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ABSTRACT

The gamma process is known for its power to capture the temporal variability of dete-

rioration over time. It is one of the most popular stochastic processes in reliability theory.

The power law is the most common non-linear shape function for modeling degradation by

the gamma process. Also, two classical estimation methods, namely the maximum likeli-

hood method and the method of moments, have been developed in various applications of

the gamma process as a degradation model. However, while some studies assumed that

the exponent of the power law is known and modeled a non-homogeneous gamma process,

others only considered the homogeneous gamma process. Also, the asymptotic properties

of these estimators are not often studied. In particular, the maximum likelihood method.

In this study, we modeled degradation by both the homogeneous and non-homogeneous

gamma processes with a power law shape function. For each model, we considered two

methods of parameter estimations, precisely the maximum likelihood method and the

method of moments. Furthermore, we provided the theoretical and numerical results of

these estimators for different sets of observations and parameters. We have shown that

the estimates of the parameters are better with the maximum likelihood method than the

method of moments. Further, the maximum likelihood estimator is asymptotically un-

biased, consistent, and efficient, which validates the theoretical results. Also, initializing

the maximum likelihood estimator with the estimates of the method of moments improves

the quality of the estimates, depending on the coefficient as well as the convexity of the

shape function. Lastly, the convexity of the shape function also influences the quality of

the estimates. To be more precise, the estimates are better for concave and convex shape

functions than for a linear one.
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CHAPTER 1

INTRODUCTION

1.1. Background

When an industrial system is put in operation, it is often assumed to be new or in a

perfect working state. However, as time elapses, it accumulates degradation and a failure

may occur, leading to some costs as the system (i) cannot fulfill its function (ii) must be

replaced. Recent advances in technology allow for online monitoring and scheduling of

maintenance actions, without waiting for the system to fail.

Because the deterioration over the system’s lifetime is uncertain, stochastic processes

are used for the modeling of the behavior of the system degradation. Stochastic pro-

cesses study the degradation path variability by considering the cumulative property of

degradation (Chatenet et al., 2019). In this context, classical models include the Wiener,

compound Poisson, and gamma processes. The Wiener process is also known in the lit-

erature as Brownian motion with drift and has been widely used in other fields outside

reliability, such as finance to model stock prices. For extensive coverage of both the

gamma and Wiener processes for degradation modeling, see, for instance, Chapters 1 &

2 in Kahle et al. (2016). Also, Van Noortwijk (2009) provides a comprehensive review of

the application of the gamma process in maintenance.

This work focuses on the gamma process, intending to model the degradation of

a system and to present the statistical methods for estimating the parameters of the

model. More specifically, the maximum likelihood method and the method of moments

are discussed. The gamma process is well suited for modeling of monotonic and gradual

deterioration, and the required mathematical calculations are relatively straightforward

(Van Noortwijk, 2009). Here, we deal with both the homogeneous and non-homogeneous
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gamma processes. Also, the degradation model does not account for covariates and based

on univariate degradation. The power law is the most common non-linear shape function

for modeling degradation by the gamma process (see, e.g., Chatenet et al., 2019; Cinlar

et al., 1977; Ellingwood and Mori, 1993; Hoffmans and Pilarczyk, 1995; Van Noortwijk

and Klatter, 1999).

Statistical methods for estimating the parameters of a gamma process have been de-

veloped in the literature. Notably, Cinlar et al. (1977) assumed that the power of the

shape function is known and then derived the parameters of a non-homogeneous gamma

process using the maximum likelihood method. See, Van Noortwijk and Pandey (2004)

for further studies. Also, Chatenet et al. (2019) fitted a non-homogeneous gamma model

to vibratory cavitation data and estimated the parameters using the maximum likeli-

hood method. Other methods are the Bayesian method (Kallen and Van Noortwijk,

2005; Dufresne et al., 1991), with perfect and imperfect inspections and expert judgment

(Nicolai et al., 2007).

While the MLE has shown promising results, the assumption that the power of the

shape function is known may not always hold. Furthermore, studies that implement the

maximum likelihood method do not study the asymptotic properties of the estimator,

theoretically and numerically. Also, existing literature does not deal entirely with the

two cases of gamma processes, and using both the maximum likelihood method and

the method of moments, which is done within the present work. For each model, the

two estimation methods are developed. Further, the performances of the methods are

illustrated, based on simulated data.

The rest of the work is organized into five chapters as follows. A brief review of

some useful reminders related to the gamma process is presented in Chapter 1. We

discuss the homogeneous gamma process in Chapter 2, and Chapter 3 focuses on the

non-homogeneous gamma process. Chapter 4 and Chapter 5 reveal numerical results and

conclusion, respectively.
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1.2. The Gamma Distribution

Definition 1.1. A random variable X is gamma distributed with shape parameter

a > 0 and rate parameter b > 0 if it admits the following probability density function

with respect to Lebesque measure.

f(x|a, b) =
ba

Γ(a)
xa−1e−bx1R+(x)

where

Γ(a) =

∫ ∞
0

xa−1e−x dx is the gamma function

There exist two standard ways of parameterizing the gamma distribution in the lit-

erature. On one hand, unlike here, the term scale parameter (usually β) is used for the

rate parameter. For such a parameterization, b would be replaced with 1
β

in the p.d.f. All

discussions here refer to the present parameterization (shape, rate).

It is important to recall some useful properties related to the gamma function.

For some z > 0:

i. Γ(z + 1) = zΓ(z)

ii. d
dz

(ln Γ(z)) = Γ′(z)
Γ(z)

= ψ(z) is the digamma function

iii. d2

dz2
(ln Γ(z)) = Γ′′(z)

Γ(z)
= ψ1(z) is the trigamma function

Next, we derive the mean, second moment and variance of X. For k > 0,

E(Xk) =

∫ ∞
0

xk
ba

Γ(a)
xa−1e−bx dx

=

∫ ∞
0

ba

Γ(a)
x(a+k)−1e−bx dx

=
Γ(a+ k)ba+k

Γ(a+ k)ba+k

∫ ∞
0

ba

Γ(a)
x(a+k)−1e−bx dx

=
Γ(a+ k)

Γ(a)bk

(∫ ∞
0

ba+k

Γ(a+ k)
x(a+k)−1e−bx dx

)
We can see that the term in the brackets is the integral of the p.d.f of a gamma distribution

with shape and rate parameters a + k and b , respectively. Recall that the integral of a
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p.d.f over [0,∞+) is equal to 1.

Which implies

E(Xk) =
Γ(a+ k)

Γ(a)bk
(1) =

Γ(a+ k)

Γ(a)bk

Therefore, when k = 1, 2

E(X) =
Γ(a+ 1)

Γ(a)b
=
aΓ(a)

Γ(a)b
=
a

b

E(X2) =
Γ(a+ 2)

Γ(a)b2
=

Γ [(a+ 1) + 1]

Γ(a)b2
=

(a+ 1)Γ(a+ 1)

Γ(a)b2
=
a(a+ 1)

b2

V ar(X) = E(X2)− [E(X)]2 =
a(a+ 1)

b2
−
(a
b

)2

=
a

b2

Thus, the mean is equal to the shape parameter divided by the rate parameter. Simi-

larly, the variance is equal to the ratio of the shape parameter to the square of the rate

parameter.

Proposition 1.1. If X v Gam(a, b) and Y = lnX, then E(Y ) = ψ(a)− log b

Proof. Since X v Gam(a, b), Y is a log-gamma random variable. Thus,

MY (t) = E(etY ) = E(et lnX) = E(X t)

From the results above, we obtain

MY (t) =
Γ(a+ t)

Γ(a)bt

and the cumulant generating function

KY (t) = logMY (t) = log Γ(a+ t)− log Γ(a)− t log b

Taking the derivative of KY (t) and evaluating it at t = 0 gives the result

E(Y ) = K ′Y (0) = ψ(a)− log b

�
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Also, the gamma distribution has a scaling property. That is if X v Gam(a, b) and c > 0

is a constant, then cX v Gam(a, b/c).

Another property to recall without further proof is the summing property. If X1

and X2 are two independent random variables such that X1 v Gam(a1, b) and X2 v

Gam(a2, b), then X1 +X2 v Gam(a1 + a2, b).

1.3. Gamma process

Definition 1.2. A continuous-time stochastic process (Xt)t≥0 is called a gamma pro-

cess with shape A(t) and rate parameter b > 0 (denoted: Gam(A(t), b)) if it has the

following properties:

1. X0 = 0 almost surely

2. (Xt)t≥0 has independent increments

3. Xt−Xs v Gam(A(t)−A(s), b) for all 0 ≤ s < t, where A(t) is a non-decreasing,

right continuous, and real-valued function for all t ≥ 0 with A(0) = 0

When A(t) = αt, ∀t ≥ 0 with α > 0, the process is said to be a homogeneous gamma

process such that the independent increments Xt −Xs v Gam(α(t− s), b). In this case,

the distribution of the increments Xt − Xs depends only on the interval t − s for all

0 ≤ s < t. When the shape function is non-linear, we obtain a non-homogeneous gamma

process.

