Shape optimization for variational inequalities: the scalar Tresca friction problem - Université de Pau et des Pays de l'Adour
Pré-Publication, Document De Travail Année : 2023

Shape optimization for variational inequalities: the scalar Tresca friction problem

Samir Adly
Loïc Bourdin

Résumé

This paper investigates, without any regularization or penalization procedure, a shape optimization problem involving a simplified friction phenomena modeled by a scalar Tresca friction law. Precisely, using tools from convex and variational analysis such as proximal operators and the notion of twice epi-differentiability, we prove that the solution to a scalar Tresca friction problem admits a directional derivative with respect to the shape which moreover coincides with the solution to a boundary value problem involving Signorini-type unilateral conditions. Then we explicitly characterize the shape gradient of the corresponding energy functional and we exhibit a descent direction. Finally numerical simulations are performed to solve the corresponding energy minimization problem under a volume constraint which shows the applicability of our method and our theoretical results.
Fichier principal
Vignette du fichier
Shape_optimization_for_variational_inequalities__the_scalar_Tresca_friction_problem.pdf (1.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03848645 , version 1 (10-11-2022)
hal-03848645 , version 2 (09-05-2023)
hal-03848645 , version 3 (10-05-2023)
hal-03848645 , version 4 (10-12-2023)

Identifiants

  • HAL Id : hal-03848645 , version 2

Citer

Samir Adly, Loïc Bourdin, Fabien Caubet, Aymeric Jacob de Cordemoy. Shape optimization for variational inequalities: the scalar Tresca friction problem. 2023. ⟨hal-03848645v2⟩
322 Consultations
282 Téléchargements

Partager

More