 but, in order to simplify the computations, we chose to use the expression provided
in Corollary 3.12 under the additional assumption u0 ∈ H2(Ω0,Rd) that we assumed to be true at
each iteration.

4.1 Numerical methodology
Consider an initial shape Ω0 ∈ Uref . Note that Corollary 3.12 allows to exhibit a descent

direction θ0 of the Signorini energy functional J at Ω0 by finding the solution θ0 to the variational
equality

⟨θ0, θ⟩H1
D(Ω0,Rd) = −J ′(Ω0)(θ), ∀θ ∈ H1

D(Ω0,Rd),

since it satisfies J ′(Ω0)(θ0) = −∥θ0∥2H1
D(Ω0,Rd) ≤ 0.

In order to numerically solve the shape optimization problem (1.1) on a given example, we
have to deal with the volume constraint |Ω| = |Ωref | > 0. To this aim, the Uzawa algorithm (see,
e.g., [5, Chapter 3 p.64]) is used, and one refers to [3, Section 4] for methodological details.

Let us mention that the Signorini problem is numerically solved using the Nitsche’s method
(see, e.g., [10, 11, 30]). In a nutshell, the solution u0 ∈ H1

D(Ω0,Rd) is approximated by uh
0 ∈ Vh

which is the solution to the Nitsche’s formulation∫
Ω0

Ae(uh
0 ) : e(v

h)− γ

∫
ΓS0

σn(u
h
0 )σn(v

h) +
1

γ

∫
ΓS0

[
u0

h
n − γσn(u

h
0 )
]
+

[
vhn − γσn(v

h)
]

=

∫
Ω0

f · vh, ∀vh ∈ Vh,

where Vh is the classical P1-finite elements space whose elements are null on ΓD (see [11] for
numerical analysis details). We also precise that, for all i ∈ N∗, the difference between the Signorini
energy functional J at the iteration 20 × i and at the iteration 20 × (i − 1) is computed. The
smallness of this difference is used as a stopping criterion for the algorithm.

4.2 Two-dimensional example and numerical results
In this subsection, let d = 2 and f ∈ H1(R2,R2) given by

f : R2 −→ R2

(x, y) 7−→ f(x, y) :=
(
1
2 exp(x

2)η(x, y) 0
)
,

where η ∈ C∞
0 (R2,R) is a cut-off function chosen appropriately so that f satisfies the assumptions

of the present paper. The reference shape Ωref is the unit disk of R2, and the fixed part ΓD is
given by

ΓD =

{
(cosα, sinα) ∈ Γref | α ∈

[
π

6
,
5π

6

]
∪
[
7π

6
,
11π

6

]}
,

(see Figure 1).
The volume constraint is |Ωref | = π and the initial shape is Ω0 := Ωref . We assume that

all shapes in Uref are isotropic, which means that their mechanical properties are identical in all
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Ωref

ΓD

ΓSref

Figure 1: Unit disk Ωref and its boundary Γref = ΓD ∪ ΓSref
.

directions. In that case, for all Ω ∈ Uref , the Cauchy stress tensor is given, for all v ∈ H1
D(Ω,Rd),

by
σ(v) = 2µe(v) + λtr (e(v)) I,

where tr (e(v)) is the trace of the matrix e(v), and µ ≥ 0, λ ≥ 0 are Lamé parameters (see,
e.g., [35]). In the sequel, we consider µ = 0.3846, λ = 0.5769. This corresponds to a Young’s
modulus equal to 1 and to a Poisson’s ratio equal to 0.3, which is a typical value for a large variety
of materials. One presents the numerical results obtained for this two-dimensional example using
the methodology described in Subsection 4.1.

In Figure 2 is represented the initial shape (left) and the shape which solves Problem (1.1)
(right). On top are the vector values of the solution u to the Signorini problem (SPΩ). Note that
the black boundary shows where σn(u) = 0, while the yellow boundary shows where un = 0. At
the bottom is shown the values of the integrand of J . It seems that the area where the integrand
of J is the lowest (in orange) has been shifted to the left by "pushing" the left boundary (which
corresponds to the part where there is no compressive stress), while in return, the right boundary
(which corresponds to the contact part) has been pulled.

Figure 3 shows the values of J (left) and the volume of the shape (right) with respect to the
iteration. We observe that J is lower at the final shape, than at the initial shape, with some
oscillations due to the Lagrange multiplier in order to satisfy the volume constraint.

A Reminders
In this appendix we recall some notions from convex, variational and functional analysis in Sub-

section A.1, some concepts from capacity theory in Subsection A.2 and some results on differential
geometry in Subsection A.3.

