
HAL Id: tel-02455266
https://univ-pau.hal.science/tel-02455266

Submitted on 25 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Framework For Safety Management In The
Autonomous Vehicle

Matthieu Carre

To cite this version:
Matthieu Carre. Autonomic Framework For Safety Management In The Autonomous Vehicle. Auto-
matic. Université de Pau et des Pays de l’Adour, 2019. English. �NNT : �. �tel-02455266�

https://univ-pau.hal.science/tel-02455266
https://hal.archives-ouvertes.fr

THÈSE
UNIVERSITE DE PAU ET DES PAYS DE L’ADOUR

École doctorale ED 211

Présentée et soutenue le vendredi 13 décembre 2019

par Matthieu CARRÉ

pour obtenir le grade de docteur
de l’Université de Pau et des Pays de l’Adour

Spécialité : Informatique

AUTONOMIC FRAMEWORK FOR SAFETY MANAGEMENT
IN THE AUTONOMOUS VEHICLE

MEMBRES DU JURY

RAPPORTEURS
• Myriam LAMOLLE Professeur / Laboratoire LIASD, Université Paris 8
• Christophe CHASSOT Professeur / Laboratoire LAAS-CNRS, INSA Toulouse

EXAMINATEURS
• Sylvie DESPRES Professeur / Laboratoire LIMICS, Université Paris 13
• Khalil DRIRA Directeur de Recherche / Équipe SARA, Laboratoire LAAS-CNRS

DIRECTEURS
• Ernesto EXPOSITO Professeur / Laboratoire LIUPPA, Université de Pau et des Pays de l'Adour
• Javier IBANEZ-GUZMAN Docteur / Véhicules intelligents, Division Recherche de Renault

 - 2 -

1

Abstract
The development and deployment of Autonomous Vehicles (AV) is a very challenging
endeavour from a safety perspective. These vehicles are safety-critical systems must
navigate through multiple complex situations preventing any potential harm and without
disturbing traffic flow to be accepted by society. Safe driving under full computer con-
trol also requires to interact and operate around different entities within complex road
networks and appropriately address their various behaviours.

While much progress has been achieved within the past years, work has centred on
providing vehicles with the ability to navigate autonomously. Safety has emerged as the
major challenge, not only to manage malfunctions or external disturbances but also on
the vehicle behavioural part to address edge-cases.

This thesis addresses the research question of how safe autonomy is formulated and
managed in the literature. We review safety mitigation mechanisms at run-time employ-
ing adaptive behaviours. We identify that AV systems require a handful combination of
observability, traceability, reconfigurability and flexibility. Based on these non-functional
properties, we propose a framework that incorporates the notion of self-safety into exist-
ing AVs a manageable and scalable manner. The framework defines our methodology to
represent the safety argumentation as constraints and our reference architecture that in-
volve two layers that operate self-adaptation mechanisms to ensure safety. The first layer
is closer to the autonomous vehicle and consists of a collection of dependable processes.
They specify requirements and are coupled to control loops to manage the assurance
of safety closely. The second layer reconfigures the workflow of the previous layer ac-
cording the association between the constraints and the requirements. The control loops
operate with respect upon the context according to the context-dependence restrictions
as well as the state of the AV functions. We also detail the constituent parts and appli-
cation of the framework, namely, with knowledge representation, abstractions, templates
and the mechanisms that connect the control-loops as composable and agnostic microser-
vices. This novel formulation is applied to a use case relating pedestrians, thus describing
how the proposed safety approach can be implemented and tested. Results analysis and
discussion on the perspectives are included.

2

Résumé

Titre français
Cadre autonomique pour la gestion de la surêté pour générer et réduire les cas d’usage
sécuritaires du véhicule autonome

Abstract en français
Le développement et le déploiement de véhicules autonomes (VA) demandent des efforts
très particulier du point de vue de la sûreté. Ces véhicules sont des systèmes complexes
caractérisés comme critiques face aux enjeux de sécurité routière qu’ils représentent. En
effet, ils doivent être capable de naviguer dans de multiples situations complexes tout en
évitant les dangers potentiels, et cela, sans perturber la circulation pour être bien acceptés
par la société. La conduite en toute sécurité sous le contrôle total d’un ordinateur nécessite
également d’interagir et d’opérer autour de différentes entités au sein de réseaux routiers
complexes et d’aborder leurs différents comportements de manière appropriée.

Bien que beaucoup de progrès aient été réalisés au cours des dernières années, le
travail s’est concentré sur la capacité des véhicules à naviguer de façon autonome. Ce type
de sûreté, nommé "safety" en anglais, est apparue comme le défi majeur, non seulement
pour gérer les dysfonctionnements ou les perturbations internes ou externes, mais aussi
sur le plan comportemental du véhicule pour traiter les cas de bord ou potentiels inconnus
dit “edge cases”.

Cette thèse aborde la question de la recherche qui porte sur la façon dont l’autonomie
sûre, dite "safe autonomy", est formulée dans la littérature et devrait être appliquée.
Nous examinons les mécanismes de contrôle de la sûreté qui interviennent au moment
de l’exécution et usent de comportements adaptatifs. Nous identifions que les systèmes
de conduite autonome nécessitent une combinaison des propriétés non-fonctionnelles
d’observabilité, de traçabilité, de reconfigurabilité et de flexibilité. Sur la base de ces
propriétés, nous proposons un cadre qui intègre la notion d’auto-sûreté ou “self-safety”
de manière gérable et évolutive dans les VA existants. Ce cadre définit d’une part notre
méthodologie pour représenter l’argumentation de la sûreté comme des contraintes et
d’autre part notre architecture de référence impliquant deux couches d’adaptation. Celles-
ci opèrent des mécanismes d’auto-adaptation pour assurer cette sûreté. La première
couche est plus proche du véhicule autonome et consiste en un ensemble de processus
vérifiant le respect des spécifications et contraintes. Ils précisent les exigences et sont
couplés à des boucles de contrôle pour gérer étroitement l’assurance de la sûreté. La
deuxième couche reconfigure le flux de travail de la couche précédente en fonction des
couples formés par des contraintes et des exigences. Ces boucles de contrôle opèrent
selon le contexte en fonction de ces restrictions contextuelles ainsi que de l’état des fonc-
tions du véhicule. Nous détaillons également les éléments constitutifs et l’application du
cadre, à savoir la représentation des connaissances, les abstractions, les modèles et les
mécanismes qui relient les boucles de contrôle en tant que microservices composables
et agnostiques. Cette nouvelle formulation est appliquée à un cas d’utilisation concer-
nant des piétons, décrivant ainsi comment notre approche proposée pour une autonomie
sûre peut être mise en œuvre et testée. L’analyse des résultats et une discussion sur les
perspectives sont incluses.

3

Acknowledgements
The present document, resulting of five years of research, would not have been possible
without the help, encouragements and support of many persons. I thank all of them and I
present them all my gratitude.

I would like to warmly thank my thesis supervisor, Prof. Ernesto Exposito (Labo-
ratory LIUPPA, Université de Pau et des Pays de l’Adour), for his guidance and advice
during my research.

The same applies to my supervisor at Renault, Mr. Javier Ibañez-Guzman (Research
Division of Renault, Intelligent Vehicles), who was able to give me valuable advice and
an enlightened point of view on the complex subject of the autonomous vehicle, as well
as to have shared his knowledge and expertise in this field.

Profuse thanks go equally to Professor S. Despres (Laboratory LIMICS, Université
Paris 13), Professor M. Lamolle (Laboratory LIASD, Université Paris 8), Professor C.
Chassot (Laboratory LAAS-CNRS, INSA Toulouse) and Research Director K. Drira
(SARA division, Laboratory LAAS-CNRS) for their participation to my thesis commit-
tee as jury member. I would like to thank again Prof. M. Lamolle and Prof. C. Chassot
for the insights, the comments and the effort of their efficient reviewing of the complete
thesis.

I would also like to thank Renault for supporting the financing and administrative
changes of this CIFRE thesis and for trusting me to carry out research on a very innovative
and disruptive subject in the context of behavioral safety.

All my colleagues from the university, Renault, the review comitee and the service
companies that I was able to interact or work with during my thesis at the University of
Anglet and at the Guyancourt Technocentre.

Special thanks to the doctoral students Mathieu Barbier, Yrvann Emzivat and Edouard
Capellier with whom I was able to have long and very productive discussions about the
autonomous vehicle and the coordination between our different sectors of expertise.

Finally, I wanted to thank my family for supporting me during these hard years of
thesis.

4

Contents

Contents 5

List of Tables 7

List of Figures 8

1 Introduction 13
1.1 Background . 13
1.2 Context . 16
1.3 Safety in Autonomous Vehicles . 21
1.4 Rationale and Research Questions . 28
1.5 Purpose and Objectives . 29
1.6 Contributions . 30
1.7 Thesis Structure . 30

2 Autonomous Vehicles and Safety 33
2.1 Introduction . 33
2.2 Autonomous Vehicles and Autonomy . 34
2.3 Safety in Autonomous Vehicles . 51
2.4 Conclusions . 70

3 Methodology and Architecture for Safety Management 73
3.1 Introduction . 73
3.2 AV Safety and Systems Engineering . 75
3.3 Modeling for Safety Assessment with MBSE in AV 77
3.4 Problem reformulation . 93
3.5 Conclusions . 94

4 Framework for Safety in Autonomous Vehicles 95
4.1 Introduction . 95
4.2 Requirement Analysis . 97
4.3 Reference Architecture . 98
4.4 Reference Implementation . 100
4.5 Conclusions . 115

5 Applications and results 117
5.1 Introduction . 117
5.2 Framework Implementation . 118
5.3 Case Study: a Pedestrian Crossing Application 127
5.4 Conclusions . 137

6 Conclusions and Perspectives 139
6.1 Research Objectives Achievement . 139
6.2 Conclusions . 140

5

CONTENTS 6

6.3 Discussions and Perspectives . 142

Bibliography 145

A Safety vocabulary from ISO26262 161
A.1 Safety . 161
A.2 System . 162
A.3 Process . 162

B Environment model & SOSA/SSN 163
B.1 Existing representations of architecture models, contextual ontologies and

system description . 163
B.2 Context models . 164
B.3 Configuration models . 170
B.4 Capability models . 173
B.5 Plan models . 176
B.6 Service-orientation for shared knowledge and MSBE 178

List of Tables

1.1 Decomposition of safety into five distinct areas by Waymo [152] 24
1.2 Accidents caused by vehicles with an automated driving system engaged . . 26
2.1 Behavioural competencies for autonomous vehicles in [115] (1-28) extended

in [153] . 44
2.2 Responsibility in SAE levels of automation while system engaged and iden-

tification to Autonomic Computing maturity levels and classes 48
3.1 Mitigation of hazards in safety engineering 78
4.1 Type and description of the models for each levels of the reference architecture 114
B.1 Choice of knowledge representation for each levels and types of model in our

reference architecture . 179

7

List of Figures

1.1 Representation of a computer-controlled vehicle 18
1.2 Functional Architecture of Renault’s research AV prototypes (Courtesy of

J.Ibanez-Guzman, Renault). 19
1.3 Multi-disciplinary and Inter-disciplinary areas needed to ensure safety. After

Fig. 1 in [79]. 23
2.1 Maturity levels [77] for the autonomic computing paradigm 36
2.2 Top-level functions for an autonomous navigation system based on the 4D/CS

architecture (Courtesy of Renault Research). [10] 41
2.3 Schematic view of the Dynamic Driving Tasks according SAE [41] 45
2.4 Mapping of the DDT to the functional architecture. 46
2.5 Taxonomy for Safety Engineering including the four types of safety-related

requirements. From [53] . 53
2.6 The V-Model for system and embedded software life-cycle in ISO 26262.

Adapted from [1] . 55
2.7 Coverage of the AV concerns by the different existing and future standards.

Adapted from [82] . 60
2.8 Evolution towards observable, traceable, flexible and reconfigurable systems

and self-safety. Adapted from [25] . 71
3.1 The main engineering levels of Arcadia and transition steps [126] 81
3.2 [OCB] Operational Capabilities . 85
3.3 [OAB] Operational Context . 87
3.4 [OAIB] Capability “Operate in a given Operational Design Domain (ODD)” . 88
3.5 [OAIB] Capability “Operate the Dynamic Driving Tasks” 89
3.6 [SAB] Top Level System Overview . 91
3.7 [SAB] High Level System Overview integrating the MAPE-K loop as types

of function . 92
4.1 Reference architecture involving several levels of adaptations 99
4.2 Process of integration of the safety constraints in the system 104
4.3 Illustration of the assessment of a single constraint related to safety 105
4.4 Running assessment of multiple constraints related to safety 105
4.5 Decomposition of the control process into M, A, P and E functions that share

Knowledge . 107
4.6 One Autonomic loop is composed by M,A,P,E entities to observe, diagnosis

or ensure the safety . 107
4.7 Several Autonomic loops are running in parallel using M,A,P,E microservices

illustrating the Hyper-dimension . 108
4.8 Several Autonomic loops are running in parallel and reusing deployed ser-

vices as M,A,P,E entities illustrating the Hyper-dimension and reusability
property of the framework . 109

8

LIST OF FIGURES 9

4.9 Several Autonomic loops are running in parallel and reusing deployed ser-
vices as M,A,P,E entities: Illustration of the Multi-dimension and extendabil-
ity property of the framework . 109

4.10 Hierarchy of several Autonomic loops for different disciplines: Illustration of
the Orchestration and reusability property of the framework 111

4.11 Overview of the knowledge represented through the different models as modules115
5.1 Components as service container and component exchanges of the framework

(Logical Architecture Blank view) . 122
5.2 Stereotype interfaces and capabilities (Contextual Internal Interface) 124
5.3 Knowledge management (Logical Functional Dataflow Blank Diagram) . . . 125
5.4 Logical Functional Dataflow Blank Diagram for the Safety assessment pro-

cess (Layer 2). Referred as B in the reference architecture. 126
5.5 Logical Functional Dataflow Blank Diagram for the Safety Orchestrator

(Layer 3). Referred as C in the reference architecture. 128
5.6 Top Level Logical Functional Dataflow view including the three layers and

support systems. 129
5.7 Illustrations of the case study involving different scenarios for pedestrian

crossing. 130
5.8 Ontology topology with SOSA/SSN integrated 131
5.9 Ontology representation in the framework for context (top) and situations

tagging equivalence (bottom) . 132
5.10 Composition of microservices for the behavioural adaptation 133
5.11 Key frames of the Scenario PEDES_02_01 in the simulated environment. . . 135
5.12 Observed metrics for the Scenario PEDES_02_01 for ADCC with agressive

behaviour. 136
5.13 Observed metrics for the Scenario PEDES_02_01 136
B.1 Ontology representation of the environment of the vehicle with road entities . 165
B.2 Representation of the environment of the vehicle using observations of road

entities . 166
B.3 Ontology representation of the use cases for situations encounter using com-

position of road entities . 167
B.4 Ontology representation of the use cases for situations encounter using com-

position of road entities. Partial repost of Figure 5.9 168
B.5 Ontology representation of the microservices of the framework as system us-

ing SOSA/SSN . 170
B.6 Ontology representation of a Monitor microservice performing Pedestrian

detection isolating speed and range . 171
B.7 Ontology representation of the configuration model for the ADS 173
B.8 Ontology representation of the configuration model for the AMs 174
B.9 Ontology representation of the capability model involving the planning and

possible vehicle maneuvers the AMs can perform on the ADS 175
B.10 Ontology representation of the capability model involving the planning and

possible service reconfiguration the OAM can perform on the AMs 176
B.11 Ontology representation of the goal model to model the possible configura-

tions of an Analyze microservice . 177
B.12 Overview of the main axioms and the relations of the ontology per model in

the framework . 179

LIST OF FIGURES 10

Nomenclature

4D/RCS 4-dimensional real-time control system

ADS Automated Driving System

AFIS Association Française d’Ingénierie Système

ASIL Automotive Safety Integrity Level

AV Autonomous Vehicles

CPS Cyber-Physical Systems

DARPA Defense Advanced Research Projects Agency

DDT Dynamic Driving Tasks

FSC Functional Safety Concept

GSN Goal Structuring Notation

INCOSE International Council On Systems Engineering.

ISO International Organization for Standardization

Knowledge Bases Knowledge Bases

MBSE Model-Based System Engineering

MRC Minimal Risk Condition

MRM Minimum Risk Maneuver

NFP Non-Functional Properties

NHTSA National Highway Traffic Safety Administration

ODD Operational Design Domain

OEDR Object and Event Detection and Response

PATH California Partners for Advanced Transportation Technology

ROS Robotic Operating System

SAE Society of Automotive Engineers

SMS Safety Management System

UC Use Cases

VV Validation and Verification

11

NOMENCLATURE 12

CHAPTER 1

Introduction

“Remind yourself that overconfidence is a slow and insidious killer”

- Narrator, after winning a battle, Darkest Dungeon

Contents

1.1 Background . 13

1.2 Context . 16
Vehicle Autonomy . 16
Autonomy and Highly Automated Vehicles 18
Functional Architecture of an Autonomous Vehicle 19
Autonomous Vehicles, Operational Complexity 20

1.3 Safety in Autonomous Vehicles . 21
Definitions . 22
Safety as a Complex Endeavour . 22
Summary of accidents involving AV . 25

1.4 Rationale and Research Questions . 28
Rationale . 28
Research Questions . 29

1.5 Purpose and Objectives . 29

1.6 Contributions. 30

1.7 Thesis Structure . 30

1.1 Background
The transportation systems have represented for human civilizations a key success to

explore, expand, exploit and conquer. The extensive and advanced road systems of the
Roman empire, the transport networks built by the Inca civilization Qhapaq Ñan and the
steam-powered railway systems have contributed to create mighty empires and revolu-
tionize the mobility of people and goods. More recently, the twentieth century has risen
the adoption of automotive vehicles to be successful for personal travel. It is only for two
hundred years that humans perform this task.

Although driving seems simple, it is not an intuitive process. maneuvers and rules
need to be learned and trained, and social legislation imposes to pass a theoretical and

13

Chapter 1. Introduction 14

practical exam in order to be allowed to drive and share the roadway. Acquired knowl-
edge and experience involve the driver to deal with a large diversity of sources of infor-
mation guiding him/her to perform actions (e.g. braking, curve without vision) and make
decisions in a limited time based on the anticipation of situations from the vehicle sur-
roundings including environment (e.g. road conditions, weather, etc) and other road users
(e.g. pedestrians, trucks, etc).

Humans manage to drive by being intelligent enough to handle the processing of
much heterogeneous information and the complexity of performances. However, acci-
dents continue to happen due to human errors. Statistics from the American agency of
National Highway Traffic Safety Administration (NHSTA) have demonstrated that most
major accidents are involving human in most of the driving crashes [137]. Main reasons
can be appointed to the complexity to perceive, understand and act accordingly upon a
complex and dynamic driving context. Indeed, road networks are complex environments
where different entities move at times in an erratic manner, and it is difficult to infer their
intentions. These result in thus hazardous conditions [92].

Over the years, car manufacturers have proposed lots of improvements to simplify the
driving operations by offering protective features, driver assistance or even partial driving
delegation in order to avoid, prevent and mitigate accidents. Within the past years, road
vehicles have become more automated with the use of advanced electric and electronic
systems and automotive driver assistance systems (ADAS). On this behalf, Autonomous
Vehicles (AV) proposes a paradigm shift in transportation technology to improve driver
efficiency through increased levels of autonomy. AV aims to provide a safer, greener and
more efficient personal mobility services to a larger market, including for instance, the
elderly and impaired driving.

Since 2014, the technical report of Society of Automotive Engineer (SAE) [41] has
provided a scope, a taxonomy and several recommendations that are now widely adopted
in the automotive field in the form of driving automation specifications and technical re-
quirements. The document clarifies the vocabulary to adopt in the field of vehicles offer-
ing driving automation. Both concepts of “automated” and “autonomous” are popularly
used for such vehicles and are sometimes claimed to be synonymous. Although we ac-
knowledge that “automated” vehicles may represent robotic systems performing driving
automation based on sole algorithms, we prefer to use the term “autonomous”. Indeed,
we consider the autonomy in driving systems implies adding consciousness capability
in order to adapt the driving process dynamically based on contextual information and
in-built knowledge and experience.

Further, the report partitions the driving automation into several Dynamic Driving
Tasks (DDT) such as lateral control, horizontal control, monitoring the driving environ-
ment, object and event response execution, maneuver planning and enhancing conspicu-
ity (e.g. lightning or gesture). The SAE identifies six levels of automation, each having
a specific set of DDT and fallback behaviours. These describe the capabilities that the
automated system needs to offer and also determine the attribution of the responsibility
to the Driver and/or the System.

At level 0, the vehicle does not provide any sort of automation of the driving task.
This level includes even the vehicles that are equipped with Active safety systems (e.g.
electronic stability program, intelligent speed adaptation).

At levels 1-2, the system respectively performs either one or both lateral vehicle mo-
tion control (i.e. steering) and longitudinal vehicle motion control (i.e. acceleration and
deceleration). Adaptive cruise control or automatic lane centering are suitable examples.
The driver manually chooses when to engage or disengage the system. The fact that no

1.1. Background 15

preconditions are required for activation means the system does not require to have any
knowledge about the context of usage for its activation. The system only fulfils its purpose
when the driver determines whether, where and when to enable or disable the system.

At level 3, the automation system has preconditions for its engagement that only per-
mit the use of it on the operational domain. The concept of “Operational Design Domain”
(ODD) captures those restrictions as a set of traffic conditions, road types, weather, ge-
ography, time of the day and others environmental features. Thus, the automation system
requires to be able to recognize the environment in which it can perform to determine the
possibility of engagement and disengagement. Disengagement process intervenes before
encountering the limits of the ODD at an appropriate time. At this level, the system fall-
back is performed manually by the driver but at the request of the system itself or by the
decision of the driver.

At levels 4-5, all DDT and fallback are operated by the system designated as “Auto-
mated Driving System” (ADS). Compared to level 4, level 5 is no longer limited by the
ODD for specific driving operational conditions, and thus vehicle at level 5 may drive in
all possible known and unknown operational conditions. The driver also has the possi-
bility to interfere with the system and can request control back according to the system
usage. Such operations involve the system to perform in real-time self-diagnosis and self-
adaptation without any human intervention. The driver could intervene on the system and
request control back according to the system state. In order to perform self-diagnosis and
self-adaptation in real-time, the system needs to have specific sources of knowledge and
reasoning capabilities. Even if the levels of automation are mutually exclusive, the scope
and granularity of the sources of knowledge become wider at each new level. Moreover,
to automate driving decision, it is also required to know and understand how the sys-
tem works: how actions are performed (dataflow), the system’s abilities are expressed
and how its capabilities and skills performances are evaluated in order to carry on safe
operations.

However, driving can be regarded as a collection of complex tasks where decisions
are sometimes made using only partial information. Thus, if vehicles are to be automated
and to be successfully deployed, they have to address the complexities of their workspace
whilst relying on incomplete information from their environment that might be delayed
or difficult to understand.

Nevertheless, AV have been the centre of interest for many years. They have been
moving from operating in constrained environments to public roads. However, until to-
day, none of the automated vehicle of SAE level 4 or 5 has been publicly released for
retail. Recently, only ramping up of open-road testing programs has been publicly re-
leased by the actors in the AVs field (e.g. Waymo previously Google, Uber, Baidu, GM,
Toyota, Renault-Nissan, Aurora, ...). Consequently, we only assist in a transition from
prototypes to the production of AVs intended to gain maturity and experience in the field
to discover and assess the ADS, before starting the real industrialization.

The broad diversity of functions and configurations required for driving operations
has primarily limited the development and deployment of automated vehicle solutions.
In particular, ensuring safety requires to characterize, understand, model and manage
both the safety of the driving tasks and the appropriate behaviours to adopt in case of
failures. Moreover, the representation of safety and its integration can be very complex
and challenging. Furthermore, some non-functional properties that need to be guaranteed
(e.g. safety, reliability, security, performance) can only emerge in real-time operations.
In addition, another source of complexity comes from the large diversity of external and
internal actors involved in the system life-cycle alongside to the large panel of internal

Chapter 1. Introduction 16

and external vehicle services that need to be offered. Those external and internal ac-
tors are referring to both humans (i.e. users, designers, experts and stakeholders in all
the system life-cycle) and the systems involved (i.e. collaborative systems, sub-systems,
components, functions, capabilities, etc.).

A generic framework is required in order to address the large complexity involve in
guaranteeing an AV’s acceptable level of safety. Moreover, this framework should include
various requirements and system capabilities. These can be defined by attributes such as
traceability, observability, uncertainty, adaptivity, and flexibility.

Recent research works integrate AV capabilities and non-functional safety properties
throughout the system architecture analysis, design, development and operation. They
propose frameworks including several patterns, methods and models to address the re-
ferred attributes.

According to Ramaswamy et al. [117], adopting a system’s perspective provides a
systematic means to specify the different aspects of software architecture development
and their interplay as part of a framework. Within this context, to assess a “safe by
design” architecture, we need to systematically integrate: the complexity of the scene,
system capability and safety concerns (i.e. context-dependent capabilities and require-
ment traceability); uncertainty management which emerges from a partially known en-
vironment (uncertainty propagation); monitoring and assessment of quality requirements
contributing to an holistic view of AV safety (observability and adaptivity): reusability
and maintenance of the system for changes, extensions and replacement (i.e. to favour
flexibility with the management of the operational competencies of AV to future changes).

In this thesis, we propose a framework aimed at integrating AV capabilities and mod-
elling synergies, and able to address non-functional safety properties of AV systems. Our
reference framework architecture is designed to support run-time monitoring capabilities
and to implement actions intended to satisfy AV safety constraints. This is based on two
system perspectives: For the developer, the various components can be specified with
knowledge able to represent the attributes and mechanisms to perform self-management
services (i.e. discovery, composition, orchestration, deployment, etc.). For the system
integrators, the framework offers an extensible, flexible and pluggable architecture where
new components can be added, and specialized stereotypes can be used to be dynamically
integrated. The approach seeks to integrate the referred features into a single framework
where the safety properties can be managed and guaranteed.

The objectives of this chapter are: to provide the context to this research and intro-
duce a typical functional architecture for autonomous vehicles (section 1.2). To introduce
safety as applied to autonomous vehicles including the links related their deploying which
define it (section 1.3). To provide the rationale and formulate the research questions (Sec-
tion 1.4) and define the thesis objectives (Section 1.5).

1.2 Context

This section defines vehicle autonomy, the need for safety in AV, the complexity of the
working environment and the need for system engineering.

Vehicle Autonomy
Full computer-control vehicles have the potential to provide accessibility, improve road
safety, and optimize the productivity of the driving task. Autonomous vehicles should

1.2. Context 17

enhance people’s mobility, not able to drive [71].
The introduction of machine intelligence into these systems has broadened their scope

of work. Not only they are able to offer more functionalities, but it has increased their
capacity to scale, adapt and perform efficiently and effectively. With the progress of
Artificial Intelligence (AI), automated driving technology can contribute even more and
propose new services within transport systems.

Definition of Autonomy and Challenges

Autonomy of a system refers to its ability to make decisions independently and self-
sufficiently [41, 77, 106]. It can also include the capacity of self-governance [134].

Abeywickrama et al. [5] have proposed a relevant decomposition of autonomy into
four attributes: Reflexivity, Evolvability, Model-based system engineering and Uncer-
tainty. Reflexivity implies the system has access to the knowledge of its components,
current status, capabilities, limits, boundaries and inter-dependencies with other systems.
The system can be considered as self-aware as it knows itself.

Evolvability represents the ability of the system to evolve in dynamic situations where
new services, new requirements and alternative configurations can emerge. Thus, it can
perform self-organizing and self-optimizing as evolutions of the system to provide more
context relevancy.

Model-Based System Engineering (MBSE) helps to represent the system as models
maintaining system requirements, design, analysis, verification and validation activities
throughout the life-cycle of the system. MBSE provides fundamental guidelines to design
and develop complex systems in particular to include autonomy capabilities. Uncertainty
is usually mitigated by robust solutions at design-time in traditional approaches. How-
ever, they reveal to be impractical in highly dynamic environments. Run-time models
have been adopted to cope with uncertainty achieving both reflexivity and evolvability.

The referred attributes help to understand what is the autonomy of the system in terms
of needs, requirements, processes and complexity of the overall design. When applied to
vehicles, the autonomy required by the system to delegate partially or entirely the driving
tasks implies a totally different design approach that needs to integrate safety, reliability
and security dimensions.

Autonomy for vehicles may require a more global design approach as the considered
system does not only include the vehicle (e.g. cooperative as involving communication
with infrastructure or with other vehicles). Indeed, a distributed system design approach
needs to be adapted in order to consider not only the vehicle itself but also the other
systems interacting with.

For the clarity purposes, we assess the description of the automated driving system
and vehicles equipped following the taxonomy in Recommended Practice published by
SAE International [41]. The suitable term to designate the system operating the driv-
ing automation is the “Automated Driving System (ADS)” and the vehicle is referred as
“ADS-operated vehicle” or “automated vehicle”. Cooperative systems are the naming for
a system that includes the vehicle and communications with outside entities (infrastruc-
ture, services and any other road actors). However, for the sake of consistency in this the-
sis, we prefer to designate AV as “autonomous vehicles” to purposely target the vehicles
that can perform its actions independently and self-sufficiently, whereas all “automated”
vehicles do not. Consequently, the scope of the thesis will include these ADS addressing
the fact to the vehicle to perform its actions independently and self-sufficiently from an
autonomy perspective (i.e. reflexivity, evolvability, model-based system and uncertainty).

Chapter 1. Introduction 18

Figure 1.1 Representation of a computer-controlled vehicle

Autonomy and Highly Automated Vehicles

Driving is a complex task; a machine is being controlled in an almost random environ-
ment where multiple entities converge and where the environment in terms of man-made
infrastructure and the weather can make the whole task more difficult. Driving is gov-
erned by road geometry, the behaviour of the entities (e.g. other vehicles, power two
wheels, pedestrians, etc.), the weather, traffic rules, etc. Numerous hazardous situations
arise due to multiple disturbances, including the unexpected behaviour of entities, lim-
ited performance of the systems in use (e.g. lights at night), dramatic changes in weather
conditions, etc. A significant source of concern is the interaction that exists between
the different entities and the influence that their behaviour will have on the behaviour of
the other entities. Statistics have shown that most vehicle accidents occur due to human
error [137]. The origins are multiple including the lack of situation understanding and
the ability to anticipate what other entities might do, though lately distraction due to the
interaction with other devices (e.g. mobile phones) is emerging as a big issue.

When a computer rather than a driver controls the vehicle, the controlling system
needs to sense, reason and act, as shown in Figure 1.1. Sensing is done through a percep-
tion system that builds a digital representation of the vehicle’s immediate environment.
Reasoning can be partitioned into situation understanding of the digital representation
and the relationship of the vehicle with its environment and decision-making, which is
the product of such understanding and that it governs the vehicle behaviour. Finally, the
results of the reasoning are executed by acting on the vehicle.

A major source of difficulty is uncertainty associated with the environment due to the
limits of the system itself. We are not sure with certainty what entities might do, predic-
tion on their behaviour might be wrong or misled (e.g. an indicator shows the vehicle
turning left, whilst the vehicle will go straight). Artificial sensors have multiple limits, in
terms of resolution, fields of view, etc. Further, when inferring information from their raw
data, there is much uncertainty associated to it, that is it is difficult to estimate precisely
the type of entity and distance in front of the vehicle. Despite major advanced in machine
perception due to the rapid adoption of machine learning (ML) methods like Deep Learn-
ing, the perception remains a challenge. The uncertainty associated with it means that
there is an incomplete representation of the environment, upon which decisions depend.

From a safety perspective, the uncertainty associated with the result of machine-
controlled systems is a significant issue.

1.2. Context 19

Figure 1.2 Functional Architecture of Renault’s research AV prototypes (Courtesy of
J.Ibanez-Guzman, Renault).

Functional Architecture of an Autonomous Vehicle

There are different vehicle architectures. However, all provide different elements of the
sense-reason-act automation paradigm. The functional architecture described in this the-
sis is based on the one developed by Renault as part of their autonomous research vehicles.
Figure 1.2 shows a block diagram representation of this functional architecture.

The different functional components of the reference architecture shown are described
to provide the baseline that is to be used for our analysis in this research.