The scaling property of the gamma distribution can be extended to the random variable

Xt, such that for c > 0, (cXt)t≥0 v Gam(A(t), b/c)

Also, the probability density function of (Xt)t≥0 is defined by

f(x|A(t), b) =
bA(t)

Γ(A(t))
xA(t)−1e−bx1R+(x)

with mean and variance

E(Xt) =
A(t)

b
and V ar(Xt) =

A(t)

b2
respectively.
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Even though, several functions can be considered for the shape function A(t), the common

choices are (see, Kahle et al., 2016)

(a) the power law: A(t) = αtβ, ∀t ≥ 0 and α, β > 0

which gives the mean and variance

E(Xt) =
αtβ

b
and V ar(Xt) =

αtβ

b2

When β = 1, we obtain a homogeneous gamma process.

(b) the exponential law:

(i) 1− e−αt for α > 0.

(ii) eαt − 1 for α > 0.

The power law is the most common non-linear shape function for modeling degradation.

Empirical evidence shows that it is a good fit for expected degradation overtime. For

example, recently, Chatenet et al. (2019) compared the logarithmic, linear, polynomial

(order 2 and 3) and power laws on a vibratory cavitation data, and found that the power

law provides the best fit based on AIC (Akaike Information Criterion). In most statistical

analysis, the power β is assumed to be known, and with engineering knowledge given

according to expert judgments. Some choices of β in some empirical studies include,

β = 1/8 (Cinlar et al., 1977), β = 0.4 (Hoffmans and Pilarczyk, 1995; Van Noortwijk and

Klatter, 1999), β = 0.5 , β = 1 and β = 2 (Ellingwood and Mori, 1993).

1.3.1. Sample paths of gamma process

In Figure 1.1, we simulate 10 trajectories of a gamma process for t ∈ [0, 10] with rate b = 1

and for the power law shape function above (with α = {0.5, 1, 1.5} and β = {0.7, 1, 1.3}).

The process jumps (or length) is 104 on [0, 10]. We can see that the mean of the power

law shape function is linear, convex or concave depending on the choice of β.
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Figure 1.1. Sample paths of homogeneous and non-homogeneous gamma
processes with a power law shape function, A(t) = αtβ for α ∈
(0.5, 1, 1.5), β ∈ (0.7, 1, 1.3) and rate parameter b = 1
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CHAPTER 2

HOMOGENEOUS GAMMA PROCESS

2.1. Introduction

We observe n independent and identically distributed copies of the gamma process (Xt)t≥0

denoted by (X
(1)
t )t≥0, ...., (X

(n)
t )t≥0, with the shape function A(t) = αt, α > 0 and with

rate parameter b > 0. The ith sample path is observed at the instants T, 2T, 3T, ...,mT

with m ∈ N∗. For i ∈ {1, ..., n} and j ∈ {1, ...,m} we set the following:

− X
(i)
0 = x0 = 0 by assumption

− T = jT − (j − 1)T

− W
(i)
j = X

(i)
jT −X

(i)
(j−1)T

− wi,j = x
(i)
jT −x

(i)
(j−1)T is the observed increment between (j− 1)T and jT and x(i)s

are the observations of X. Also, wi,js are the observations of W.

− A(jT ;α) = α(jT )

− ∆Aj(α) = A(jT ;α)− A ((j − 1)T ;α) = αT

− w = {w1,1, ....wn,m} where the independent increments W
(i)
j v Gam(∆Aj(α), b).

The likelihood function of the observed degradation over i ∈ {1, ..., n} and j ∈ {1, ...,m}

with m,n ∈ N∗ is a product of independent gamma densities.

L(α, b|w) =
n∏
i=1

m∏
j=1

f
W

(i)
j

(wi,j) =
n∏
i=1

m∏
j=1

bαT

Γ(αT )
(wi,j)

αT−1e−bwi,j

In the following, we look at the identifiability of the model for the maximum likelihood.

Proposition 2.1. (Identifiability)

A homogeneous gamma process is identifiable as soon as n ≥ 1 and m ≥ 1, namely, as

soon as observation(s) is (are) made on the first instant T .

8



Proof. We assume that for θ = (α, b) and θ0 = (α0, b0), we have L(θ|w) = L(θ0|w).

Implies that `(θ|w) = `(θ0|w), where `(.) = logL(.). Which gives

`(θ|w)− `(θ0|w) = 0

For simplicity, let’s set m = 1, and substitute accordingly. This provides the expression

log
bαT

Γ(αT )
+ (αT − 1) logw1,1 − bw1,1 − log

bα0T
0

Γ(α0T )
− (α0T − 1) logw1,1 + b0w1,1 = 0

which can be rewritten as

log
Γ(α0T )bαT

Γ(αT )bα0T
0

+ (αT − α0T ) logw1,1 + (b0 − b)w1,1 = 0

and gives the system of equations(b0 − b)w1,1 = 0

(αT − α0T ) logw1,1 = 0

Thus b = b0 and α = α0. That is θ = θ0, ∀ θ, θ0 ∈ Θ ⊂ R2 as soon as n ≥ 1 and m ≥ 1. �

2.2. Maximum likelihood estimation for one single trajectory

Here, the degradation of one single system (n = 1) is assumed to be measured at the

instants T, 2T, ...,mT for m ∈ N∗.

2.2.1. Development of the method

In the case of one single system, the likelihood function becomes

L(α, b|w) =
m∏
j=1

f
W

(1)
j

(w1,j) =
m∏
j=1

bαT

Γ(αT )
(w1,j)

αT−1e−bw1,j

Taking the logarithm of the likelihood function gives the log-likelihood function

9



`(α, b|w) =
m∑
j=1

(αT log b− log(Γ(αT ))) + (αT − 1)
m∑
j=1

logw1,j − b
m∑
j=1

w1,j (2.1)

By maximizing ` with respect to b we obtain

∂`(α, b|w)

∂b
=

1

b

m∑
j=1

αT −
m∑
j=1

w1,j

and equating it to zero gives

b =
α(mT )
m∑
j=1

w1,j

(2.2)

Substituting b in Equation (2.2) into Equation (2.1) we obtain the following expression

for the log-likelihood function

˜̀(α|w) =
m∑
j=1

αT log

α(mT )
m∑
j=1

w1,j

− log(Γ(αT ))



+ (αT − 1)
m∑
j=1

logw1,j −

(
m∑
j=1

w1,j

)α(mT )
m∑
j=1

w1,j


which can be simplified into

˜̀(α|w) =α(mT ) log

α(mT )
m∑
j=1

w1,j

−m log(Γ(αT ))

+ (αT − 1)
m∑
j=1

logw1,j − α(mT )

Finally, an estimation of the parameter α can be obtained by computing the equation

10



α̂ = argmax
α > 0

˜̀(α | w) (2.3)

Then, Equation (2.2) allows a plug-in, and estimation of the rate parameter b.

In Figure 2.1, we look at the behavior of the log-likelihood function in Equation (2.3) as

m→∞. It can be seen that as m→∞, the estimate of α (dotted lines) at the maximum

of ˜̀(α | w) approaches its true value (α = 2). We will look at this property formally, in

the next section.

0 2 4 6 8 10

−
50

−
40

−
30

−
20

−
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m=100
m=1000
m=10000

Figure 2.1. Plots of MLE of α (dotted lines) in Equation (2.3) when n = 1
and m is increasing

2.2.2. Estimator properties

Proposition 2.2. (Consistency)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α), b) with the p.d.f f(w|θ), where θ = (α, b). Let θ0

be the true value of θ and L(θ|w) be the likelihood function. For n = 1, let θ̂ denote the
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maximum likelihood estimate of θ. Then for any ε > 0 and every θ, θ0 ∈ Θ ⊂ R2 :

lim
m→∞

P
(
|θ̂ − θ0| ≥ ε

)
= 0

Proof. The result follows from verifying that the following conditions are satisfied.

C1. θ0 is identifiable

C2. The p.d.fs have common support for all θ

C3. The point θ0 is an interior point in Θ

From the results in Proposition 2.1, the true parameter θ0 is identifiable, and hence C1 is

satisfied. Also, for all θ, the support [0,∞) of f(w|θ) remains the same. Lastly, we know

by assumption that θ0 is an interior point of the parameter space Θ ⊂ R2. In conclusion,

from Theorem 6.1.1 of Hogg et al. (2019), consistency holds for all θ, θ0 ∈ Θ ⊂ R2. �

Proposition 2.3. (Asymptotic normality)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α), b) with p.d.f f(w|θ), where θ = (α, b). Let θ0 be the

true value of θ and L(θ|w) be the likelihood function for all θ, θ0 ∈ Θ ⊂ R2. For n = 1, let

θ̂ denote the maximum likelihood estimate of θ. Under the following stronger conditions,

not theoretically studied here (see, Hogg et al., 2019):

(I) The p.d.f f(w|θ) is twice differentiable as a function of θ

(II) The integral
∫∞
−∞ f(w|θ)dw can be differentiated twice under the integral sign as

a function of θ

(III) The p.d.f f(w|θ) is three times differentiable as a function of θ. Further, for all

θ ∈ Θ ⊂ R2, there exist a constant c and a function M(w) such that

|∂
3 (log f(w|θ))

∂θ3
| ≤M(w)

with Eθ0 [M(w)] <∞ for all |θ − θ0| < c and all w in the support of W .