A.1 Notions from convex, variational and functional analysis
For notions and results presented in this section, we refer to standard references such as [8, 28,

31] and [34, Chapter 12]. In the se (H, ⟨·, ·⟩H) stands for a general real Hilbert space.

Definition A.1 (Normal cone). Let C be a nonempty closed convex subset of H and x ∈ C. The
normal cone to C at x is the nonempty closed convex cone of H defined by

NC(x) := {z ∈ H | ⟨z, c− x⟩H ≤ 0,∀c ∈ C} .
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Figure 2: Initial shape (left) and the shape minimizing J (right), under the volume con-
straint |Ωref | = π. On top is shown the vector values of the Signorini solution, while at bottom is
shown the values of the integrand of J .

Figure 3: Values of the energy functional (left) and the volume (right) with respect to the iterations.

Definition A.2 (Tangent cone). Let C be a nonempty closed convex subset of H and x ∈ C. The
tangent cone to C at x is the nonempty closed convex cone of H defined by

TC(x) := {z ∈ H | ∃λ > 0, x+ λz ∈ C}.
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Definition A.3 (Polyhedric set). Let C be a nonempty closed convex subset of H. We say that C
is polyhedric at x ∈ C for y ∈ NC(x) if

TC(x) ∩ (Ry)⊥ = {z ∈ H | ∃λ > 0, x+ λz ∈ C} ∩ (Ry)⊥.

Remark A.4. Recall that, in finite dimension, polyhedric sets reduce to polyhedral sets, which is
the intersection of a finite set of closed half-spaces (see, e.g., [25]).

Definition A.5 (Domain and epigraph). Let ϕ : H → R ∪ {±∞}. The domain and the epigraph
of ϕ are respectively defined by

dom (ϕ) := {x ∈ H | ϕ(x) < +∞} and epi (ϕ) := {(x, t) ∈ H × R | ϕ(x) ≤ t} .

Recall that ϕ : H → R∪{±∞} is said to be proper if dom(ϕ) ̸= ∅ and ϕ(x) > −∞ for all x ∈ H.
Moreover, ϕ is a convex (resp. lower semi-continuous) function on H if and only if epi(ϕ) is a convex
(resp. closed) subset of H× R.

Definition A.6 (Convex subdifferential operator). Let ϕ : H → R ∪ {+∞} be a proper function.
We denote by ∂ϕ : H ⇒ H the convex subdifferential operator of ϕ, defined by

∂ϕ(x) := {y ∈ H | ∀z ∈ H, ⟨y, z − x⟩H ≤ ϕ(z)− ϕ(x)} ,

for all x ∈ H.

Definition A.7 (Proximal operator). Let ϕ : H → R ∪ {+∞} be a proper lower semi-continuous
convex function. The proximal operator associated with ϕ is the map proxϕ : H → H defined by

proxϕ(x) := argmin
y∈H

[
ϕ(y) +

1

2
∥y − x∥2H

]
= (I + ∂ϕ)−1(x),

for all x ∈ H, where I : H → H stands for the identity operator.

It is well-known that, if ϕ : H → R∪ {+∞} is a proper lower semi-continuous convex function,
then ∂ϕ is a maximal monotone operator (see, e.g., [31]), and thus the proximal operator proxϕ
is well-defined, single-valued and nonexpansive, i.e. Lipschitz continuous with modulus 1 (see,
e.g., [8, Chapter II]).

Remark A.8. Note that, if ϕ := ιC, where ιC is the indicator function of a nonempty closed
convex subset C ⊂ H , then ιC is a proper lower semi-continuous convex function and

proxιC = projC,

where projC is the projection operator on C.

As mentioned in Introduction, the unique solution to the Signorini problem considered in
this paper can be expressed via the proximal operator of the associated Signorini indicator func-
tion ιK1(Ω). Therefore the shape sensitivity analysis of this problem is related to the differentiability
(in a generalized sense) of the involved proximal operator. To investigate this issue, we will use the
notion of twice epi-differentiability (see [32]) defined as the Mosco epi-convergence of second-order
difference quotient functions. Our aim in what follows is to provide reminders and backgrounds
on these notions for the reader’s convenience. For more details, we refer to [34, Chapter 7, Section
B p.240] for the finite-dimensional case and to [13] for the infinite-dimensional case. The strong
(resp. weak) convergence of a sequence in H will be denoted by → (resp. ⇀) and note that all
limits with respect to t will be considered for t → 0+.
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Definition A.9 (Mosco-convergence). The outer, weak-outer, inner and weak-inner limits of a
parameterized family (At)t>0 of subsets of H are respectively defined by