Perception System Perception provides information about the vicinity of the vehicle
environment such as static and dynamic elements, their states, dynamics and behaviours
(e.g. current actions, intent). AV systems comprise sensors used to capture in general
radiant energy in the scene (i.e. exteroceptive sensors), complex algorithms are used to
detect, locate and recognise a potential feature of interest (e.g. a pedestrian) [71]. The
perception system consists of a combination of different proprioceptive and exteroceptive
physical sensors. For example, ADCC is equipped with physical sensors such as scanning
lasers (LIDAR), video camera with stereo vision and RADAR. The different sources of
information are then fused using sophisticated algorithms to obtain a list of the different
entities classified and annotated.

Perception is a complex process that is limited by the physics of the sensors used,
which leads to undefined areas, uncertainty in the measurements, and delays [71].

Localisation System and Map The localisation function estimates the vehicle pose as
its position and orientation for an absolute or relative reference coordinate frame or deter-
mining the whereabouts of the vehicle [71]. Usual localisation systems use Global Nav-
igation Satellite Systems (GNSS) such as Global Positioning System (GPS) or Galileo.
As it based on weak radio signals from constellations of GNSS satellites, the location
estimations are usually subject to errors due to noise and physical disturbances (e.g. ur-
ban environments, atmospheric effects with ionospheric and tropospheric delays). The
combination with such systems as perception allows performing sensor and map tracking
that provides higher integrity measures. The map stores information regarding the road

Chapter 1. Introduction 20

network. It is used to determine the best trajectories the vehicle should follow. High-
Definition maps store lane level information. Their geometries are very accurate.

Vehicle Navigation System The function is to understand whether or not the vehicle
can traverse the immediate environment, relies on perceiving the presence of obstacles
along the desired path [71]. It includes a series of algorithms used for mission planning,
decision making, situation understanding, and behaviour generation to determine the path
that the vehicle should follow. There are three types of decisions: Strategic, Tactical and
Operational. Each of them contributes to tackle with granularity the specific tasks of the
driving automation and generate behaviours to accomplish the mission.

The digital model of the world is built from the perception system and the map. This
world model is used to perform for some situation understanding and initiate the pipeline
to decision making. Situation understanding consists in a machine-understandable model
of the world that reflects the scene of the road elements and the vehicle’s current state
(e.g. vehicle motion as position, speed, acceleration, yaw rate, functional capabilities and
degradations, etc.).

Based on this representation, the decision making determines the set of appropriate
behaviours to adopt, generates possible trajectories with the help of the map and sends
the final trajectory to the vehicle control system.

Vehicle Control System Control ensures that the vehicle follows the desired trajectory
by commanding the vehicle’s actuators. The actuators are generally commanding the
steering mechanism or propulsion system of the vehicle platform. The trajectory to follow
sent by the navigation system consists of several nodes where the expected heading and
speed are specified. Constant communication in the form of a close-loop ensures that
the vehicle is as desired by the navigation system, and if not, provides proper trajectory
corrections.

Master Controller System The master controller system consists of a supervisor that
monitors and controls the state of the system and its individual components and health. It
maintains the coherence of the underlying systems and ensures that these navigate safely
or fail-safe [71]. It consists of monitoring mechanisms and processes that are triggered in
case of performance degradation or malfunction of any of the systems.

Communications Gateway This system contributes to making the vehicle-centric ar-
chitecture communicates with the external world, such as other vehicles and the infras-
tructure. The shared information can take different forms like road usage and states,
scene occlusion in intersections, prediction of potential safety threats and other external
data sources access. These source of information are integrated into the world model of
the vehicle, which gives more consistency to future decisions.

Autonomous Vehicles, Operational Complexity

Driving even in nominal conditions is already a complicated task, that requires cogni-
tive and physical abilities, only possible after some training and evaluation by skilled
authorities (the driving test). In this section, a preliminary insight into the complexity of
operations is presented from a computer-controlled vehicle perspective. The purpose is

1.3. Safety in Autonomous Vehicles 21

to infer some of the issues that these systems must address even when disturbances such
as aggressive drivers, harsh weather conditions, etc. are ignored.

Negotiation. Driving a vehicle implies some negotiation between the subject vehicle
and other entities; instances occur in which drivers negotiate with other drivers in a very
subtle manner. At a road intersection, for example, drivers look each other, observe atti-
tudes and then decide. For a computer to effect such behaviour is challenging [132].

Interaction. They are different levels of interaction, for this purpose, for this it is nec-
essary for the subject vehicle to communicate with other entities and to understand any
signs that should be enabling inference of their intentions [69].

Expectations. As the environment is observed, there are certain expectations from other
entities to be predictable; these are dependent on the context and the manner in which
the subject vehicle is perceived. That is, decisions are taken based most of the time in
such expectations. However, if there is a difference between expectations and the actual
behaviour hazards arise. For example, a vehicle is expected to slow down as it arrives at
a yield sign intersection, it if does not a hazard situation will emerge [91].

Incomplete Perceived World. Current sensors are far from perfect, their layout on the
vehicles is constrained by the vehicle geometry itself, safety, style configurations etc.
These result in incomplete representations of the world; further, occlusion will occur;
thus, entities will be hidden or difficult to classify. For a computer-controlled vehicle, the
unavailability of a full representation of the world makes the understanding and decision-
making tasks more complex [46].

This insight has shown that ensuring safety for an autonomous vehicle is difficult, un-
certainty and task complexity are major issues even in nominal conditions. If disturbances
are added, the complexity is much higher, hence the need for safety-related mechanisms
that could warrant the safe operation and social acceptability of autonomous vehicles. We
have also seen that the functional architecture of an autonomous vehicle is also complex,
the whole implies that a systematic approach based on systems engineering principles is
needed to address such levels of complexity [22].

1.3 Safety in Autonomous Vehicles

The scope of the thesis is the safety of autonomous vehicles looking into means to warrant
the safe behaviour of these vehicles when operating in nominal conditions (i.e. there
are no faults within the system nor disturbances in their operating environment) as well
as when undergoing either internal malfunctions and external disturbances. The latter
include those related to the operational environment and those created by the behaviour
of entities interacting with the autonomous vehicle.

This section defines some terms related to safety, provides an insight into safety as
a multidisciplinary endeavour and includes an analysis of an accident involving a highly
autonomous vehicle.

Chapter 1. Introduction 22

Definitions
To provide coherence about safety and its processes, we propose to define some terms
first. This is based on Koopman’s vision [84] and in adequacy with ISO 26262 [1]. The
following definitions are applied throughout the thesis:

• Risk, a combined measure of the probability and consequence of a mishap that
could result in a loss event.

• Safety, absence of unreasonable risk.

• Safety goal, top-level safety requirement because of the hazard analysis and risk
assessment.

• Safety validation, demonstrating that system-level safety requirements (safety
goals) are sufficient to assure an acceptable level of safety and have been achieved.

• Safety arguments (or safety case), argument that the safety goals for an item
are complete and satisfied by evidence compiled from work products of the safety
activities during development.

Safety as a Complex Endeavour
Ensuring safety is a core and strategic challenge in the competitive field of autonomous
vehicles. Philip Koopman in [79] underlines that autonomous vehicles will not be per-
fect, but instead, we need to demonstrate that the degree of safety is sufficiently high to
guarantee that the human is out of the driving loop. Based on decades of long experience
in the field, he states that “even understanding what ’safe’ really means for autonomous
vehicles is not so simple”.

The vehicle is not only required to take drive safely upon the contextual environment
(e.g. obey traffic laws) but also to adopt safe behaviours (e.g. deal with road hazards
in construction sites). It needs to operate safely even in case of a fault (e.g. localisation
revealed to have errors, some sensor stopped working, erratic maneuvers of others).

Autonomous vehicle safety is concerned not only with ensuring the vehicle operates
safely under nominal conditions as well as when failures or external disturbances occur,
but it also needs to address cross-disciplinary concerns in a coordinated and interdisci-
plinary manner [79] as shown in Figure 1.3. The concerns are (1) the field of robotics
to pursue more resilient machine learning to provide low failure rate and errors in per-
ception, navigation, localisation and decision in order to become better at managing edge
cases and adversarial situations; (2) The update of the safety engineering processes to
create an end-to-end design and validation process that addresses both these safety con-
cerns [79]; (3) Appropriate software architecture and software development processes to
have a full understanding and formalisation of the nature of the autonomous system, its
goals and life-cycle; (4) To design tests and validate the driving functions and safety with
safe real-world prototype deployments efficiently; (5) To promote self-awareness in each
individual AV so that they can detect and react in case of an attack in a safe manner (e.g.
information received from the external world gets compromised); (6) To master the dif-
ferent means the AV have to communicate and cooperate with people so that it behaves
in a way that is comprehensible to humans (e.g. risks of human supervisor inattention,
customer trust in the product safety, AV interaction and negotiation road users that can
be ill-behaved or unpredictable); (7) To improve the reliability, sufficient redundancy and

1.3. Safety in Autonomous Vehicles 23

Figure 1.3 Multi-disciplinary and Inter-disciplinary areas needed to ensure safety. After
Fig. 1 in [79].

fault tolerance in the ultra-low-cost hardware of AV with safe failure behaviours; (8) To
cope with the legal implications of safety as it involves legislation compliance to be ad-
dressed, including liability in case of accidents. Another concern is social acceptance: the
tolerance to such accidents by society is low [29] as their media coverage can be exces-
sive; the headlines are well known for the fatal accident incurred by one of Uber’s vehicle
in 2018 [72]. This is in contrast to what it occurred during the early days of the aviation
industry, where accidents were part of the development process.

Considering safety for ADS-operated vehicle results in examining the harm the sys-
tem can cause to the environment (e.g. through malfunction, dysfunction, fault, capability
limitation) or the environment can cause on the vehicle (e.g. with obstacles, aggressive
behaviour of other users, unexpected events, etc.).

A body of knowledge and processes for safety already exists and has been documented
from all fields over the years, it enables safety-critical computer-based systems such as
trains, aircraft or automobiles to be deployed. They have contributed to the creation of
the main guidelines for the automotive safety domain: ISO26262:2011 [1], and SAE
J3016_201806 [41].

The high levels of automation envisaged imply that drives are outside the vehicle con-
trol loop at all times. Within the scope of this thesis, only ADS-operated vehicles of level
4-5 are considered. Consequently, the vehicle is required to rely on system autonomy to
be completely responsible for vehicle safety.

Compared to other domains, vehicles can potentially achieve an ultimate safe sate
quickly. Also called “safe stop” or Minimum Risk Maneuver (MRM), that is the vehicle
is pulled to the side of the road. This MRM is more difficult for other safety-critical
systems such as aircraft, rerouting them in case of safety concerns might be insufficient.

Since system safety cannot be ensured by an individual process or system in AVs,

Chapter 1. Introduction 24

Table 1.1 Decomposition of safety into five distinct areas by Waymo [152]

Name Covered Aspect Avoided Hazards Applied Methods

Behavioural Safety Ensure safe driving
decisions and
behaviours in both
expected and
unexpected scenario
(system do not fail)

Unjustified,
unrealistic or unsafe
maneuvers is
performed

Functional analysis,
Testing on simulation
tools and on-road
driving,

Functional Safety Ensure the vehicle to
continue to operate
safely even in the
case of a fault
(system do fail)

Fault makes the
vehicle unable to
perform the DDT as
intended

Backup systems and
redundancies in the
system, handling a
safe stop (i.e. a
minimal risk
condition)

Crash Safety Protect the protect
passengers inside the
vehicle

Injury or death due to
a crash

Vehicle structural
design, seat-belt,
airbags

Operational Safety Ensure appropriate
interactions between
the vehicle interaction
and the humans
(HMI, features,
intentions)

Misunderstanding
making a feature to
be misused

Interaction between
our vehicles and
passengers

Non-Collision Safety Prevent and mitigate
collisions

Causing harm to
passengers or
bystanders (e.g. doors
ajar)

Analysis focus on
physical collisions

different perspectives and areas need to be addressed, analyzed and validated. A recent
Waymo report [152] categorizes safety into five distinct areas to cope with AV’s com-
plexity: Behavioural Safety, Functional Safety, Crash Safety, Operational Safety, and
Non-Collision Safety. The decomposition addresses the different concerns through the
study of the different sources of hazards (e.g. hazard while system not failing, fault man-
agement, unintended usage, etc.). Together, they serve to ensure and validate the safety
of the AV. Their decomposition is listed in Table 1.1. A description of the type of hazard
that the area aimed to avoid is also included as well as some methods on how to address
such concerns.

The current and accepted practices on automotive safety are based on the functional
safety approach defined by the ISO 26262 standard [1]. The main goals are to describe
the state-of-the-art for the development of safety-relevant vehicle functions and to address
the growing complexity of its systems.

As shown in Table 1.1, functional safety mainly addresses the system failures by
the analysis of the possible hazards caused by malfunctioning behaviour of electri-
cal/electronic systems. It ensures the system to be prone to the absence of hazards during
the presence of malfunctions.

However, a shared belief within the safety community [4, 95, 97, 98] considers that
the simple application of ISO 26262 guidelines does not mean that the resulting system
is “safe”. In fact, the standard does not cover the absence of hazards in the absence of
malfunctions (i.e. hazards can appear while the system is not failing). This perspective
prevents from identifying some knowledge gaps, under-specified requirements or invalid

1.3. Safety in Autonomous Vehicles 25

safety evidence.
In addition, the established safety standard ISO26262 fails to address the safety val-

idation for recent technologies (i.e. inductive and probabilistic approaches as neural net
and machine learning) and self-adaptive systems (i.e. real-time learning, procedural be-
haviour construction) as they “require considering all possible system behaviours up-front
in the design and validation process” according to [79, p. 3].

Furthermore, future reviewed standards, new safety approaches or recommendations
such as SOTIF (Safety Of The Intended Functionality or ISO/WD PAS 21448) [2] , STPA
[4, 19, 98, 128, 148], J3016 [41] and UL4600 (Standard for Safety for the Evaluation of
Autonomous Products) [80, 124] show promising evolution towards the inclusion of all
possible hazards and contexts to cover all scope of analysis and operations. However, cur-
rent available sources are still not mature to cover all the aspects of safety to sufficiently
state and validate that an automated vehicle can be safe enough and socially acceptable
for High and Full Driving Automation.

Behavioural safety and Operational Design Domain. Specifying the context of the
operation of a system is essential, not only for features but also for the safety analysis.
Preventing component or functional failures is not enough. To prove that affirmation, let
us take the example of the spoon by Leveson [94] to illustrate the importance of context in
software. A butter knife is generally safe due to its rounded tips. In the context of cutting
butter, the butter knife fills its functionality and perform its safety. However, in the case
of a child who pushes a butter knife into an electrical outlet, it is not. Consequently,
analysing context helps to identify separation between analysis of scenarios involving
failures and unsafe scenarios.

The next section presents insights on the major AV accidents and failure where the
automated driving system were engaged and in some at fault.

Summary of accidents involving AV
The intensification of open-road testing programs has been publicly followed by the broad
diversity of actors within the AV domain. They are either IT companies (Waymo by
Google, Apple, Facebook, Baidu, Tencent, Alibaba, etc.), car manufacturers (Tesla, GM,
Toyota, Ford, Volvo, BMW, Renault-Nissan, Mercedes-Benz, etc.), suppliers (Bosch,
Daimler, Delphi, etc.) or start-ups (Nutonomy, Aurora, Zoox, etc.).

AV road testing in public roads

AVs are currently entering a phase where extensive testing occurs in public road networks.
It allows for enhancing the performance of AVs. Table 1.2 summarizes the accidents in
which autonomous vehicles have been involved in recent years. It can be observed that
AVs have difficulties on anticipating maneuvers by third parties and that it is very difficult
for the systems to understand situations based on limited information from the perception
systems. Further, it appears that there are no safety mechanisms that can anticipated
malfunctions or the limits of the system when under operation.

The fragility of autonomous vehicle technologies has been demonstrated by two fatal
accident within a week in 2018 [72][111]. These raised significant concerns from public
authorities and other stakeholders [29]. This could lead to the adoption of stricter legisla-
tion and thus delay or derail the adoption of AVs. It is socially unacceptable for multiple
prototypes with high levels of automation to be tested on public roads. Moreover, major

Chapter 1. Introduction 26

Table 1.2 Accidents caused by vehicles with an automated driving system engaged

Date Involved
road actors
and infras-

tructure

Accidents description Determined cause of
accident

Echo in the
scientific world

July
2015

Google
Lexus SUV,

second
vehicle

During testing, the Lexus
SUV received a rear crash.
Result in minor neck strain

and whiplash. [65]

Following vehicle
fails to stop
accordingly.

-

January
20,

2016

Tesla Model
S

(Autopilot),
infrastruc-

ture

Model S slammed into a
road sweeper on a highway.
Result in driver fatality. [66]

No intervention of the
driver to regain

control of the vehicle.
No attempt at braking

was made.

Perception
system far from
perfect; Humans

as supervisor
may fail.

February
14,

2016

Google
Lexus SUV,

bus

Google’s car crashed into a
bus while left merging to
avoid construction site.

Result in minor
fender-bender. [35]

Google’s car have
emitted an incorrect

assumption of the bus
driver behaviour.

[160]

Failure to
negotiate; Wrong
predicted intent.

May 7,
2016

Tesla Model
S

(Autopilot),
truck

Model S drove full speed
under the truck’s trailer.

Result in driver fatality. [6]

Car’s sensors system
failed to distinguish a
large white 18-wheel

truck and trailer
crossing the highway.

Perception
system far from

perfect;
Robustness of
sensor vision.

March
18,

2018

Uber
’refitted
Volvo’
vehicle,

pedestrian

Uber’s car hit a pedestrian
with a bicycle crossing the

road outside of a sanctioned
crosswalk. Result in

pedestrian fatality during
night testing. [72]

The threshold for
detection rate has

been set to exclude a
lot of false positive.

Testing and
validation can be
unsafe in public

roads; Humans as
safety driver may

fail.

March
23,

2018

Tesla Model
X

(Autopilot),
infrastruc-

ture

Model X collided with the
concrete divider in the road.

Result in driver fatality.
[111]

No intervention of the
driver to regain

control of the vehicle
despite visual and
audible warnings.

Humans as
supervisor may

fail.

March
1,

2019

Tesla Model
3

(Autopilot),
truck-tractor

with a
semitrailer

Model 3 drove under the
tractor’s semitrailer at an

intersection. Result in
driver fatality. [112]

Driver is suspected
not monitor the
system during
10-seconds or
hand-detection

failure. [30]

-

July
16,

2019

UDOT
shuttle in

Utah

The autonomous shuttle
operating along a

pre-planned route came to a
sudden stop. Result in

passenger injuries. [120]

Unexpected stop
caused by false

positive detection
from one sensor is

assumed. [113]

False positive
detection from
one sensor is

assumed. [113]

1.3. Safety in Autonomous Vehicles 27

concerns emerged regarding the safety validation process, with regards to the increased
use of machine learning methods (e.g. in the perception function) as well as the ability of
human drivers to act as simple supervisors on for example Level 3 ADS.

Safety practitioners face the difficult choice to deploy vehicles with imperfect tech-
nology based on the ongoing process of iterative improvement rather than conventional
air-tight proofs of safety [84]. It is important to notice that even Waymo that appears to
be ahead of the driving automation competition has still not deployed its fleet of level 4
automated vehicles without a human safety driver to ensure safety [87].

Case Study

An appropriate case study to illustrate the need and the consequences of iterative AV
improvement would be the crash involving a Google’s vehicle and a bus in a merging
scenario close to an intersection [35]. This accident was the first accident where Google’s
vehicle was recognized as at fault [160]. The objective of this case study is to propose an
illustration for the operational complexities of the autonomous vehicles and emphasizes
their refinement (e.g. behaviours restriction for unsuitable context, edge cases analysis).

Context. Initially, the car intends to turn right at the next intersection and to position
itself on the right lane. The presence of sandbags from a construction area block the
right way forcing the vehicle stops on its lane. The vehicle then decides to wait for
merging on the left traffic to proceed to activate its left indicators. After a few vehicles
have passed, it chooses to start manoeuvring by heading towards the centre of the lane
at around 3 km/h. A collision occurs with the side of a passing bus travelling at 24
km/h. The investigation of this incident shows that the car had correctly detected the
approaching bus, but predicted that the bus would yield because the car was ahead of it.
The test driver who was monitoring the AV without intervention also reported expecting
the bus to slow or stop. However, contrary to all expectations, the bus did not return. The
result was only a minor fender-bender.

Likely Causes. There are several issues learnt from this collision are several; these can
be summarised as follows:

Interaction. As the vehicle is waiting to marge into a slow-moving lane to its left,
despite the activation of its left indicators, they collide in vehicle fails to perceive the
intention of the AD vehicle.

Negotiation. There is no understanding that the acceptance of the maneuvers by
each party have been made. Both vehicles took the right-of-way while the other one
should have given it. This failure to negotiate is a likely cause of this crash.

Expectations. The decision made by Google’s vehicle expecting the vehicle to give
way, hence it committed. Furthermore, the safety driver assumes the same situation. The
colliding vehicle was to stop. It was reported by Google [35] that the accident was due to
the wrong assumption of the bus intent: Google’s vehicle was expecting the bus to yield
for it to merge.

Chapter 1. Introduction 28

Incomplete Perceived World. This accident reveals that misunderstandings and un-
known knowledge gaps have existed. They prevent appropriate interactions that leads to
wrong negotiations, inaccurate expectations and predictions to finally lead to a collision.

Implications with respect to the AD design. Interaction with other vehicles during
complex maneuvers appears as necessary features for AV but definitely goes with negoti-
ation and expectation.

The ADS needs to know the rules of how to interact with people as well as along with
courtesy and common sense in driving. Two main rules can be identified as missing or
inappropriately applied: “Right-of-way is given but not taken.” and “Obey the law of
gross tonnage”. The right-of-way always needs to be confirmed by the different actors in
the road. Then, buses and other large vehicles are less expect to yield to smaller types of
vehicles by experience. Likely a normal driver would have yield to the bus despite the
later not having right of way.

This scenario shows that assumptions and prediction on other’s movement can reveal
to be wrong and lead to inappropriate interactions. The perception of the intention of oth-
ers road actors is also subject to uncertainty. Probabilistic analysis of intention, prediction
and expectation could help reduce such collision scenario[91].

Thus, an approach sensitive to the context needs to deal with the complexity and un-
certainty of the system and helps to integrate those behaviours, rules, constraints and
properties in the system design. It also provides good support for simulation and vali-
dation of edge cases. For this purpose, the complexity and the dynamicity of the envi-
ronment needs to be captured in relation to the driving functions and behavioral safety.
However, by specifying the system more on these different views, the design of AV archi-
tecture becomes even more complex, making it more difficult to manage (e.g. alternative
configurations, distinct profiles, or abstractions for some use cases). Furthermore, regu-
lations from authorities, standards, recommendations and company policy may requires
additional non-functional properties to be guarantee (e.g. security, ethic) making the
whole quite heterogeneous.

1.4 Rationale and Research Questions

Rationale

From the preceding discussions on lessons learnt from accidents and current practices in
AV safety, it is clear that several challenges in AV are an urgent need for better guidance
in AV design and development. In order to automate the driving process, it is required to:

Perceive and understand the complexity of the environment as well as taking into
account its dynamicity, the uncertainty and being able to predict future events The
AV operates in changing and complex environments where a vast number of scenarios
can be considered creating a combinatorial explosion. The ADS is expected to perceive,
understand and react appropriately to the numerous types of actors, their different be-
haviours and possible variants.

Uncertainty is inherent to cyber-physical systems such as AV and spread all over the
system. However, autonomous vehicles are also safety-critical systems that may poten-
tially harm in case of errors, knowledge gaps, or unsupported edges cases. The AV system

1.5. Purpose and Objectives 29

needs abilities to assess and mitigate these uncertainties. Moreover, functional and non-
functional properties initially specified may change over the years and the countries.

Master the driving process by understanding and controlling the vehicle internal
functions and safety concerns Driving is a difficult operation making it a technolog-
ical, automation and decision-making challenge. Safety has a simple definition, but en-
suring safe driving with AV requires many cross-cutting efforts at different levels of the
system. The functional architecture and behaviours need to be related to the safety do-
main providing enough traceability, observability and flexibility to facilitate the design
of AV architectures. Others non-functional properties as security, social acceptance and
ethics shall not be forgotten in the AV design.

Act and take driving decision based on perceived external and internal context while
guaranteeing safety conditions AV design also faces a multidisciplinary and interdis-
ciplinary challenge. The architecture and adaptive behaviours need to be related to the
safety domain and provide safety constraints. This operation needs to happen during
system design and run-time. At conception, from a system engineering perspective, the
functionalities and knowledge need to be traceable and observable. At run-time, monitor-
ing and diagnostics are required to identify potential knowledge gaps and possibly ensure
an acceptable level of safety.

For these three reasons, a safe reference architecture for AV is required to provide an
appropriate level of safety to AV to drive on public roads.

Research Questions

This thesis addresses the problem of ensuring the safety of an autonomous vehicle de-
spite its operational context and disturbances it might suffer when driving autonomously.
The primary research questions are:

RQ1: How to represent knowledge that links the operational environment with the
vehicle components and behaviours?

RQ2: How to use this knowledge to configure the vehicle driving functions in order
to ensure its safety at all times?

RQ3: How to configure the system so it responds to the safety requirements while it
operates autonomously for a given context in a safe manner?

1.5 Purpose and Objectives

The purpose of this thesis is to provide a framework that enables behavioural safety in
a manageable and scalable manner. The approach is based on the active adaptation of a
safety system in response to perceived contextual changes in order to guarantee internal
and external AV safety constraints in terms of observability, traceability, reconfigurability
and scalability.

For this purpose, the following objectives are defined:

• To examine in detail the safety implications related to AD functions and the meth-
ods used in different domains to ensure the safe operation of critical systems.

Chapter 1. Introduction 30

• To model all of the AV behaviours and structures of functions with a systematic
approach that connects how the AV system reactions to the different internal or
external events whilst it operates

• To formulate a control mechanism that configures the functions determining the
behaviour of the AV to maintain the safety constraints, whatever changes in the
vehicle evolving context occurs.

• To include a hierarchical coordination function (i.e orchestration) to ensure a re-
duction in complexity and management of the different available mechanisms.

• To demonstrate the application of the proposed safety approach via a use case study.

1.6 Contributions

The significant research contributions in this thesis are:

1. A survey of existing self-adaptive and reconfigurable critical-systems that performs
Quality of Service over a dimension such as safety

2. An approach to model AV functionalities with an MBSE methodology based on
ADCC architecture to systematically integrates the behavioural safety requirements
as constraints.

3. A reconfigurable reference architecture that copes with uncertainty by operating
flexible and composable mechanisms of safety assurance satisfying the required
attributes of observability, traceability, reconfigurability, flexibility). Implementa-
tion of dynamic reconfigurations in a microservice-based software architecture and
application are proposed.

4. Experiments of the framework applied to safety-critical scenarios of AV involving
a pedestrian.

1.7 Thesis Structure

The rest of this thesis is organized as follows.
Chapter 2 presents the background and related works. We investigate the principles,

challenges and requirements of more flexible autonomy. We detail the safety of the au-
tonomous vehicle, understand its limits and survey the tracks being explored in the liter-
ature to facilitate their integration into the design of the AV. Finally, we detail and survey
self-adaptive or self-managed systems that perform reconfiguration upon their context
and qualities such as safety.

Chapter 3 details the use of an MBSE approach to understand and model the func-
tional and safety (non-functional) requirements for a level 4 AV. The use of different
methodologies contributes to understanding the requirements from the stakeholders and
modelling the ADS points of view.

Chapter 4 presents the proposed reference architecture that incorporates the notion of
self-safety into an existing AV. We detail how it answers to the identified needs for a re-
configurable, flexible, traceable, and observable for the safety management system. Our

1.7. Thesis Structure 31

proposal is an extension of the ADCC architecture that operates at two levels of adapta-
tions to facilitate the management of the safety assurance processes while guaranteeing
the context-dependence and possible conflicts of in their specifications. The resulting
framework is developed including its theoretical supporting formulation.

Chapter 5 describes our implementation of the reference architecture within the
ADCC architecture using techniques and methods for software development, knowledge
representation, scenario construction, environment simulation and safety metrics. The
approach is evaluated against a safe use case involving a pedestrian crossing the road in a
simple scenario.

Chapter 6 presents the summary of the major findings, design, trade-off issues, future
work and conclusions.

CHAPTER 2

Autonomous Vehicles and Safety

“Slow down and enjoy life. It’s not only the scenery you miss by going
too fast – you also miss the sense of where you are going and why.”

- Eddie Cantor,

Contents

2.1 Introduction. 33

2.2 Autonomous Vehicles and Autonomy . 34
Autonomy in Complex Systems . 34
Autonomous Vehicles and Autonomy . 41

2.3 Safety in Autonomous Vehicles . 51
Safety Definition in Systems . 51
Safety Approaches for AVs . 54
Synthesis . 68

2.4 Conclusions . 70

2.1 Introduction
Autonomous Vehicles (AV) belong to the paradigm shift shaping future transportation
technology. Not only they already improve driver efficiency through increased levels
of autonomy, but they also aim to ultimately provide safer, greener and more efficient
personal mobility services. Level 4 and Level 5 AV are designed to operate without
human intervention. That is, people and goods can be transported in an autonomous
manner. This imposes major functional and non-functional heterogeneous operational
requirements.

Safety is critical for AV since guaranteeing safe operation and interaction should lead
to their acceptance by society. Higher levels of autonomy require system self-awareness
and learning in the form of machine-understandable knowledge, mechanisms and actions
to operate in a safe manner. While conventional approaches to AV safety show limita-
tion addressing these, new safety approaches are emerging to provide better perception
robustness and testing, broader hazard coverage, relevant safety metrics, etc.

System engineering addresses the complexity of these systems by modelling, coordi-
nating and integrating via different views with functional chains as well as cross-cutting
approaches to manage non-functional qualities like safety. The complexity of design-
ing and maintaining AV architectures can be managed through a systematic approach
that identifies and puts in relation the different operational needs, functions, components,

33

Chapter 2. Autonomous Vehicles and Safety 34

hardware and qualities. Achieving such traceable effort comes in pair with making the
system architecture more observable, flexible and reconfigurable for it to be maintained
over time. Evolvable architectures meet such expectations and are currently in our scope
of the study for their application in AV for a variety of qualities, including safety.

This chapter initially examines the implications of autonomy in complex systems, in
particular, the one related to autonomous vehicles. It is followed by a study of safety in
autonomous vehicles by defining first safety related terms, the different approaches ap-
plied to ensure safety for AVs. Major issues are identified, trends recognized, solutions
presented and key non-functional properties introduced that support the problem formu-
lation of Autonomous Vehicle Safety.

2.2 Autonomous Vehicles and Autonomy

The section presents the definition of autonomy as a system, its components, require-
ments and challenges as applied to an autonomous vehicle. The manner how autonomy
is represented and implemented in full computer-controlled vehicles is included.

What autonomy means in systems, what it consists of, its mandatory requirements
and challenges. Then, we detail how autonomy is represented and implemented in full
computer-contolled vehicles.

Autonomy in Complex Systems
This section provides the definition of autonomy, details how it can be achieved in com-
plex systems and describes the requirements needs to function within their operating con-
ditions (e.g. per adaptations). This is completed by determining what is necessary to
address the challenges encountered by systems having a high degree of autonomy. The
review is made through the framework of scalable autonomous Cyber-Physical Systems
(CPS). The tenet is that CPS represent the integration of embedded computing into phys-
ical phenomena like for Autonomous Vehicles.

Defining Autonomy

The Oxford dictionary defines ‘autonomy’ as “the ability to govern or control oneself”.
It has a close relation to the concept of self-governance that refers to states able to man-
age themselves. The performance of self-control or self-discipline is described as the
ability to take your own decisions without being controlled by anyone else (Cambridge
Dictionary). Indeed, autonomous systems refer to devices that have the ability to oper-
ate without external control (i.e. human control), or more precisely, without persistent
control.

In the robotics domain, Alami et al. [7] suggest that autonomy is highly associated
with the capability of adaptation of a system by carrying out actions, refining or altering its
ordered tasks or its own behaviour upon the current operating context and its goals. They
also point that autonomy of a system could be evaluated through “the robot’s effectiveness
and robustness in carrying out tasks in different and ill-known environments” or called
survivability as a non-functional quality requirement by [52].