The MLE θ̂ is asymptotically normal. More formally

√
m
(
θ̂ − θ

)
d−−−→

m→∞
N2

(
0, I−1(θ)

)
12



where

I(θ)ij = −Eθ
[

∂2

∂θi∂θj
`(θ|w)

]
for i,j =1,2

is given as

I(θ) = −E

−(m)ψ1 (αT ) mT
b

mT
b

−α(mT )
b2

 = mT

T−1ψ1 (αT ) −1
b

−1
b

α
b2


where ψ1(αT ) = d2 log(Γ(αT ))/dα2 is the trigamma function

Recall that from Equation (2.1)

I(θ)11 =
∂2

∂α2
`(θ|w) = −(m)ψ1 (αT )

I(θ)22 =
∂2

∂b2
`(θ|w) = −α(mT )

b2

I(θ)12 = I(θ)21 =
∂2

∂α∂b
`(θ|w) =

mT

b

Proposition 2.4. (Asymptotic confidence interval for θ)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α), b) with p.d.f f(w|θ) where θ = (α, b). Let θ0 =

(α0, b0) be the true value of θ and L(θ|w) be the likelihood function for all θ, θ0 ∈ Θ ⊂ R2.

Let θ̂ denote the maximum likelihood estimate of θ such that for n = 1

√
m
(
θ̂ − θ

)
d−−−→

m→∞
N2

(
0, I−1(θ)

)
Then the asymptotic confidence interval for θ is given by

θ̂ ± q(1−α/2)
1√
mI(θ)

where for α ∈ (0, 1), qα is an α-quantile of the standard normal distribution

Proof. From
√
m
(
θ̂ − θ

)
d−−−→

m→∞
N2

(
0, I−1(θ)

)
13



we obtain √
m
(
θ̂ − θ

)
√
I−1(θ)

d−−−→
m→∞

N2 (0, 1)

Next, if for α ∈ (0, 1), qα is an α-quantile of the standard normal distribution, then

lim
m→∞

P

qα/2 ≤
√
m
(
θ̂ − θ

)
√
I−1(θ)

≤ q(1−α/2)

 = 1− α

which we can rewrite as

lim
m→∞

P

(
θ̂ −

√
I−1(θ)√
m

q(1−α/2) ≤ θ ≤ θ̂ −
√
I−1(θ)√
m

qα/2

)
= 1− α

By symmetry of the standard normal distribution, we obtain

lim
m→∞

P

(
θ̂ − q(1−α/2)

√
I−1(θ)√
m

≤ θ ≤ θ̂ + q(1−α/2)

√
I−1(θ)√
m

)
= 1− α

which gives the 100(1− α)% approximate confidence interval for θ as

I1−α(θ) =

(
θ̂ ± q(1−α/2)

1√
mI(θ)

)
�

2.3. Maximum likelihood estimation for several trajectories

Now, let n,m ∈ N∗. That is, we observe the degradation of several systems over a fixed

time horizon.

2.3.1. Development of the method

In this case, based on the previous section, we easily derive the likelihood expression,

which leads to

L(α, b|w) =
n∏
i=1

m∏
j=1

f
W

(i)
j

(wi,j) =
n∏
i=1

m∏
j=1

bαT

Γ(αT )
(wi,j)

αT−1e−bwi,j

14



Taking the logarithm of the likelihood function gives the log-likelihood function

`(α, b|w) =
n∑
i=1

m∑
j=1

(αT log b− log(Γ(αT )))+(αT−1)
n∑
i=1

m∑
j=1

logwi,j−b
n∑
i=1

m∑
j=1

wi,j (2.4)

Maximizing `(α, b|w) with respective to b gives

∂`(α, b|w)

∂b
=

1

b

n∑
i=1

m∑
j=1

αT −
n∑
i=1

m∑
j=1

wi,j

By equating the partial derivative to zero and regrouping, we obtain

b = α
n(mT )
n∑
i=1

m∑
j=1

wi,j

(2.5)

Substituting b in Equation (2.5) into Equation (2.4), we obtain the following expression

for the log-likelihood function

˜̀(α|w) =
n∑
i=1

m∑
j=1

αT log

α n(mT )
n∑
i=1

m∑
j=1

wi,j

− log(Γ(αT ))



+ (αT − 1)
n∑
i=1

m∑
j=1

logwi,j −

(
n∑
i=1

m∑
j=1

wi,j

)α n(mT )
n∑
i=1

m∑
j=1

wi,j


and simplifying gives

15



˜̀(α|w) =α(nmT ) log

 α(nmT )
n∑
i=1

m∑
j=1

wi,j

− (nm) log(Γ(αT ))

+ (αT − 1)
n∑
i=1

m∑
j=1

logwi,j − α(nmT )

Finally, an estimation of the parameter α can be obtained by computing the equation

α̂ = argmax
α > 0

˜̀(α | w) (2.6)

Then, Equation (2.5) allows a plug-in, and estimation of the rate parameter b.

Similarly, in Figure 2.2, the MLE of α is consistent on n. However, the true value (α = 2)

is reached faster on the number of observed systems (n ≥ 1) compared to observations

times m ≥ 1 (see Figure 2.1).
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n=100
n=1000
n=10000

Figure 2.2. Plots of MLE of α (dotted lines) in Equation (2.5) when n is
increasing and m is fixed
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2.3.2. Estimator properties

Proposition 2.5. (Consistency)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α), b) with p.d.f f(w|θ), where θ = (α, b). Let θ0 be the

true value of θ and L(θ|w) be the likelihood function. Let θ̂ denote the maximum likelihood

estimate of θ, then for any ε > 0 and every θ, θ0 ∈ Θ ⊂ R2,

lim
n→∞

P
(
|θ̂ − θ0| ≥ ε

)
= 0

Proof. Similarly, the result follows from verifying that the following conditions are

satisfied

C1. θ0 is identifiable

C2. The p.d.fs have common support for all θ

C3. The point θ0 is an interior point in Θ

Again, as shown in Proposition 2.1, the true parameter θ0 is identifiable, and hence C1 is

satisfied. Also, for all θ, the support [0,∞) of f(w|θ) remains the same. Lastly, we know

by assumption that θ0 is an interior point of the parameter space Θ ⊂ R2. Hence, from

Theorem 6.1.1 of Hogg et al. (2019), consistency holds for all θ, θ0 ∈ Θ ⊂ R2. �

Proposition 2.6. (Asymptotic normality)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α), b) with p.d.f f(w|θ), where θ = (α, b). Let θ0 be the

true value of θ and L(θ|w) be the likelihood function for θ, θ0 ∈ Θ ⊂ R2. Let θ̂ denote

the maximum likelihood estimate of θ. Under the same conditions in Proposition 2.3, not

theoretically studied here;

√
nm

α̂− α
b̂− b

 d−−−→
n→∞

N2

(
0, I−1(θ)

)

17



where

I(θ) = −E

−(mn)ψ1 (αT ) nmT
b

nmT
b

−α(nmT )
b2

 = nmT

T−1ψ1 (αT ) −1
b

−1
b

α
b2


and ψ1(αT ) = d2 log(Γ(αT ))/dα2 is a trigamma function

2.4. Method of Moments Estimation for several trajectories

Here, the goal is to obtain an estimation of θ through the minimization of the distance

between the empirical and the theoretical moments. At this aim, we define the distance

function D(θ, ζ), where θ = (α, b) ∈ Θ ⊂ R2 is the set of parameters to estimate and

ζ = (µ(jT ), σ(jT )) is the set of empirical moments (mean and variance) of X at time jT

(denoted Xj) for j ∈ {1, ...,m}. More precisely

θ̂ = argmin
θ, ζ ∈Θ

D(θ, ζ)

where

D(θ, ζ) =
m∑
j=1

((
E(Xj)− µ(jT )

)2
+
(
V ar(Xj)− σ(jT )

)2
)

and the theoretical mean E(Xj) and variance V ar(Xj) at time jT are given by

E(Xj) =
α(jT )

b
= η(jT )

V ar(Xj) =
α(jT )

b2
= ρ(jT )

where η = α/b and ρ = α/b2

In the following, we look at the identifiability of the model for the method of moments.

