Lake sediment mercury biogeochemistry controlled by sulphate input from drainage basin - Université de Pau et des Pays de l'Adour
Article Dans Une Revue Applied Geochemistry Année : 2019

Lake sediment mercury biogeochemistry controlled by sulphate input from drainage basin

Axel Canredon
  • Fonction : Auteur
Damien Buquet
  • Fonction : Auteur
  • PersonId : 780828
  • IdRef : 204704782
Ludovic Devaux
  • Fonction : Auteur
  • PersonId : 864578
Sophie Gentès

Résumé

Mercury (Hg) and methyl mercury (MeHg) concentrations have never been measured in sediments of coastal lakes of Aquitaine, although high concentrations of Hg have been measured in fish. Our objective was to characterize benthic biogeochemical processes and the distribution of Hg in lake sediments and to connect these results with fish contamination. For this, we mapped and characterized sediments. We measured sediment Hg and MeHg content, and biogeochemical parameters. We identified organic deposits in deep areas, and sandy sediments in shallow areas. Sediments were anoxic below the sediment–water interface. The average Hg concentration in organic sediment was 213 μg kg−1 dry weight. Sandy sediments had an average Hg concentration of 4 μg kg−1 dw. We measured concentrations below 6 μg kg−1 dw in sediments from streams that drain the catchment. Similar concentrations in the four lakes suggest that the source of total Hg was not a point source in a given lake. The highest MeHg concentrations were found in the upper centimetres of organic sediments, where sulphate reduction occurred. MeHg represented 2.53% of total Hg for Lake Carcans-Hourtin, less in other lakes. The proportion of MeHg in sediment followed lake water sulphate concentrations. High sulphate concentrations resulted from agricultural activity in the Lake Carcans-Hourtin catchment. Our results corroborate the hypothesis that Hg methylation is linked to sulphate-reducing activity. High fluxes of sulphate from a drainage basin may induce large proportions of potentially bioavailable MeHg in lake sediment, even in non-polluted areas. The Hg methylation activity in the sediment reflected the exposure of predatory fish to MeHg.
Fichier principal
Vignette du fichier
S0883292719300861.pdf (1.87 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02282515 , version 1 (22-10-2021)

Licence

Identifiants

Citer

Axel Canredon, Pierre Anschutz, Damien Buquet, Celine Charbonnier, David Amouroux, et al.. Lake sediment mercury biogeochemistry controlled by sulphate input from drainage basin. Applied Geochemistry, 2019, 104, pp.135-145. ⟨10.1016/j.apgeochem.2019.03.023⟩. ⟨hal-02282515⟩
68 Consultations
101 Téléchargements

Altmetric

Partager

More