J. Sifakis [134] advocates that “autonomy is understood as the capacity of an agent
(service or system) to achieve a set of coordinated goals by its own means (without hu-
man intervention) by adapting to environment variations”. Where a goal refers to the

2.2. Autonomous Vehicles and Autonomy 35

importance of achieving a desired target regarding some behaviour, datum, characteris-
tic, interface, or constraint [52]. It is above the level of a policy, any strategic decision
that establishes a desired goal, and not sufficiently formalized to be verifiable. A require-
ment is the mandatory, externally observable, verifiable (e.g., testable), and validatable
behaviour, datum, characteristic, or interface [52]. J. Sifakis [134] identifies three aspects
to evaluate system autonomy: (1) the autonomy of decision, representing how the system
can choose among possible goals; (2) the autonomy of operations, planned to achieve the
goals, and finally (3) the autonomy of adaptation, portraying how the system may learn
and evolve over time. These previous definitions insist on the ability to perform decisions
that are based on the perception of world, the decision process to select an appropriate
behaviour or set of changes to operate, and finally the performance of the chosen actions.
The author advocates that the complexity of system autonomy can be captured by the
interplay of three factors: complexity of the environment, complexity of the mission and
non-intervention of humans operators.

In biology, homeostasis involves self-regulatory human mechanisms that contribute
to maintain optimal conditions and stability for the living organism features (e.g. body
temperature, blood sugar level, breathing, etc.) despite the change of environment, diet,
or level of activity. The different processes regulate the features by themselves without
specific attention of the human. They can also deliberately be overridden by the human
at any moment (e.g. change the rate or volume of breathing). This type of autonomy with
removed consciousness of the task and with possible control is known as an autonomic
process. Some organs act to regulate locally particular values in the system based on some
threshold, watchdogs and detection of anomaly or intrusion. For example, the pancreas
regulates blood sugar level with insulin secretion. This specific mitigation action is based
on a local specialized knowledge. However, the knowledge of the behaviour to adopt
does not appear to be always centralized. Indeed, the detection of anomaly or event is
monitored by systems like organs, glands or specialized cells.

The human body internal system and the capability of humans to sense, decide and act
are a great illustration of self-adaptation mechanisms upon different situation acknowl-
edged or not. The human body is a complex system of systems as different autonomic
systems take care of most of the body functions without consciousness of their task or-
chestration (e.g. autonomic nervous system). Kephart et al. [77] matured a paradigm
in analogy to human biology called Autonomic Computing to address complexity for
complex computing systems that are heterogeneous, fast and dynamic, and increasingly
scalable and interoperable. The main application was to make IT systems able to have
autonomic properties and independently take care of their optimization and regular main-
tenance in order to reduce the system administrator’s workload.

Designing autonomy is difficult in a single step, For this purpose, Kephart et al. [77]
propose five degrees of autonomicity to represent the maturity of self-management in the
IT systems as illustrated in Figure 2.1.

Level 1 (Basic) corresponds to manual analysis and problem solving from the system
reports. Manual actions from skilled staff are required to configure, optimize, heal and
protect the system.

Level 2 (Managed) proposes centralized tools such as a management software to fa-
cilitate the task automation on a specific resource. Staff still performs the analysis and
takes appropriate actions. System awareness is more significant.

Level 3 (Predictive) involves the system in monitoring the environment, performing
cross-resource correlation analysis and providing guidance like recommendation actions.
Staff has to approve and initiate the recommended actions. Decision making is improved

Chapter 2. Autonomous Vehicles and Safety 36

Figure 2.1 Maturity levels [77] for the autonomic computing paradigm

for homogeneous resources.
Level 4 (Adaptive) involves the system to monitor, correlates and takes action. At this

level, the human interaction is minimized as only the performance criteria are directly
managed by staff. System expectations and goals are defined by contracts (service-level
agreements or SLAs). Heterogeneous resource are supported.

Level 5 (Autonomic) performs dynamic self-adaptations based on the goals and poli-
cies of the described business. No intervention of staff is required during the operation.
Human interaction is mostly between the system and the end-customer as she/he orders
new changes that require reconfiguration of the managed resource.

The evolution of autonomic maturity is reflected by: (1) the increase of system
functionalities, (2) the broadening the resource control scopes (e.g. from a single sub-
component managing parts of resources to a whole system adaption), and (3) the au-
tomation of the tasks and the management process (e.g. from human-based process to its
representation with machine-understandable tasks and workflow).

Huebscher et al. [70] provides a complementary classification scheme of five possible
classes. They address what they consider as missing in the previous maturity levels, that
is the role of autonomicity in the system and the extent of self-optimization achieved.

Support describes that the system possess self-management functions that only oper-
ate one particular aspect or component of an architecture. It results in an improvement of
the complete system performance.

2.2. Autonomous Vehicles and Autonomy 37

Core designates systems where the self-management functions is at the core of the
system (e.g. end-to-end network management solution for QoS in video streaming).
Other parts of the system are not necessarily self-managed. Goals and policies guiding
the process are not high-level based.

Autonomous represents an end-to-end management solution to a problem involving in-
telligent and agent-based technologies. The system is expected to perform self-adaptation
upon the context changes and when necessary react to failure. Within this perspective,
this type does not measure its own performance to adapt and attain its goals optimally.

Autonomic represents a the Level 5 in autonomic maturity referred before. It concerns
a full architecture that performs self-adaptation over its managed resources and itself for
optimization guided by higher-level human-based goals (business goals or service-level
agreements).

Closed-Loop corresponds to autonomic systems that have the possibility to learn,
grow and refine themselves. These closed loop systems mostly refer to the use of di-
verse forms of reinforced learning (e.g. Markov decision process, partially observable
Markov decision process, recurrent neural networks, etc.)

It can be inferred that the self-management as autonomy has a range of actions (i.e.
resource-specific to system-wide) but that also requires a toolkit of functions that comes
from several fields to be effective (e.g. basic human analysis to continuous learning for
classification and decision).

In the field of AV, the SAE J3016 standard [41] distinguishes the preferred term “Au-
tomated” rather than the long-time used “Autonomous” term to designate vehicles with a
delegation of driving. It designates autonomous vehicles as systems that have “the ability
and authority to make decisions independently and self-sufficiently” while operating as
stand-alone. This definition would exclude vehicles benefitting of communications tech-
nologies to leverage on shared information. Besides, some usage of “autonomous” was
misleading in the literature as it was representing the entire system functionality. The
SAE J3016 standard prefers the term “automated” to propose recommendations for all
types of road systems that include all driving-related systems, architectures, functions,
use and interactions.

This thesis employs the term “autonomous” over “automated” as we consider the
current systems as fitted to the previous definitions of autonomy. That is, the examined
systems can operate as stand-alone as it is the more widely used form for self-sufficient
systems and in the fundamental operations of perception, decision and action.

The next section details the considerations for creating self-sufficient systems and
understanding its composition.

Understanding the Autonomy in Systems

After having portrayed our understanding of autonomy, we need to consider requirements
and constraints to implement such autonomic behaviours. Abeywickrama et al. have pro-
posed a relevant decomposition of autonomy into four attributes, described as follows[5].

Reflexivity implies the system has access to the knowledge of its components that
is the current status, capabilities, limits, boundaries and inter-dependencies with other
systems and available resources. This implies that the system is self-aware, as it knows
itself.

Evolvability (or Evolution) represents the ability of the system to evolve in dy-
namic situations where new services, new requirements and alternative configurations

Chapter 2. Autonomous Vehicles and Safety 38

can emerge. Thus, it can be self-organizing and self-optimizing to be relevant to its oper-
ational needs.

Model-based system engineering (MBSE) enables the system representation as a
model, thus maintaining requirements, design, analysis, verification and validation activ-
ities throughout the system life-cycle. MBSE provides fundamental guidelines to design
and develop complex systems having autonomy capabilities. Further, it provides different
perspectives addressing specific concerns like for example system safety.

Uncertainty is usually mitigated by robust solutions at design-time in conventional
approaches. However, they reveal to be impractical in highly dynamic environments.
Real-time models have been adopted to address uncertainty achieving both reflexivity
and evolvability.

These attributes identify a spectrum of cross-domain complexities suggested in the
previous works [7, 41, 70, 77, 134]. They help understanding the complexities of design-
ing and specifying autonomy in autonomous vehicles in terms of needs, requirements,
processes and the complexity of the overall design. In addition, the application of auton-
omy in vehicles requires the system to delegate partially or completely the driving tasks,
therefore design approaches need to integrate safety, reliability and security dimensions.

Architecting for Autonomy

We have seen that autonomy cannot be implemented from only one or two perspectives as
it required to tackle a variety of concerns to appropriately take several variables, actions,
requirements, and limitations into account. Therefore we examine different approaches
and structure that contribute to capture autonomy in robotic of CPS.

The autonomy architecture presented in [7] suggests that different levels of decision
are required while remaining reactive to possible events. These contribute to consider
the several variables that drive the decision process in a robot. The first decision level
involves mission planning (i.e. refine the mission into tasks), task refinement (i.e. obtain
trajectories from expected tasks), and coordination (i.e. merging requests into a plan).
The second level includes execution control level, it requests and supervises the plans to
operate. The third level is functional, it allows reactive adaptations and follows the se-
lected plan through motion planning, avoidance, world representation, sensor perception
and motion execution. The fourth level is Logical, it reflects the interface of the system
and mobility in the external world. The Fifth level is Physical, it represents the system
hardware that is different sensors and effectors integrated into the robot platform. An
architecture involving the different levels is necessary to take appropriate decisions and
satisfy the set of distinct variables relevant to the mission.

Durrant-Whyte [48] identifies similar functional elements for autonomous land vehi-
cles: mobility, localisation, navigation, planning and communications. Mobility refers to
the design and motion control of mobile vehicles and their kinematic models. Localisa-
tion determines the position and attitude of a vehicle in a coordinate system. Navigation
provides “the guidance and the control of a vehicle in response to sensor information”
from the vehicle surrounding’s and vehicle’s state. Planning refers to the construction of
trajectories up to some time horizon, beyond sensor range and compute possible actions
of other vehicles. Communication reflects the ability to request a specific mission or re-
ceive reports of the system (e.g. teleoperation requires communication between vehicle
and base station). These functions are the basis of current functional AVs architectures
as shown in Figure 2.2 on page 41. Duant-Whyte makes emphasis on establishing that
effective system engineering is necessary for the deployment of AVs.

2.2. Autonomous Vehicles and Autonomy 39

Kephart et al. [77] in the Autonomic Computing paradigm refined the scope of the
self-management capabilities necessary for systems to demonstrate autonomy, these are
as follows: Self-Configuration, to dynamically adapt to changing environments that in-
cludes changes in the system characteristics, the deployment of new components or the
removal of existing ones. Self-Optimization, to tune resources and balance workloads to
maximize the use of information technology resources. Self-Healing, to discover, diag-
nose and act to prevent disruptions from malfunctions making the system more likely to
fail safe. Self-Protection, to anticipate, detect, identify and protect against threats and
hostile behaviours.

These four autonomic properties propose an autonomic response based observations
from the sensors, and actions sent to the actuators, and cores that drives each control
loop. The authors propose a reference model for the autonomic loops called MAPE-K.
Each loop operates the functions of Monitor, Analyse, Plan, and Execute around sources
of represented Knowledge. This functional decomposition contributes to identifying the
architectural aspects of autonomic systems and separate the concerns of the control and
decision process.

Johansson et al. [73] capitalize on the experience acquired during the FUSE project
(FUnctional Safety and Evolvable architectures for autonomy) regarding autonomy,
safety and system engineering. From a high level point of view, they detail the FUSE
reference architecture as “(1) a categorization and description of the key functional com-
ponents needed for autonomous driving, (2) rationale for these functional components
across the architecture, and (3) a three-layer architecture incorporating the described com-
ponents”. The whole makes an echo of the four attributes presented in the Section 2.2.
(1) addresses the reflexivity and evolvability attributes, (2) and (3) contribute to build up
the model of the architecture and integrate the remaining attributes.

The same approach included in [73] by separating the perception, the decision and
control, and the vehicle platform control as three different categories of the key functional
components. They suggest that this partition favors high repleacibility of the different
functions and components and deployment across different vehicle platforms.

J. Sifakis [134] emphasizes that adaptivity is the appropriate technical answer to man-
age uncertainty in critical systems. He proposes a paradigm shift stating that conven-
tional hazard analysis in AV have shown limitations to the extent that it became difficult
to “foresee at design time all the possible hazards in the system’s lifetime due to their
poor predictability”. He introduces the concept of adaptive control for system resilience
and to compensate the lack of human intervention through the use of a generic component
named “adaptive controller” based on control theory [16]. It implements the hierarchi-
cal control of a property through objective management, planning, and learning functions.
The approach proposed in [134] integrates the adaptive controllers in a knowledge-centric
architecture. It aims to combine both design-time knowledge (i.e. declarative knowledge
about the properties of the designed system) and run-time knowledge (i.e. violation of
some property or knowledge based on system run-time monitoring). This approach seeks
a compromise between a rigorous design and essential properties that cannot be guaran-
teed at design time.

Schlatow et al. investigate in [130] the ability to operate in degraded performances
and degraded conditions. They suggest that the presence of self-awareness in the several
system layers can build truly autonomous systems for AV. The concept of self-awareness
refers to the system’s capability to know and represent itself by its states, its actions, the
consequence of its actions, and its limitations. It has been formalized in the Autonomic
Computing paradigm [77], and appears to be close to the reflexivity attribute and the

Chapter 2. Autonomous Vehicles and Safety 40

objective of the learning function previously referenced. It refines the self-awareness
concept to a “consistent self-representation of the system” based on the overall monitoring
of the layers through metrics. The authors argue that complexity gets out of hands on
individual layers if each observed event are locally handled. However, this can be avoided
by handling the counteract adaptations through cross-layer solutions. The complexity of
the possible observed events to handle is linked to the vastness of the targeted environment
and the system.

Challenges of Autonomy

Achieving autonomy in systems consists in pursing and extending these presented as-
pects:

• The cognitive complexity: The mission can become more complex as more de-
tailed, involving more objectives and properties to assert. The heterogeneous goals
and policies have to be included in the decision-making to achieve a desired target
defined by behaviours, characteristics or constraints as requirements.

• The operational functions: The functions need to be relevant in their operating con-
text satisfying their requirements and allocated to components in the architecture.
Major complexity comes from the management of the different types of compo-
nents and architectures, how they are allocated and connected [48, 134, 135].

• A systematic approach for large distributed evolvable systems: A rigorous design
systematically integrates the necessary functions supported by design tools and de-
velopment methodologies for an extensible and evolvable architecture.

• The correctness ensured through adaptation during run-time and over time: Evolv-
ability of the system can be achieved through adaptations in the system or of the
system itself. Self-adaptations contribute to cope with uncertainty but reduce the
ability to perform conventional verification. It corresponds to the ability to adjust
behaviour through learning and reasoning and to change dynamically the goal man-
agement and planning processes [135].

• The self-awareness in non-predictable dynamically changing environments: Self-
representation of the system (reflexivity) ensures sufficient observability and con-
trollability. Uncertainty needs to be taken into account, especially in the represen-
tation of the external world.

The last aspect would be the scientific, technological and societal stakes of the auton-
omy challenges. Indeed, autonomous systems are mostly designed around human in-
teractions and user experience. Their adoption requires trust through explainability and
interpretability. For this purpose, run-time models and knowledge-based systems usually
provide the possibility to be transparent to inspection.

Applications of autonomy in cyber-physical systems in certain domains show different
context and limitations to consider than others. The next section focuses explicitly on
Autonomous Vehicles and details how autonomy have been designed and experienced
over the years.

2.2. Autonomous Vehicles and Autonomy 41

Figure 2.2 Top-level functions for an autonomous navigation system based on the 4D/CS
architecture (Courtesy of Renault Research). [10]

Autonomous Vehicles and Autonomy
Autonomy design and driving automation for autonomous vehicles is presented in this
section. Two perspectives are considered: the operational description of the AV and their
functional architecture.

Operational Description of an AV

The generic functions that allow an AV to operate autonomously are presented as well
as the convergence between the Autonomic Computing notions referred previously and
vehicle SAE automation levels.

Functions for autonomy Multiple applications for vehicles having autonomy charac-
teristics exist, nevertheless, the essential function are: Perception, World Modelling and
Behavior Generation [9, 10].

These three functions represent the manner how an autonomous system can interact
with its environment and achieve a purpose. as shown in Figure 2.2. They encompass
different of sub-functions, they provide the vehicle with the four autonomy attributes
introduced in Section 2.2.

Perception. A digital representation of the vehicle’s immediate environment is the
result of this function. This is based on the perceived information from the multiple
passive (cameras) and active (RADAR & LiDAR) sensors mounted on the vehicles and
at times information from the infrastructure.

Perception is a complex function, despite the rapid progress due to dominant machine
learning methods like Deep Learning, it remains a challenge. The perception function
can be considered as made of several sub-functions: Acquisition & preprocessing, phys-
ical attributed from the observed environment are acquired by sensors, these signals are
processes to provide data which can be processed by a computer. Segmentation, prepares
clusters of observed elements having similar characteristics (e.g. roads, kerbs). Classifi-
cation, identifies the clusters into different types like pedestrians, cars, road surfaces, etc.

Chapter 2. Autonomous Vehicles and Safety 42

Registration and Object Tracking, the spatial description of the classified objects with re-
spect to the vehicle is inferred, relevant objects like pedestrians or cars are tracked as the
move. Multiple sensors are needed to build the digital representation of the environment
due to limits on current available sensors.

The sensor fusion techniques make full use of the advantages of each sensor coping
with the weaknesses of the other sensors. For example, LIDAR is excellent to provide
3D measurements and is not that affected by scene lighting, however, it suffer from poor
resolution compared to camera images. Cameras by contrast provide rich details on the
object of the scene, however, they only estimate distance to the object.

Scene understanding corresponds to the contextual representation of the environment
where all entities are located, described (e.g. speed), and categorized by their semantic
meaning (e.g. labelled as a pedestrian).

As part of the perception function, we include the localisation component, as in order
to navigate it is necessary to know the whereabouts of the vehicle. Localisation estimates
describe the position of the vehicle with respect to a reference frame. In general GNSS
receivers are used like GPS these are augmented though odometric information, inertial
sensor, etc.

World Modelling. This is build by enriching the digital representation of the per-
ceived environment projected on an a priori map known as HD-map. The later contains
stored information on the road structure at the lane level as well as attributes that enable
reasoning to infer the vehicle behaviour.

Context modelling represents a digital model of the world from the perception system
and the HD-map. This machine-understandable model of the world reflects the scene of
the road elements and the vehicle’s current state (e.g. position, speed, acceleration, yaw
rate, functional capabilities and degradations, etc.).

Within the World Model it is possible to determine the entities of concern (e.g. pedes-
trians, vehicles), to predict their motion or intentions. For the vehicle it is possible then
to understand its situation and reason what to do next taking into account its mission
mandate.

Situation understanding consists in a machine-understandable model of the world that
reflects the scene of the road elements.

Behaviour generation. Decision-making and control systems are responsible for
generating and executing vehicle behaviour. Different functions are involved in this pro-
cess.

Mission-level planning considers the path the vehicle should follow at road-level to
achieve the strategic tasks as carrying out its high-level objectives.

Lane-level planning, or behaviour planning, intervenes at short range and time to cope
with the interaction with other road users and infrastructure, and follow the local driving
rules. It determines the path the vehicle should follow within the lanes and the vicinity of
the vehicle while pursuing its local objectives (e.g. lane changes, intersection handling,
lane keeping, distance keeping).

Obstacle avoidance takes place at the immediate operational range and time to mit-
igate any potential collision with an obstacle. Avoidance requiring specific manoeuvres
also involves the behavioural level of decision making.

Finally, control and feedback are responsible for the motion control that converts the
intentions and trajectory defined in the previous level of planning into actions. The control

2.2. Autonomous Vehicles and Autonomy 43

system provides the necessary inputs to the actuators and generates the expected motion
in the external world. Additional measurements contribute to stabilizing the dynamics of
the system to the desired state, managing potential disturbances via feedback control.

Through all the observed function safety is a major concern. Perception is not per-
fect, any error will propagate and result in hazardous situations. The world representation
function will suffer of localisation and map errors too in addition to perception issues,
further predicting what other entities is very difficult, thus the situation understanding
and decisions might also result in hazardous situations. The increased interest on ma-
chine learning has resulted on solutions addressing beyond the perception function, that
is decision making and navigation. From a safety perspective, this is adding complexity,
as machine learning methods are difficult to understand and their results could be erratic
when faced by edge cases.

AV minimum behavioural competencies The functions in the three levels necessitate
goals, policies and requirements to be finely tuned to appropriately monitor react to the
vehicle’s environment. From a learning perspective, it needs to differentiate what are a
good driver and a bad driver in order to specify or nurture the appropriate behaviours
from data. Different works have successively identified these expected behaviour and
autonomous capabilities for AV.

Historically, the series of DARPA Grand Challenges (2004, 2005, 2007) encouraged
research and development for autonomous vehicles. While the two initiatives require
to drive within a desert, the last was more challenging as the vehicle has to drive in
an urban environment. This 2007 DARPA Urban Challenge boosted development of
unmanned vehicles for urban areas have been the source for numerous technologies, tools,
and engineering techniques, both for autonomous vehicles, but also for ADAS. Later,
California PATH project [115] published in 2016 a concrete taxonomy of the minimum
behavioural competencies required to an AV. These high-level requirements contribute to
understanding the decomposition of what and how the vehicle need to perform across a
variety of driving environments (e.g. freeway, rural, highway, city streets, valet parking,
low-speed shuttles).

Understanding the intricacies, of autonomous operations can be gained through a tax-
onomy of the behavioural competencies that an AV should have. The PATH programme a
UC-Berkeley proposed such taxonomy [115]. This provides an understanding of what and
how the vehicle needs, to operate different operational design domains (ODDs). Waymo
[153] have proposed an extended list of minimum capabilities based on their progress and
field experience of a variety of reasonably foreseeable traffic situations with AV. Table 2.1
lists these behavioural competencies.

Although relevant to understanding the functioning and complexity of vehicle be-
haviour, the verification and validation (V&V) of each of these competencies through
the conventional V-Model methodology seems really inapplicable due to the diversity of
events, physical quantities and geometry of the environment [134]. However, they have
been the base for generation of driving scenario and source for the refinement [142] of
the list of tasks, monitoring and executing actions (OEDR) to specific ODDs.

Defining other behavioural requirements for AV To understand how the driving au-
tomation is performed, SAE J3016 [41] investigates the driving tasks performed by the
driver during driving and that control the vehicle in the form of different responses and
actions. The report defines that AV performs driving automation as a result of sustained

Chapter 2. Autonomous Vehicles and Safety 44

N Behavioural Competencies for AV
1 Detect and Respond to Speed Limit Changes and Speed Advisories
2 Perform High-Speed Merge (e.g., Freeway)
3 Perform Low-Speed Merge
4 Move Out of the Travel Lane and Park (e.g., to the Shoulder for Minimal Risk)
5 Detect and Respond to Encroaching Oncoming Vehicles
6 Detect Passing and No Passing Zones and Perform Passing Maneuvers
7 Perform Car Following (Including Stop and Go)
8 Detect and Respond to Stopped Vehicles
9 Detect and Respond to Lane Changes

10 Detect and Respond to Static Obstacles in the Path of the Vehicle
11 Detect Traffic Signals and Stop/Yield Signs
12 Respond to Traffic Signals and Stop/Yield Signs
13 Navigate Intersections and Perform Turns
14 Navigate Roundabouts
15 Navigate a Parking Lot and Locate Spaces
16 Detect and Respond to Access Restrictions (One-Way, No Turn, Ramps, etc.)
17 Detect and Respond to Work Zones and People Directing Traffic in Unplanned or

Planned Events
18 Make Appropriate Right-of-Way Decisions
19 Follow Local and State Driving Laws
20 Follow Police/First Responder Controlling Traffic (Overriding or Acting as Traffic

Control Device)
21 Follow Construction Zone Workers Controlling Traffic Patterns (Slow/Stop Sign

Holders)
22 Respond to Citizens Directing Traffic After a Crash
23 Detect and Respond to Temporary Traffic Control Devices
24 Detect and Respond to Emergency Vehicles
25 Yield for Law Enforcement, EMT, Fire, and Other Emergency Vehicles at

Intersections, Junctions, and Other Traffic Controlled Situations
26 Yield to Pedestrians and Bicyclists at Intersections and Crosswalks
27 Provide Safe Distance From Vehicles, Pedestrians, Bicyclists on Side of the Road
28 Detect/Respond to Detours and/or Other Temporary Changes in Traffic Patterns
29 Moving to a Minimum Risk Condition When Exiting the Travel Lane is Not

Possible
30 Perform Lane Changes
31 Detect and Respond to Lead Vehicle
32 Detect and Respond to a Merging Vehicle
33 Detect and Respond to Pedestrians in Road (Not Walking Through Intersection or

Crosswalk)
34 Provide Safe Distance from Bicyclists Traveling on Road (With or Without Bike

Lane)
35 Detect and Respond to Animals
36 Detect and Respond to Motorcyclists
37 Detect and Respond to School Buses
38 Navigate Around Unexpected Road Closures (e.g. Lane, Intersection, etc.)
39 Navigate Railroad Crossings
40 Make Appropriate Reversing Maneuvers
41 Detect and Respond to Vehicle Control Loss (e.g. reduced road friction)
42 Detect and Respond to Conditions Involving Vehicle, System, or Component-Level

Failures or Faults (e.g. power failure, sensing failure, sensing obstruction,
computing failure, fault handling or response)

43 Detect and Respond to Unanticipated Weather or Lighting Conditions Outside of
Vehicle’s Capability (e.g. rainstorm)

44 Detect and Respond to Unanticipated Lighting Conditions (e.g. power outages)
45 Detect and Respond to Non-Collision Safety Situations (e.g. vehicle doors ajar)
46 Detect and Respond to Faded or Missing Roadway Markings or Signage
47 Detect and Respond to Vehicles Parking in the Roadway

Table 2.1 Behavioural competencies for autonomous vehicles in [115] (1-28) extended in
[153]

2.2. Autonomous Vehicles and Autonomy 45

Figure 2.3 Schematic view of the Dynamic Driving Tasks according SAE [41]

Dynamic Driving Tasks (DDT) in a specific environment. Those DDT correspond to the
real-time tasks required to operate a vehicle in on-road traffic: (1) Lateral vehicle motion
control via steering (y-axis, operational); (2) Longitudinal vehicle motion control via ac-
celeration and deceleration (x-axis, operational); (3) Monitoring the driving environment
via object and event detection, recognition, classification, and response preparation (op-
erational and tactical); (4) Object and event response execution (operational and tactical);
(5) Maneuver planning (tactical); and (6) Enhancing conspicuity via lighting, signaling
and gesturing, etc. (tactical).

The Object and Event Detection and Response (OEDR) corresponds to the tasks (3)
and (4). It consists of the monitoring of the driving environment (detection, classifica-
tion, tracking), preparing to respond to them, and executing an appropriate response. An
OEDR is only relevant in the ODD the system has been conceived for.

Figure 2.3 indicates the allocation of the dynamic tasks to the strategic, tactical and
operational levels. It illustrates the operation of each task, the frequency rate increases
the closer the tasks are to the vehicle motion.

Figure 2.4 allocates the identified DDTs to the top-level functional architecture in
order to map the various functions into the DDT tasks.

Other concerns include the handling of a system failure and/or out-of-operational de-
sign domain (out-of-ODD) condition. For level 3, 4, and 5 ADS, the SAE J3016 frame-
work distinguishes three concerns as the separate functions of (i) DDT performance, (ii)
DDT fallback performance, and (iii) Minimal Risk Condition achievement (MRC). Their
interruption, occurrence or completion is performed based on the events the system may
detect and follow a set of optional conditions [41]. The next paragraphs summarize and
illustrate each of the three functions with the ADS engaged. A summary of the three
functions with the ADS engaged is described next:

DDT performance corresponds to the proper operation of the DDT tasks by the sys-
tem. Two issues can occur: a DDT performance-relevant system failure or an out-of-
operational design domain (out-of-ODD) condition. Minimal Risk Condition (MRC) is a
condition to which a user or an ADS may bring a vehicle in order to reduce the risk of a
collision when a given trip cannot or should not be completed.

DDT fallback performance corresponds to the response by the ADS to perform the
DDT or achieve the MRC alone after an approaching ODD exit or a DDT performance-

Chapter 2. Autonomous Vehicles and Safety 46

Figure 2.4 Mapping of the DDT to the functional architecture.

relevant system failure are detected.
Whilst this research centres on Level 4 vehicles, it is important to understand the allo-

cation of responsibilities between the vehicle intelligence and drivers. These are mapped
with respect to autonomic principles. The top half of Table 2.2 shows the responsibilities
between the system and the driver with respect to the DDT tasks and DDT fallback. The
bottom half of Table 2.2 provides an identification between the levels of automation and
the AC maturity levels [77] and classes [70] presented earlier in Section 2.2. Applied to
AV, the maturity levels would consider the staff as the driver, and the self-management
functions as two different systems managing the driving tasks and fallback tasks. Next,
the SAE automation levels are identified with Autonomic computing, in particularly re-
garding levels 3 and 4.

The SAE Level 3 includes systems which control the fundamental driving tasks. The
system provides self-adaptations to the environmental context and can react to failures
with the assistance of the driver (e.g. DDT performance-relevant system failure). Due to
the variety of possible combinations of functionalities, range and coverage, these systems
are identified with the Adaptive or Autonomic levels and the Core or Autonomous classes
but not as performing all goals optimally. For the fallback, maturity levels are Predictive
and Adaptive as the system operates and only indicates when it can not. The system can
not guarantee the achievement of MRC in all cases within its ODD. The classes are Core
or Autonomous because the system still involves humans in its reaction to failures (i.e.
Fallback-ready user).

The SAE Level 4 involves no driver for DDT operation. This refers to the Autonomic
maturity level. However, the classes are not simple to identify as they can be described as
Autonomous, Autonomic or Closed-Loop according to the scope of the system function-
alities. A level 4 ADS may either carry out the driving tasks without measuring its own
performance to fit its performative goals optimally (Autonomous), or monitor them and
optimize them guided by higher-level human-based goals (Autonomic), or optimize its
own performance and learn how to improve them by itself (Closed Loop). The fallback
for level 4 ADS also needs to operate it without the help of the driver. There are different
cases: a system failure or degraded performance which make the system unable to carry
out its mission. They both result in questioning the initial mission of the system to see if
it is still achievable, if not, navigate to MRC in some cases. The fallback of level 4 ADS

2.2. Autonomous Vehicles and Autonomy 47

can be described as Autonomic and associated to the Autonomous or Autonomic classes
(as not all performance goals may be met optimally with safety first MRM).

The mapping between the SAE levels and the Autonomic Paradigm levels and classes
contributes to illustrating the difference in the scope of action of the two functions. The
performance of the DDT and DDT fallback in the level 4 and 5 involves a high degree
of autonomy where both world and system representations, adaptations and evolution are
required.

Autonomous vehicles can be evaluated by their capabilities: we have presented the
minimum behavioural competencies from California PATH project [115] and the set of
levels, terms and functions of SAE J3016 [41] (i.e. OEDR with ODD, DDT and DDT
fallback functions). Two other parts remain relevant to be presented in the operational
description of the AV: the system degradation in decision making and the representation
of the situational context.

Reschka et al. [20, 109, 121] have proposed a system perspective and an architecture
to represent the driving abilities and capture their degradations during the system opera-
tion (i.e. during sytem run-time) with skills as altered forms of the initial driving abilities.
This representation of degradation (e.g. the vehicle’s ability to turn is not as expected) and
inducted system restrictions (e.g. turn left becomes impossible) offers enough reflexivity
in decision-making to possibly perform safe DDT and DDT fallback. Such characteristics
may be included in the OEDR and ODD as adaptation mechanisms and context limitation.

We have seen that designing AV makes possible to come up with a large variety of
usage scenarios and specifications within the OEDR and ODD. Different mechanisms are
explored to address this variety.

Initially Use Cases (UC) are defined with the purpose of extracting usage scenarios
with respect to the Autonomous vehicle expected operation. It consists of a list of high-
level interactions the vehicle may perform. Each use case specifies its range of action
and the operational situations the vehicle [146]. Since the situations faced by the vehicles
can result in a combinatory explosion, the use case formulation provides an abstraction
and context. Research literature [151][64][146], vehicle OEMs reports [55, 62, 133, 153]
and open projects [103, 143] provide examples and in-depth studies of AV use cases.
This can be followed by a representation of decision-making as a set of rules, constraints,
policies, goals or mission. These can be abstracted from different capability perspectives,
e.g. task, manoeuvre or use case oriented. Others can address specific edge cases and
safety concerns.