Proposition 2.7. (Identifiability)

A homogeneous gamma process is identifiable as soon as m ≥ 1. More precisely, as soon

as observations are made at least on the first instant, T and the first two centered moments

(mean and variance) are used.
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Proof. Assume that for θ = (α, b) and θ0 = (α0, b0), D(θ, θ0) = 0. Thus, we want to

show that θ = θ0, ∀ θ, θ0 ∈ Θ ⊂ R2 as soon as m ≥ 1. To start with, let’s set m = 1 and

we obtain E(X1) = µ(T )

V ar(X1) = σ(T )

which provides the system of equations
αT
b

= α0T
b0

αT
b2

= α0T
b20

Solving the two equations gives b = b0

α = α0

Hence the result θ = θ0,∀ θ, θ0 ∈ Θ ⊂ R2 �

We then proceed to estimate θ as follows:

D(θ, ζ) =
m∑
j=1

((
η(jT )− µ(jT )

)2
+
(
ρ(jT )− σ(jT )

)2
)

=
m∑
j=1

(
η2(jT )2 − 2η(jT )µ(jT ) + (µ(jT ))2 + ρ2(jT )2 − 2ρ(jT )σ(jT ) + (σ(jT ))2

)
which can be simplified as

D(θ, ζ) = η2f1 − 2ηf2 + ρ2g1 − 2ρg2 + C (2.7)

where

f1 = g1 =
m∑
j=1

(jT )2

f2 =
m∑
j=1

(jT )µ(jT )
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g2 =
m∑
j=1

(jT )σ(jT )

C =
m∑
j=1

(
(µ(jT ))2 + (σ(jT ))2

)
and fi and gi (for i = 1, 2) are independent of η and ρ, respectively. Also C is a constant

independent of θ. Next, we find the solutions to the equations∂ηD(θ, ζ) = 0

∂ρD(θ, ζ) = 0

and we obtain

∂ηD(θ, ζ) = 2ηf1 − 2f2 = 0 ⇒ η =
f2

f1

∂ρD(θ, ζ) = 2ρg1 − 2g2 = 0 ⇒ ρ =
g2

g1

Finally, we have
α

b
=
f2

f1

(2.8)

α

b2
=
g2

g1

(2.9)

Dividing Equation (2.9) by Equation (2.8) provides the following estimates

b̂ =
f2g1

f1g2

=

(
m∑
j=1

(jT )µ(jT )

)(
m∑
j=1

(jT )2

)
(

m∑
j=1

(jT )2

)(
m∑
j=1

(jT )σ(jT )

) =

m∑
j=1

(jT )µ(jT )

m∑
j=1

(jT )σ(jT )
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and

α̂ =
f 2

2 g1

f 2
1 g2

=

(
m∑
j=1

(jT )µ(jT )

)2( m∑
j=1

(jT )2

)
(

m∑
j=1

(jT )2

)2( m∑
j=1

(jT )σ(jT )

) =

(
m∑
j=1

(jT )µ(jT )

)2

(
m∑
j=1

(jT )2

)
m∑
j=1

(jT )σ(jT )

Finally, we obtain the method of moments estimator, which is

θ̂ =



(
m∑
j=1

(jT )µ(jT )

)2

(
m∑
j=1

(jT )2

)
m∑
j=1

(jT )σ(jT )

,

m∑
j=1

(jT )µ(jT )

m∑
j=1

(jT )σ(jT )


where µ(jT ) and σ(jT ) are the empirical mean and variance of X at times jT , for

1 ≤ j ≤ m.
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CHAPTER 3

NON-HOMOGENEOUS GAMMA PROCESS

3.1. Introduction

We observe n independent and identically distributed copies of the gamma process (Xt)t≥0

denoted by (X
(1)
t )t≥0, ...., (X

(n)
t )t≥0 with the shape function A(t) = αtβ, α, β > 0, and with

rate parameter b > 0. The ith sample path is observed at the instants T, 2T, 3T, ...,mT

with m ∈ N∗. For i ∈ {1, ..., n} and j ∈ {1, ...,m} we set the following:

− X
(i)
0 = x0 = 0 by assumption

− W
(i)
j = X

(i)
jT −X

(i)
(j−1)T

− wi,j = x
(i)
jT −x

(i)
(j−1)T is the observed increment between (j− 1)T and jT and x(i)s

are the observations of X. Also, wi,js are the observations of W.

− A(jT ; θ) = α(jT )β where θ = (α, β), unless otherwise defined

− ∆Aj(θ) = A(jT ; θ)− A ((j − 1)T ; θ) = αT β(jβ − (j − 1)β)

− w = {w1,1, ....wn,m} where the independent increments W
(i)
j v Gam(∆Aj(θ), b).

The likelihood function of the observed degradation over i ∈ {1, ..., n} and j ∈ {1, ...,m}

is a product of independent gamma densities.

L(θ, b|w) =
n∏
i=1

m∏
j=1

f
W

(i)
j

(wi,j) =
n∏
i=1

m∏
j=1

b∆Aj(θ)

Γ(∆Aj(θ))
(wi,j)

∆Aj(θ)−1e−bwi,j

Again, we first check the identifiability of the model for the maximum likelihood.

Proposition 3.1. (Identifiability)

A non-homogeneous gamma process with a power shape function is identifiable as soon

as n ≥ 1 and m ≥ 2, namely as soon as observations are made at least on the first two

instants, T and 2T .
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Proof. Assume that for θ = (α, β, b) and θ0 = (α0, β0, b0), we have L(θ|w) = L(θ0|w).

Implies that `(θ|w) = `(θ0|w) where `(.) = logL(.). More formally

`(θ|w)− `(θ0|w) = 0

Setting n = 1 and m = 2, and substituting accordingly, we obtain the system of equations
log bαT

β

Γ(αTβ)
+ (αT β − 1) logw1,1 − bw1,1 − log

b
α0T

β0

0

Γ(α0Tβ0 )
− (α0T

β0 − 1) logw1,1 + b0w1,1 = 0

log bαT
β(2β−1)

Γ(αTβ(2β−1))
+ (αT β(2β − 1)− 1) logw1,2 − bw1,2

− log
b
α0T

β0 (2β0−1)
0

Γ(α0Tβ0 (2β0−1))
− (α0T

β0(2β0 − 1)− 1) logw1,2 + b0w1,2 = 0

Simplifying the first equation gives

log
Γ(α0T

β0)bαT
β

Γ(αT β)bα0Tβ0
0

+ (αT β − α0T
β0) logw1,1 + (b0 − b)w1,1 = 0

which provides (b0 − b)w1,1 = 0

(αT β − α0T
β0) logw1,1 = 0

Hence b = b0

αT β = α0T
β0

In the same way, the second equation can be written as

log
Γ(α0T

β0(2β0 − 1))bαT
β(2β−1)

Γ(αT β(2β − 1))b
α0Tβ0 (2β0−1)
0

+(αT β(2β−1)−α0T
β0(2β0−1)) logw1,2 +(b0−b)w1,2 = 0

which simplifies into(b0 − b)w1,2 = 0

(αT β(2β − 1)− α0T
β0(2β0 − 1)) logw1,2 = 0
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This implies b = b0

αT β(2β − 1) = α0T
β0(2β0 − 1)

Substituting α0T
β0 with αT β in the last equation we obtain

b = b0

β = β0

α = α0 (from α0T
β0 = αT β)

which gives θ = θ0 as required. That is θ = θ0,∀ θ, θ0 ∈ Θ ⊂ R3 as soon as n ≥ 1 and

m ≥ 2. �

3.2. Maximum likelihood estimation for one single trajectory

In the same way as in the previous chapter, the homogeneous gamma process, we observe

one single system (n = 1) at the instants T, 2T, ...mT with m ∈ N∗

3.2.1. Development of the method

For one single system, the likelihood function is given by

L(θ, b|w) =
m∏
j=1

f
W

(1)
j

(w1,j) =
m∏
j=1

b∆Aj(θ)

Γ(∆Aj(θ))
(w1,j)

∆Aj(θ)−1e−bw1,j

which provides the following log-likelihood function

`(α, β, b|w) =
m∑
j=1

(
αT β

(
jβ − (j − 1)β

))
log b−

m∑
j=1

log
(
Γ
(
αT β(jβ − (j − 1)β

)
)
)

+
m∑
j=1

(
αT β

(
jβ − (j − 1)β

)
− 1
)

logw1,j − b
m∑
j=1

w1,j

(3.1)
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Similarly, we obtain

∂`(α, β, b|w)

∂b
=

1

b

m∑
j=1

αT β(jβ − (j − 1)β)−
m∑
j=1

w1,j

and the expression for b as

b =

(αT β)
m∑
j=1

(jβ − (j − 1)β)

m∑
j=1

w1,j

(3.2)

Substituting b in Equation (3.2) into Equation (3.1) provides the following expression

for the log-likelihood function

˜̀(α, β|w) =
m∑
j=1

(
αT β

(
jβ − (j − 1)β

))
log


(αT β)

m∑
j=1

(jβ − (j − 1)β)

m∑
j=1

w1,j


−

m∑
j=1

log
(
Γ(αT β(jβ − (j − 1)β))

)
+

m∑
j=1

(
αT β(jβ − (j − 1)β)− 1

)
logw1,j

−

(
m∑
j=1

w1,j

)
(αT β)

m∑
j=1

(jβ − (j − 1)β)

m∑
j=1

w1,j


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which can be simplified into

˜̀(α, β|w) =(αT β)
m∑
j=1

(
jβ − (j − 1)β

)
log


(αT β)

m∑
j=1

(jβ − (j − 1)β)

m∑
j=1

w1,j


−

m∑
j=1

log
(
Γ(αT β(jβ − (j − 1)β))

)
+ (αT β)

m∑
j=1

(
jβ − (j − 1)β

)
logw1,j −

m∑
j=1

logw1,j

− (αT β)
m∑
j=1

(jβ − (j − 1)β)

Finally, an estimation of the parameters α and β can be obtained by computing the

equation

θ̂(α, β) = argmax
α, β > 0

˜̀(α, β|w) (3.3)

Then, Equation (3.2) allows a plug-in, and estimation of the rate parameter b.

Comparing the estimate of α (dotted line) in Figure 3.1 to the homogeneous process,

where we observed one single system (Figure 2.1), the estimate is less biased from n = 100.

