A green and fast microwave-assisted synthesis of selenium nanoparticles and their characterization under gastrointestinal conditions using mass spectrometry
Résumé
We present a novel microwave-assisted green synthesis of selenium nanoparticles (SeNPs) using yeast extract as source of a non-toxic reducing and capping agents. Effects of synthesis and gastrointestinal digestion conditions on the biogenic Se particle size distribution and number concentration using SP ICP MS were evaluated. The median equivalent diameter of SeNPs varied depending on the synthesis conditions. Upon incubation in simulated gastric juice, the increase of SeNPs size was observed, whereas after simulated intestinal juice addition, their size came back close to the initial value. The biomolecules contained in yeast extract, which play predominant role in the synthesis of SeNPs, were identified by non-targeted qualitative analysis using LC Orbitrap ESI MS. The use of the state-of-the-art MS techniques allowed both the comprehensive assessment of the processes leading to the SeNPs formation and the evaluation of their behavior under gastrointestinal conditions which is of utmost importance for their use as a novel selenium source.