Conclusion This section presented a taxonomy to highlight the different system rep-
resentations, adaptation and evolution necessary to grasp the operational context of AV.
However, given the complexities of the ODDs when operating in public roads, the het-
ereogenity of entities sharing the same road network, together with the diverse number
of potential automated vehicles means that there is no standard solution [28]. Futher, the
complexity of such systems is highlighted and hence the potential for failure. Ensuring
the safety is complex and only recently the notion of safety mechanisms is emerging.

Functional Architecture of AV

A functional architecture in the automotive domain is a hardware and implementation
independent decomposition of the functionalities the system provides into components
and sub-components and the information flows between them. Different views of the
same functional architecture may exist to describe each component depending into what

Chapter 2. Autonomous Vehicles and Safety 48

SA
E

le
ve

ls
of

dr
iv

in
g

au
to

m
at

io
n

[4
0]

L
ev

el
0

-N
o

D
riv

in
g

A
ut

om
at

io
n

L
ev

el
1

-D
riv

er
A

ss
is

ta
nc

e
L

ev
el

2
-P

ar
tia

l
D

riv
in

g
A

ut
om

at
io

n

L
ev

el
3

-
C

on
di

tio
na

l
D

riv
in

g
A

ut
om

at
io

n

L
ev

el
4

-H
ig

h
D

riv
in

g
A

ut
om

at
io

n

L
ev

el
5

-F
ul

l
D

riv
in

g
A

ut
om

at
io

n

R
es

po
ns

ib
ili

ty
fo

r
pe

rf
or

m
in

g
th

e
D

yn
am

ic
D

riv
in

g
Ta

sk
(D

D
T

)

D
riv

er
D

riv
er

an
d

Sy
st

em
Sy

st
em

Sy
st

em
Sy

st
em

Sy
st

em

R
es

po
ns

ib
ili

ty
fo

r
pe

rf
or

m
in

g
th

e
D

D
T

fa
llb

ac
k

D
riv

er
D

riv
er

D
riv

er
Sy

st
em

if
no

fa
ilu

re
,e

ls
e

D
riv

er
(F

al
lb

ac
k-

re
ad

y
us

er
)

Sy
st

em
Sy

st
em

R
ec

om
m

en
de

d
na

m
in

g
-

L
ev

el
1/

2
dr

iv
in

g
au

to
m

at
io

n
sy

st
em

-e
ng

ag
ed

ve
hi

cl
e

L
ev

el
3/

4/
5

A
ut

om
at

ed
D

riv
in

g
Sy

st
em

-o
pe

ra
te

d
ve

hi
cl

e

Sy
st

em
m

at
ur

ity
le

ve
ls

fo
r

th
e

D
D

T
B

as
ic

N
on

e
M

an
ag

ed
or

Pr
ed

ic
tiv

e
C

or
e

M
an

ag
ed

or
Pr

ed
ic

tiv
e

C
or

e
or

A
ut

on
om

ou
s

Pr
ed

ic
tiv

e
or

A
da

pt
iv

e
C

or
e

or
A

ut
on

om
ou

s

A
ut

on
om

ic
A

ut
on

om
ou

s
or

A
ut

on
om

ic
or

C
lo

se
d

L
oo

p

A
ut

on
om

ic
A

ut
on

om
ic

or
C

lo
se

d
L

oo
p

Sy
st

em
m

at
ur

ity
le

ve
ls

fo
r

th
e

D
D

T
fa

llb
ac

k
B

as
ic

N
on

e
B

as
ic

&
M

an
ag

ed
Su

pp
or

t

B
as

ic
&

M
an

ag
ed

Su
pp

or
t

Pr
ed

ic
tiv

e
&

A
da

pt
iv

e
C

or
e

or
A

ut
on

om
ou

s

A
ut

on
om

ic
A

ut
on

om
ic

A
ut

on
om

ic
A

ut
on

om
ic

or
C

lo
se

d
L

oo
p

Table 2.2 Responsibility in SAE levels of automation while system engaged and identifi-
cation to Autonomic Computing maturity levels and classes

2.2. Autonomous Vehicles and Autonomy 49

it is to be addressed. A functional architecture is the key to capture the difficult task of
driving autonomously and to present coherently the proposed system [24].

Different AVs architectures have been deployed, the following paragraphs provide a
summary view of those regarded as the most representative. Behere et al. [23] surveys
architectures from the following fields of study: Intelligent control [12, 104][9, 10], cog-
nitive architectures [88][149] and real-time control architectures [31, 33, 61, 136].

The case study used in this thesis is from the commuter vehicle ADCC from Renault
(see Figure 1.2, page 19). It applies the intelligent control approach fomulated by J.
Albus [9, 10]. This reference model architecture for intelligent systems design is known
as the 4-Dimension Real-time Control System (4D/RCS). It has been used extensively in
multiple civilian and defence related vehicles. The ADCC architecture is designed for a
vehicle having level 4 capabilities when entering a particular mode.

The robotics and artificial intelligence domains have traditionally driven the devel-
opment of autonomous vehicles. Providing autonomy, to a driving task is a complex
endeavour that “critical look at system architectures and the architecting process since
system-level property goes beyond being ‘just another requirement’ ” [76]. For this pur-
pose, a functional architecture displays the decomposition of the essential functions for
autonomy as components and their exchanges to enable autonomous driving. This view
remains agnostic to specific technology to use and the knowledge to acquire. They also
help to judge their potential to scale up towards the broad AV context.

The implementation of a sole functional architecture is insufficient for the automotive
domain to provide guarantees of safe driving. Autonomous vehicles are safety-critical
systems. Any malfunction or wrongly adopted behaviour may result in potential harm
or damage. Integration of these concerns is not a straightforward process. The safety
challenges for AV and how system architecture can address safety are examined in the
next section.

Operational Challenges: Safety

Safety refers to the ability to deliver services that can justifiably be unharmful and trusted.
Some possible harm may be unplanned and unintended but not necessarily unexpected.
Safety engineering aims for the AV to avoid the more frequent and more severe expected
causes such as failures to protect valuable assets from accidental harm with evidence.
Safety engineering proposes methodologies, best practices and tools to achieve an ac-
ceptable level of evidence to describe the product as safe. For example, safety analysis
are performed to capture and address the internal and external disturbances of the system
and their ouputs are used to mitigate the associated risks.

Some operational safety challenges are closely linked to the ones of autonomy. An
autonomous vehicle needs to be resilient to challenges that may lead to hazardous sit-
uations. The sources of hazards and possible threats are numerous. Some operational
safety challenges are closely linked to those of autonomy, affecting different parts of the
system because safety is a transversal non-functional quality. An examination of architec-
tures and interpretation of what safe autonomy signifies, resulted in the following safety
challenges:

Resilience and robustness of the different operational functions Systems are be-
coming more complex as operations are expanded and multi-sensors are used. Within
this context, uncertainty propagates throughout the system. It plays an important role in

Chapter 2. Autonomous Vehicles and Safety 50

the resilience (stability) or robustness (failure) of these functions, resulting in fluctuating
system performance, observability and controllability due to the environment changes.

Understanding and handling the causes and consequences of the complex context
The dynamicity of the context imposes real-time constraints on all safety related elements.
In addition, the interactions and negotiations between road elements have different levels
of comprehension (internal prior knowledge or acquired by learning), predictions, etc.
Within this context, an AV would have its performance fluctuate relatively to its context
in addition to possible system operational limitations and degradation [81].

Safety characterization as observable features and metrics This addresses a major
concern, how to measure credibly the safety of an AV. For example, to know if the result
of a fallback solution ensures the vehicle enters a safe state. Conventionally safety is
addressed through risks analysis methodologies from dependability that bring structures
and frames to iterate on while others are based on metrics and criteria such as time-to-
collision and passenger comfort. There are few performance metrics, none as a standard.
Data available is mainly on the number of kilometers driven autonomously without disen-
gagement. However, this is only an indicator that has been required by legislation. Safety
metrics is a major subject of research [21, 57].

Supervising safety Assessing safety at design with multiple analysis entries and system
perspectives only offers a limited scope for safety assurance in AV. Supervising safety dur-
ing run-time such as the master controller in the ADCC architecture offers ways to correct
unsafe behaviours or actions ensured through adaptation. Currently, different components
(i.e. functional operations and higher-level components) take these safety requirements
and metrics as inputs to ensure safe behaviour and operation [144].

Recommended practices such as safety patterns AVs are a challenging target for soft-
ware and safety engineering with the possible heterogeneity of components and exchange
formats from external sources. Recommended practices in software design suggest the
use of interoperable entities and patterns to structure the system (e.g. similar taxonomy
for AV context, standardized message exchange). This idea of reuse and pattern from
existing solutions as individual validated parts is growing in the field of AV safety [76].
It may ease the process of system safety engineering (analysis, verification, validation).
The date of publication, interoperability and rate of adoption remain a limiting factor.

Formal approaches for safety assessment Safety engineering advocates for a rigor-
ous top-to-bottom design that systematically integrates the necessary functions sustained
by design tools and development methodologies for a consistent, verifiable and open-
to-validation architecture [85]. By contrast, a robotic approach is from the bottom up.
System design and software architecture in AV is a challenge, including a safety mech-
anism to architectures that are still under design, remains a major challenge. In order to
facilitate the verification and validation of requirements and systems, machine states or
other formal representations (e.g. Petri nets, Graphcet, Automata) are found in the liter-
ature. However, they impose to have a wide knowledge of the system at an appropriate
level of abstraction which can limit their coherence and reasonable exhaustiveness against
real environment.

2.3. Safety in Autonomous Vehicles 51

Addressing all the complexities of autonomy may leads towards ‘correctness-by-
construction’ architecture [25] involving contract based design, modularization, and com-
posability. Including safety , this is known as ‘safe-by-design’ architecture [20] when
safety have been purposely integrated as a cross-cutting non-functional quality from the
early stage of the development along with the safety analysis, safety goals and require-
ments.

Despite extensive testing of Level 4 AVs and exploratory work on Level 5 vehicles,
there are no long-term services without a safety driver [32]. Lessons learnt from these
deployments, and testing procedures are twofold. The recent accidents involving levels
1-3 vehicles have shown technical and usability limitations. Perception is far from per-
fect and may cause unintended consequences (e.g. Tesla accident on the highway [66]).
The monitoring of the system by the driver also shows usability and overconfidence con-
cerns (e.g. driver wrongdoing on system request resulting in a crash). On the other hand,
acquisition of experience and achieving shareable and reusable knowledge bases are cur-
rently mostly powered by open-road testing programs for both human and ADS. Level 4
vehicle testing has been publicly observed by the actors in the AVs field (e.g. Waymo,
Baidu, General Motors, Toyota, Renault-Nissan, Aurora, etc.). Currently, gaining matu-
rity and experience in the field contribute to continuously discover, verify and validate the
intended functionalities of the ADS.

To our understanding, these actors are either far from reaching a safe-by-design archi-
tecture or short of the safety assurance to move beyond the experimental phase.

2.3 Safety in Autonomous Vehicles

Safety-critical systems (SCS) are systems whose malfunction can result in the harm or
loss of human lives or damage to the environment. Our daily’s life is surrounded by
this type of systems such as airbag systems or ADAS in cars, trains, elevators or even
medical equipment. Not only we expect them to provide a correct functional service (e.g.
availability, capacity, performance, interoperability with others systems) but also to be
acceptably safe and secure. Therefore we can trust them when used. However, acceptably
safe or being safe enough cannot be measured that easily for a complex system. Besides,
there is no absolute safety because a system cannot be entirely risk-free considering some
residual risk may remain. It can be only achieved by reducing the risk of endangering
humans or causing damage to the environment to minimum levels.

Safety engineering proposes methods, techniques and tools to reduce and manage
those malfunction with accuracy to ensure a minimum level of risks such as failure anal-
ysis and fault-tolerance.

This section defines safety and its immediate environment from the literature to un-
derstand how the quality attribute is grasped and managed in systems. Then, safety ap-
proaches in the automotive industry are detailed for AV but currently face some limita-
tions with the highest levels of autonomy. Finally, we describe novel approaches pur-
posely designed for safety to tackle the specific safety operational challenges of AV.

Safety Definition in Systems
Safety is the absence of unreasonable risk. In other words, it refers to the absence of
harm from the system to the user(s) and the environment [17] such as driver, passengers,
road users and others road entities for road vehicles [1]. This definition seems simple,

Chapter 2. Autonomous Vehicles and Safety 52

but this quality involves a range of different concerns to address in more complex sys-
tems (e.g. cyber-physical). Evaluating safety consists of the observation and traceable
evidence of the various aspects of the system as a whole, including hardware, software,
humans, environment behaviour. For example, engineering safety in ADS-operated vehi-
cles consists in examining the accidental harm the vehicle can cause to the environment
and its source (e.g. through malfunction as internal failures, fault, error, capability limi-
tation), or the external context that can lead the vehicle to possible harm (e.g. obstacles,
adversarial weather, unexpected events or behaviours). A system defined as safe proposes
an assertable and acceptable degree to which accidental harm is prevented, reduced, and
reacted adequately to [52].

Safety is usually referred to as a system property or quality attributes [17][52] within
the literature. While its definition is widely accepted, it is necessary to distinguish it from
others such as availability (i.e. readiness for correct service), reliability (i.e. continuity of
correct service), integrity (i.e. absence of improper system alterations), and maintainabil-
ity (i.e. ability to undergo modifications, and repairs) [17]. They are composed into the
integrating concept of dependability as the ability to deliver service that can justifiably be
trusted [17]. A criterion for a dependable system is its ability to avoid service failures that
are more frequent and more severe than is acceptable. Additional attributes of confiden-
tiality (i.e. absence of unauthorized disclosure of information) and security (composite
of confidentiality, integrity and availability) are not related to safety but sometimes are
misinterpreted or may overlap. Firesmith [52] distinguishes safety from security (i.e. the
degree to which malicious harm is prevented, detected, and reacted to) and survivabil-
ity (i.e. the degree to which both accidental and malicious harm to essential services is
prevented, detected, and reacted to).

Thus, engineering safety in a system requires only to specify, develop and deploy
mechanisms to observe, predict and mitigate accidental harm in the whole life-cycle of
the system. However, the scope of safety implications is vast and may affect components
all across the entire system. It usually implies the creation of a variety of new process,
sub-systems, components and algorithms to handle the prevention, reduction and reaction.
It results in the generation of cross-cutting safety requirements all across the system. Fire-
smith [53] indicates that safety requirements may be confused with reliability ones (i.e.
advocating the continuity of service) and come from a variety of shareholders highlight-
ing the cross-cutting scope that safety can have. For this purpose, the author decomposes
the safety as four distinct safety-related requirements for a system that may have sig-
nificant safety implications as follows: (1) Safety requirements, (2) Safety-significant
requirements, (3) Safety constraints, and (4) Safety system requirements.

The first type of safety requirements refers to any requirements that specify mandatory
amounts of a subfactor of the safety quality factor (i.e. specifications to protect assets
from accidental harm, detect safety incidents, and respond to safety incidents). Contrary
to functional requirements that specify what the system shall so, they define what the
system shall not do or prevent from happening.

The second type is the safety-significant requirements. It relates to any non-safety pri-
mary mission requirement that can all negatively impact the safety of a system as it can
cause hazards and safety incidents (e.g. an accident or near-miss). They are the results
of the safety analysis of the primary mission specifications of the system (i.e. functional
requirements, data requirements, interface requirements, and non-safety quality require-
ments such as performance, robustness or reliability). These safety analyses regroup the
analysis of the system (i.e. asset, hazard, and safety risk analysis), and their combination
and exploitation (i.e. categorizes accident/hazard severities, accident/hazard likelihoods,

2.3. Safety in Autonomous Vehicles 53

Figure 2.5 Taxonomy for Safety Engineering including the four types of safety-related
requirements. From [53]

and associated safety risks) to output new safety-significant requirements. It is during
these analyses that Safety Integrity Levels (SIL) are calculated. They are a target level of
risk-reduction that a future safety function will need to provide for a specific system or
performance.

The third type refers to safety constraints as business rules or engineering decisions
like certifications that are treated during requirements engineering (e.g. compliance to
regulation, standard, law). It corresponds to mandated safety policy or safeguards that
affect the architecture development, design, implementation, integration, or testing (e.g.
presence of OEDR, ODD, fallback, and a safety driver and procedures for testing for AV).

The fourth type corresponds to the safety system requirements. They are requirements
that specify the safety systems and sub-systems built around the primary system already
covered by the three previous types. The safety systems only exist to ensure the safety of
the main system (e.g. emergency coolant system of a nuclear power plant). Their speci-
fication also involves some the three previous types of requirement since it is considered
as a new system and may operate with different concerns.

Through these different types, we were able to see the extent to which safety studies
could be carried out and the integration of their results as additional specifications. Figure
2.5 illustrates the different safety fields, the respective colored types of safety-related
requirements and how the pieces of evidence are obtained to aim towards a safe system.
At the end of the first process iteration, new analysis determine if the mitigation strategies
meet the safety goals so that all the identified risks are brought to a minimum acceptable
level according the selected safety standard. If it is not the case, the multi-iteration cycle
is repeated until the hazards, goals and analyses converge (i.e. identification of hazards
and safety risks, definition of safety goals and more detailed safety requirements, and

Chapter 2. Autonomous Vehicles and Safety 54

mitigation approaches for hazards). The choice of standard and the multi-iteration cycle
takes are part of the safety plan that gives the big picture for the project safety engineering.

Next section presents the current vision of safety in AV, the additional perspectives
that are adopted or in the way, and the new concerns and implications that need to be
tackled to ensure the safety holistically in AV.

Safety Approaches for AVs
Safety engineering in autonomous vehicles is mainly guided by the ISO26262 standard
[1]. It provides a collection of methodologies, techniques and tools such as safety anal-
yses, validation of evidences and evaluations that cope with the analysis, design and as-
surance of a safe AV. However, the standard alone fails to define and provide delimitation
for what ‘safe driving’ is and put it into requirements.

The next section presents the conventional approaches towards safety as performed in
the ADAS (level 1-3), outlines its current gaps and introduces complementary standards
or guidelines. Then, we detail a variety of architectural concepts, methodology and met-
rics that fills those gaps by representing, understanding and validating the safety by both
the human (e.g. architectural designers, developers, testers) or by the system itself (e.g.
monitoring, adaptation).

Conventional Approach: Functional safety from ADAS

The AV domain is relatively new in the vehicle industry. Therefore, there are no inter-
national standards explicitly developed for AV safety yet (and also security). Currently,
the ISO 26262 standard [1] is being used for road vehicles and AV safety. It describes
the functional safety for these systems and provides guidance, recommendation and ar-
gumentation for a safety-driven product development in the automotive area. Among
others, it gives methodologies, techniques and tools applicable for road vehicles. This
section briefly presents the standard and its related entities and identifies what the safe-
by-design AV means. Finally, it reports the issues of the current standard and how new
additional long-overdue standards and recommendations propose to address them.

Definition of ISO 26262 Historically, the standard is the adaptation of the generic norm
IEC 61508 for systems comprised of electrical and/or electronic elements standard to road
vehicles. ISO 26262 alone defines functional safety for automotive equipment applicable
throughout the life-cycle of all automotive Electronic and Electrical (E/E) safety-related
systems [128]. Functional safety refers to the “absence of unreasonable risk due to haz-
ards caused by malfunctioning behaviour of Electrical/Electronic systems”[1]. In other
words, it contributes to formalize and ensure the trustworthiness of the way of performing
safety analysis and how the safety requirements are integrated to make the architecture
safer. The standard specifies how to perform risk analysis and the consideration of their
results as the first step of the system design process. It acts as acknowledging the prob-
lems that can meet automotive safety-critical systems.

ISO 26262 is structured into 10 parts that describe the different safety activities, and
Part 3-7 target the safety life cycle.

Part 1 defines the vocabulary of terms used in the ISO 26262 series of standards. Part
2 describes a project management framework for functional safety to assist in the devel-
opment of safety-related E/E systems. Part 3 specifies the requirements for the concept
phase for automotive applications by defining the item (e.g. system or array of systems,

2.3. Safety in Autonomous Vehicles 55

Figure 2.6 The V-Model for system and embedded software life-cycle in ISO 26262.
Adapted from [1]

or function), performing the hazard and risk analysis for the item and providing a Func-
tional Safety Concept (FSC). This FSC is the analytical result of safety goals for all haz-
ards. They are derived and classified with an Automotive Safety Integrity Level (ASIL)
rating that is a risk classification scheme defined in Part 9. Part 4 focuses on the next
development phase and provides the requirements for product development at the system
level for automotive applications. Part 5 and 6 intervene in requirements at the hardware
level and software level for automotive applications. Part 7 specifies the requirements for
production, operation, service and decommissioning. Part 8 specifies the requirements for
supporting processes (e.g. configuration management; change management; verification,
hardware and software tool qualification, proven in use argument). Part 9 specifies the
requirements for Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented
analyses.

Appendix B (see page 163) presents the definitions of terms from ISO 26262 Part 1
relevant for this thesis. The adoption of this taxonomy aims to facilitate the discussions
about easing the understanding of safety.

V-Model for system life-cycle ISO 26262 advocates for two pillars in the rigorous
design of a safe system: Verification and Validation (V&V). Figure 2.6 illustrates the
V-cycle and how V&V intervene between each phase, and in between during the design
(i.e. each step from the earlier design, down to the specification of system and safety
requirements, to the implementation), and testing (i.e. between the implementation, up to
unit testing, software and integration testing and final product testing). What is important
to note here is the coexistence of two design cycles - one linked to System Engineering
and the other to Safety Engineering - which maintain links between them. In general,
coordination of the activities of the two business lines is necessary. This coordination
is reflected in particular in need to share data (documents, analyses, models) between
the actors of the System and Safety Engineering. More information is available in the
standard [1].

Chapter 2. Autonomous Vehicles and Safety 56

The specification of software and hardware safety requirements is the result of safety
analyses. They perform the hazard and risk analyses for each item and provide related
Functional Safety Concepts. The primary concern is the management of hazards. They
can be addressed through three different ways and related techniques as follows: iden-
tification of hazard is performed through analysis; elimination of hazard is achieved by
design; finally, control of hazard is implemented by management.

ISO26262 considers functional safety at the beginning of the safety-related system
design with the analysis of risks and identification of hazards for relevant safety-related
systems. This point corresponds to the second step of the design phase in Figure 2.6. A
variety of for low-level risk analysis are used, like Hazard Analysis and Risk Assessment
(HARA), Failure Mode and Effect Analysis (FMEA), probabilistic FMEA (FMECA),
Fault Tree Analysis (FTA), Event Tree Analysis (ETA), Hazard and operability study
(HAZOP). These tools result in the creation of safety requirements that may provide a
safer system design (i.e. Functional Safety Concepts (FSC) and Technical Safety Con-
cepts (TSC)).

The safety and reliability engineering analysis usually results in design changes that
concentrate on dealing with component failure such as redundancy and barriers (rail-
operational design to prevent failure propagation), high component integrity and overde-
sign (trustworthiness and robustness of the inputs), fail-safe design (safe mode as it does
not endanger lives or property when it fails, e.g. the human driver is asked to retake con-
trol of the DDT) or fail-silent (continue operating properly in the event of the failure into
a graceful degraded mode, e.g. mission remains pursued but with a loss of performance)
or other operational procedures (e.g. safety plan, checklists, training). The adoption of
the whole cycle contributes to consider safety from the ground up and incorporate safety
at every system level and every development stage, from design to testing and validation.
A similar approach needs to be pursued for AV regarding the design of autonomy and the
safety-related. It specifies enough the requirements of the different components so that
a change made to specific sub-systems do not affect the verification of the entire vehicle
(i.e. ‘side-effect-free’ integration of new individual components).

Limitations and bottlenecks However, the application of ISO26262 meet some lim-
itations that are predominantly due to the autonomy required in AV. This results in a
difficulty in applying the methods and scale up even with some adaptations. The fact
that ISO 26262 has gaps in the later steps of the design phase and flaws in its applica-
tion to AV is acknowledged across the domain [57, 76, 105, 128, 144, 147]. It is at the
heart of the debate as to whether it is applicable to the development of autonomous vehi-
cles and its functions involving cognition or artificial intelligence. However, ISO 26262
is the only document that positions itself as a standard for every type of road vehicles,
AV included. Moreover, adherence with the safety standard in any AV is essential not
only for the comprehensive coverage it provides throughout the product safety life-cycle
(from concept to decommissioning) but also because demonstrating compliance with the
prevailing best practices is an important factor for the exclusion of liability in case of a
system malfunction [76]. Using the assessment methods and already qualified tools in an
existing non-AV tool-chain remains some crucial factors in determining how trustworthy
a system could be (i.e. providing partial analysis and evidence) but might also add new
faults. We detail these bottlenecks as follows:

2.3. Safety in Autonomous Vehicles 57

Conventional solutions alone may be worse. On one side, this conventional solu-
tion may longer work but may be even worse applying not answering to key questions.
Törngren et al. [144] reports some difficulties from applying ISO 26262 to provide an ac-
ceptable safety assurance and not sufficient. They remarks that not only safety assurance
problem remains, but also that common cause failures are difficult to deal with and dupli-
cating the main functionality (i.e. providing redundancy) may need negotiation between
the system if they disagree. On the other side, functional approaches for autonomy alone
makes the safety hard to handle afterwards. Most of the research functional approaches
claims to be saef-ready will encouter difficulties to integrate safety design and assurance
while it should have been done at the start of the system conception making it hard to
perform. In brief, this duality makes the problem of safe autonomy for AV bigger and
enhances the complexity of the management to be done.

Knowledge gaps and Incomplete identification of hazards. Previous claims are
also sustained by the NHTSA report of Hommes [147] that mentions a lack in guidance on
hazard identification and elimination (FTA, FMEA) in the concept phase. They concern
the systemic and interaction related problems for complex software intensive E/E systems
(emergence). These lack of detailed design specifications at the early design phase may
lead to an unacceptable level of residual risks. Moreover, some vocabulary introduced
may help but the related requirements are missing. For instance, the operational safety
& behavioural (roadworthiness) is defined as the “property or ability of any kind of au-
tomobile to be in a suitable operating condition or meeting acceptable standards for safe
driving and transport of people, baggage or cargo in roads or streets” but not specified.

Observability and controllability of autonomy. The Automotive Safety Integrity
Level (ASIL) becomes difficult near complex to determine in AV. It results that most
of the system become described as ASIL D in level 4-5 vehicles. These levels are no
longer relevant for the highest levels of automation, when there is no driver for fallback.
In addition, conventional methods to meet ASIL D (e.g. redundancy) are questionable
[144]. New concepts for observability and controllability may be necessary as the system
replaces the human being for monitoring and performing fallback.

Towards architecting AV with autonomy and safety. Performing both autonomy
and safety engineering becomes difficult with AV since both of the perspectives inter-
twine but go to different directions. While the first way adopts a bottom-up approach to
define continuously new requirements, data, tests, and other necessary features, the safety
prones out a top-down analysis that need to be systematic and based on detailed design
specifications (i.e. complete list of systems, functions). Missing some specifications, not
taking the dynamic behaviour of systems into consideration (i.e. emergence due to feature
interaction), or failing to provide safe evidence of safety requirements integration could
result in some autonomy-related functions not to provide enough safety.

Performance of the autonomy functions. We have seen that driving automation
is a difficult operation for levels 4 and 5 (i.e. perceive and understand the vicinity and
take appropriate decisions as fallback). Not performed well, they can cause hazard and
may result in critical accident but this performance not good enough to be safe is not
necessary due to a malfunction. It can be the source of a wrong definition and specifica-
tions of the roadworthiness. It is also possible that performance limitations may be the

Chapter 2. Autonomous Vehicles and Safety 58

cause. For example, sensors may cause improper/erroneous internal representations such
as false negatives. In addition, sensors in degraded mode may also contribute to lower the
robustness of the perceived data.

Lack of big picture on safety and observability. The automotive industry has fol-
lowed the excellent architectural principle of ‘separation of concerns’ the systems having
limited knowledge of the existence, purpose and functioning of the other sub-systems.
However, it fails when no system-wide reasoning is available in the presence of severe
uncertainty, disturbances or internal failures whereas some tighter coupling based on ma-
chine learning for autonomy perform faster. Machine learning has brought increased
progress to a variety of functionalities involved in the autonomy. Computer vision has
improved the ability to detect surrounding objects in various conditions and better clas-
sification. Decision-making also increased its ability to produce actions that are effec-
tive and robust under uncertainty with the partially observable Markov decision process
(POMDP). However, they have the disadvantages to currently be brittle to environment
changes and data degradation. They also are like a black box with opaque behaviours re-
ducing the potential for observability and verifiable granular specification (e.g. prediction
of failures, how to perform validation against requirement when inductive training give no
requirement nor design insights). Using ML in conventionally engineered safety-critical
systems is still an open question according to [129]. Moreover, the uncertainty that orig-
inated from these probabilistic approaches may cause improper/erroneous internal repre-
sentations such as false negatives and propagates to the rest of the system. Thus, it needs
to be addressed with evidence to identify potential unknown emergence. Computer vi-
sion detection requirements issues may jeopardise the expressiveness and relevance of the
perceived information (object, properties, behaviours, expectation). Consequently, with
approximate sensors robustness, it becomes hard to achieve a holistic vision for safety in
the AV within the system as and or even granular run-time views for each component.

Limitation of human supervision. Lesson learned from the start of deployment
and testing of AV shows that the people are sometimes relying on automation to a degree
at which manual skill decreases. Extreme situations where driver failed to perform their
expected tasks or identify the wrong-doing of the system have led to critical collisions (see
1.3). Although there are less fatalities with these types of vehicles, societal and ethical
issues remain in providing and testing beta safety-critical system while acknowledging
that driver attention is mandatory.

Raised questions In addition to previous consideration, recent accidents emphasize the
need for safety in the AV life-cycle (e.g. limitation of human customer supervision and
distracted safety driver without monitoring). Consequently, these systems, which are con-
sidered critical to safety, must systematically investigate the perspectives for robustness,
reliability, safety, ethics and social acceptance. The remaining question is “How safe is
safe enough?” for AVs. We have seen that safety engineering corresponds to having
residual risks to a minimum level supported by substantial evidence. However, verifica-
tion and validation are tricky. Even if the vehicle may identify the conditions and perform
for a safe state [122][157], how many miles in closed, virtual, and public roads provides
acceptable evidence [74]? Which other criteria are acceptable (e.g. MRM performance,
number of disengagement, incident per miles, failure injection while driving)

2.3. Safety in Autonomous Vehicles 59

In [58], Lex Fridman and Elon Musk reach a consensus on how to win the race of
AV that many companies would not face the risk to miss. It consists of acquiring a
large amounts of real-world data (high confidence, analysis and replay value), accumulate
miles driven (functionality to validation), and finally improve the relative safety of AV
(iterative refinement of requirements, analysis) and reduce knowledge gaps (wrong model
assumptions, edge cases, unknown unknowns [127]). Elon Musk also projects that safe
enough means performing better than humans; two times to be acceptable and up to four
times less than crashes, injury, death to be really impactful. To illustrate that keeping
humans in the loop may be dangerous, he takes the example of the automated elevators
that are no longer operated by humans for safety and reliability reasons.

Progressive coverage by extensions with recommendations and future standards
Over the years, several organizations have proposed recommendations, voluntary guid-
ance and best practices for the development and deployment of autonomous vehicles.

Historically, three leading organizations including NHSTA (National Highway Traf-
fic Safety Administration) [107], BASt (Germany Federal Highway Research Institute)
[60] and SAE International (Society of Automotive Engineers) [39] have individually
published slightly different standards defining the levels of automation of autonomous
vehicles. The number and the differentiation of levels for each proposal are somewhat
different, mainly due to the diversity of point of views regarding automation capabilities
and technical usage. However, the three schemes globally converge on the key automation
definitions. Finally, the propositions result to be subsumed in the SAE J3016 and latest
updates [40, 41]. As we have been able to present in previous sections, the document
covers the autonomy of the driving tasks with guidance on the concepts of DDT, DDT
fallback, OEDR, ODD. Although it does not address every part of the non-functional
analyses, this is the first document to give enough guidance for the driving automation
and the environmental conditions to be used as reference.

Based on these new levels, NHTSA [108] describes its vision for ADS and its life-
cycle by including the considerations of ISO 26262 and regulations. This document aims
to aid industry as it moves forward with testing and deploying ADS and each state to draft
and establish plans for ADS.

Waymo publishes its first safety report in 2017 [152, 153] that conveys the list of
good practices the company adhere to. It also defines different aspects of safety, such
as the usual functional safety, crash-analysis safety. The relevant one in our scope is the
behavioural safety that finally “focuses on how a system should behave normally in its
environment to avoid hazards and reduce the risk of mishaps”. Even it may intertwine
with the functional operations of driving, it is identified as resulting from both the collab-
oration of autonomy and safety engineering.