We will look at the properties of this estimator in the forthcoming section.
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Figure 3.1. Plots of MLE of α (dotted lines) in Equation (3.3) when n = 1
and m is increasing

3.2.2. Estimator properties

Proposition 3.2. (Consistency)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α, β), b) with p.d.f f(w|θ), where θ = (α, β, b). Let θ0

be the true value of θ and L(θ|w) be the likelihood function. For n = 1, let θ̂ denote the

maximum likelihood estimate of θ. Then for any ε > 0 and every θ, θ0 ∈ Θ ⊂ R3

lim
m→∞

P
(
|θ̂ − θ0| ≥ ε

)
= 0

Proof. Again, the result follows when the following conditions are satisfied

C1. θ0 is identifiable

C2. The p.d.fs have common support for all θ

C3. The point θ0 is an interior point in Θ
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Following the result in Proposition 3.1, the true parameter θ0 is identifiable, and hence C1

is satisfied. Also, for all θ, the support [0,∞) of f(w|θ) remains the same. Lastly, we know

by assumption that θ0 is an interior point of the parameter space Θ ⊂ R3. Accordingly,

from Theorem 6.1.1 of Hogg et al. (2019), consistency holds for all θ, θ0 ∈ Θ ⊂ R3. �

Proposition 3.3. (Asymptotic normality)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α, β), b) with p.d.f f(w|θ), where θ = (α, β, b). Let θ0

be the true value of θ and L(θ|w) be the likelihood function for all θ, θ0 ∈ Θ ⊂ R3. For

n = 1, let θ̂ denote the maximum likelihood estimate of θ. Similarly, under the same

stronger assumptions in Proposition 2.3,

√
m


α̂− α

β̂ − β

b̂− b

 d−−−→
m→∞

N3

(
0, I−1(θ)

)

where

I(θ)ij = −Eθ
[

∂2

∂θi∂θj
`(θ|w)

]
for i,j =1,2,3

is defined as

I(θ) =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


with the entries given as follows:

σ11 =
∂2

∂α2
`(θ|w) =

m∑
j=1

ψ1α (αg(β))

σ12 = σ21 =
∂2

∂α∂β
`(θ|w) =

m∑
j=1

∂

∂β
ψα (αg(β))−

m∑
j=1

g′(β) log b−
m∑
j=1

g′(β)E[logw1,j]
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σ13 = σ31 =
∂2

∂α∂b
`(θ|w) = −

m∑
j=1

g(β)/b

σ22 =
∂2

∂β2
`(θ|w) =

m∑
j=1

ψ1β (αg(β))− (α log b)
m∑
j=1

g′′(β)− α
m∑
j=1

g′′(β)E[logw1,j]

σ23 = σ32 =
∂2

∂β∂b
`(θ|w) = −

(
α

m∑
j=1

g′(β)

)
/b

σ33 =
∂2

∂b2
`(θ|w) =

(
α

m∑
j=1

g(β)

)
/b2

where

g(β) = T β(jβ − (j − 1)β); g′(β) =
d

dβ
g(β); g′′(β) =

d2

dβ2
g(β)

ψ1α (αg(β)) =
d2

dα2
(log Γ(αg(β))) ; ψ1β (αg(β)) =

d2

dβ2
(log Γ(αg(β)))

E[logw1,j] = ψ
(
αT β(jβ − (j − 1)β)

)
− log b (from Proposition 1.1)

3.3. Maximum likelihood estimation for several trajectories

Now, let n,m ∈ N∗. Similarly, we observe the degradation of several systems over a fixed

time horizon. In the next section, we estimate the parameters of the model using the

maximum likelihood method.

3.3.1. Development of the method

As seen in the previous section, the likelihood expression for the observed systems is easily

derived as

L(θ, b|w) =
n∏
i=1

m∏
j=1

f
W

(i)
j

(wi,j) =
n∏
i=1

m∏
j=1

b∆Aj(θ)

Γ(∆Aj(θ))
(wi,j)

∆Aj(θ)−1e−bwi,j

which gives the following log-likelihood function

29



`(α, β, b|w) =
n∑
i=1

m∑
j=1

(
αT β(jβ − (j − 1)β)

)
log b−

n∑
i=1

m∑
j=1

log
(
Γ
(
αT β(jβ − (j − 1)β)

))
+

n∑
i=1

m∑
j=1

(
αT β(jβ − (j − 1)β)− 1

)
logwi,j − b

n∑
i=1

m∑
j=1

wi,j

(3.4)

Similarly, taking partial derivative with respect to b and solving accordingly, we obtain

b =

α(nT β)
m∑
j=1

(jβ − (j − 1)β)

n∑
i=1

m∑
j=1

wi,j

(3.5)

Next, we substitute b in Equation (3.5) into Equation (3.4) and we obtain the log-

likelihood function

˜̀(α, β|w) =
n∑
i=1

m∑
j=1

αT β
(
jβ − (j − 1)β

)
log


α(nT β)

m∑
j=1

(jβ − (j − 1)β)

n∑
i=1

m∑
j=1

wi,j


−

n∑
i=1

m∑
j=1

log
(
Γ(αT β(jβ − (j − 1)β))

)
+

n∑
i=1

m∑
j=1

(
αT β(jβ − (j − 1)β)− 1

)
logwi,j

−

(
n∑
i=1

m∑
j=1

wi,j

)
α(nT β)

m∑
j=1

(jβ − (j − 1)β)

n∑
i=1

m∑
j=1

wi,j


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which can be simplified into

˜̀(α, β|w) =α(nT β)
m∑
j=1

(
jβ − (j − 1)β

)
log


α(nT β)

m∑
j=1

(jβ − (j − 1)β)

n∑
i=1

m∑
j=1

wi,j


− n

m∑
j=1

log
(
Γ(αT β(jβ − (j − 1)β))

)
+ (αT β)

n∑
i=1

m∑
j=1

(
jβ − (j − 1)β

)
logwi,j −

n∑
i=1

m∑
j=1

logwi,j

− α(nT β)
m∑
j=1

(jβ − (j − 1)β)

Lastly, an estimation of the parameters α and β can be obtained by computing the

equation

θ̂(α, β) = argmax
α, β > 0

˜̀(α, β|w) (3.6)

Then, Equation (3.5) allows a plug-in, and estimation of the rate parameter b.

Again, from Figure 3.2, the estimate of α is asymptotically less biased compared to

the homogeneous case (see Figure 2.2) where we observed several systems.
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Figure 3.2. Plot of MLE of α (dotted lines) in Equation (3.6) when n is
increasing and m is fixed

3.3.2. Estimator properties

Proposition 3.4. (Consistency)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α, β), b) with p.d.f f(w|θ), where θ = (α, β, b). Let θ0

be the true value of θ and L(θ|w) be the likelihood function. Let θ̂ denote the maximum

likelihood estimate of θ. Then for any ε > 0 and every θ, θ0 ∈ Θ ⊂ R3.

lim
n→∞

P
(
|θ̂ − θ0| ≥ ε

)
= 0

Proof. Similarly, we check that the following conditions are satisfied

C1. θ0 is identifiable

C2. The p.d.fs have common support for all θ

C3. The point θ0 is an interior point in Θ
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Again, as shown in Proposition 3.1, the true parameter θ0 is identifiable, and hence C1 is

satisfied. Also, for all θ, the support [0,∞) of the p.d.f. remains the same. Lastly, we know

by assumption that θ0 is an interior point of the parameter space Θ ⊂ R3. Accordingly,

from Theorem 6.1.1 of Hogg et al. (2019), consistency holds for all θ, θ0 ∈ Θ ⊂ R3. �

Proposition 3.5. (Asymptotic normality)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α, β), b) with p.d.f f(w|θ), where θ = (α, β, b). Let θ0

be the true value of θ and L(θ|w) be the likelihood function for all θ, θ0 ∈ Θ ⊂ R3. Let

θ̂ denote the maximum likelihood estimate of θ. Furthermore, from the assumptions in

Proposition 2.3, we have

√
nm


α̂− α

β̂ − β

b̂− b

 d−−−→
n→∞

N3

(
0, I−1(θ)

)

where the Fisher Information Matrix I(θ) is defined as

I(θ) =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


with the entries given as follows:

σ11 =
∂2

∂α2
`(θ|w) = n

m∑
j=1

ψ1α (αg(β))

σ12 = σ21 =
∂2

∂α∂β
`(θ|w) = n

m∑
j=1

∂

∂β
ψα (αg(β))− n

m∑
j=1

g′(β) log b−
n∑
i=1

m∑
j=1

g′(β)E[logwi,j]

σ13 = σ31 =
∂2

∂α∂b
`(θ|w) = −n

m∑
j=1

g(β)/b
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σ22 =
∂2

∂β2
`(θ|w) = n

m∑
j=1

ψ1β (αg(β))− n(α log b)
m∑
j=1

g′′(β)− α
n∑
i=1

m∑
j=1

g′′(β)E[logwi,j]

σ23 = σ32 =
∂2

∂β∂b
`(θ|w) = −n

(
α

m∑
j=1

g′(β)

)
/b

σ33 =
∂2

∂b2
`(θ|w) = n

(
α

m∑
j=1

g(β)

)
/b2

where

g(β) = T β(jβ − (j − 1)β); g′(β) =
d

dβ
g(β); g′′(β) =

d2

dβ2
g(β)

ψ1α (αg(β)) =
d2

dα2
(log Γ(αg(β))) ; ψ1β (αg(β)) =

d2

dβ2
(log Γ(αg(β)))

E[logw1,j] = ψ
(
αT β(jβ − (j − 1)β)

)
− log b (from Proposition 1.1)

Proposition 3.6. (Asymptotic confidence interval for θ)

Let W1,1, ..,Wn,m
ind.
v Gam (∆Aj(t;α, β), b) with p.d.f f(w|θ) where θ = (α, β, b). Let

θ0 = (α0, β0, b0) be the true value of θ and L(θ|w) defined above, be the likelihood function

for all θ, θ0 ∈ Θ ⊂ R3. Let θ̂ denote the maximum likelihood estimate of θ such that
√
nm

(
θ̂ − θ

)
d−−−→

n→∞
N3 (0, I−1(θ)). Then, the asymptotic confidence interval for θ is

given by

θ̂ ± q(1−α/2)
1√

nmI(θ)

where for α ∈ (0, 1), qα is an α-quantile of the standard normal distribution.