lim supAt :=
{
x ∈ H | ∃(tn)n∈N → 0+,∃ (xn)n∈N → x, ∀n ∈ N, xn ∈ Atn

}
,

w-lim supAt :=
{
x ∈ H | ∃(tn)n∈N → 0+,∃ (xn)n∈N ⇀ x,∀n ∈ N, xn ∈ Atn

}
,

lim inf At :=
{
x ∈ H | ∀(tn)n∈N → 0+,∃ (xn)n∈N → x, ∃N ∈ N,∀n ≥ N, xn ∈ Atn

}
,

w-lim inf At :=
{
x ∈ H | ∀(tn)n∈N → 0+,∃ (xn)n∈N ⇀ x,∃N ∈ N,∀n ≥ N, xn ∈ Atn

}
.

The family (At)t>0 is said to be Mosco-convergent if w-lim supAt ⊂ lim inf At. In that case, all
the previous limits are equal and we write

M-limAt := lim inf At = lim supAt = w-lim inf At = w-lim supAt.

Definition A.10 (Mosco epi-convergence). Let (ϕt)t>0 be a parameterized family of functions ϕt :
H → R∪{±∞} for all t > 0. We say that (ϕt)t>0 is Mosco epi-convergent if (epi(ϕt))t>0 is Mosco-
convergent in H× R. Then we denote by ME-lim ϕt : H → R ∪ {±∞} the function characterized
by its epigraph epi (ME-lim ϕt) := M-lim epi (ϕt) and we say that (ϕt)t>0 Mosco epi-converges
to ME-lim ϕt.

Now let us recall the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985
(see [32]) that generalizes the classical notion of second-order derivative to nonsmooth convex
functions.

Definition A.11 (Twice epi-differentiability). A proper lower semi-continuous convex function ϕ :
H → R ∪ {+∞} is said to be twice epi-differentiable at x ∈ dom(ϕ) for y ∈ ∂ϕ(x) if the family of
second-order difference quotient functions (δ2t ϕ(x|y))t>0 defined by

δ2t ϕ(x|y) : H −→ R ∪ {+∞}

z 7−→
ϕ(x+ tz)− ϕ(x)− t ⟨y, z⟩H

1
2 t

2
,

for all t > 0, is Mosco epi-convergent. In that case we denote by

d2eϕ(x|y) := ME-lim δ2t ϕ(x|y),

which is called the second-order epi-derivative of ϕ at x for y.

In this paper we have to deal with the twice epi-differentiability of the Signorini indicator
functional. To this aim, we use the following result, due to C.N. Do. (see [13, Chapter 2, Example
2.10 p.287]), which shows that the indicator function of a nonempty closed convex set is twice
epi-differentiable under an additional assumption.

Lemma A.12. Let C be a nonempty closed convex subset of H and ιC be the indicator function
of C. If C is polyhedric at x ∈ C for y ∈ NC(x) = ∂ιC(x), then ιC is twice epi-differentiable at x
for y and

d2eιC(x|y) = ιTC(x)∩(Ry)⊥ ,

where NC(x) (resp. TC(x)) is the normal cone (resp. tangent cone) to C at x.

Let us conclude this section with a last proposition (see, e.g., [33, 34] for the finite-dimensional
case and [1, 13] for the infinite-dimensional one). We bring to the attention of the reader that
Proposition A.13 is the key point in order to derive our main results.
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Proposition A.13. Let Φ : H → R ∪ {+∞} be a proper lower semi-continuous convex function
on H. Let F : R+ → H and let u : R+ → H be defined by

u(t) := proxΦ(F (t)),

for all t ≥ 0. If the conditions

1. F is differentiable at t = 0;

2. Φ is twice epi-differentiable at u(0) for F (0)− u(0) ∈ ∂Φ(u(0));

are both satisfied, then u is differentiable at t = 0 with

u′(0) = proxd2
eΦ(u(0)|F (0)−u(0))(F

′(0)).

A.2 Notions from capacity theory
Let us recall some notions from capacity theory (we refer to standard references such as [12,

17, 21, 27]). Let d ∈ N∗ be a positive integer, (X,B(X), ξ) be a positively measured topological
space with its borelian σ-algebra, ξ a Radon measure, and X ⊂ Rd a locally compact set, admit-
ting a countable compact covering. Let H ⊂ L2(X, ξ) be a vector space endowed with a scalar
product ⟨·, ·⟩H and ∥·∥H the corresponding norm.