The ISO/PAS 21448: Road Vehicles or SOTIF (Safety of the Intended Functionality)
[2] aims to address whether a driving function under normal operation behaves in a safe
way. It only address the part of the concept of behavioural safety that is not in the scope
of the ISO 26262 (i.e. malfunctions can occur even with defect-free equipment). It fo-
cuses on the hazards due to functional insufficiencies (e.g. sensors which do not function
in all environmental conditions) or reasonably foreseeable misuses (e.g. inappropriate
driver monitoring). SOTIF is all about the scenarios as it provides tools and guidance in
enumerating scenarios and triggering events to generate a giant scenario database. The
iterative process of data collection and risk reduction is performed until the residual risks
are acceptable. However, this new standard fails to address the rest of the problem: so-

Chapter 2. Autonomous Vehicles and Safety 60

Figure 2.7 Coverage of the AV concerns by the different existing and future standards.
Adapted from [82]

ciety and ethics (i.e. How safe is enough?), system life-cycle (e.g. updates), vehicle
operations (i.e. driver do more than just drive), and perception for object classification
remain (i.e. validation of inductive training).

Finally, the recent goal-based and agnostic UL4600 standard intends to be the first
comprehensive document to address the safe deployment of autonomous vehicles and
mobile robotic products in Q4 2019 [124]. It [80] explains how validation of the safety
of a autonomous vehicles can be performed without stating any design approach or spe-
cific technology to used via methodology and metrics for V&V. The standard focuses on
addressing the complexity of the combined ODD, OEDR, Manoeuvres and Faults [83]
and supplement some safety activities. The society and ethical considerations are left to
under production ethics standards drafted around autonomous and intelligent systems in
the IEEE P700x series. Figure 2.7 illustrates a comprehensive vision of the presented
standards and summarizes their coverage around key aspects.

Conclusions As suggested by UL4600, adopting a goal-based and agnostic approach
may be a suitable and methodical way to objectively measure how one AV comply with
its expected intended functionalities and performances as well as to include perspectives
for robustness, reliability, safety, ethics and social acceptance. These documents advocate
for more transparency, a minimum performance and autonomy software safety. Although
these recommendations and new standards may guide for better autonomy and safety
integration in AV, the variety of documents addressing each intertwined concerns shows
that safety is achievable through multiples ways. An everlasting question remains to
solve the safe autonomy puzzle: What coverage pieces of additional methodologies or
mechanisms remains necessary to obtain a complete safe design?

Next section answers this question by presenting six different pieces of puzzle to
provide and ensure safety in AV.

Purposely Designed Approaches to AV Safety

One of the significant challenges in deploying a fully autonomous vehicle is to design,
develop and validate the system with an acceptable level of safety. Pursuing better safe

2.3. Safety in Autonomous Vehicles 61

design copes with the issues and gaps of the complexity of safe autonomy by proposing
pieces to improve the current state-of-the-art in the respective areas. These solutions take
different forms. They are methodologies, modular analysis, structural patterns, shifts in
how the problem is managed, or behavioural adaptations.

To our knowledge of the current literature, numerous approaches exist to progress
towards a safe-by-design architecture as well as systems perspectives to be more robust,
easier to design, and easier to verify and validate. We have identified the following cate-
gories:

1. Novel trends and evolution of the methods in safety management

2. Robustness of systems and functions driving the autonomy

3. Designing Safe Embedded Software

4. Model-based Safety Supervisors and shifting some safety assessment to run-time

5. Safety architectural patterns for fail-safe and fail-operational systems

6. Formal safety approaches to design and manage dependable systems

7. Safety metrics to guide AV safety assessment and certification

Novel trends and evolution of the methods in safety management The ISO/PAS
21448 standard fills the gaps of ISO26262 on the design and development activities for
functional safety. It targets insufficient item definitions that result in inadequate safety
requirements and safety goals that could be violated even when the system is fault-free.
However, the promoted safety analysis methods still lack guidance on hazard identifica-
tion and elimination in the concept phase [147].

Other approaches have been proposed in the literature for hazard analysis to address
the lack of safety requirements and constraints of the system before detailed design. Dif-
ferent works have reported STAMP/STPA to identify different hazard than conventional
ISO 26262 HARA and FMEA methods [139, 147].

Systems-Theoretic Accident Model and Processes (STAMP) [97] have the particular-
ity to describe the individual and multiple components failures but also covers the design
and nominal performance flaws. This inappropriate system performance includes man-
agement process, requirements, human behaviour, indirect or non-linear interactions and
technical parts.

Systems-Theoretic Process Analysis (STPA) is the method to analyze systems based
on STAMP [98, 99]. The difference of the type of accident model and how risks are
considered with FMEA results in finding a different coverage of the possible hazards and
thus leads in to further safety goals that were previously not handled. The method consists
of three steps.

The first step corresponds to the preliminaries of the analysis. It consists of the iden-
tification of the accidents and hazards based on the outputs of the HARA approach and
the identified control structure of the system. The control structure diagram identifies the
major components and controllers and is labelled with the control/feedback arrow.

The second step identifies the critical safety control actions on the high level of ab-
stracted view of the system. They are obtained by crossing the control action from the
control/feedback arrows with four general hazardous types (i.e. not providing causes haz-
ard, providing incorrect, providing at wrong timing/order, and stopped too soon/applied

Chapter 2. Autonomous Vehicles and Safety 62

too long). This way we know whether or not they lead to hazardous events. Then, each
unsafe control action is translated into a corresponding safety constraint by using the
guide words (e.g. “shall” or “must”).

Finally, the third step identifies the causal factors of the hazardous events to implement
the safety countermeasures changes to fit the new requirements. It consists of determining
the controller process models, and analyze and modify the different controller, control
path or feedback path, and process accordingly.

Different works have applied the STPA method to vehicles and have reached positive
outcomes [4, 19, 42, 90, 119, 128, 144]. Moreover, STPA is detailed as additional hazard
analysis method in the safety report of some AV actors [54, 55, 62, 152, 153].

The literature advocates for the combined application for STPA and functional safety
ISO 26262 in order to discover more hazard and gather more goals and requirements
[4, 19, 128] and integration to standards [148]. Some work also advocates for the even
more extensive integration of all standards and recommendations for Safety analysis as
they combine both ISO 26262, STPA, SOTIF, augmented faults trees and Goal Structuring
Notation (GSN). GSN is a graphical notation for modeling a safety argument, which is the
core part of every safety case that gives a clear, comprehensive and defensible argument
that a system is acceptably safe to operate in a particular context.

The outcomes of the STPA method are positive. The possible combination brings
more perspectives for other standards. The iteration is possible until satisfying granularity
in software code and software requirement is reached. But it actually requires some trade-
off regarding the difference in vocabulary addressed in [3], and the manual interventions
from a safety engineer on the modeling tools. An industry-ready version of the STPA
would involve tool-chains need to be systematic and automated as possible to ease the
development and verification.

We can also expect the UL4600 standard to propose combined methodology with
STPA to address other parts of safety life-cycle in AV from the conception to run-time.
This recent standard intends to address changes required from conventional safety prac-
tices to accommodate autonomy.

Perception building robustness and stress testing to adversarial inputs Perception
systems are particularly affected by unusual situations. However, safety needs to know if
the detected object is a person while the machine learning-based system can only answer
that it matches as a person in its training data with a relative confidence. The functions
responsible for the autonomy need to be either more efficient and more robust with addi-
tional training.

To measure, discover and patch, three directions for testing have been performed with
autonomous vehicles. Closed course testing is conducted in a managed environment,
making it quite safe, but have the disadvantage to be expensive and not scalable.

The second is public road testing and excels in identifying “easy” cases. This method
is costly as it requires to deploy a fleet to acquire data and experience, and potentially
dangerous (see accidents during testing in Section 1.3, page 25). Brute force road testing
should not be for debugging (ethical issues) but for data collection purposes only accord-
ing to [81]. However, the validation of the driving system with this method would require
100M miles per critical mishap or surprise. Moreover, it would take the unrealistic dis-
tance of 1 billion miles of testing if tests need to cover from 3 to 10 times the mishap
rate.

2.3. Safety in Autonomous Vehicles 63

The third allows reducing these number by performing driving simulation and focus
on the specific scenario and situational training. This method is highly scalable (cloud
processing power), less expensive and the safest, but it only creates scenario the developer
of the simulator have thought of.

The most challenging part of testing is to cope with these limitations of scenario and
unknowns. The study of edge cases has shown promising results in acknowledging those
surprises and unusual, rare, unique or unknowable things not seeing during testing. They
correspond to gaps in training data that can lead to perception failure that the developer,
tester, safety practitioner did not catch. Moreover, they are due to a variety of factor:
the limitation of the perception system within specific environment (e.g. camouflage,
sun glare, occlusion), unusual road obstacles, unexpected or strange human behaviour
(e.g. person with an animal costume), non-understood interaction (e.g. human perform
form of signalization in a construction area, human being bare legs). Edge case testing
is mostly context-dependent [81], and their listing contributes to create a “Zoo”. On this
basis, robustness testing consists in a variety of methods such as altering the scene (re-
move or alter object), data augmentation (add new object to the scene), data degradation
(adversarial inputs), data fuzzing (add noise) and injecting “unrealistic” faults.

To conclude, reaching an acceptable level of testing for validation should refer to the
ability of the system to react to objects and events from edge case “zero”.

Designing Safe Embedded Software and System Architecture Leveson [96] advo-
cates for safer system engineering that systemically integrates system hazard analysis,
user task analysis, traceability, and informal specifications combined with executable and
analyzable models. The complexity of most embedded software limits our ability to as-
sure safety after the fact. The proposed approach requires considering it from the start
of system development and designing the software. Thus, it reduces the potential for
hazardous behaviour that achieves higher confidence in safety.

The recommend method to be adopted by INCOSE (International Council On Sys-
tems Engineering) and the French AFIS (Association Française d’Ingénierie Système) is
model-based engineering. This type of engineering is no longer based on documents but
on models manipulated in the being formal or semi-formal. The change mentioned is
therefore accompanied by the introduction of the implementation of formal methods.

From an architectural perspective, Behere et al [26] report that the intended function-
ality can be addressed through two complementary approaches. The first one, named
‘correctness-by-construction’, refers to principles and mechanisms of composing sys-
tems out of subsystems in a way that there are no unexpected side effects or emergent
behaviour. The constructionist design methodology involves the integration of a large
number of functionalities that must be carefully coordinated to achieve coherent system
behaviour [25]. The second approach consists of eliminating the feature interaction both
at the design phase and run-time. The feature interaction occurs “when the operation of
a subsystem/feature interferes with the operation of another subsystem/feature leading
to unexpected and undesirable system level behaviour” [26]. It is a direct result of the
cognitive complexity [89] from continuously and mandatory compliance to a variety of
high-level goals and policies. The authors [26] suggest it can be achieved using a for-
mal representation of both the architecture, a feature interaction, and use model checking
and verification methods to search for the feature interaction in the architecture. Some
run-time detection and resolution have been performed in the networking and telecom
domains, but far from the assurance of robustness and safety an AV may need.

Chapter 2. Autonomous Vehicles and Safety 64

Furthermore, Bagschik et al. [20] translate this vision to safety proposing and re-
defining the term ‘safety-by-design’. Only multidisciplinary and cross-domain efforts
from academic disciplines may provides such design. It results in the need for a holis-
tic engineering process to carry out and manage the emergent properties of safety of a
complex system both during design and run-time.

Therefore, a shift is occurring from manually designed to self-organizing architec-
tures that can learn and grow to accommodate to autonomy (e.g. learn to learn). Accord-
ing to [141], such solution replaces top-down design approach with methods that allow
the system to manage its growth. Thus, it requires the solution to have a high degree of
architectural plasticity. The authors identify three efforts to pursue autonomous architec-
tural adaptation and system growth: system components shall have the possibility to be
dynamic and not fairly static; the architecture shall include as many as components as
possible and not be limited by what a designer or team can handle; and finally, compo-
nents and their interconnections shall be self-managed in the architecture to pursue higher
flexibility and scalability.

To conclude, designing safe embedded software consists in providing scope for
holistic safety in the constructionist approaches and prepare the transition towards self-
organizing architectures.

Model-based Safety Supervisors and shifting some safety assessment to run-time A
supervisor plays the role of providing a holistic safety assessment at a specific scale of
the system: a nominal channel is monitored by another channel with an higher integrity.
In safety engineering, supervisors are conventionally safety systems designed to monitor,
analyze, predict, and mitigate failures or faults happening in the nominal system. They
belong to the safety countermeasures established for the system safety of the nominal
channel. Safety engineering conventionally prefers that predictable critical properties are
established at design time. However, dealing with the uncertainty that comes from the
unpredictable environment forces the system to be adaptive in order to keep it acceptably
safe.

A vehicle-centric supervisor in AV aims to maintain the coherence of the underlying
systems to pursue safe navigation [71]. It can involve a variety of fail-safe, fault-tolerance
and fail-silent mechanisms and monitoring processes that are triggered in case of perfor-
mance degradation or malfunction of any of the systems.

In application, the system run-time monitoring shall identify and predict future vio-
lations of safety-critical properties detection of violations and mitigate them. Two sub-
classes for safe adaptations can be distinguished. The first, adaptive fault detection, pre-
vents the system to be brought into an unsafe state by performing threat assessment that
warrant a set of predefined rules. The second, adaptive failure mitigation, involves self-
adaptation in the sense that the system can detect, evaluate and react to a potential failure
(e.g. caused by uncertainties faults) and bring the the system into a safe state. This mit-
igation implies the supervising system to also be self-adaptive so that it adapts to the
uncertainties, uses knowledge (a-priori and acquired by learning based on experiences)
to make own decisions, and operates correctly by controlling and changing the system
behaviours.

For example, Törngren et al. [144] propose a fault-tolerant functional architectural
(functional safety) in which a safety supervisor that complements the nominal function-
ality of driving. The safety supervisor represents a redundant and simpler set of func-
tionalities that should take over if the nominal channel fails. The supervisor consists

2.3. Safety in Autonomous Vehicles 65

of autonomic structured functions (Monitor, Analyze, Plan, and Execute) and performs
run-time monitoring over internal and external safety constraints to assess. Internal con-
straints refer to the possible violations in the status of the nominal channel and the vehicle
platform while external ones target any causes of violation in association to the driving
scenarios. Such approach imposes to have an observable nominal channel at different
key interfaces (e.g. sensor status, sensed objects and properties, near-term trajectory and
planned set-points send to control) and enough knowledge to appropriately perform the
various run-time verification and plausibility checks upon the context. However, the way
of formulating and deriving safety constraints, as conditions or risk measures that cover
all relevant hazardous events, is recognized as difficult by the authors [144] as possibly
hand-crafted. This limits the ability of the architecture to scale within a new and evolving
context.

Such concerns aim to be handled with run-time safety assurance. In essence, it con-
sists of shifting not only the safety countermeasures but also the whole safety engineering
considerations and activities from development time to run-time. It covers the different
steps of HARA, V&V, Assurance and Certification. A general scheme of the process and
the related functions is proposed in [37, 145] to dynamically manage functional proper-
ties as well as non-functional properties and assurances following the model@run.time
design [15]. It requires quite a variety of sources of knowledge about the new tasks and
their corresponding high-level cultures (multi-concern and multi-level models to specify
goals, policies). It also needs the mechanisms to operate that knowledge and templates
for the possible generated countermeasures.

Some research works are pursing in this direction, and not only address the needs
for knowledge representation [11, 131], but also propose constructivist architectures that
evolve and change how the safety assurance is performed [154][155].

To conclude, safety supervisors and the operating knowledge will shift to run-time in
order to purse a more composed and personalized safety assurances (e.g. functional safety
and other types). This is also extendable for other system qualities which was not possible
to handle at design time and in a human-scale development, but now possible with the
large models that documents the different safety engineering considerations, activities,
tasks and mechanisms.

Safety architectural patterns for fail-safe and fail-operational systems Supervisors
are a form of safety controllers that act at usually the high-level scale of the system.
However, other safety patterns exist to provide fault tolerance and mitigation at a different
level of granularity for the system. They usually consist of multi-channel approaches that
ensure the safety of nominal usage. A typical application is the avoidance of any single
point of failure in the software. Patterns are accepted and generalizable solutions to a
specific set of needs, such as a safety argument. They oppose the anti-patterns that reflect
how some ad-hoc solutions or clever shortcuts fail to make the system safe. The usual
pitfalls for safety to be avoided are mixed-SIL software without isolation, no redundancy
for high critical functions and confusion between fault detection and availability. Thus,
appropriate patterns would provide solutions to cover those cases in the forms of cross-
checked redundancy for fault detection, standby redundancy for availability, and clear
separation between high and low SIL functions.

For example, the doer/checker generic pattern provides a simplex architecture be-
tween two systems to provide a fail silent channel. A low integrity doer operates the main
functionality that has a low safety integrity level (SIL). A high integrity checker monitors

Chapter 2. Autonomous Vehicles and Safety 66

its inputs and outputs. It has a high SIL and acts as a safety envelope checker involving
simple functions. Different versions of this pattern exist upon the integrity of the doer
and checker, their software/hardware allocation and the trade-offs (pros/cons). They can
provide different behaviours for the system to fail: fail-silent (discontinued operation)
or fail-operational (full or degraded operation of a function even if a failure occurs). In
[144], the supervisor consists of several doer and checker couples that safely operate dif-
ferent steps of the driving operation (M, A, P). The checkers diagnose the safe operational
state space of the doer and any unsafe state space that triggers the performance of a safety
manoeuvre or complete take over of the doer by the checker.

To conclude, the architectural patterns that focus on safety, autonomy, or combined
safe autonomy are instruments for reducing the complexity of system design and system
integration referred to composability and correctness-by-construction [76]. They intro-
duce principles for generic reconfiguration and control over the different elements of the
system.

Formal safety approaches to design and manage dependable systems Formal ap-
proaches aim to work on the correctness and completeness of the requirements, which
involves the creation of one or more models. A model is an abstract description of the
system and/or process. This simplified representation facilitates the manipulation among
shareholders and its verification as well as reduces the system complexity.

For the design of dependable systems, formal approaches are well suited as they can
make sure that for each possible event, a system reaction is specified — this way each
foreseen event are considered and take place in the design of the model. Thus, they are
used to define and prove system safety properties (e.g. model checking, control system
analysis, use of validated synthesis tools, kinematic analysis, and correct by construction
approaches).

However, formal approaches meet limitations in a partially known environment and
in their scaling up to the entirety of an autonomous vehicle, although they remain par-
ticularity valuable for the safety arguments [85]. For example, edge cases do not allow
to have a complete list of events to mitigate (OEDR). Moreover, safety remains an emer-
gent property that results of the intertwine between the system (design, implementation,
knowledge) and the environment in ways that often reach beyond the formal verification
and modelling.

Some research works aim to tackle those challenges of formal approaches such as
[49] that bring probability in Petri-nets with a fallback application or [100] that surveys
the formal specification and verification of autonomous systems.

Safety metrics to guide AV safety assessment and certification A metric is a mea-
surement or a Key Performance Indicator (KPI) for an observable feature. A set of gen-
erally applicable metrics or signals that presage an accident can contribute to identifying
and measuring the risks and system performance for different outcomes. The safety do-
main refers to two types of indicators that can exist [93]. Lagging indicators analyze past
performance where actual safety outcomes involved harm (e.g. crashes, injuries, deaths,
costs). Leading indicators identify the potential for an accident before it occurs and influ-
ence future performance (i.e., proxy measures of driving behaviours correlated to safety
outcomes). The leading indicators are proactive measurements as context feedback and
provide a means for predicting and anticipating the risk or mitigating the future perfor-

2.3. Safety in Autonomous Vehicles 67

mance results. Their identification and control can significantly affect the effectiveness
of the safety control structure in the system to prevent misbehaviours or accidents.

Obtaining an effective set of leading indicators is a clear objective for safe systems.
Their identification conventionally results from the safety analysis and other control pro-
cesses. Leveson [93] indicates that good quality indicators need to achieve several goals
as being:

• Complete, a process for determining what should be checked, how, and when will
be a critical part of the identification of the leading indicators. No process is perfect
in its coverage, but it needs to address all critical assumptions.

• Consistent, the leading indicators may underlay some inconsistencies that need to
be identified and handled.

• Effective, the indicators should appropriately address the underlying assumptions,
uncertainties, and vulnerabilities and accurately evaluate risk.

• Traceable, each leading indicator and the action attached to it should be identified
as a response to one or more assumptions.

• Minimal, there should be no extraneous assumptions, checks, or actions that are not
necessary to prevent accidents.

• Continually improving, the leading indicators should be frequently updated over
time in response to feedback about their effectiveness.

• Unbiased, the leading indicator process should minimize standard biases in risk
assessment and management. Reducing the exposure to bias may involve updating
the structured method for identifying, detecting, and managing leading indicators.

Much effort has been spent on trying to identify these indicators in AV to assess safe
driving and autonomy. Metrics as miles driven and the frequency of human intervention
are used for open-road testing and are displayed as evidence for the public. However, they
are reported as insufficient to demonstrate the safety of the AV [57]. Moreover, additional
metrics in use for AV accident analysis have also proved to be not sufficient even after car
crashes [36] and need improvements [51]. The AV research effort is shifting from the old
race for “quantity of miles” to the “quality of coverage” required for safety awareness,
testing, verification and certification.

The report [57] aims to propose a global understanding and measuring of the safety
in AV. The authors are surprised about the unclear and no standard definition of safety in
AVs. They take the lagging and leading indicators as AV safety characteristics to define,
measure and communicate on the safety puzzle. They identify three types of relevant
leading indicators: (1) infractions as failures to follow traffic rules, (2) disengagements
as the occasion when human has to take-over (e.g. during testing), and (3) roadmanship
as the ability to drive safely and appropriately within the road space. The roadmanship
concept is an attractive leading measure of safety conceptually but complicated defini-
tionally [57]. The general idea behind this concept is to regroup all indicators that cover
the ability to drive without creating hazards and responding to the ones created by other
road users. It is not defined yet by standards, but it is partially integrated into existing AV
ad-hoc approaches using terms like appropriate, behavioural or safe are used.

Moreover, the report identifies additional goals for good quality AV safety indicators
to be objective, physics-based, available using current technology, and reflective of the

Chapter 2. Autonomous Vehicles and Safety 68

official and unofficial rules of the road. Surveyed measurements include the potential
for near-misses or near-crash, the events of rapid acceleration or deceleration, time-to-
collision, the probability of an unavoidable crash, the definition of a safety envelope, and
effectiveness of evasive manoeuvres. Like all types of measurements, practitioners have
to make a trade-off between the advantages they offer (e.g. meet some of the expected
goals) and drawbacks (e.g. subjective, incomplete, irrelevant in certain conditions, covers
only partial indicator effectiveness goals, or techniques and tools not yet available).

Recent work and industry best practices have started to report publicly the rules and
best practices they are using to grasp the safety [103] and the concept of roadmanship.

For example, Shalev-Shwartz et al. [133] proposes a safety envelope, called Respon-
sibility Sensitive Safety, established around five formal logic and rules. Some consist in
managing numeric metrics that intervene during driving with limits and conditions under
which the system must operate, such as the longitudinal distance (don’t hit the car in front
of you) and the lateral distance (don’t cut recklessly). Others are more high-level rules
and detail how the autonomous vehicles should behave and interact: the right-of-way is
given not taken (i.e. negotiation), be careful in these zones with limited visibility and
occluded areas (e.g. hidden pedestrian behind a wall or a car), and safely and legally
avoid collision without causing another one (i.e. don’t be the initiator of unsafe decision
leading to accident).

Other research works [122][157] have also covered with metrics what constitute a safe
state and a safe spot to immobilize the vehicle for its fallback.

For the coverage of technology-agnostic metrics, we also have high expectation for
the future UL4600 standard [124] to formalize safety measurements and awareness across
level 4-5 autonomous vehicles. It may provide farsightedness on existing recommenda-
tions (e.g. RSS requires to be more about edge cases and road conditions [86]). The future
standard might also provide a library of detailed metrics, recommendations of application
in specific contexts, and processes and tools for the identification of new indicators and
maintenance of existing ones.

To conclude, identifying a practical set of leading indicators for an AV needs to meet
some key characteristics to be integrated into the system. They contribute to provid-
ing risk identification, assessment, prediction and anticipation to prevent future misbe-
haviours or accidents, once each drawback is acknowledged and managed. A library of
metrics, tools and processes for metric identification and maintenance would help the AV
domain to purse safe driving.

Synthesis
Winning the race to safe level 4-5 AV is not only achieved by acquiring large amounts
of real-world data and accumulate miles driven but mostly through the improvement and
assessment of the “quality of coverage” of safety in AV (e.g. reduction of its knowledge
gaps, run-time assessment, combined metrics).

Safety analyses are complex with different methodologies and approaches in the spec-
ification of the system requirements that have to be combined to reduce any gaps or resid-
ual risks. The entire process of analyzing and managing the safety of the system needs
to be systematically performed as it ensures the coherence (correctness-by-design and
safety-by-design) and the traceability during all the life-cycle of the vehicle (design, im-
plementation, assembly, operation, maintenance). In addition, the association of safety
with autonomy and run-time needs to face the incremental gain of maturity of the future
AV system towards adaptive or constructivist architecture.

2.3. Safety in Autonomous Vehicles 69

With this in mind, we propose to designate the global discipline as “self-safety”. We
consider this autonomic meta-property as covering the intelligent representation, compo-
sition, and orchestration of the safety qualities in components based on self-configuration,
self-optimization, self-healing and self-protection properties. Self-safety refers to the
ability of the system to provide both safety-awareness and a dynamic safety management
in order to guarantee the overall safety of the system based on different and heterogeneous
autonomic properties and mechanisms.

The different categories and related works have lead to the identification of four
mandatory quality system (NFP) for safe autonomy to progress towards safe-by-design
architectures as well as ones that are more robust, easier to design, and easier to verify
and validate.

Observability Measurements and indicators requires observability points in the system
architecture to produce both machine and human-interpretable data that detect defect and
presage an accident (e.g. to know if the system is not just getting lucky to successfully
avoiding an obstacle). They contribute to the construction of insights on the design, per-
formance, and intention of the autonomous system. Availability of the measures depends
on the specific AI uses (e.g. black-box IA, grey-box AI, functional), the measure type
(design time or run-time), and its management (operational, tactical, strategical). Such
access to a variety of data thought built-on or built-in monitoring contribute to provide
different adaptive services such as fault-tolerance, evaluation of the health and perfor-
mance and roadmanship of the system, and also assessment of the current contextual
situation.

Traceability The observability and traceability contribute to demonstrating that the sys-
tem is doing the right thing for the right reason in run-time. To design and operate such
monitoring and adaptation, the system requires traceability to be consistent, to have ratio-
nal reconfiguration decisions that can be explained with justified reasoning, and to ease
verification and validation upwind. Safety assurance traces the different evidences such
as safety analyses, system requirements, system design and implementation, knowledge
representation, behavioural rules and metrics. In the scope of adaptive systems, the sys-
tem need to have and provide access to them, and even make them (e.g. learning).

Reconfigurability and Evolvability Approaches have arisen in the field of AV systems
towards run-time monitoring and assessment to manage identified risks, catch assumption
violations, uncertainties (e.g. unknown unknowns) and safety assurance. Only a system-
atic approach to the vehicle’s context and its system capabilities of driving, reconfigu-
ration and evolution can achieve to cope with the safe autonomy complexity. Involving
abstraction on the context and the components implies the use of a knowledge model to
capture the relation between the available components, their interfaces and specifications.
Based on such understandable knowledge of the system, the compositions of those de-
scribed components can be the study of design and run-time to provide the most relevant
adaptation mechanisms. Perceiving the system as multiple control loops contributes to
extending the ability of the system to manage the uncertainty using dynamic and flexible
run-time adaptation mechanisms. In application, the leading indicators are expected to
change over time as well as the architecture of the system to cope with the new context
(e.g. updates by ODD, OEDR, mission, goals, beliefs, learning).

Chapter 2. Autonomous Vehicles and Safety 70

Flexibility for managed Composability and Maintainability The design and devel-
opment of autonomous systems are heading towards highly dynamic and flexible self-
adaptive reference architectures. They seek to achieve a greater extensibility, modularity,
agnosticy, interoperability, composability and maintainability of behavioural and struc-
tural system adaptations [138]. Extensibility refers to the ability that new components
can be easily plugged to be added to the system. Modularity emphasizes loose coupling
and high cohesion to take system to the next level of abstraction. Agnosticy refers to
the unawareness or noncommittal willingness of global system to know the specific na-
ture of the components until their integration (e.g. add knowledge as respective logic)
or interaction (e.g. add scheme to exchange). Interoperability allows the components to
be discovered and to easily communicate dynamically (e.g. caused by the heterogene-
ity, the reconfiguration or the evolution of components). Composability suggests that the
components with generic structures and interfaces can be combined to fit new actual goal
or create a new metric. Maintainability covers the replacement, update and disposal of
the component and knowledge. All of these attributes contribute to building the different
management services of a self-adaptive architecture (i.e. discovery, composition, orches-
tration, deployment and binding capabilities) and makes their customization available at
design and run-time.

2.4 Conclusions
This chapter has shown how safe autonomy evolve through systematic analysis of AVs,
specifically through the creation of architectural representations (functions, supervision
for holistic safety, patterns, formal models), representation of knowledge (metrics, rules)
and process (safe system design). Figure 2.8 illustrates the four domains where some long
term perspectives enable to progress towards safe autonomy, i.e. Concepts, Architecture,
Systems Engineering and Technical Implementation. On this behalf, they advocate for
approaches to provide greater observability, traceability, reconfigurability and flexibility
for which the AV domain have only done very brief and occasional excursions yet [25].
Progress from the contemporary low-level concepts (inner cycle) to the arising high-level
concepts (outer cycle) involves these four non-functional properties. Their support can
be integrated by extension, refactoring, redesign or composition of existing concepts,
architectures, methodologies and implementation.

Architectures. Both safety supervisors and nominal channels operations is shifting to
run-time in order to pursue a more composed and personalized safety management and
assurance. The future of the safety domain lies in flexible and reconfigurable structures
for run-time system level reasoning and their openness for architectural evolution (e.g.
learn and grow to accommodate to autonomy). Achieving such autonomic enhanced de-
sign not only enhances the observability and traceability of safety in the driving system
architecture but also promotes reconfigurability and flexibility to progress towards a scal-
able adaptable architecture.

Concepts. Potential solutions address the problem of validating machine learning by
separately and independently define what “safe”, “appropriate” and “behavioural” oper-
ation means. This separate set of safety requirements could be imposed as a set of in-
dependently monitored behavioural requirements on the autonomous vehicle’s autonomy
[75]. Such monitoring and approach to holistic supervision can be used during validation,

2.4. Conclusions 71

Figure 2.8 Evolution towards observable, traceable, flexible and reconfigurable systems
and self-safety. Adapted from [25]

on-road testing, and perhaps deployment to ensure that the vehicle does not exhibit unsafe
behaviours, even if gaps or faults still exist in systems based on machine learning [79].
Such future autonomic or adaptive architecture should integrate knowledge bases, goals
and policies orientation as well as self-managing and orchestration functionalities. The
result is that both behavioural and structural adaptation strategies should reason on mod-
els (e.g. system self-model, environment), actions, outcomes and their desirability (e.g.
links between context and behavioural safety). Moreover, the concept of safe autonomy
bases its trust in the construction of behavioural and structural adaptations that progress
towards the creation of consciousness, self-awareness, and self-organization.

System Engineering. Improvement of the current practices, methodologies and tools
for modelling safety-critical complex systems will favor the integration and enforcement
of qualities that were not possible to handle at design time and in a human-scale de-
velopment. It makes reference to the design of safe embedded software that consists in
providing scope for holistic safety in the current constructionist approaches and prepare
the transition towards self-organizing architectures. System engineering provides a scope
for composing both the new types of architectures and templates in implementation to
contribute to easing the design, development and traceability.

Implementation. The shift to adaptive or constructivist architecture will undoubtedly
introduces paradigm shift in the way the system is implemented. A pattern for such
autonomous system will require to support reflectivity, knowledge acquisition, learning,
massive parallelization, real-time control (i.e. from simple monitor to a hierarchy of

Chapter 2. Autonomous Vehicles and Safety 72

controllers) [25]. This will require new programming languages, capabilities, tools and
patterns to fit the new needs.

What is next. The following chapters explore the four introduced categories. They
provide our contributions that compose existing approaches from different domains to
progress towards these desired high-levels levels.