Proof. From
√
nm

(
θ̂ − θ

)
d−−−→

n→∞
N3

(
0, I−1(θ)

)
we obtain
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√
nm

(
θ̂ − θ

)
√
I−1(θ)

d−−−→
n→∞

N3 (0, 1)

Now, if for α ∈ (0, 1), qα is an α-quantile of the standard normal distribution, then

lim
n→∞

P

qα/2 ≤
√
nm

(
θ̂ − θ

)
√
I−1(θ)

≤ q(1−α/2)

 = 1− α

which gives

lim
n→∞

P

(
θ̂ −

√
I−1(θ)√
nm

q(1−α/2) ≤ θ ≤ θ̂ −
√
I−1(θ)√
nm

qα/2

)
= 1− α

By symmetry of the standard normal distribution

lim
n→∞

P

(
θ̂ − q(1−α/2)

√
I−1(θ)√
nm

≤ θ ≤ θ̂ + q(1−α/2)

√
I−1(θ)√
nm

)

which provides the 100(1− α)% approximate confidence interval for θ as

I1−α(θ) =

(
θ̂ ± q(1−α/2)

1√
nmI(θ)

)
�

3.4. Method of Moments Estimation for several trajectories

Similarly, unlike the maximum likelihood method, the goal here is to obtain an estimation

of θ through the minimization of the distance between the empirical and the theoretical

moments. At this aim, we define the distance function D(θ, ζ), where θ = (α, β, b) ∈

Θ ⊂ R3 is the set of parameters to estimate and ζ = (µ(jT ), σ(jT )) is the set of empirical

moments (mean and variance) of X at time jT (denoted Xj) for j ∈ {1, ...,m}. More

formally, we have

θ̂ = argmin
θ, ζ ∈Θ

D(θ, ζ)

where
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D(θ, ζ) =
m∑
j=1

((
E(Xj)− µ(jT )

)2
+
(
V ar(Xj)− σ(jT )

)2
)

with the theoretical mean E(Xj) and variance V ar(Xj) at time jT given as

E(Xj) =
α(jT )β

b
= η(jT )β

V ar(Xj) =
α(jT )β

b2
= ρ(jT )β

where η = α/b and ρ = α/b2

Before we go on with the estimation, we first need to check the identifiability of the model

for the method of moments, as follows.

Proposition 3.7. (Identifiability)

A non-homogeneous gamma process with a power shape function is identifiable as soon as

m ≥ 2. Namely, as soon as observation(s) is (are) made on the first two instants, T and

2T , and if the first two centered moments (expectation and variance) are used.

Proof. Assume that for θ = (α, β, b) and θ0 = (α0, β0, b0), D(θ, θ0) = 0. Thus we

want to show that θ = θ0,∀ θ, θ0 ∈ Θ ⊂ R3 as soon as m ≥ 2. Based on the previous

chapter, we easily derive the following systems of equations for m = 2

αTβ

b
= α0Tβ0

b0

αTβ

b2
= α0Tβ0

b20

α(2T )β

b
= α0(2T )β0

b0

α(2T )β

b2
= α0(2T )β0

b20

which can be simplified into
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
b = b0

αT β = α0T
β0

2β = 2β0

This implies 
b = b0

α = α0

β = β0

and θ = θ0 as required. �

Next, we proceed to estimate θ by minimizing the following function

D(θ, ζ) =
m∑
j=1

((
η(jT )β − µ(jT )

)2
+
(
ρ(jT )β − σ(jT )

)2
)

=
m∑
j=1

(
η2(jT )2β − 2η(jT )βµ(jT ) + (µ(jT ))2 + ρ2(jT )2β − 2ρ(jT )βσ(jT ) + (σ(jT ))2

)
which can be rewritten as

D(θ, ζ) = η2f1(β)− 2ηf2(β) + ρ2g1(β)− 2ρg2(β) + C (3.7)

where

f1(β) = g1(β) =
m∑
j=1

(jT )2β

f2(β) =
m∑
j=1

(jT )βµ(jT )

g2(β) =
m∑
j=1

(jT )βσ(jT )

C =
m∑
j=1

(
(µ(jT ))2 + (σ(jT ))2

)
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and fi(.) and fi(.) (for i = 1, 2) are independent of η and ρ. Also, C is a constant inde-

pendent of θ.

Similarly, we find the solutions to the following equations∂ηD(θ, ζ) = 0

∂ρD(θ, ζ) = 0

which provides  ∂ηD(θ, ζ) = 2ηf1(β)− 2f2(β) = 0

∂ρD(θ, ζ) = 2ρg1(β)− 2g2(β) = 0

This implies

η(β) =
f2(β)

f1(β)

ρ(β) =
g2(β)

g1(β)

By substituting η(β) and ρ(β) into Equation (3.7), the estimation of the parameter β can

be obtained by computing the following equation

D̂(β, ζ) = C −
(
f 2

2 (β)

f1(β)
+
g2

2(β)

g1(β)

)

=
m∑
j=1

(
(µ(jT ))2 + (σ(jT ))2

)
−

(
m∑
j=1

(jT )βµ(jT )

)2

+

(
m∑
j=1

(jT )βσ(jT )

)2

m∑
j=1

(jT )2β

(3.8)

Finally, we have
α

b
=
f2(β̂)

f1(β̂)
(3.9)

α

b2
=
g2(β̂)

g1(β̂)
(3.10)
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By dividing Equation (3.10) by Equation (3.9), the estimations of the parameters α and

b can be obtained from the following

α̂ =
f 2

2 (β̂)g1(β̂)

f 2
1 (β̂)g2(β̂)

=

(
m∑
j=1

(jT )β̂µ(jT )

)2

(
m∑
j=1

(jT )2β̂

)
m∑
j=1

(jT )β̂σ(jT )

(3.11)

b̂ =
f2(β̂)g1(β̂)

f1(β̂)g2(β̂)
=

m∑
j=1

(jT )β̂µ(jT )

m∑
j=1

(jT )β̂σ(jT )

(3.12)

where µ(jT ) and σ(jT ) are the empirical mean and variance of X at times jT , for 1 ≤ j ≤ m.
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CHAPTER 4

NUMERICAL RESULTS

4.1. Introduction

In this chapter, we present the numerical results of the MLE, and the MME as well as

the MLE initialized by the estimates of the MME (denoted as MLE-MME). The goal

here is to investigate the efficiency of these estimators in the case of a non-homogeneous

gamma process. To this end, we consider different sets of systems and parameters defined

as follows:

− Set of observed i.i.d. systems: n = {250, 1000}

− Observations times: {jT ; 1 ≤ j ≤ m} with m = {25, 100} and T = 1

− Shape function parameters: α = {0.5, 1, 1.5} and β = {0.7, 1, 1.3}

− Rate parameter: b = 1

For each set of (n,m) and parameters (α, β, b), we generate 500 sample sets. Accordingly,

we estimate θ = (α, β, b) for each sample set, and for each method. All the programming

and statistical analysis are implemented in R Core Team (2019). The estimations are

based on the maximization and minimization of Equations 3.6 and 3.8, respectively, using

a quasi-Newton method. Finally, all the estimates of the parameters are obtained by

appropriate substitution(s).

Also, in the optimization procedure, we set the following lower and upper bounds for the

parameters.

• α ∈ [0.1, 10] for both the MLE and MLE-MLE

• β ∈ [0.1, 10] for all the three methods (MLE, MME and MLE-MME)
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Furthermore, in each method, the initial points of the optimization procedure are set

at 5 for each of the parameters. Lastly, we develop the third method (MLE-MME) by

initializing the MLE with the estimates of the MME.

4.2. Results

The relative biases (in percentage) and variances of each estimator, and for each parameter

set are presented in Table 4.2, and appendix A. Notably, the co-variances of the estimates

were not significantly different from zero. Hence, there is no correlation between parameter

estimates. Also, we can see from Table 4.2 that the MME is less efficient than the MLE,

and thus, we study only the MLE in the following and focus more on Case 1. Finally,

the estimation of the rate parameter b = 1 (fixed) is globally more efficient with the

MLE and MLE-MME (with small biases and variances) than the MME. However, the

rate parameter is not the main point of the numerical tests.