Definition A.14. Consider B ∈ B(X) and let us introduce the closed convex subset

CB := {v ∈ H | v ≥ 1 ξ-a.e. on a neighborhood of B} .

The capacity of B is defined by
cap(B) :=

∥∥projCB
(0)

∥∥2
H ,

where projCB
is the projection operator onto the nonempty closed convex set CB.

Definition A.15. A property holds quasi everywhere (denoted q.e.) if it holds for all elements in
a set except a subset of null capacity.

Definition A.16. A function v : X → R is said to be quasi-continuous if there exists a decreasing
sequence of open sets (wn)n∈N such that cap(wn) → 0 when n → +∞ and v|X\wn

is continuous for
all n ∈ N.

Now, let us assume that (H, ⟨·, ·⟩H) is a Dirichlet space (see, e.g., [27]). Then, one can prove
the following proposition (see, e.g., [17, 21, 27]).

Proposition A.17. For all v ∈ H, there exists a unique quasi-continuous representative in the
class of v (for the q.e. equivalence relation).

To conclude, let us give two examples of Dirichlet space (see [27] for the first example and [39,
Chapter 4] for the second one).

Example A.18. Let Ω is a nonempty bounded connected open subset of Rd with a Lipschitz
continuous boundary. Then H := H1(Ω,R) endowed with its standard scalar product ⟨·, ·⟩H1(Ω,R) is
a Dirichlet space.

Example A.19. Let Ω be a nonempty bounded connected open subset of Rd with a Lipschitz
continuous boundary Γ := ∂Ω. Assume that Γ is given by the decomposition Γ = Γ1∪Γ2, where Γ1

and Γ2 are two measurable disjoint subsets of Γ. Then,

H :=
{
v · n ∈ H1/2(Γ2,R) | v ∈ H1(Ω,Rd) and v = 0 a.e. on Γ1

}
,

is a Dirichlet space endowed with the scalar product defined in [39, Chapter 4, Eq. (4.192) p.208],
where n is the outward-pointing unit normal vector to Γ.
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A.3 Reminders on differential geometry
Let d ∈ N∗ be a positive integer, Ω be a nonempty bounded connected open subset of Rd with

a Lipschitz-boundary Γ := ∂Ω and n the outward-pointing unit normal vector to Γ.

The next proposition, known as divergence formula, can be found in [4, Theorem 4.4.7 p.104].

Proposition A.20 (Divergence formula). If w ∈ Hdiv(Ω,Rd×d), then w admits a normal trace,
denoted by wn ∈ H−1/2(Γ,Rd), satisfying∫

Ω

div(w) · v +
∫
Ω

w : ∇v = ⟨wn, v⟩H−1/2(Γ,Rd)×H1/2(Γ,Rd) , ∀v ∈ H1(Ω,Rd).

The following propositions will be useful and their proofs can be found in [21].

Proposition A.21. Assume that Γ is of class C2 and let θ ∈ C1(Rd,Rd). It holds that∫
Γ

(θ · ∇v + vdivτ (θ)) =

∫
Γ

θ · n(∂nv +Hv), ∀v ∈ W2,1(Ω,R),

where divτ (θ) := div(θ) − (∇θn · n) ∈ L∞(Γ) is the tangential divergence of θ, ∂nv := ∇v · n ∈
L1(Γ,R) stands for the normal derivative of v, and H stands for the mean curvature of Γ.

Proposition A.22. Assume that Γ is of class C2 and let w ∈ H2(Ω,Rd×d). It holds that

div(w) = divτ (wτ ) +Hwn + (∂nw) n a.e. on Γ,

where divτ (wτ ) ∈ L2(Γ,Rd) is the vector whose the i-th component is defined by (divτ (wτ ))i :=
divτ ((wi)τ ) ∈ L2(Γ,R), where (wi)τ := wi− (wi ·n)n ∈ L2(Γ,Rd) and wi ∈ Rd is the i-th line of w,
and where ∂nw ∈ L2(Γ,Rd×d) is the matrix whose the i-th line is the vector ∂nwi := (∇wi)n ∈
L2(Γ,Rd), for all i ∈ [[1, d]]. Moreover it holds that∫

Γ

v · divτ (wτ ) = −
∫
Γ

w : ∇τv, ∀v ∈ H2(Ω,Rd),

where ∇τv is the matrix whose the i-th line is the tangential gradient ∇τvi := ∇vi − (∂nvi)n ∈
H1/2(Γ,Rd), for all i ∈ [[1, d]].
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