Chapter 3 tackles system engineering practices and surveys potential approaches that
contribute in managing and providing behavioural safety to autonomous cyber-physical
systems. We also explore a MBSE methodology to design and model autonomous vehi-
cles.

Chapter 4 proposes a microservice-oriented autonomic architecture for safety-
awareness and safety dynamic management in coherence with our NFP of observability,
traceability, reconfigurability and flexibility.

Chapter 5 provides the application of the two previous contributions with models and
implementation of the AV safety management system in a pedestrian case study.

CHAPTER 3

Methodology and Architecture for
Safety Management

“All models are wrong; some models are useful.”

- George E. P. Box, Statistics for Experimenters, 2005

Contents

3.1 Introduction. 73

3.2 AV Safety and Systems Engineering . 75
System Design Complexity in Autonomy 75
“Safe-by-Design” Architectures towards run-time Safety Representation

and Assurance . 75
Ensuring Safe Operations with Self-adaptive Software 76
Composable and flexible systems . 77

3.3 Modeling for Safety Assessment with MBSE in AV. 77
Application scope . 77
Background on MBSE . 79
Modeling with Arcadia/Capella . 80
Integrating dynamic safety analysis and management in Arcadia/Capella . 83

3.4 Problem reformulation . 93
Rationales for potential solutions . 93
Potential technical solutions in logical and physical view 93

3.5 Conclusions . 94

3.1 Introduction
Ensuring the trustworthiness of autonomous systems can not only be based on evidence
from some rigorous design methodology and critical system engineering techniques and
standards [135]. The enforcement of AV safety when the system is designed, imple-
mented, and operated have led us to the identification of four mandatory non-functional
properties for safe autonomy (NFP). Their considerations make the system progress to-
wards safe-by-design architectures as well as ones that are more robust, easier to design,
and easier to verify and validate.

Their considerations also traduce into providing evidence that the abstract system
model fosters the system’s nominal behaviours, guarantees its critical system goals and

73

Chapter 3. Methodology and Architecture for Safety Management 74

manages any deviations from them. Their goals, coordination and composition may only
result of a global model-based analysis with a symbolic and conservative representation
both human and machine-readable. Therefore, the whole design process requires a more
or less exhaustive analysis to identify all kind of harmful events and their possible effects.

Then, the implementation of DIR (Detection, Isolation, Recovery) mechanisms con-
tributes to detect those symptoms and mitigate them as it keeps or brings the system back
to a set of trustworthy states. Moving them from correctness at design time to run-time
autonomic management may reduce existing gap between critical and best-effort sys-
tems engineering on autonomous systems. They require not only cutting-edge theory but
also to find adequate trade-offs between quality of control and performance. Proposing a
variety of DIR-type adaptive processes within the supervised system involve complex de-
cision methods by keeping critical goals and plan best-effort goals according to resource
availability. Immediate downsides are the ability to react promptly for timely recovery or
the creation possible conflicts between the different control loops.

Shifting the mitigation and assurance to run-time to cope with uncertainty and con-
text complexity constitutes a critical change in System Engineering. This turning point
involves new types of theory and architecture to handle these system-level functionalities
and new kinds of architecture coping with the different NFP (e.g. large distributed evolv-
able autonomous systems with non-predicable dynamically changing environments).

This proposed computational model for autonomous systems suggested in [135] can
provide a basis for studying model-based autonomous system design. However, such
abstract model-based architecture may appear difficult to grasp in its entirety at the first
sight since the design and run-time operations have become more complex. Nonethe-
less, this additional complexity is necessary to appropriately integrate the results from the
environment analysis and symbolic representation that contribute to tracking the possi-
ble trade-offs and evidence. Design flows involving these solutions are not yet mature
and rigorous in the automotive industry, but some initiatives start to provide the different
pieces to build up such a solution.

This chapter focuses on the study of model-based autonomous system design and
investigates the design flows and initiatives grasping with the previous computational
model.

Section 3.2 details how System Engineering allows coping with the complexity of
designing and integrating the different concerns and quality properties using views, in
particular, safety. We also survey self-adaptive software solutions in the literature that
contribute to performing safe operations from a quality assurance perspective.

Section 3.3 formulates and deriving safety constraints as conditions or risk measures
that cover all relevant hazardous events in regard to the vehicle behaviour. The scope of
the work turn around behavioural safety for a level 4-5 Autonomous Vehicle so that func-
tional safety is not directly addressed but remains acknowledged for the later technical
design of the supervisor. An abstract model of the vehicle is proposed using the Arca-
dia methodology involving the expected operational functionalities from the vehicle, the
system, the environment and the actors (i.e. stakeholders, actors, regulators, recommen-
dations).

Section 3.4 reformulates the solution independent from any technical solution as log-
ical and technical requirements to be met in the framework proposed later in this thesis.

Section 3.5 summarizes our findings.

3.2. AV Safety and Systems Engineering 75

3.2 AV Safety and Systems Engineering

This section investigates how safety in AV is managed in SE. We pursue the finding and
analysis by exploring research works and solutions in the different domains limited to
QoS regarding one or more properties.

System Design Complexity in Autonomy

The combination of multiple functions having different and complementary capabilities
enables the emergence of Autonomous Vehicles. Their deployment is limited by the level
of complexity they represent together with the challenges encountered in real environ-
ments with strong safety concerns. Thus a major concern prior to massive deployment is
on how to ensure the safety of autonomous vehicles despite likely internal (e.g. malfunc-
tions) and external (e.g. aggressive behaviours) disturbance they might undergo.

System Engineering has partially contributed to respond to the complexity of auton-
omy, context, system architecture and knowledge. Autonomy precises two challenges in
both System Engineering methods and Knowledge representations.

In the first place, System Engineering offers to manage complexity of the AV func-
tional and non-functional decomposition. The System Theory is a way to cope with
complexity alongside analytic reduction and statistics. Systematic approach to manage
complexity with appearance of new defined needs: the necessity to provide holistic and
systematic engineering (through methodology, tools, processes and definition). It offers
traceability and flexibility of the architecture (systems, components, features) in the life
cycle. In addition, it may provide top-down, bottom-up and middle-out possibilities to
enhance and integrate learning processes, updates, new regulations facilitating the acqui-
sition and adaptability of the knowledge mandatory for autonomous systems.

“Safe-by-Design” Architectures towards run-time Safety
Representation and Assurance

Despite the fact that the automotive industry practices a bottom-up approach to the
engineering of autonomous driving systems focusing on functions and technologies first,
architectures have been including those concerns and architecting towards these proper-
ties. They capture both AV functional decomposition, AV non-functional decomposition
(i.e. safety) and AV contextual decomposition. The compliance to them in standards and
research towards more self-awareness and safety in AV have successively been introduced
at different scale of adaptation to the system.

Hybrid architecture In the first place, the structure of the framework of Albus on
4D/RCS [10] introduces a hybrid control architecture being both deliberative (i.e. ac-
tions based on reasoning and planning) and reactive (i.e. fast actions based on direct and
simple condition on feedback). On the one hand, the framework structure ensures reason-
ing and planning processes based on goals and priorities of the decision entities within a
control hierarchy. On the other hand, reactive loops that provide a faster and controlled
response are introduced at each level of the control hierarchy, and can locally modify
planned actions to adapt to new events. This approach is close in its concept and struc-

Chapter 3. Methodology and Architecture for Safety Management 76

ture composition to the autonomic computing paradigm [77] introduced by IBM, with a
hierarchy of autonomic orchestrating managers in IT infrastructure.

Degraded states and modes In their work to define robust system architectures, Tas
et al. [43] emphasize the relation between architectural design and the use of degraded
operation modes, introduced by [101]. The authors refer to the design of a functional and
layered system architecture as one of the main focus of autonomous driving to deal with
safety-critical challenges in systems engineering. Moreover, they suggest that the use of
an effective monitoring system is necessary to give proper feedback to the vehicle about
its state and to allow to take well-adapted decisions. Modes and graceful degradations
continue to be investigated in the literature [50].

Self-awareness on system’s abilities and limitations In the matter of monitoring,
Reschka et al. [123] report the needs to provide a permanent online monitoring of ve-
hicle capabilities, as well an adequate modelling tool to support appropriate and safe
decisions. Accordingly, the framework perceives the current performance of the system
during operation, by knowing the range of actions of the system and its limitations. With
respect to ISO26262 standard [1], the authors propose the use of ability and skill graphs
to design the functional architecture of AV. Those skills reflect the performance feedback
of the system and then are used for system self-perception. Moreover, Colwell et al. [38]
also introduce degradation for subsystem functionalities and ODD restriction to grasp the
limit of the safe system operation.

Constructivist and layered evolvable architecture
Regarding the long-term evolution of AV in systems engineering, Behere et al. [25]

overview the key functional components and orientations needed for autonomous driv-
ing, to establish a layered evolvable functional architecture. They report the necessity
of constructivist architectures managed by Artificial Intelligence to tackle the limitations
of current engineering practices for scaling to more complex systems. These so-called
constructivist architectures introduce a fundamental shift from manually designed to self-
organizing architectures that evolve at run-time. The current challenge resides in the pos-
sibility of run-time reasoning and run-time verification of the desired properties as safety
constraints. The design and implementation of such architectures will involve paradigms
and technologies from non-automotive domains. For example, the use of reflective intel-
ligent control systems based on a high-level supervisor on the functional layer that will
allow the monitoring and change of its behaviour for better adaptations.

Those approaches have been introduced progressively in the automotive domain in or-
der to propose solutions for well-adapted decisions; to apprehend the range and limitation
of actions of the system; to evolve the structure to provide better adaptation behaviours;
and finally, to integrate non-functional dimensions. Researchers have started to investi-
gate the application of such models in run-time environments combining safe-by-design
and run-time mitigation across the system and its functionalities. This software change
beyond typical software evolution approaches which has led to the vision of self-adaptive
software.

Ensuring Safe Operations with Self-adaptive Software
Several run-time models that have been experienced and surveyed to cope with uncer-
tainty have been proposed [67, 110]. They are presented as an appropriate solution to

3.3. Modeling for Safety Assessment with MBSE in AV 77

cope with the concerns of safety in AV emphasized previously. This type of architecture
involves constructivist or evolvable or dynamic behaviours or systems and are referred as
self-adaptive architecture. They act as an orchestration solution that can support accept-
able trade-off to pursue the assurance of some non-functional quality such as safety in
evolvable and reconfigurable system [25].

Composable and flexible systems

Introduction to microservice

Regarding software architecture, modularization and abstraction have been the first stages
to break down the complexity of systems in programs and architectures. However, accord-
ing to Dragoni et al. [47], those stages still result into the creation of monoliths, where
monolithic applications are generally built as a single unit with functionalities spread in
modules and components that are not independently executable. The final product and
code result in difficulties for scalability, maintainability and evolvability. In order to cope
with these considerations it suggests the use of micro-services as an architectural style
in software development to create a single application as a suite of small composable
services. In order to confront the previous issues, the components are forced to only
implement one functionality that results in the expression of one capability. Inspired by
service oriented computing, Martin Fowler et al. [56] formalize the terminology of this
current movement in software development as alternative to monolithic style applications.
The approach suggests to isolate all business capabilities of the systems into simple and
small specialized services similar to components but decoupled enough to be indepen-
dently deployable by an automated deployment machinery. A micro-service results to be
an independent functional process that express one capability, also defined as cohesive
[47], interacts with messages and owns its domain logic locally.

Microservice in self-adaptive or safety-critical systems

[125] is an application of micro-service architecture for aerial unmanned vehicle. The
intended approach in its ability to discover new services at run-time and provide an au-
tomated deployment machinery requires micro-services to be auto-descriptive by seman-
tically describing their business capability (behaviour), goal (system), logic, structure
(component) and interface (communication). The advantages of using microservices in
designing is their capacity to fail small. Not only they allow smart adaptation based on
observation of such faults, they also make the fault-tolerance mechanisms easier to bound.

3.3 Modeling for Safety Assessment with MBSE in AV

Application scope
Current work in the domain have proposed relevant approaches for the refinement, inte-
gration and enforcement of AV safety. Considering safety as a dynamic control problem
proposed by STPA/STAMP in [98, 99] has shown promising applications and results in
[19, 42, 90, 119], and a complementary approach in [4, 128, 148] towards the AV stan-
dards and the traditional failure analysis for hazards coverage [55, 139]. However, most
conclusions of these works insist on the difficulty to provide a scalable automation for

Chapter 3. Methodology and Architecture for Safety Management 78

Hazard Through
identification analysis
elimination design

control management

Table 3.1 Mitigation of hazards in safety engineering

production-ready analysis processes to the AV context and a flexible enforcement of these
safety constraints in parallel. Consequently, they only result in a partially-holistic view of
the ADS restricting its ability to argue (e.g. on decisions, observation restrictions). The
flexibility and manageability of performing safety assurance at run-time in AV require
expertise and related work from others domains than automotive to address the presented
concerns.

Control structure for safety analysis towards reduce residual risks

The combination with the conventional ISO26262 analysis (FMEA, HARA, Safety case)
and STPA allows to perform safety analysis in order to provide a large scope of detection
of hazard and mitigation of the residual risk. The goal remains the same as it is to create
systems that integrates easily the safety requirements of any types that may have impact
on design or can only be mitigated during system operation.

The primary concern of System Safety is the management of hazards as described in
Table 3.1. It presents the 3 ways of managing hazards leading to the reduction of the risk
to a manageable and acceptable level.

Composition of the Safety Analysis and Assessment in AV architecture

In our approach, we propose to apply to integrate the awareness of the hazard analysis
in the system model via some machine-understandable knowledge. We also consider the
strategies of the hazard management in the form of control loops. We propose to call these
loops the “safety assessment processes” as they constitute workflows involving different
functions like monitoring, classification, evaluation, planning or mitigation. To determine
the rightful allocation between the different functions, dataflows and each workflow, we
propose to perform a combined safety analysis with STPA/STAMP and ISO that were
both presented in Section 2.3 (see page 60).

The combination of both STPA/STAMP and ISO hazard analysis have been performed
and shown an extended coverage of the hazard [4]. However, such application requires to
consider a specific ODD and reveals to be an iterative process with continuous refinement.
Experiments [42] have been applying it to AV and formalized this context-dependant
analysis method using a taxonomy (operational keyword to generate a sentence creating
the different scenarios).

In the first place, we propose to start the hazard analysis at the high-level representa-
tion of our architecture with the behavior competencies and regulations. Consequently,
we start by identifying some general use cases involving the vehicle competencies (e.g.
perceive and react near a pedestrian crossing). Then, we determine the hazards, the con-
trol structure of the system and identify the unsafe control actions to construct the haz-
ardous scenarios. Finally, safety constraints can be identified and allocated to the different
systems or components or functions involved. This integration may result in the creation
of a new version of the system architecture (i.e. design constraints). The constraints that

3.3. Modeling for Safety Assessment with MBSE in AV 79

suggest some run-time management through control loops are called “safety assessment
processes” (SAP) in our research. They will be the focus of our work as we want them to
be deployed when the context requires it.

This process is then iteratively performed by applying it these new version but also
when the system architecture is continuously refined and more defined in-depth (bottom-
up).

Background on MBSE

MBSE Methodology and Techniques

The previous point were dealing with the process of designing and maintaining architec-
ture. However, what language or formalization can be used to describe software architec-
ture?

UML (Unified Modeling Language) is one of object-oriented solutions used in soft-
ware modeling and design. UML is a language (of object modeling) and therefore pro-
poses a notation and a semantics associated with this language (i.e. models), but no
process methodology (i.e. an approach proposing a sequence of steps and activities that
lead to the resolution of a problem). Therefore, UML is not a method. UML unifies
object methods with a design process that was strongly influenced by its intended use in
object programming. UML has a whole approach (i.e. covering the entire development
cycle: analysis, design and implementation) that is object-oriented (and not functional):
the system is broken down into collaborating objects (rather than tasks broken down into
functions that are easier to perform). However, its application is not particularly adapted
to modeling complex systems, and suited to system engineering in the first place.

The Architecture View Model designed by Philippe Kruchten, also called 4+1 view
model represents the functional and non-functional requirements of software-intensive
systems. They are represented in the different views that offer and describe the system
from the viewpoints of different stakeholders (e.g. end-users, developers, system engi-
neer, and standards). The four views of the model consist of the logical, development,
process and physical views. Each one achieve a set of specific concerns regarding the
system in addition to a use case or scenario view that describes the sequences of interac-
tions between objects and between processes involving the system and guiding the other
views. The logical view is high-level and focuses on abstraction and encapsulation, it
models the main elements and mechanisms of the system. It identifies the elements of
the domain, as well as the relationships and interactions between these elements "notions
of classes and relationships". The component view expresses the physical perspective
of the code organization in terms of modules, components and especially the concepts
of the language or implementation environment. From this perspective, the architect is
mainly concerned with the aspects of code management, compilation order, reuse, in-
tegration and other pure development constraints. To represent this perspective, UML
provides adapted concepts such as modules, components, dependencies, interface. The
process view is very important in multitasking environments; it expresses the perspective
on concurrent and parallel activities. The deployment view expresses the distribution of
the system through a network of computers and processing logic nodes. This view is
particularly useful for describing the distribution of a distributed system.

SysML is the new modeling language defined by the OMG. It can be seen as an
extension of UML for modelling a broad spectrum of complex systems. It is based on
UML and replaces class and object modeling with block modeling for a vocabulary more

Chapter 3. Methodology and Architecture for Safety Management 80

adapted to System Engineering. A block includes any software, hardware, data, process,
and even people management concept

Much more than a simple modeling tool, Capella is a model-based engineering solu-
tion that has been successfully deployed in a wide variety of industrial contexts. Based
on graphical modeling, it provides system, software and hardware architects with rich
methodological advice based on Arcadia, a complete model-based engineering method.
The DSML Arcadia/Capella is based on the UML/SysML and NAF standards, and shares
many concepts with these languages. It is the result of an iterative definition process
driven by software systems and architects working in a wide range of business areas
(transport, avionics, space, radar, etc.). Many industrial companies, such as Airbus,
Areva, Thales, Continental and Renault are currently interested in using Capella and run-
ning pilot modelling projects with this tool. It exists because Arcadia allows you to:

• Ensure collaboration at the engineering level by sharing the same reference archi-
tecture.

• Manage the complexity of systems and architectures.

• Define the best optimal architectures through compromise analysis.

• Manage different levels of engineering and traceability through automated transi-
tion and refinement of information.

The couple Capella/Arcadia associates both the tool and the language: referring to
MBSE’s three well-known pillars, one could say that ARCADIA provides both a model-
ing language and a modeling approach, and that Capella knows the language and method
perfectly.

With a similar scope around adaptation, EUREMA is an integrated MDE approach
as it rigorously and consistently uses models for engineering feedback loops [150]. The
models are used (1) to represent the adaptable software to achieve self-adaptation as pro-
posed by the idea of models at run-time (Models@run.time [27]), as well as to design
(2) individual adaptation activities for feedback loops, (3) feedback loops as a whole, and
(4) coordination between these loops. Finally, (5) these models are used throughout the
life cycle of the self-adaptive system, i.e. to specify, execute and evolve feedback loops
with their adaptation activities. This approach introduces a model-driven architecture ap-
proach that guide the design and development of complex and evolving systems while
claiming to guarantee the portability, the interoperability and the reusability of the final
system.

Modeling with Arcadia/Capella

Introduction to Arcadia/Capella

ARCADIA (ARChitecture Analysis and Design Integrated Approach) is a model-based
engineering method for the architectural design of systems, hardware and software. It
was developed by Thales between 2005 and 2010 through an iterative process involv-
ing operational architects from all Thales businesses (transport, avionics, space, radar,
etc.). It applies a structured approach over successive engineering phases that establishes
a clear separation between requirements (operational needs analysis and system needs
analysis) and solutions (logical and physical architectures), in accordance with the IEEE
1220 standard. ARCADIA recommends three mandatory interdependent activities at the

3.3. Modeling for Safety Assessment with MBSE in AV 81

Figure 3.1 The main engineering levels of Arcadia and transition steps [126]

same level of importance: Needs analysis and modeling; Construction of architectures
and validation; and Requirements engineering.

Arcadia DSML (Domain-Specific Modeling Language) is based on UML/SysML
standards and NAF and shares many concepts with these languages. But a modeling lan-
guage was preferred in order to facilitate ownership by all parties stakeholders. Arcadia is
mainly based on functional analysis, then the allocation of functions to the components.
The richness of Arcadia DSML is comparable to SysML with about ten types of diagrams:
data flow diagrams, scenario diagrams, state and mode diagrams, component distribution
diagrams, component distribution diagrams, component distribution diagrams functional
distribution, etc. There are also diagrams available from ARCADIA at different levels
that are detailed in Figure 3.1.

The Capella tool provides the different set of tools to carry out the system modelling
and automated transition steps from one level to the next providing traceability in the
refinement of the different element of the system model architecture.

It is noticeable that the Arcadia method is presented in a top-down manner by nature.
However, the representation can also be bottom-up if we start from an existing system for
instance. In the next chapters, our example will assume the extension of the ADCC archi-
tecture. For this purpose, the Arcadia methodology relates more about levels providing
key representations objectives rather than phases or steps. In addition, all the architectural
levels are not stated as mandatory. Since the methodology aims to guide the analysis and
modelling processes, some levels may be skipped depending the system complexity and
model expectations (e.g. operational analysis, logical architecture, EPSB are optional).

Operational Analysis

The Operational Analysis represents the highest level of the Arcadia method. It focuses on
answering the question “what the users of the future system need to accomplish?”. At this
level, the future system is not yet represented as a modeling element but the identification

Chapter 3. Methodology and Architecture for Safety Management 82

of the needs and objectives of the system start in this step. This level constitutes the
first representation of the system environment by modelling the jobs of future users as
activities, roles to fulfill while precising the operational conditions of the system. A
series of activities and of interactions constitutes a process and contributes toward an
operational capability. The creation of models and scenarios representing the different
elements allows to check the adequacy of the system to these operational needs.

This level of Operational Analysis consists in:

1. Capture and formalize the operational needs from the different stakeholders.

2. Define what the vehicle (System) need to accomplish and how the other actors
contribute, influence or impact.

3. Also identify the different entities in each separate domain (entities, actors, roles,
activities and concepts).

System Analysis

The System Analysis places the system as the central element of the dataflow representa-
tions in interaction with the external actors. It focuses on answering the question “what
the system must accomplish for the users?”. The System Analysis involves the identifi-
cation of system capabilities and functions that satisfy the operational needs defined in
the previous level. At this point, the system is still considered as a black-box as no in-
ternal structure should be decided yet. Only function and communication exchanges may
be allocated during this external functional analysis. Consequently, this analysis consists
in refining the system functions with the decomposition of the top-level functions and
adding the constraints of non-functional properties. For these aspects, these diagrams on
Capella provide rich mechanisms for managing complexity: simplified links calculated
between high-level functions, categorization of exchanges, etc.

Functional chain can also be displayed as highlighted paths. They represents a specific
path involving a sequence of the system functions and exchanges and are relevant for
assigning constraints (latency, criticality, etc.), as well as organizing tests on a specific
system features.

This level of System Analysis consists in:

• Define what the system have to accomplish for the users.

• Identify the boundary of the black-box system, consolidate the requirements
(sourced from the actors).

• Model functional data-flows and dynamic behaviours.

Logical Architecture

The Logical Architecture aims to identify the different logical components that form the
component structure inside the system. It focuses on answering the question “how the
system will work to fulfill expectations?”. This level provides tools to represent the re-
lations between components and their content, independently of any considerations of
technology or implementation.

The previous model described in the System Analysis can be imported via an auto-
mated transition to Logical Architecture model. Thus, it keeps all the previous definition

3.3. Modeling for Safety Assessment with MBSE in AV 83

and description of the top-level function and exchanges. On this basis, the Logical Ar-
chitecture carries out the internal functional analysis where all sub-functions subsumed
by the previously identified top-level functions need to be identified and allocated to a
specific logical component while keeping tracks of the integration of the non-functional
constraints .

This level of Logical Architecture consists in:

• Provide a white-box vision of the system identifying how the system is fulfilling
the expectations.

• Propose a first step for trade off-analysis.

Physical Architecture

This level of Physical Architecture possesses the same objective than the Logical Analysis
but defines the final architecture of the system providing information on how the system
will be built. This level reflects the technical choices and defines the different components
(software and hardware).

This level of Physical Architecture consists in:

• How the system will be developed and built.

• Software vs. hardware allocation, specification of interfaces, deployment configu-
rations, trade-off analysis.

EPBS and integration contracts

An additional level EPBS (End Product Breakdown Structure) is available to define the
“conditions that each component must fulfill to satisfy the architecture design constraints
and limitations, established in the previous phases” [126]. This last level answers to the
question “what is expected from the provider of each component” and is usually used
with sub-contracting.

Integrating dynamic safety analysis and management in
Arcadia/Capella

Overview of the Composed Methodology

We propose to design a methodology based on the Arcadia to appropriately represents the
safety-related adaptive processes by synchronizing the step of the Arcadia methodology
with the STPA analysis for the set of defined scenarii. For each step of Arcadia, we
propose to associate an STPA analysis for any representation that contains the equivalent
of a control loop.

Process of Integration for Safety Analysis

Operational Analysis In the first place, it is necessary to base our analysis on what
the behavioural requirements the AV system and vehicle needs to accomplish and the
source of these requirements. In fact, multiple actors are the sources of requirements that
can highly impact how the vehicle need to behave, how it is design and implemented.
Standards, recommendations, guidelines, state-of-the-art, car manufacturer, regulators,

Chapter 3. Methodology and Architecture for Safety Management 84

renting or end customers impose diverses requirements to the AV system that can be both
functional or dysfunctional coping with totally distinct disciplines (e.g. functions, safety,
ethics, social acceptance, security, etc).

The operational analysis of the Arcadia methodology contributes to capturing those
operational needs from the different stakeholders. It defines what the vehicle need to ac-
complish and how the other actors contribute, influence or impact. Indeed, we model the
whole process of actors and requirements that identify the different entities in each sep-
arate domain with a specific vocabulary of entities, actors, roles, activities and concepts.
The functional part definition of the system takes as inputs the different behavioural com-
petencies, OEDR, ODD, DDT and requirements from different shareholders available in
the literature [142].

The actors of the non-functional part also takes place as they require specific opera-
tional capabilities to manage properly conditions or risk measures that cover all relevant
hazardous events in regard to the vehicle behaviour. The following figures contribute to
illustrate how high-level capabilities, entities, actors, interactions, activities and process.
It is important to notice that the creation of diagrams contributes to refine step-by-step the
model of the system. The next figures are views (or windows) to observe the semantic
model that have been incrementally built using the Capella tool and following the Arcadia
methodology.

Figure 3.2 defines the operational entities and the capabilities involving both the func-
tional and the safety concerns. This first diagram “Operational Capabilities Blank” that
helps defining the domain or business around the product is created empty by default
(blank). At this level, we start to represent the “real” needs of the various shareholders
without the architecture, design or technical implementation in mind. We describe the
model with Operational Capabilities (OC), Operational Entities and Operational Actors
(OA) and the relation between them. For autonomous vehicle, shareholders often de-
compose the needs between functional and non-functional concerns. We also propose to
distinguish functional and behavioral safety strategies from the functional part of driving
to initiate the technical design of some sort of the core of the supervisor (both in the model
and in the future physical architecture). For this purpose, we have identify some func-
tional oriented capabilities at the top-half of the Figure 3.2 with the driving automation
and some non-functional strategies at the bottom-half (safety and social dimension). In
addition, we have performed a additional step in the definition by refining each OC into
some subsumed OCs. To illustrate, the DDTs are represented as OC as they can not be
translated into activities and later as functions since they remain high-level definition of
general service for operational objectives. In our case, their description and traceability is
performed with some involved activities and operational processes (e.g. SENSE, PLAN,
ACT) that other diagrams detail (e.g. Figure 3.4).

3.3. Modeling for Safety Assessment with MBSE in AV 85

Figure 3.2 [OCB] Operational Capabilities

Figure 3.3 defines the architecture between the operational activities and the inter-
actions between the different actors to grasp the operational context of the system. The

Chapter 3. Methodology and Architecture for Safety Management 86

activities (in yellow) correspond to the different process steps carried out in order to reach
a precise objective for the entities. They might need to use the future system in order to do
so, or the system might use it (e.g. Provide ODD definition). For example, we allocated
to the operational context of the autonomous vehicle as the surrounding environment it
may perceive (external observations) as well as its internal observations (system states).
These observation are then consumed by the driving automation activity of the functional
layer. This diagram also represents activities related to the ODD as it is a major source of
the environment representation and formalization of needs from the different stakehold-
ers with expressions (e.g. rules or contracts to require behaviour X in situation Y, or to
prevent X in Y). The construction (structure) and definition (content) of the ODD play a
major role in our definition as well as the understanding of the current situations in which
the system is involved. Finally, additional activities are also represented in interaction
with the previous activities to address the non-functional concerns and strategies to use.

To define with more detail the activities and the respective interactions for each capa-
bility (OC), Capella proposes to create an OAIB view (Operational Analysis Interaction
Blank). Figure 3.4 and Figure 3.5 are OAIB diagrams. They respectively represent the
capabilities of “Operate in a given Operational Design Domain (ODD)” and “Operate
the Dynamic Driving Tasks”.

3.3. Modeling for Safety Assessment with MBSE in AV 87

Figure 3.3 [OAB] Operational Context

Chapter 3. Methodology and Architecture for Safety Management 88

Figure 3.4 [OAIB] Capability “Operate in a given Operational Design Domain (ODD)”

3.3. Modeling for Safety Assessment with MBSE in AV 89

Figure 3.5 [OAIB] Capability “Operate the Dynamic Driving Tasks”

Chapter 3. Methodology and Architecture for Safety Management 90

System Analysis The role of this next level is to identify the different functions or
system services necessary to its users and specify them with the possible constraint from
the non-functional properties. First, we have started with a definition of the system as a
black-box and creating functions that realize the operational activities from the previous
level. Figure 3.6 is a synthesis view of the system functions we have identified as parent
functions: to perform the driving automation, to obtain access to the ADCC resources
(Layer 1), to supervise them with specific loops of adaptation (Layer 2), to perform run-
time adaptions to fit the ODD and safety concerns (Layer 3), to store this information for
possible update or learning purposes with Knowledge Bases (KB), and finally to display
some system internal information. At this step, we have already made some choices
regarding the design and how we wanted to structure and organize the control loops.
Figure 3.7 provides further details about the design choices for the architecture with the
introduction of MAPE-K loops with a external knowledge base and service orientation.

The next levels that are Logical architecture and Physical Architecture will be pre-
sented later in the Chapter 5 with the implementation of the framework. They are in
charge of incorporating a white-box analysis and allocation management that integrate
the design choice and mechanisms we present in the next chapter.

3.3. Modeling for Safety Assessment with MBSE in AV 91

Figure 3.6 [SAB] Top Level System Overview

Chapter 3. Methodology and Architecture for Safety Management 92

Figure 3.7 [SAB] High Level System Overview integrating the MAPE-K loop as types of
function

3.4. Problem reformulation 93

3.4 Problem reformulation

We have proposed and experienced a way to model an AV architecture with safety re-
quirements in a separate viewpoint than the functionalities of the AV. These requirements
are affecting both the design and the operation of the system. While one is integrated in
the current design, the assurance of the other safety requirements as constraints to monitor
and control remains.

Rationales for potential solutions

Such approach makes new needs appearing.
How the transition between the functional view to the logical and physical architec-

ture can be achieved? We need to determine what types of architectural solutions can
support the safety management loops and mitigation within the system. In addition, we
also need to address the management of the constraints resulting from the AV context
analysis. Determining the different operational contexts needs to be open for iterative
and thorough safety analysis. Finally, we need to guarantee the constraints as defined
distributed autonomic processes.

How to assess the safety that remain behavioural? Hence, we want to ensure the
safety and similar system attributes than in the design by managing the complexity of the
systems for observability, traceability and flexibility. It may not be possible to solve by
only tweaking profile or configuration: it is required to provide guarantees at any system
or sub-system levels of adaptation.

Potential technical solutions in logical and physical view

Use of Abstraction for ODD and Composition of the Scene In the effort to reduce
the complexity, we propose as a first step to design hierarchies in the ODD with the use
of the abstraction to subsume some behaviours.

As well, we are looking to treat specific situations as sets of simple situations which
can be superimposed. Hence, small set of simple, primary situations is proposed and
described from which all more complicated situations can be obtained.