4.3. Initialization on Bias and Variance

Comparing the MLE and MLE-MME in Table 4.2, it can be seen that initializing the

MLE by MME improves the quality of the estimates (bias and variance) for some param-

eter sets. More specifically, when α = 0.5 the MLE is less efficient regarding α and β:

both when the shape function is concave (β < 1) and when it is convex (β > 1). On the

other hand, when the shape function is linear (β = 1), initializing the MLE method is

less efficient for both α and β (with relative biases and variances 10.2%, 4.0 × 10−5 and

10.2%, 6.9× 10−6) respectively.

Furthermore, when α = 1, the MLE is more efficient than the MLE-MME regarding α

and β for both when the shape function is convex and when it is concave. However, the

MLE-MME is better in the case of a linear shape function.
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Lastly, the MLE is better when the shape function is concave or linear with α > 1. More

precisely, when the shape function is concave or linear with α > 1, the MLE is way better

regarding α and the biases of the MLE-MME regarding β is not very different from the

MLE. Hence, the MLE is a better choice in this case. However, when the shape is convex,

the MLE-MME is better regarding α, and the MLE provides close results in the case of

β. Thus the MLE-MME is a better choice here.

In conclusion, when α < 1, and the shape function is concave or convex, it is more efficient

to initialize the MLE by MME while the MLE is better for a linear shape function. Also,

the MLE-MME is only better when the shape function is linear with α = 1. Finally, the

MLE is better when the shape function is concave or linear with α > 1 while MLE-MME

is better, in the case of a convex shape function. Thus the choice of an efficient estimation

method depends on the choice of α and the convexity of the shape function (see Table 4.1).

Table 4.1. Summary of the choice of estimation methods

Shape function

Concave (β < 1) Linear (β = 1) Convex (β > 1)

α < 1 MLE-MME MLE MLE-MME

α = 1 MLE MLE-MME MLE

α > 1 MLE MLE-MME
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Table 4.2. Relative bias (in %) and Variances for different parameter sets-
Case 1:(n,m)=(1000,100)

Parameter set Method
Relative bias Variance

α̂ β̂ α̂ β̂

(0.5,0.7,1)
MLE 9.7% 2.8% 6.6× 10−5 1.0× 10−5

MME 19.1% 5.9% 2.5× 10−3 3.9× 10−4

MLE-MME 5.5% 1.4% 6.4× 10−5 9.5× 10−6

(0.5,1,1)
MLE 4.8% 4.1% 4.6× 10−5 8.2× 10−6

MME 32.2% 25.2% 3.0× 10−3 4.6× 10−4

MLE-MME 10.2% 4.2% 4.0× 10−5 6.9× 10−6

(0.5,1.3,1)
MLE 3.0% 3.1% 3.2× 10−5 5.8× 10−6

MME 34.6% 32.3% 4.2× 10−3 6.8× 10−4

MLE-MME 1.5% 1.0% 3.2× 10−5 5.8× 10−6

(1,0.7, 1)
MLE 1.6% 0.4% 2.1× 10−4 7.1× 10−6

MME 3.0% 7.2% 9.7× 10−3 3.5× 10−4

MLE-MME 2.3% 0.8% 2.2× 10−4 7.9× 10−6

(1,1,1)
MLE 0.9% 0.7% 1.5× 10−4 6.1× 10−6

MME 113.1% 13.7% 1.2× 10−2 4.3× 10−4

MLE-MME 0.4% 0.6% 1.6× 10−4 6.9× 10−6

(1,1.3,1)
MLE 1.2% 0.0% 9.1× 10−5 3.8× 10−6

MME 130.6% 7.6% 1.6× 10−2 5.9× 10−4

MLE-MME 7.8% 1.6% 8.9× 10−5 3.6× 10−6

(1.5,0.7,1)
MLE 11.9% 2.5% 4.1× 10−4 6.5× 10−6

MME 72.3% 1.2% 1.8× 10−2 2.9× 10−4

MLE-MME 22.4% 1.7% 4.6× 10−4 7.2× 10−6

(1.5,1,1)
MLE 0.9% 0.2% 2.9× 10−4 5.0× 10−6

MME 56.1% 7.0% 2.5× 10−2 4.1× 10−4

MLE-MME 4.1% 0.1% 2.8× 10−4 5.0× 10−6

(1.5,1.3,1)
MLE 4.6% 0.4% 1.5× 10−4 2.4× 10−6

MME 82.3% 4.6% 3.3× 10−2 5.8× 10−4

MLE-MME 3.0% 0.6% 1.4× 10−4 2.1× 10−6
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4.4. Choice of β on the quality of the estimates

Figure 4.1 shows the plots of β (x-axes) against the biases (y-axes) of the estimates of both

α and β. The idea is to see how the choice of β influences the quality of the estimates.

It can be seen that the estimates of β (right) are generally better compared to that of

α (left). Furthermore, the estimate of β is better (with MLE-MME) when the shape

function is concave with 0.5 ≤ β < 1 and when it is convex. Generally, the estimates of β

and α perform poorly in the special case where β = 1. Also, the MLE-MME is globally

better in estimating β, but the MLE provides quite close results.
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Figure 4.1. Bias(α̂) vs. β (left) and Bias(β̂) vs. β (right)

CPU Time

Also, on mean computing time (Table 4.3), the initialized MLE is almost twice faster

than the MLE globally, for all the parameter sets, even when the CPU times of the MME

are taken into account. For example, at the maximum mean CPU Time where the shape

function is linear (for α = 0.5), MLE = 21.341, MLE-MME = 12.894 and MME = 0.006.
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Consequently, to maximize both quality and cost (time), it will be reasonable to consider

a convex or concave shape function and where possible, with small α < 1.

Table 4.3. Mean CPU Time for different parameter sets-Case 1:
(n,m)=(1000,100)

Parameter set Method mCPU Time (s)

(0.5,0.7,1)
MLE 15.951
MME 0.010
MLE-MME 9.629

(0.5,1,1)
MLE 21.341
MME 0.006
MLE-MME 12.894

(0.5,1.3,1)
MLE 17.128
MME 0.006
MLE-MME 8.951

(1,0.7, 1)
MLE 17.254
MME 0.012
MLE-MME 12.529

(1,1,1)
MLE 17.821
MME 0.006
MLE-MME 9.663

(1,1.3,1)
MLE 13.505
MME 0.007
MLE-MME 8.270

(1.5,0.7,1)
MLE 19.756
MME 0.010
MLE-MME 9.710

(1.5,1,1)
MLE 18.059
MME 0.006
MLE-MME 10.411

(1.5,1.3,1)
MLE 19.565
MME 0.006
MLE-MME 8.814
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4.5. Asymptotic unbiased, Consistency and Efficiency of estimators

The plots of relative bias and variance (against n) for each parameter set are presented

in appendix B. Each row represents a choice of (α, β) defined above. In the case of α,

some curves exceeded the maximum values set for the variance axis (as in Figures B.4

and B.6). This is because the y-axis is coded on the same scale to allow fair comparison

across parameters.

Generally, the bias and variance of both the MLE and MLE-MME are decreasing over

n ∈ {250, 1000} for all the parameter sets. However, the effect of MLE-MME on the bias

and variance of the estimate of β is not very sharp. Also, we can see that the estimation

of β is more efficient compared to α.

This result is expected, under the regularity conditions and asymptotic properties of the

maximum likelihood method. To be more precise, the MLE is asymptotically unbiased,

consistent, and efficient for each of the parameter sets.

Moreover, the estimated density plots and histograms (Figure 4.2 and appendix C) for

each of the parameter sets, show that (asymptotically) the distributions of α and β

are approximately that of a standard normal random variable. Hence, the results are

consistent with the classical asymptotic normality of the MLE.

Accordingly, the 95% approximate confidence interval coverage for each of the parameter

sets and each sample are revealed in Figure 4.3 and appendix D. It can be seen that

the coverage probabilities are pretty close to the nominal coverage, though vary with

observations size and of course the choice of parameters.
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4.6. Asymptotic normality of MLE
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Figure 4.2. Estimated density and histogram for α = 0.5 and β ∈ {0.7, 1, 1.3}
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4.7. Approximate Confidence Intervals Coverage of MLE
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Figure 4.3. 95% CIs Coverage for α = 0.5 and β ∈ {0.7, 1, 1.3}
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CHAPTER 5

CONCLUSION

A system is considered whose degradation level increases over time, according to a gamma

process. The degradation level is measured at times T, 2T, . . . ,mT for m ∈ N∗. Based

on this observation scheme and some assumptions, we modeled the degradation by both

homogeneous and non-homogeneous gamma processes with a power law shape function.

Two classical estimation methods, namely, the maximum likelihood method, and the

method of moments were also developed. Also, the theoretical and numerical results

of these estimators were studied, and for different sets of observations and parameters.

Furthermore, unlike previous studies, we assumed that the power of the shape function is

not known and considered both the homogeneous and non-homogeneous gamma processes.

The identifiability of these models was also studied.