We propose to elevate the treatment of the other ‘objects’ on the road – notably other
vehicles – to equal level with the system vehicle intention. Using the “lane” concept
for the system vehicle’s intended path, the actual geometry encountered is relegated to a
second level, but otherwise all the elements of the hierarchy are kept.

Self-managed Autonomic Layers The framework performs autonomic loops at two
scale of the system to provide reflexivity and evolvability.

One layer provides behavioural adaptation loops driven by the assurance of safety
properties of the capabilities deployed in the services. This way it perceives and acts
directly on the managed resources (sensors and actuators) guaranteeing the satisfaction
of the properties at run-time.

Another layer orchestrates the structural adaptation of these deployed services and
properties to validate. By orchestrating these first-level loops at run-time, the system can
provide the best composition of the system’s capabilities and assert relevant properties
within the current context.

Chapter 3. Methodology and Architecture for Safety Management 94

The system as a whole is constantly orchestrated by these autonomic loops at run-time
to carry out the adequate composition of services to ensure behavioural safety upon the
relevant context.

Context-dependent Semantic Model of Capabilities The introduced self-managed
autonomic layers are driven by respective three knowledge bases as ontological mod-
els. One represents the relation between the safety requirements and capabilities with the
system components. Another describes the context and represents the different use cases,
situations, edges cases or combinations the vehicle can meet. Finally, the last knowl-
edge base represents semi-formally the context-dependence relations between the system
components and their applicable context. Regarding current practices, these knowledge
bases consists in specifying the safety requirements derived from behavioural safety and
decomposing the capabilities into context-specific services (allocation to the Operational
Domain Design).

Micro-service Oriented Architectural Style The micro-services oriented reference ar-
chitecture sustains a flexible environment of component-services and knowledge bases to
manage its dynamic nature. Those component-services are implementing only function-
alities strongly related to their concern, are independently deployable and are accessible
via messages. In a such way, the use of micro-services eases the composability that serves
the orchestration of the system at run-time. Transforming the task-oriented system archi-
tecture of autonomous vehicle into a capability-driven grained one offers more scalability
and helps to achieve a more optimized engineering. The mentioned scalability involves
the following factors: the size and complexity of the context-dependence relations of ser-
vice and capabilities, the number of service-components and the manageability of these
knowledge bases at conception.

3.5 Conclusions
In this chapter, we have explored the way to study and build L4-L5 AV using MBSE with
the key functionalities and safety considerations as design and run-time mitigation. We
focus on the key functionnalities for providing autonomy. Technological and technical
solutions should not be pushed over them to provide manageable system complexity with
sufficient level of safety coverage (quality and quantity) and NFP. It also enables the
possibilities to perform trade off between the various alternatives, combinations, variants
and implementations of the various architecture. Nonetheless, we are far from ensuring
that the conditions are in place to develop rigorous design flows.

To conclude, the proposed computational model for autonomous systems can provide
a basis for studying model-based autonomous system design. Nonetheless, we are far
from ensuring that the conditions are in place to develop rigorous design flows.

CHAPTER 4

Framework for Safety in Autonomous
Vehicles

“The control of an undertaking consists of seeing that everything is being
carried out in accordance with the plan which has been adopted, the orders
which have been given, and the principles which have been laid down. Its ob-
ject is to point out mistakes in order that they may be rectified and prevented
from recurring.”

- Henri Fayol, General and industrial management, 1918

Contents

4.1 Introduction. 95

4.2 Requirement Analysis. 97

4.3 Reference Architecture. 98
Architectural Design Process . 98
Component Descriptions . 99
Conclusion . 100

4.4 Reference Implementation . 100
Implementation Requirement Analysis 101
Structural and Behavioural Implementation 104
Design of the Knowledge Bases and Semantic Models 111

4.5 Conclusions . 115

4.1 Introduction
The development and deployment of Autonomous Vehicles (AV) is a very challenging
endeavour from a safety perspective. Vehicles must navigate through multiple situations
preventing any potential harm and without disturbing traffic flow in order to be accepted
by the society. Safe driving under full computer control also requires to interact and
operate around with different entities within complex road networks and to appropriately
address their different behaviours.

While much progress has been achieved within the past years, most work has centered
on providing vehicles with the ability to navigate autonomously. Safety has emerged
as the major challenge, not only on the vehicle behavioural side to address edge-cases
(i.e. navigate safely) but also to manage malfunctions or external disturbances (i.e. fault
tolerant).

95

Chapter 4. Framework for Safety in Autonomous Vehicles 96

Current work in the safety domain has proposed relevant approaches for the analysis,
refinement, integration and enforcement of AV safety. Considering safety as a dynamic
control problem as proposed by Leveson et al. in the STPA/STAMP method [98, 99]
shows promising applications and results in [19, 42, 90, 119]. Complementary research
investigate the trade-off with the traditional failure analysis for hazards coverage [55, 139]
while others address the compatibility of the approach with the current AV standards in
[4, 128, 148]. However, most of these works converges on the difficulty to provide a
scalable integration and enforcement of AV safety based on the application of maturing
safety analysis methodology to identify safety constraints Moreover, addressing safety
assurance at run-time using adaptive behaviours has been shown to require a complex
combination of AV system non-functional properties including observability, traceability,
reconfigurability and scalability.

The main contribution presented in this chapter is the reference architecture that in-
corporates the notion of self-safety into an existing AV and copes with the previous iden-
tified non-functional properties. This architecture consists in two layers that manage self-
adaptation processes to ensure safety at run-time. The first layer manages directly the
components of the extended autonomous vehicle architecture with a collection of depend-
able processes. These processes guarantee the satisfaction of the requirements specified
by each of the concurrent safety constraints. The second layer manages these dependable
processes and guarantee their activation, management and deactivation based on dynamic
conditions observed on the context (i.e. reconfiguration based on road conditions or to
avoid conflicts between safety constants).

This chapter presents the fundations of the framework architecture, namely, require-
ments, functional design, functions involved in self-adaptation, abstractions, knowledge
representation, and templates that connect and operate the safety control-loops as com-
posable and agnostic processes.

Section 4.2 reminds the requirements for a run-time adaptive architecture for safety
assurance that is observable, traceable, reconfigurable and flexible in its way of managing
the safety constraints that can be enforced both in system design and during run-time
operations.

Section 4.3 presents the reference architecture specificities and details the overall de-
sign of the control approach.

Section 4.4 details the implementation guidelines of the reference architecture applied
to AV. We firstly update the system requirements to integrate the AV’s non functional
properties (NFP) in the overall architecture with a safety management system. We also
detail how the related works integrate those required NFP in potential solutions and how
they contribute to satisfy them through system capabilities. Our architectural framework
is structured based on the Autonomic Computing paradigm, the adoption of the flexible
microservice architectural style and the use of knowledge representations in the form
of semantic and semi-formal models. The successive steps of combinations of design
schemes detail the design of the main parts of the framework and their interactions to
obtain a flexible, orchestrable and composable agnostic microservices architecture. Then,
we detail how the knowledge bases are structured, their role and their allocation to drive
the agnostic system.

Finally, in Section 4.5, a few conclusions are presented.

4.2. Requirement Analysis 97

4.2 Requirement Analysis
Our approach aims to propose a reference architecture intended to provide safety assur-
ance at run-time as the result of active adaptation processes. These processes are depend-
able and intend to guarantee both internal or external safety constraints of the AV. In order
to cope with the set of NFP required for AVsafe system (i.e. observability, traceability,
reconfigurability and scalability), we propose to put emphasis on the following design
principals:

1. Consider safety as a control problem guiding the design of an effective control
architecture able to react or to reduce adverse events. System Safety considers the
enforcement of safety by both the elimination of the hazards by design or the management
of the hazards by control. Enforcing safety in the vehicle on the operational contexts
requires to identify the constraints that can assess safety at run-time through monitoring,
diagnosis or a full close adaptation loop.

2. Enforce vehicle safe behaviours upon the different contexts the vehicle can operate
in. The system architecture needs to offer ways to satisfy the multiple safety constraints
by adapting its design or by ensuring it by run-time assurance functionalities. As the
safety constraints can be highly contextualized (i.e. assess in a specific scenario or use
case), the architectural model has to be able to capture and store this information.

3. Facilitate the integration of system functions following a black-box approach,
exposing only services and interface specifications (e.g., input and output of mes-
sages). Functions allocated to the components where safety is monitored or assessed
can be discovered and integrated using components-oriented architecture. For example,
the integration of components allowing observations, processing, and analysis and be-
haviour prediction (e.g., neural network, machine learning or Markov process) would just
result from the discovery and plugin of the well-adapted component within the architec-
ture. The only preliminary requirement is for the component to be registered and specified
in the knowledge base. This registry should include attributes such as required resources,
expected output, exhibited component properties upon safety.

4. Provide built-in and bolt-on monitoring, diagnostics and adaptation processes for
individual AV mechanisms that can be composed and orchestrated at run-time in
the overall design. For the sake of observability and traceability, we want the system to
be able to perform using both built-in or bolt-on monitoring, diagnostics and adaptation
processes. While bolt-on processes can be connected to an existing system without re-
quiring significant modification of interfaces to the target system, built-in processes may
impose design requirements. They requires the system to offer an extensible and plug-
gable architecture where new components can be easily added with their respective logic
(e.g. goals and values for the decision method). The composition and orchestration of
the processes contribute to bring end-to-end visibility across the different services and to
provide deep visibility into each service’s performance and logic.

5. Specify and store the adaptation processes expert knowledge in distinct knowl-
edge bases following distinct roles: system architecture, interfaces, goals and oper-
ational context measured values. The presence of built-in processes imposes to have

Chapter 4. Framework for Safety in Autonomous Vehicles 98

a specification model of the architecture that defines the components, their behaviours,
functions and their respective logic that is perfectly aligned with the safety management
knowledge-oriented bases. For example, those knowledge bases result of the model of
the architecture representing the system (i.e. model-based representing and tracing the
behaviours and constraints of the system to each function and physical entities) or the
representation of the operational environment (i.e. observable state of the environment
used for self-awareness).

This section have identified the safety requirements assurance guiding the design and
implementation of an AV architectural framework.

In the next section, we introduce our reference architecture that comply with those
requirements by detailing and addressing each system requirement.

4.3 Reference Architecture

Based on the previous requirements analysis, this section proposes a reference architec-
ture suited to enhance AV system with two levels of adaptation in order to guarantee safety
constraints. First, we present the step by step construction of the reference architecture.
Finally, we detail the main components of the resulting reference architecture.

Architectural Design Process
Our main base architecture is an existing Renault’s vehicular architecture called ADCC
(Autonomous Driving Commuter Car) that provides autonomous driving capabilities to a
vehicle. We have selected this architecture as it will be able to be enhanced in order to
guarantee safe decision functionalities and to guarantee appropriate scaling to the range
of safety concerns we aim to consider.

On this basis, we propose a system enhancement aimed at adding an additional com-
ponent intended to manage safety by integrating external expertise to the existing ADCC
architecture. Figure 4.1 illustrates the reference architecture and details the perception,
navigation and vehicle control mechanisms that are connected to the vehicle world via the
sensors and acturators entities (section 1). We call this component extension the Safety
Management System (SMS)

In order to manage safety, the system needs to be monitored by observing the compo-
nents and dataflow from the existing ADCC architecture. For this matter, we propose to
enhance ADCC with an interface of observers and measurers depicted in section 2.

As we want to perform specific adaptations or reconfiguration of components of
ADCC, we also add the corresponding reconfiguration in section 2.

The component reconfiguration can then be performed by a control loop using those
two interfaces with the first as data input and the second as action output. The processes
involved in each loop ensure the compliance with a safety constraint and express the
links between the observations and the reconfiguration actions as illustrated by section
3. In order to reduce the complexity, we propose to specialize each process per safety
constraint so there will exist as much control loop process as safety constraints. The
architecture results in several parallel processes that share similar sources of observations
and components to reconfigure.

In addition, the different safety constraints are possibly conflicting and may intervene
only in a specific context. To manage the concurrent safety constraints to guarantee, we
propose a macro process to manage the context and conflicts (see section 4).

4.3. Reference Architecture 99

Figure 4.1 Reference architecture involving several levels of adaptations

Finally, to ensure the system to be evolutive, traceable, have its components embed-
dable and interoperable, we propose to follow a common semantic (see section 5). It en-
ables each of the interfaces to communicate and favor a granular design of the knowledge
(i.e. expert knowledge on the observations, reconfiguration, decisions, safety constraints
and potential conflicts).

Component Descriptions

The architecture of the Safety Management System (SMS) involves three main compo-
nents extending a base architecture. These components are illustrated in 4.1 and are
described as follows:

A. ADCC interfaces to the SMS In the scope of our study, we map sensor informa-
tion to the perceived objects by the ADS (i.e. reading vehicle’s sensor information), the
intention (i.e. reading vehicle’s planned maneuvers), operations of the ADS (i.e. reading
vehicle’s trajectory) and other component status (e.g. vehicle profile). Reconfiguration
information encompasses the recommendation of policies, maneuvers or imposed trajec-
tory for the ADS to adopt (i.e. affecting the configuration of ADS functions at different
levels).

B. Safety Assessment Processes and Behavioural Safety Assurance The first level of
the reference architecture hosts the parallel dependable processes that enforces the dif-
ferent safety constraints at run-time. Each safety assessment process is allocated to the
monitoring and the assurance of a specific safety constraint. The process itself consists in
a composition of functions operating either monitoring, diagnostic from identified symp-
toms, planning or reconfiguration to adapt how the ADS is behaving. The specifications
are based on the constraint requirements and the restrictions of its operating context. For
example, the minimum distance between a pedestrian and the vehicle shall be at 5 meters
in urban areas at 30km/h.

Chapter 4. Framework for Safety in Autonomous Vehicles 100

C. Safety Orchestrator and Context-Dependance of Safety Assurance The second
level of adaptation is built above the first level as a macro process to reconfigure the
deployed safety assessment processes upon the observed context. This reconfiguration
operates according to the context, the conflicts between constraints and the available re-
sources. For example, the minimum distance between a pedestrian and the vehicle shall
be at 12 meters in urban areas at 50km/h, and 25 when the vehicle position becomes too
uncertain (i.e. localization may not work correctly). This orchestration results in struc-
tural adaptation of the deployed processes to fit the actual context and ensure relevant and
safe configurations.

D. Knowledge Models The two presented levels of adaptations are designed as generic
processes that operates appropriately with their operative information. In our approach,
we propose to make the process agnostics. They can obtain the required knowledge from
a shared knowledge base. It will be only at run-time, when deployed, that they will
may only acquire the knowledge to operate. In this reference architecture, we explicitly
store all required information regarding the context, the deployment rules of constraints
such as context-dependence and restrictions, the configuration of the system, and process
operations into models that are accessible through a shared knowledge base.

Conclusion

In this section, we have introduced a reference architecture to answer the identified
needs for a reconfigurable, flexible, traceable, and observable Safety Management Sys-
tem (SMS). We have proposed an extended architecture plugged to ADCC that operates
at two levels of adaptations to facilitate the management of the safety assurance processes
and to capture their specifications to guarantee context-dependence and possible conflicts.

Based on the previously introduced requirements, and with regard to the reference
architectural components, our effort in the next section focuses on the development of
reference implementation architecture. We analyze the requirements introduced by the
design choices of the reference architecture for a reconfigurable, flexible, traceable, and
observable management system for safety. We also identify the structures and behaviours
that satisfy our previous requirements from the analysis section.

4.4 Reference Implementation

To achieve observability, traceability and flexibility of the reconfigurable architecture, this
section presents a requirement analysis for the architecture implementation motivated by
the composition of existing solutions for a flexible, composable and observable architec-
tural approach.

First, we detail how the successive adoption of the Autonomic Computing paradigm,
the microservice architectural style and the knowledge representations based on seman-
tic models may contribute to design a self-managed system with the expected attributes.
Then, Section 4.4 presents the consecutive collection, composition, allocation and orches-
tration schemes based on the combination of those structural and behavioural concepts.
In our case, the methodology consists of decomposing the safety constraints into struc-
tured and manageable safety assurance processes and their respective functions. A more
detailed implementation view of the architecture is also provided to illustrate the results

4.4. Reference Implementation 101

of the decomposition and application on safety in a MBSE tool. Finally, the last sec-
tion 4.4 details how the knowledge of the self-managed system should be structured and
illustrates its applications to the AV.

Implementation Requirement Analysis
The system’s attributes of observability, reconfigurability, traceability and flexibility have
been identified as required for our self-managed system to appropriately tackle the differ-
ent challenges of AV safety. This section identifies the potential solutions to satisfy these
requirements based on Autonomic Computing, microservices and semantic knowledge
representation approaches.

Autonomic Computing

The Autonomic Computing paradigm proposed in [77] provides a hierarchical organiza-
tion between components to perform relevant adaptations via so-called MAPE-K auto-
nomic loops. Those loops are constituted by a chain of components providing the sep-
arated functions of Monitoring, Analyzing, Planning, and Executing (MAPE) operating
around a shared knowledge base. Each of the MAPE-K loops offers a specific reconfig-
uration that can be implemented within a discipline, i.e. coordinates the same type of
adaptation (e.g. self-configuring, self-healing, self-optimizing and self-protecting). They
may also address across different disciplines as they coordinate a mixture of the self-*
capabilities. The management of a MAPE-K loop by a higher-level loop is defined as
autonomic orchestration. It contributes to building hierarchical decisions that are made
possible thanks to the genericity and composition of the MAPE-K loops.

The Autonomic Computing paradigm [77] is well-suited for self-managing architec-
tures where components or resources need to be reconfigured based on the monitored
environment conditions and guided by policies and goals. The adoption a hierarchical
structure favors the reconfigurability with different levels of specialized decisions that
can manage other components or be managed. AC provides such decomposed structure
for decisions (MAPE) and the possibility of orchestration to develop self-adaptive sys-
tems.

The design of autonomic processes based on the four MAPE functions and the knowl-
edge base contributes to simplify the complexity by defining loops with a specific concern
making it more manageable over the time and easily observable. Besides, each MAPE
function’s inputs and outputs can be observed, logged and replayed if necessary.

We have seen that the four MAPE functions and the associated knowledge base com-
pose the decision process. Consequently, the chain of commands between the components
is made explicit by the respective definition of their roles, their specified I/O, their goals
and policies that tune their functions, and their operations that implement a specific set of
techniques, methods, and algorithms. The whole definition and structure of each function
contribute to facilitating the traceability in the system during design and run-time.

In addition, the MAPE functions may not have only one operation or implementa-
tion possible. Trades off at a given time may have imposed specific definitions allowing
only a certain spectrum of mechanisms to be used. However, future design may replace
how the function is operated by displacing the component in the decision process. The
replacement of the components of a MAPE-K loop or of the whole loop is possible as
long as the functions and roles are maintained, and I/O and knowledge are appropriately
updated. Having replaceable components for each function promotes maintainable and

Chapter 4. Framework for Safety in Autonomous Vehicles 102

appropriate evolutions of the architecture over the time in the development iterations or
during its operation with the selection of the appropriate process.

The hierarchical structure offered by the AC also comply with requirement extensions
as we can add new interfaced managed resources or new MAPE loops to perform a new
specific process or supervise existing ones.

The Autonomic Computing paradigm contributes to cover the structural range of our
expected attributes as it specifies a structure of decision for self-adaptive systems and also
contributes to the behaviour implementation, management and traceability (modelled and
handled).

Microservices

The microservice architectural style [56] is applied in the IT domain to reduce coupling
and break down monoliths in web-service architectures improving thus their scalability. It
enforces a different approach to implement the capabilities, functions and features. Each
component is designed to do only one job; “Do one thing and do it well”. This type of
usage on cyber-physical systems is reflected in their structure and design enhancing the
loose coupling and high cohesion of its services. Additional knowledge is necessarily
required to describe how components should connect, how the capabilities and features
are associated, how the microservices can be deployed (i.e. semantic of the applications
requirements), the properties we want to ensure (e.g. QoS, safety) and the manner how
microservices can be orchestrated (i.e. goals and policies). Microservices also claims to
contribute to improve the scalability of software architectures.

Scalability is one of the major driving forces behind any kind of architectural solu-
tion. According to [102], it can be attained from three axis: (1) horizontal duplication
(i.e. achieved by cloning components such as running copies), (2) functional decomposi-
tion (i.e. achieved by decomposing component’s functions), and (3) data partitioning (i.e.
achieved by splitting the data or knowledge bases and access). The microservice archi-
tectural style mostly insists on the second point by favoring the service decomposition by
splitting the system into multiple and different services. It becomes easier to understand
the functionality of a service and catch its range of action.

An other drive force for microservices is flexibility. Indeed, they offer the possibility
to be individually replaced so that they keep performing the same function but with a new
technique or in a different language. Dependencies and versioning becomes also easier to
manage each microservice individually.

The adoption of a template design in the interfaces of communication of the microser-
vices promotes an higher level of pluggability for the whole software architecture. Indeed,
using common or standard interfaces also promotes observability in the system by facili-
tating the observation and monitoring of the channels of communication.

Microservices have also a relevant ability to improve fault isolation. Systems based
on microservices may commonly remain unaffected by the failure of a single one service.
In this type of software architecture, the implementation of fault tolerance mechanisms
and adversaries mechanisms to test the resilience (e.g. fault injection as Netflix’s chaos
monkey) are made easier.

We believe that microservices architecture allows to extend the current traceability
of the knowledge in the existing ADCC modular architecture. In this architecture, the
acknowledged functions in the autonomous vehicle are tightly coupled for performance
and uncertainties purposes like most AV architecture. They act like a black box with
opaque behaviours reducing the potential for observability and traceability which we want

4.4. Reference Implementation 103

to promote. In fact, the source of knowledge like goals and policies are not directly
understandable or accessible as a service. We want to explore how the separation of
concern and granular specification well-fitted for specific concerns can be operated while
remaining traceable with the use of microservices. In this purpose, the microservice
separation approach between operation and agnostic orientation towards knowledge may
provide a traceable way to observe, trace, verify, validate and finally trust the system.

The adoption of microservice architectural style appears to be an appropriate solution
to ease the scaling and flexibility of the architecture of a self-adaptive system in AV with
regard to the diversity of functions involved and dynamic complex operating environment.
The microservices contribute to cover the structural range of our expected attributes as
it specifies the structure of intercommunication between components and allocation as
microservices.

Knowledge Representation and Semantic Model

Model-Driven Engineering (MDE) have contributed to facilitating the development of
architecture for complex systems including self-adaptive systems by addressing theirs
representation problems (i.e. flexibility, scalability, and traceability) [44]. In MDE, the
use of abstract models of the systems separated from the systematic implementation are
not only used for documentation but also as the vector of the architecture refinement
(e.g. understand, design, develop and maintain a system architecture). Therefore, Model-
Driven Architecture (MDA) approach insists on the separation between the system and its
implementation with the objectives to guarantee the evolutivity (i.e. being interoperable
and reusable), flexibility (i.e. being portable, extendable), and traceability (i.e. containing
the system specification and capabilities) of the resulting system architecture.

Ontology-Driven Architecture (ODA) promotes the use of semantic models or on-
tologies to represent the abstract models of the system of MDA. They contribute to define
domain vocabulary, the specification and the capabilities of the represented system as
suggested in Systems and Software Engineering practices [140]. Ontologies provide ex-
pression for queryable semantic relationship between the different existing concepts and
instances, and provide consistency checking and validation capabilities for the model.
The adoption of an ODA promotes an higher level of observability and traceability in the
system architecture with machine and human-readable and queryable concepts.

In addition, the adoption of ODA in self-adaptive system contributes to represent and
to make accessible knowledge necessary for the system reconfigurability [45, 78]. In our
perspectives, it rigorously and consistently uses models for engineering feedback loops
as it capture the adaptation mechanisms and exchanged information.

The knowledge representation with semantic models contributes to cover the struc-
tural range of our expected attributes regarding the capture of knowledge and how it can
be documented and structured.

Conclusion

This section have assessed that the required attributes can be addressed by the Auto-
nomic Computing, Microservices and Knowledge Representation with Semantic Models
approaches. Within this objective, and with regard to the architectural components im-

Chapter 4. Framework for Safety in Autonomous Vehicles 104

Figure 4.2 Process of integration of the safety constraints in the system

plementation, our effort focuses on the development of procedural correct rules for the
dynamic reconfiguration of multilevel microsevice-based software architectures.

Next section performs the successive combination of them to obtain a resulting archi-
tecture that have our expected system attributes and their individual advantages.

Structural and Behavioural Implementation

This section introduces the structural and behavioural implementation of the framework
by four successive steps. Figure 4.2 illustrates the step-by-step methodology to obtain a
composable and orchestrable microservice-oriented reference architecture offering a flex-
ible and adaptable run-time safety assurance capability from a set of safety constraints.

Section 4.4 introduces how the safety constraints that are originally expressed in the
model and can be assessed at run-time are represented as a collection of several safety as-
surance processes to be ensured at run-time. Then, each process is decomposed into four
distinct functions according to the composition scheme in Section 4.4. The shared knowl-
edge and exchanged information are also identified at this step. Section 4.4 describes the
allocation step of each MAPE functions to a distinct typed microservice. Section 4.4 char-
acterizes the orchestration scheme that manages of the safety constraints into structured
and manageable safety assurance processes and their respective functions.

Finally, section 4.4 summarizes the resulting architecture, the identified layers and
how the attributes are covered in each system capability.

Management of the Safety Constraints in Parallel: the Safety Assurance at
Run-time

In the previous chapter 3, we have raised our interest on the automated driving system
of the AV as a whole. By considering safety as a control problem to enforce safe be-
haviours, we have proposed safety constraints determined for our level-4 automated ve-
hicle and ODD. These safety constraints can be separated in two categories: one enforces

4.4. Reference Implementation 105

Figure 4.3 Illustration of the assessment of a single constraint related to safety

Figure 4.4 Running assessment of multiple constraints related to safety

safety through hazard elimination by refining the design while the other though the hazard
control using management to reduce adverse events.

We now aim ensure the constraints from this last category at run-time by performing
operation monitoring, diagnosis or adaptation on the ADS. Figure 4.3 illustrates a safety
assurance process that can be performed during the operation of the functional system.
In our scope of work, the sensors and the actuators can actually be real or virtual. As
an example, they can respectively act as sources of observations from external and inter-
nal sensors (e.g. perceived objects, proprioceptive observations of a component) and as
consumers of control actions (e.g. a new trajectory to follow, a service to deploy, a new
configuration to adopt).

In our approach, we perform these safety assurance processes at run-time and in par-
allel on the functional architecture of the AV as shown in Figure 4.4.

MAPE-K as Architectural Solution for Automation: Decomposition of Control
Loop With Mape-k Autonomic Loop

Then, to favor observability we identified our control loop to an autonomic manager from
the vision of the Autonomic Computing paradigm. At this regard, we decompose it into
Monitor, Analyze, Plan and Execute functions sharing respective Knowledge. Figure 4.5
proposes a representation where the four parts work together to provide the autonomic
loop realizing the safety assurance process. Communication is performed between the
functions in the form of exchanges of symptoms, change requests, change plans and ac-
tions using callback or shared memory. It is important to notice that not all the safety
assurance processes are necessarily performing a closed control loop on the ADS. In-

Chapter 4. Framework for Safety in Autonomous Vehicles 106

deed, it is possible that some only aims to achieve part of the full autonomic loop such
as measurements (M+K), diagnostic (M+A+K), planning (M+A+P+K) or adaptations for
the full loop (M+A+P+E+K).

Monitor The Monitor function accesses the information of the managed resources via
the sensor interface. The retrieved information is filtered and only a relevant part is trans-
mit or stored in the Knowledge. The aggregation, correlation and filtering determine if a
resulting symptom need to be analyzed. The symptom is then transmitted to the analyze
function. It is important to note that it can exist more than one Monitor function for a
specific autonomic loop if the correlations are multiple or the filtering differs.

The raised symptom can relate to a particular combination of events resulting from
the aggregation and correlation between the content of different message or event from
multiple resources. As an example, we can consider that detecting the presence of a
pedestrian as a possible symptom. Also a pedestrian crossing the road can also result in
a more complex symptom. The granularity of the process within the monitor functions
determines if the symptoms are either simple or complex.

Analyze The Analyze function compares the observed data from the expected values
such as anomaly detection. More complex analysis can necessitate the use of behaviour-
aware techniques such as partially observable Markov decision process (POMDP), prob-
abilistic approaches or learning bases approaches. As a consequence of some policy not
being met or going to be, a diagnostic is established in the form of a change request.

This change request contains the modification to overdo that the analyze function have
considered as necessary or beneficial.

Plan The Plan function triggered by the diagnostic selects or determines the strategies
in order to achieve the intended goals (creation, correction, prevention). Various plans are
studied and one final plan is transmitted to the execute function.

The change plan consists of a prescribed collection of changes to apply to the managed
resources (e.g. a trajectory)

Execute The Execute function executes the corrections actions via the effector interface
and caches the process for future analysis and planning.

From this step, the Knowledge does not only represent the policy that influence how
the decisions have to be made. It also includes the information retrieved from the observa-
tions, the environment’s configuration and inside communication (i.e. symptoms, change
requests, change plans and actions). Moreover, the Monitor function can contribute to the
creation of knowledge regarding the recent observations as well as the Execute function
with the actions that have been applied.

Implement MAPE-K as Microservices

To favor the composability and flexibility of the resulting architecture, we assign each
of the MAPE functions and the Knowledge management to distinct and functionally
described microservices. At this regard, the allocation results in the creation of small,
independent, deployable and simple typed services offering each distinct functions (i.e.
Monitoring, Analyzing, Planning and Execution) and communication interfaces.

4.4. Reference Implementation 107

Figure 4.5 Decomposition of the control process into M, A, P and E functions that share
Knowledge

Figure 4.6 One Autonomic loop is composed by M,A,P,E entities to observe, diagnosis or
ensure the safety

From a functional perspective, these microservices continue to implement the auto-
nomic loop as described previously. Figure 4.6 illustrates the decomposition of one safety
constraint as MAPE-K into the M, A, P, E, K microservices and their respective commu-
nications channels. The K microservice or Knowledge Bases Service (KBS) provides
access to the knowledge bases through an interface.

Consequently, the structure of the system have been impacted in its design, imple-
mentation and on how the knowledge is used and managed. Exchanges are no longer
callbacks but become messages or client-server relations. For instance, a Monitor mi-
croservice is designed to access some observations following a specific nomenclature of
the touchpoint, publishing the symptom and storing relevant information or directly the
symptom in the KBS.

The microservices are constantly running, operating their function or waiting to be
triggered.

Chapter 4. Framework for Safety in Autonomous Vehicles 108

Figure 4.7 Several Autonomic loops are running in parallel using M,A,P,E microservices
illustrating the Hyper-dimension

However, adopting this microservice structure to have its benefits implies to support
the goals of service orientation. Additional features as service repository, discover service
(running or not), service contract standardization will need to be included in the logical
and physical architecture of the framework.

The advantages of using composition of the respective instances of microservices to
perform multiple autonomic loops are twofold.

Hyper-dimension: Running multiple composable autonomic loops in parallel First,
microservices instances can be reused to perform multiple autonomic loops impacting
both the design and the run-time. It would be to allow service descriptions and data
models to become highly discoverable. On one hand, the design of new safety constraints
with MAPE-K can reused existing microservices as far as the needed function is the same.
On the other hand, only one microservice can be deployed for the same function in the
whole system at run-time. The introduction of this hyper-dimension impacts the design
as the system is able to know what are the services currently deployed or available for
deployment.

Figure 4.7 illustrates the case of two safety constraints running in parallel using the
MAPE decomposition scheme. They are operating separately and involve several mi-
croservices to perform the Monitor and Analyze functions. Their functions on the system
can be easily defined due to their small size and their mapping to a particular MAPE role.

Let us now suppose that some roles of these Monitor and Analyze functions are identi-
cal and can be shared between the two safety processes. Figure 4.8 highlights this reuse of
some deployed M,A,P,E microservices in the different loops running in parallel. In terms
of design, as long as the operations and observations remain the same, the communication
service allows reuse.

Multi-dimension: Running multiple autonomic loops involving different dimensions
of constraints in parallel Second, others dimensions (e.g. social acceptance, ethics,
legal, performance) can also be integrated along the autonomic loops of safety assurance
processes in our approach. However, they still require to be represented using the MAPE-
K microservice scheme we previously introduce. Figure 4.9 illustrates the introduction

4.4. Reference Implementation 109

Figure 4.8 Several Autonomic loops are running in parallel and reusing deployed ser-
vices as M,A,P,E entities illustrating the Hyper-dimension and reusability property of the
framework

Figure 4.9 Several Autonomic loops are running in parallel and reusing deployed services
as M,A,P,E entities: Illustration of the Multi-dimension and extendability property of the
framework

of one social constraint to be ensure at run-time as autonomic loop. This example just
considers the previous example with the addition of a social constraint. For instance, the
social constraints targets the features for socially acceptable distance to vulnerable users
(i.e. maintain d distance between a pedestrian).