We have shown that the estimates of the parameters are better with the maximum

likelihood method than the method of moments. Moreover, the maximum likelihood

estimator is asymptotically unbiased, consistent, and efficient, which validates the

theoretical results. Also, initializing the maximum likelihood method with the estimates

of the method of moments improved the quality of the estimates, depending on the value

of α as well as the convexity of the shape function. More so, the initialized MLE is

almost twice (from 1.5) faster on average than the MLE, for all the parameter sets, even

when the computing time of the MME is taken into account. Lastly, the convexity of

the shape function also influences the quality of the estimates. To be more precise, the

estimates are better for concave and convex shape functions than for a linear one.

This work modeled degradation by a gamma process and developed the statistical esti-

mations methods for the parameters. However, it is only limited to the power law shape
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function, and the maximum likelihood method and the method of moments estimations.

It will be interesting to consider other shape functions, for example, exponential law and

estimation methods such as the Bayesian estimation. This will broaden the discussion on

the choice of the shape function and parameters, and accordingly, an efficient parametric

estimation method for the degradation models.
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APPENDIX A

Bias and Variance of estimates

Table A.1. Relative bias (in %) and Variances for different parameter sets-
Case 2:(n,m)=(1000,25)

Parameter set Method
Relative bias Variance

α̂ β̂ α̂ β̂

(0.5,0.7,1)
MLE 10.3% 2.1% 1.2× 10−4 3.3× 10−5

MLE-MME 5.0% 1.1% 1.1× 10−4 2.9× 10−5

(0.5,1,1)
MLE 2.1% 0.0% 1.1× 10−4 3.7× 10−5

MLE-MME 2.5% 0.2% 1.0× 10−4 3.4× 10−5

(0.5,1.3,1)
MLE 3.1% 1.9% 8.1× 10−5 3.0× 10−5

MLE-MME 0.6% 1.1% 7.7× 10−5 2.9× 10−5

(1,0.7, 1)
MLE 14.1% 4.4% 4.3× 10−4 2.8× 10−5

MLE-MME 25.1% 4.9% 4.2× 10−4 2.8× 10−5

(1,1,1)
MLE 0.3% 1.3% 3.5× 10−4 2.5× 10−5

MLE-MME 10.2% 3.7% 3.0× 10−4 2.4× 10−5

(1,1.3,1)
MLE 5.8% 2.0% 2.4× 10−4 1.8× 10−5

MLE-MME 0.0% 2.0% 2.4× 10−4 2.0× 10−5

(1.5,0.7,1)
MLE 7.7% 1.3% 8.9× 10−4 2.4× 10−5

MLE-MME 16.2% 1.5% 8.2× 10−4 2.3× 10−5

(1.5,1,1)
MLE 3.2% 0.0% 5.8× 10−4 1.8× 10−5

MLE-MME 26.2% 3.3% 5.9× 10−4 1.9× 10−5

(1.5,1.3,1)
MLE 1.0% 1.5% 4.6× 10−4 1.4× 10−5

MLE-MME 18.6% 2.5% 4.3× 10−4 1.4× 10−5
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Table A.2. Relative bias (in %) and Variances for different parameter sets-
Case 3:(n,m)=(250,100)

Parameter set Method
Relative bias Variance

α̂ β̂ α̂ β̂

(0.5,0.7,1)
MLE 10.1% 4.3% 2.4× 10−4 3.5× 10−5

MLE-MME 16.1% 2.9% 2.5× 10−4 3.6× 10−5

(0.5,1,1)
MLE 1.6% 5.2% 1.7× 10−4 3.0× 10−5

MLE-MME 1.8% 0.5% 1.9× 10−4 3.2× 10−5

(0.5,1.3,1)
MLE 0.2% 0.4% 1.2× 10−4 2.2× 10−5

MLE-MME 3.3% 4.0% 1.2× 10−4 2.4× 10−5

(1,0.7, 1)
MLE 2.8% 0.9% 9.3× 10−4 3.5× 10−5

MLE-MME 21.5% 3.7% 1.0× 10−3 3.5× 10−5

(1,1,1)
MLE 25.0% 3.4% 6.1× 10−4 2.4× 10−5

MLE-MME 4.3% 0.1% 5.7× 10−4 2.5× 10−5

(1,1.3,1)
MLE 1.9% 1.3% 3.3× 10−4 1.4× 10−5

MLE-MME 16.1% 2.3% 3.3× 10−4 1.4× 10−5

(1.5,0.7,1)
MLE 0.1% 1.6% 1.7× 10−3 2.7× 10−5

MLE-MME 33.2% 0.2% 1.6× 10−3 2.6× 10−5

(1.5,1,1)
MLE 1.6% 0.3% 1.1× 10−3 2.0× 10−5

MLE-MME 5.2% 1.3% 9.7× 10−4 1.7× 10−5

(1.5,1.3,1)
MLE 5.6% 1.5% 5.6× 10−4 9.1× 10−6

MLE-MME 4.8% 0.4% 5.5× 10−4 9.8× 10−6
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Table A.3. Relative bias (in %) and Variances for different parameter sets-
Case 4:(n,m)=(250,25)

Parameter set Method
Relative bias Variance

α̂ β̂ α̂ β̂

(0.5,0.7,1)
MLE 8.9% 3.8% 4.9× 10−4 1.3× 10−4

MLE-MME 28.3% 8.2% 5.1× 10−4 1.4× 10−4

(0.5,1,1)
MLE 11.9% 5.9% 4.2× 10−4 1.4× 10−4

MLE-MME 0.2% 2.8% 4.6× 10−4 1.4× 10−4

(0.5,1.3,1)
MLE 19.0% 10.5% 3.3× 10−4 1.2× 10−4

MLE-MME 13.0% 9.2% 3.3× 10−4 1.2× 10−4

(1,0.7, 1)
MLE 30.8% 1.4% 1.7× 10−3 1.1× 10−4

MLE-MME 18.9% 0.3% 1.6× 10−3 1.1× 10−4

(1,1,1)
MLE 11.2% 1.6% 1.4× 10−3 1.0× 10−4

MLE-MME 5.3% 3.4% 1.3× 10−3 1.0× 10−4

(1,1.3,1)
MLE 2.3% 3.8% 9.1× 10−4 7.7× 10−5

MLE-MME 12.6% 1.2% 9.9× 10−4 7.8× 10−5

(1.5,0.7,1)
MLE 35.2% 5.0% 3.2× 10−3 8.9× 10−5

MLE-MME 6.8% 2.3% 3.2× 10−3 8.8× 10−5

(1.5,1,1)
MLE 28.1% 4.4% 2.3× 10−3 7.8× 10−5

MLE-MME 24.5% 1.3% 2.4× 10−3 8.1× 10−5

(1.5,1.3,1)
MLE 10.7% 2.2% 1.7× 10−3 5.6× 10−5

MLE-MME 8.3% 2.2% 2.0× 10−3 5.9× 10−5
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APPENDIX B

Bias and Variance vs. n
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Figure B.1. Bias vs. n for α = 0.5 and β ∈ {0.7, 1, 1.3}
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Figure B.2. Variance vs. n for α = 0.5 and β ∈ {0.7, 1, 1.3}

57



●

●

400 600 800 1000

0.
0

0.
2

0.
4

alpha (1)

n

R
el

at
iv

e 
bi

as

● ●

●

●
●

● ●
●

400 600 800 1000

0.
0

0.
2

0.
4

beta (0.7)

n

R
el

at
iv

e 
bi

as

● ●●

●●
●

●

●

400 600 800 1000

0.
0

0.
2

0.
4

alpha (1)

n

R
el

at
iv

e 
bi

as

●

●

●

●

●
● ● ●

400 600 800 1000

0.
0

0.
2

0.
4

beta (1)

n

R
el

at
iv

e 
bi

as

●
●

● ●
● ●

●
●

400 600 800 1000

0.
0

0.
2

0.
4

alpha (1)

n

R
el

at
iv

e 
bi

as

● ●

●

●

●

●
●

●

400 600 800 1000

0.
0

0.
2

0.
4

beta (1.3)

n

R
el

at
iv

e 
bi

as

● ●● ●● ●

MLE, m=25 MLE−MME, m=25 MLE, m=100 MLE−MME, m=100

Figure B.3. Bias vs. n for α = 1 and β ∈ {0.7, 1, 1.3}
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Figure B.4. Variance vs. n for α = 1 and β ∈ {0.7, 1, 1.3}
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Figure B.5. Bias vs. n for α = 1.5 and β ∈ {0.7, 1, 1.3}
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Figure B.6. Variance vs. n for α = 1.5 and β ∈ {0.7, 1, 1.3}

61



APPENDIX C

Asymptotic distribution of MLE:(n,m)=(1000,100)
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Figure C.1. Estimated density and histogram for α = 1 and β ∈ {0.7, 1, 1.3}
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Figure C.2. Estimated density and histogram for α = 1.5 and β ∈ {0.7, 1, 1.3}
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APPENDIX D

Approximate CIs coverage of MLE:(n,m)=(1000,100)
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Figure D.1. 95% CIs Coverage for α = 1 and β ∈ {0.7, 1, 1.3}
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Figure D.2. 95% CIs Coverage for α = 1.5 and β ∈ {0.7, 1, 1.3}
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