Moreover, attention can be drawn on the hyper-dimension of the framework where
similar services from other dimensions can reused or be reused as long as they are involv-
ing the same function and same concerns (e.g. gathering road and lane position from the
pedestrians crossing the road).

Chapter 4. Framework for Safety in Autonomous Vehicles 110

Orchestration of MAPE-K Microservices: Managing the Autonomic Loops

The goal of this subsection is to understand how the association of the previous schemes
are key enablers for monitoring safety-critical software systems. We will also clarify their
role and fundamental interests for the framework in order to finally define a reference
architecture for our concerns.

We are using the hierarchical coordination of an Orchestrating Autonomic Manager
(OAM) from the Autonomic Computing to perform a framework-wide autonomic be-
haviour in completely different disciplines than the resources it manages.

This OAM considers the AMs of the autonomic loops presented in Figure 4.9 (i.e.
performing our safety and social assessment processes) as managed resources. It also per-
forms the function of monitoring, diagnosis, planning or adaptations and is composed of
M,A,P,E,K microservices. Figure 4.10 illustrates this hierarchization between the safety
and social assessment processes as Managed resource #2 and the OAM as a higher man-
aging instance.

An example of application is the intended use of this hierarchy in this thesis as an
autonomic loop to reconfigure the safety assessment processes deployed for the current
context. We have seen previously that the AMs are constantly performing the autonomic
loop realizing the safety assessment process for a given context (i.e. where they are
relevant, where they can be deployed and where they are sufficiently efficient). However,
a change of context may result in the assessment of safety constraints no longer relevant
or even unacceptable for the new context leading to possible violations for the current
context. Aware of the context-dependance of these safety assessment processes, the OAM
monitors those AMs and the current context to determine and deploy the most appropriate
configuration for the safety assurance of the ADS (and other dimensions).

This OAM can also include hyper-dimension and multi-dimension considerations ac-
cording how the assessment can be managed upon (e.g. context of system, performance
of AM, consistency of AM, stability of the safety assurance, ...).

Resulting Architecture

The architecture results in the following logical parts:

1. Touchpoints that interfaces the system to the functional architecture of the ADS.

2. Autonomic Managers that performs collectively safety assurance allocated as a grid
of M, A, P, E microservices. It represents the first level of adaptation.

3. Orchestrating Autonomic Manager that performs the reconfiguration of the safety
assurance to adapt it upon the context. It represents the second level of adaptation.

4. A Knowledge Service offering aside access to the different shared knowledge bases
where symptoms, diagnostics, change plan are stored. It manages the access to the
distinct knowledge sources for each of the two levels of the adaptation.

Conclusion

In this section we have presented the structural and behavioural implementation of the
reference architecture using the four successive steps based on safety constraints. The
proposed microservice-oriented architecture offers a flexible and adaptable management
of safety during run-time by using composition and orchestration mechanisms.

4.4. Reference Implementation 111

Figure 4.10 Hierarchy of several Autonomic loops for different disciplines: Illustration
of the Orchestration and reusability property of the framework

However, the different sources knowledge to operate those mechanisms still need to
be identified and defined with clear boundaries and semantics. Next sections presents how
these different sources are represented as ontologies (e.g. system’s operating context, the
vehicle capabilities and actions and interfaces).

Design of the Knowledge Bases and Semantic Models

The MAPE-K loops require the presence of different sources in the knowledge base to be
able to operate the autonomic adaptations of the two levels. Indeed, each of the M,A,P,E
functions has a particular behaviour and requires the presence of different relationships
and specified interactions between entities within different knowledge bases. Hence, we
propose to model the respective knowledge of the levels using ontologies as semantic
models.

The two levels address distinct purposes regarding the aspect of the property of safety.
The first level of behavioural adaptation requires information on performing the safety as-
surance processes. The second level of the structural adaptation ensures the composition
of the deployed instances based on context-dependence requirements. These different
purposes shall result in creating two separate knowledge bases to support the adaptations
of the levels. Although their purposes are distinct, some knowledge may actually be

Chapter 4. Framework for Safety in Autonomous Vehicles 112

shared between the two levels in the abstraction of the context or the system representa-
tion.

To cover the knowledge requirements of the MAPE functions, we use a set of five
types of models adjusted for each level of adaptation proposed in the literature [15]. We
also detail the mapping for each of the levels of the reference architecture and illustrate
their application on AV safety. Finally, we present the sources used to represent the
knowledge models for each type at design time and how they plan to be used and be
changed at run-time.

Main Types and Information in the Run-time Models

To clearly identify the scope for each source of knowledge we adopt the abstraction of
models proposed by Aßmann et al. [15] in the model@run.time architecture. They use a
set of five types of models to cover the needs of knowledge representation and the defini-
tion of boundaries. Therefore, the following paragraphs present the particular purposes of
those models, and their coverage, and the identified operating knowledge in our approach.

Context models propose an observable state of the environment containing relevant
information on the entities surrounding the managed system. Semantic understanding
as context interpretation is expected to be performed by the Monitor microservices and
stored as symptom in the context models. Therefore, this model is expected to have two
different parts: an abstract representation of the context serves as a static terminology
basis; and a part that evolve at run-time and solely represent the symptoms detected from
environment. In our scope of work, the context models are close to the definition of the
Operational Design Domain (ODD) in AV. It represents the extent of various conditions
and scenarios where the vehicle is designed to operate intently and safely. The ODD
can be constructed as multiple layers describing the dynamic entities (e.g. car, buses,
pedestrian, scooters), the localization (e.g. geo-fenced), the scenery (e.g. roads geome-
try, infrastructure) or the allowed activity (e.g. highway driving, self-parking), and help
building scenario. As a result, the terminology available for abstract representation shall
include those different concepts. The symptom shall also compose them to create identi-
fied context abstractions.

Configuration models depict the interfaces of the managed resources in how they
can be accessed and controlled. They contribute to characterize the knowledge required
by the touchpoints to operate the autonomic loops (i.e. manageability interface). These
models can be seen as providing an architectural view of the interaction with the man-
aged resources. In a generic service-oriented approach, they would reflect which commu-
nication channels and managed services are currently available and deployed on which
configurations and platforms. In our framework, they are the sources for initialization of
the Monitor and Execute functions to interface with the managed systems appropriately.
They affect the deployed AMs microservices managing the ADS and the microservices
forming the OAM.

Both context and configuration models help the capture of a human and machine-
understandable representation of the external and internal observations.

Capability models characterize how the available features can influence the moni-
tored resources by which actions and involving which effectors to interface with (e.g.
adjust parameter for requiring slower speed, deploying new microservices). This model
type is expected to be rather static as it expresses all the possible capabilities of the system
but can be updated (e.g. new design, new structure). In our scope, the features are the

4.4. Reference Implementation 113

mechanisms that influence the AD system to enforce safety in AMs and the mechanisms
that enforce its acceptable contextualization.

Plan models represent the different sets of actions as plans to perform the autonomic
adaptation. The Plan functions contribute to the model storing the requested change,
and the Execute translate them into the actions to send to the effectors. Contrary to the
capability models that define the system and interactions structure (T-Box), plan models
use the structure of the capability model to describe each action as individuals (A-Box).
Therefore, they collect a history of all of the requested actions sent to the managed system.

Goal & Adaptation models define how each of the MAPE function may be per-
formed (i.e. specify a mechanism) and tuned (i.e. specify a configuration). For instance,
they characterize how the Plan should evaluate the alternative future configurations and
how the Monitor should trigger itself to create symptoms in our framework. Furthermore,
these models are the basis for a choice of design.

Indeed, we decide that the Goal & Adaptation models only describe a terminology of
the system (T-Box) and shall not change at run-time. The main idea behind this particular
choice of design is to highlight the traceability between the configuration of the different
microservices, and the context (i.e. internal and external) with the ability to rightfully
orchestrate them. The first level performs the safety assessment with the stateless AM
microservices while the second level continually verifies that the constraints of context-
dependence (i.e. restrictions based on the configuration and deployment of specific AMs
in particular contexts). Thus, only the configurations of the available microservices are
expected to change and to be composed at run-time. It results that the goals and mecha-
nisms models specify for all microservices their different static configurations and context
deployment restriction constrained.

Besides, these models are expected to change over time in design iterations to manip-
ulate new mechanisms or adjustments for specific microservice during the life cycle of
the system.

Table 4.1 synthesizes all the roles and applications for each type of models. It is
noticeable that concerns and knowledge to represent differ according the levels of the
reference architecture. Finally, Figure 4.11 illustrates the different conceptual models
and their relationships in the resulting ontology of the framework.

Applications, justifications and examples are detailled in Appendix B (see page 163).
They detail the requirements, modelling choices and implementation of the knowledge
bases applied to the context of the case study in Chapter 5 (see page 117).

Discussions on the Advantages of the Semantic Orientation

We see this approach over knowledge as a run-time operable way to have requestable and
updatable reasoning ability. Thus, it opens the possibility of arguing in the system. It
also allows comparison between reasoners and to perform trade-offs (i.e. the language of
implementation, how the ontology is used, and how the relations we are exploiting). The
addition and integration of new uses cases, situations or equivalent rules can have their
impact studied directly on the model and do not necessitate additional implementation.

We also gladly inherit of the ontology interoperability that serves the representation
of the system from an MBSE tool as Capella to Monitor, Analyze, Plan and Execute
ontology classes.

Besides, we think that the ontology representing the context model proposes a rea-
sonable way of composing the Abstract context as a set of scenes, situations and other

Chapter 4. Framework for Safety in Autonomous Vehicles 114

Table
4.1

Type
and

description
ofthe

m
odels

foreach
levels

ofthe
reference

architecture

M
odeltypes

D
efinition

G
rid

ofm
icroservices

form
ing

A
utonom

ic
M

anagers
(A

M
s)

O
rchestrating

A
utonom

ic
M

anager(O
A

M
)

C
ontextm

odel

•
R

elevantinform
ation

on
environm

entstate
ofthe

m
anaged

system
•

C
urrentstatus

ofthe
environm

entofthe
vehicle

from
the

A
D

S
observations

•
C

urrentcontextofthe
vehicle

from
the

A
D

S
observations

(through
sym

ptom
as

identified
use

cases
orsituations)

•
C

urrentstatus
ofthe

A
M

s
m

icroservices
m

onitoring
(through

sym
ptom

as
event)

C
onfiguration

m
odel

•
A

ccess
and

controlinterface
to

the
m

anaged
system

•
C

urrentstate
ofthe

m
anaged

system

•
E

xplicitthe
access

and
controlinterfaces

of
the

A
D

system

•
C

urrentconfiguration
ofthe

A
D

system
,

sensors
and

effectors
status

(operated
by

Touchpoints
m

anagem
ent)

•
E

xplicitthe
access

and
controlinterfaces

foreach
ofthe

A
M

s

•
C

urrentconfiguration
ofthe

safety
assessm

entand
M

A
PE

m
icroservices

currently
deployed

and
running

on
w

hich
configurations

C
apability

m
odel

•
Features

available
to

influence
the

m
anaged

system

•
A

vailable
effectors

to
interface

w
ith

•
H

ow
the

environm
entis

affected
by

actions

•
System

functions
on

specific
m

echanism
s

available
to

influence
the

A
D

system
(exceptcontext-related

application)

•
System

functions
on

the
m

echanism
s

available
to

influence
the

A
M

s

Plan
m

odel

•
Setofactions

to
perform

to
realize

the
adaptation

•
A

ctions
to

ensure
the

safety
related

to
specific

m
aneuvers

•
A

ctions
to

reconfigure
the

deployed
A

M
s

m
icroservices

changing
theirgoal

G
oal&

A
daptation

•
H

ow
the

alternative
future

configurations
should

be
evaluated

as
fulfillm

entof
intended

goals

•
A

ssessm
entofthe

behaviourand
the

intention
ofthe

A
D

S
in

the
scope

ofone
safety

constraint

•
D

istance
and

sem
antic

coverage
ofthe

currentuse
case

from
the

previous
configuration

4.5. Conclusions 115

Figure 4.11 Overview of the knowledge represented through the different models as mod-
ules

inherited classes. It acts as a catalogue for those different abstractions that cover a differ-
ent range of representation and granularity.

The representation of axioms from the ontology as classes also satisfies their reuse
as such directly in the code for better interoperability. Such import of original ontology
concepts as classes and seamlessly use are made possible by the some package. This
specific part takes place in future works regarding creating a toolchain and the streamline
of the knowledge from the model, to the ontology and the actual executable code.

Finally, lesson learned by the Automated Vehicle community from recent crashes, fu-
ture standards, regulations and expected behaviours intensify the specialization towards
particular Operational Design Domain and verification. Our approach can integrate those
requirements into its a-priori knowledge thanks to the composable context abstractions
and explicit context-dependence restrictions of the microservices. On this basis, the con-
sistency of the updated model with the actual system is still performed continuously as
being investigated by the second level of adaptation.

4.5 Conclusions
In this chapter, we delineated our microservice-oriented model-driven framework for de-
signing autonomic and cognitive AV systems. Within this framework, we combine a set of
patterns to perform two levels of adaptations and their respective knowledge. We define
the different models and their use in the different functions of the autonomic adaptation.
The definition of such patterns and models has been motivated by the need of traceabil-
ity, flexibility and composability in AV systems. We illustrated the use of patterns for
components and knowledge bases to meet the NFP.

The next chapter applies both the introduced patterns and models for safety assess-
ment in a case study range of scenario with respect to the safety analysis from the previous
chapter.

CHAPTER 5

Applications and results

“The good thing about computers is that they do what you tell them to do.
The bad news is that they do what you tell them to do.”

- Ted Nelson,

Contents

5.1 Introduction. 117

5.2 Framework Implementation . 118
System Scope and System Architecture 118
Implementation Overview . 118
Implementation of the Logical View of the Refined Model-based Design

of the Framework Architecture 120

5.3 Case Study: a Pedestrian Crossing Application. 127
Presentation of the Case Study and Illustration 127
Application of the Framework . 130
Experimentation . 133
Results Analysis . 134

5.4 Conclusions . 137

5.1 Introduction
Pedestrian crossing is one of the most important interaction that autonomous vehicle have
with pedestrian [114]. Pedestrian are vulnerable actors in some conditions and collision
with a vehicle can result in severe human damage. In some specific settings, a collision
is also likely or inevitable and before impact occurs the vehicle is expected to act to
reduce the total harm and injuries. Research have shown that it exist 38 factors that can
potentially impact the way pedestrians behave with autonomous vehicles [118]. However,
those factors reveals variations upon the geographical locations where culture and social
norms may differ. Thus, appropriate reactions as communications and negotiation are
expected from each individual vehicle. It also implies that the autonomous vehicle needs
understanding pedestrian’s intention.

In this chapter, we aim to apply our methodology and framework to the detection and
mitigation of possible unsafe situations with pedestrians. The resulting system should
be able to, first, identify the relevant elements in the scene, second, reason about the
interconnections between these elements, and third, infer the upcoming actions of the
road users. In addition, the flexibility and reconfigurability of the system are expected

117

Chapter 5. Applications and results 118

to appropriately respond to the various traffic scenarios (e.g. different street structures,
traffic signals, crosswalk configurations).

Section 5.2 presents our general implementation of the framework as respective ele-
ments for the different layers. We also details the implementation of the containers and
knowledge representations to grasp the flexible, adaptable and observable perspectives.

Section 5.3 presents the generation and analysis of the scenarios as well as the appli-
cation of the different containers that constitute our framework. To conduct the experi-
mentation of the framework, we have allocated the safety constraints that we considered
as relevant in the scenario as mitigation mechanisms within the presented containers. Our
applications contains some symbolic approaches to understand of pedestrian’s intention
and mitigate their behaviours to ensure safety at run-time. Our first results shows that the
integration of the framework to the ADCC architecture on the robotic operating system
(ROS) architecture is feasible. This delivers significantly better results due to reducing
the unsafe behaviours of the vehicle around pedestrians.

5.2 Framework Implementation

System Scope and System Architecture

The following general design guides the implementation of our framework. The main
features that forms the composition, adaptation, and knowledge mechanisms in the im-
plementation are also illustrated.

Implementation Overview

Embedded and restrictive limitations

System Specifications

This section introduces the different framework, techniques and methods we are using
to implement system behaviours to compose our physical design architecture and final
implementation. In particular, we will introduce the robotic operating system (ROS) mid-
dleware that will be used to implement and evaluate our proposal.

ROS: ROS is a middleware that enables concrete component based software engineer-
ing techniques, as well as smarter communication patterns as publish-subscribe [116].
Not only ROS is already used in ADCC, but it also impose a service-oriented imple-
mentation for the technical architecture. Although ROS based systems are not ready for
customer open road operations, it presents a variety of advantages regarding the develop-
ment of any prototype or research project [156]:

1. Packages to interact which are already implemented within the ROS environment.
For instance, one package may provide a functionality that may not need to be
implemented in the first place, but may be replaced later.

2. ROS is already a distributed service-oriented architecture. It favors modular pack-
ages over a monolithic development and run-time environment. This “thin” ideol-
ogy discourage accidental creation of monoliths.

5.2. Framework Implementation 119

3. It provides efficient tools as introspection features (e.g. message payload), graph of
nodes and data visualization.

4. Nice and broad community has been created around ROS which has been able to
grow and exchange with the organization of conferences (ROSCON), tutorials and
the provision of packages.

5. ROS is language independent, interaction is done at the interaction layer via mes-
saging.

6. Replay and emulation ability and facilitators (i.e. launch files, configuration files)
are a key perspective for the thesis in our ability to create, simulate or react on
simulated and recorded situations. It ease the experimental procedure and favor the
possible comparisons of various algorithms per node.

ROS presents a variety of additional advantages that goes into the orientation of our so-
lution. The service-oriented middleware already provides the basic features associated
to microservices architecture. Its use allows to access the following existing and well-
experienced functionalities:

• Fundamental elements in a ROS-based system are nodes, messages, topics, and
services. In our case, we will use nodes as microservices following the ROS best
practices: "ROS is designed to be modular at a fine-grained scale".

• Service registry supports a peer-to-peer topology with the master as lookup mech-
anism to allow processes to find each other at run-time.

• Nodes are communicating by sending messages to topics using a publish/subscribe
mechanisms (event streams). Service calls are also possible for synchronous trans-
actions.

• Introspection for logging, monitoring, and visualization of the network dataflows
are possible with the provided tools and API in the form of the graphs (node can
communicate between each other). Creating introspection for a specific interface
can be easily performed, customized and extended later.

Microservice oriented architecture: As raised by Dirk Thomas, software engineer at
the non-profit Open Source Robotics Foundation, in the ROS2 open-source GitHub repos-
itory1, the creation of microservices in ROS (in its version 1 or 2) does not required any
package or extension since the communication core "makes no specific assumptions about
the context they are being used in". From this statement, it is easily feasible to design the
ROS nodes as separate microservices. Indeed, the management of different ROS nodes
becomes handy when some of their life-cycles are longer than others or involves specific
reconfigurations.

Regarding the deployment, commonly used in the world of web services and mi-
croservices, Docker2 is a solution for deployment to standardized development environ-
ments. It provides containers that can host a set of services. They refer to be convenient
for pursuing some goals of software development such as continuous integration and con-
tinuous development. ROS deployment possibilities on Docker have been synthesized in

1https://github.com/ros2/design/issues/85
2https://www.docker.com/

Chapter 5. Applications and results 120

[156]. It precise to follow the convention of keeping to one process per container like the
one suggested for microservices architecture. Indeed, the launch of a set of nodes from a
same terminal (using roslaunch or subprocess calls). A unified deployment with Docker
is considered as further work.

Design patterns favoring extendability, replaceability and flexibility: The use of
several design patterns (i.e. abstraction, strategy, decorator and composite patterns) con-
tributes to the readability and maintainability of the physical structure framework imple-
mentation. Design patterns are not generally code specific but provide a way to solve a
common problem with a limited trade-offs than ad-hoc solution [59].

Languages: Python, C++ and Java code: The ROS middleware environment allows
the creation of different nodes which can be implemented in different programming lan-
guages. The keystone for the exchange of data between the different services is the com-
munication layer. It requires a definition of the ROS message structure that is shared and
compiled for all possible languages. For illustration, we can use some node in python for
monitoring others coded in C++ and access a knowledge base running with Java.

State Machine with the SMACH package: The use of template state machines from
the SMACH package3 and their customization avoids recreating a full library of com-
ponents with a introspection functionality. The package offers the possibility to create
customized state machines with state names, event triggers (e.g. message reception or
personalized) and operations to run in each state.

Ontology management with the ARMOR package: The ARMOR package[34]4 pro-
vides a ROS service implementation that can load multiple ontologies. It can also operate
Protegé-like functionalities, but at run-time (load, add instance, infer, check consistency).

We have presented both the limitations and system specification to propose an ac-
ceptable environment to apply the framework and to implement it. The next section
overviews the choice of implementation of the framework with the presented technical
choices (ROS, state machine, ontology service).

Implementation of the Logical View of the Refined Model-based
Design of the Framework Architecture
This section presents by functions the different instances and abstractions that compose
and constitute the framework implementation.

Service Architecture and Container Allocation

Our framework follows a microservice-oriented architecture. Thus, the functions are al-
located to distinct components as microservice so that they perform their main operating
function. Figure 5.1 illustrates the whole design and the clustering of the microservice by
their layers (L1, L2, or L3), and role (Monitor, Analyze, Plan, or Execute). It is noticeable
that the container regrouping all the safety assessment processes (L2) is presented in its

3http://wiki.ros.org/smach
4https://github.com/EmaroLab/armor

5.2. Framework Implementation 121

generic version. In addition, Figure 5.1 also precises the main channels of components
exchanges between the different instances (publish-subscribe or client-server messages).

Stereotypes for the Framework Microservices

Stereotypes are the main component abstraction of microservice-components that consti-
tute our framework. They contribute to help to handles cross-cutting concerns within the
microservice chassis framework. Their specialization at run-time provides the adequate
capabilities required by the system. Those stereotypes respect a composite architectural
pattern that creates the template functions and interfaces to allow these mechanisms to
be deployed, composed and specialized. In this section, we explain the roles, capabilities
and specializations that we implement in our framework.

Some mechanisms are similar and shared between each of the instances of Moni-
toring, Analyze, Plan and Execute. Thus, we propose to abstract and aggregate those
common specifications to sustain a similar structure for each of the microservices. Con-
sequently, all microservice in the system have a common bare-bone structure we called
a stereotypes. Each of the microservice differs in the expression and implementation
of their capabilities according to their types. As a consequence, we push a common
structure, illustrated by Figure 5.2, and strategy expression in each of the types of mi-
croservices (i.e. Monitor, Analyze, Plan and Execute). As an example, Monitor typed
microservices are subscribing to information from heterogeneous sources, accessing their
goals and values in the KBs to setup their evaluation, update the knowledge bases with
the perceived information and finally raise a symptom if necessary.

The run-time specialization mechanisms of the microservices follows their respective
logic stored from the knowledge bases and accessed during its initialization. It aims
to provide dynamic and manageable capabilities to the system. The knowledge bases
stores the attributes of the semantic descriptions: exposed service interfaces; declarative
functionality to be deployed, discovered and reused (deployment recipes); description
of requirements, functions and mechanisms (capability properties); preconditions, post-
conditions, and invariant rules specific to the behaviour and composition of components.

Further, four types of interfaces are included to grasp the inputs and outputs to com-
municate with the managed resources, the monitoring to observe the state of each of the
microservice, the adaptation controlled by a managing entity and the methods to access
and interact with the knowledge bases through a specialized service. These interface are
designed and implemented to be open for extension and decorations which can affect all
or some specific microservice according the need.

Template interface of I/O The I/O interface allows to dynamically perform the se-
mantic bindings for the exposed service interfaces with the use of a semantic interpreter
service. The I/O port can either be as static I/O or be mediated based on the needs and
requirements that have been described semantically. Both of the I/O types implement its
semantic description that contains information regarding some properties (integrity with
interval, limitation, errors, ...).

Template interface for KB The Knowledge Interface corresponds to the interface with
the Knowledge Management Service that manages the access to the ontology. It con-
tributes to have some homogeneity and synchronization in the ontology access between
the multiple microservice (e.g. shared access methods, types of exchanges and logs).

Chapter 5. Applications and results 122

Figure 5.1 Components as service container and component exchanges of the framework
(Logical Architecture Blank view)

5.2. Framework Implementation 123

Template interface for monitoring The abstraction of the stereotypes allows to easily
integrate a monitoring interface to composite microservices. This monitoring interface
will serve monitoring capabilities with default behaviours (i.e. heartbeat, data consis-
tency, service performance, state) but it can be customized for specific services or ad-
vanced computation (e.g. QoS properties).

Template interface for adaptation The framework also imposes the presence of adap-
tive ports for implementing external adaptation strategies. It provides an interface to
the stereotypes to receive adaptation requests from an external component and also to
send adaptation request to managed entities or resources. In our implementation, we have
linked the execution of our code, the start and the reconfiguration to a state-machine. This
way the adaptation process can only reconfigure the service in the state Reconfiguration.

Stereotype top-level view We have presented the composite structure, the capability
inheritance for the system architecture capabilities (communication, monitoring, adapta-
tion) of the framework at run-time and the possibilities to customize them during con-
ception. Figure 5.2 shows the stereotype template as part of the logical view modeled
using the Arcadia/Capella modelling software. This system representation specifies the
structure, interfaces and knowledge accesses of a generic microservice. Five role-specific
models are also displayed to represent the type of local knowledge that the microservice
can use and access from a knowledge service. This service is detailed in the next para-
graphs.

Knowledge Management Service

The stereotypes possess an interface to connect to the Knowledge Management Service
(KMS) to perform change or request data from the ontology. The KMS plays a major
role in the microservice architecture as the role of a centralized server and access to the
knowledge. The other microservice that are its clients are identified. Any changes and
requests are stored to be synchronized and logged. The different layers of the reference
architecture and types of microservices may interact differently with the KMS to store
observations and request information. Those exchanges are illustrated by Figure 5.3.

In our implementation, they are represented as ontologies accessed through as knowl-
edge service. The implementation of the KMS is mainly based on the definition of inter-
face with the microservice that manipulation the ARMOR API at run-time.

Safety Assessment Process (SAP) Decomposition in Monitor, Analyze, Plan and
Execute

The safety assessment processes follow the MAPE decomposition in microservice as
shown in Figure 5.4. The functional chain in blue illustrates the dataflow of a safety
assessment process which involves the observations from perceived context and compo-
nents in ADCC, the successive M, A, P, E allocated microservices and finally the action
on ADCC components.

This illustration is voluntarily generic as the application of a safety assessment process
may perform different functions. However, the M,A,P,E decomposition offers a generic
template on how to use information stored locally or in the knowledge models.

Chapter 5. Applications and results 124

Figure 5.2 Stereotype interfaces and capabilities (Contextual Internal Interface)

5.2. Framework Implementation 125

Figure 5.3 Knowledge management (Logical Functional Dataflow Blank Diagram)

Chapter 5. Applications and results 126

Figure 5.4 Logical Functional Dataflow Blank Diagram for the Safety assessment process
(Layer 2). Referred as B in the reference architecture.

5.3. Case Study: a Pedestrian Crossing Application 127

Safety Orchestrator decomposition in Monitor, Analyze, Plan and Execute

In a similar manner, the safety orchestrator perform a closed loop involving the M, A,
P, E functions. The origin of the functional chain is threefold: the orchestration is per-
formed either by the observations from the perceived context and components in ADCC
(new context detected by a new symptom), either by a change in the managed ressources
(ADCC components changes), and either by the unsufficient performance of a safety as-
sessment process.

Top views of the Arcadia/Capella Model of the Framework

To conclude, the framework design and implementation can be summarized as Figure 5.6
where six main functions can be identified in this figure. The two levels that regroup
the autonomic adaptations are designated as L2 and L3 whereas L1 corresponds to the
interface with the existing system and vehicle platform. The knowledge management
service provides interfaces for requests and reasoning results. Finally, the microservice
management service proposes a framework as a library to run the allocated stereotypes
and allows to have some customized introspection.

5.3 Case Study: a Pedestrian Crossing Application

This section is aimed at illustrating how to use the framework for a specific feature of
interest: the pedestrian presence and how it ensures the safety of the situation by acting
appropriately. We have defined a scenario based on data acquired from haulage. The
framework is currently its second iteration and does not fully implement all the features.
However, the framework can illustrate its behavioural adaptation and structural adaption
for the pedestrian presence within the scope of this case study.

Presentation of the Case Study and Illustration
This case study focuses on assessing the risk management and generation of appropri-
ate corrective adaptations by the framework in situations involving vulnerable entities as
pedestrians. In this scope, the framework is implemented in connection with the existing
structure of ADCC to acquire observation data from perception and provide recommen-
dations or corrective trajectory to the navigation system. The tests are mainly carried out
with simulated data on ROS and replayed data that are close to real-data.

Scenario definition: An example scenario description and safety assessment The
case study is composed of three initial situations where the car start on the straight road
and then engage into the crossing area as illustrated in Figure 5.7. The assests and nomen-
clature used to define and create the scenario with respect to the toolkit of the Voyage
project5. Pedestrians are positioned in the crossing area along the straight road and far
enough from the Ego vehicle detection range. At a certain position of Ego in the scenario,
the pedestrian decides to move according: (A) Ego approaches a crosswalk. Pedestrian’s
calculated trajectory will be in the crosswalk when Ego is predicted to arrive.; (B) Ego
approaches a crosswalk. Pedestrian is idle while being close to the pedestrian crossing.
Pedestrian shows interest to cross the road.; (C) Ego approaches a pedestrian crossing the

5Using assets from Voyage testing toolkit available at https://oas.voyage.auto/testing-toolkit/

Chapter 5. Applications and results 128

Figure 5.5 Logical Functional Dataflow Blank Diagram for the Safety Orchestrator (Layer
3). Referred as C in the reference architecture.

5.3. Case Study: a Pedestrian Crossing Application 129

Figure 5.6 Top Level Logical Functional Dataflow view including the three layers and
support systems.

Chapter 5. Applications and results 130

(A) (B)

(C)

Figure 5.7 Illustrations of the case study involving different scenarios for pedestrian cross-
ing.

road on no crosswalk. Pedestrian’s calculated trajectory will not be in the crosswalk when
Ego is predicted to arrive.

The feature of interest of pedestrian presence currently focuses on the activity of the
pedestrians and determines through different processes if the pedestrian and the ego ve-
hicle are safe (i.e. ensuring safe distance, ensuring appropriate Ego response).

In this thesis, the scenario is not expected to solely trigger an actual structural adapta-
tion of the microservices since no major context change appears. However, such scenario
would be possible if the initial condition were extended to an actual curve or involved
different speed limitation that in final would require different configurations of the mi-
croservices being part of the safety assurance processes.

Application of the Framework

Methodology for Knowledge Bases Representation for the Case Study

In our ontology-driven approach, we can distinguish two specific usages for the ontology
on how the framework should perform structural adaptation.

The first practice represents the framework structure and services composition based
on the semantic description of the service-component (deployment recipes, capabil-
ity properties, capability deployment...). We follow the joint OGC and W3C standard
SOSA/SSN ontology [68] that describes sensors, observations, sampling, and actuation
and applied it to our AV scope.

The second use aims to specify the behaviour of components upon the context. For
this purpose, we need to detail the dependency between the actual service, the feature
of interest, its property (functional or non-functional property), and the current context.
These relations are defining a safety requirement according Waymo [153]. We have
adopted partially the context decomposition proposed by [158] and the additional scene
decorations in [18].

The ontology we are currently using is illustrated in Figure 5.8. The methodology
we adopted for the creation of this structure and the safety requirements follows these 6
steps:

5.3. Case Study: a Pedestrian Crossing Application 131

Figure 5.8 Ontology topology with SOSA/SSN integrated

1. Capture needs from safety indicators/requirements and features relative to risk as-
sessment methods or motion planning.

2. Identify those needs in the sources of information in the functional layer (modules,
events) and create associated touchpoints to access these sources of characterized
information.

3. Represent the capability of these methods with respective local logic and databases.
Their role needs to be represented across the discipline (e.g. safety).

4. Associate the needs of these capabilities to the respective semantic described ser-
vice interfaces of those micro-services.

5. Ensure the consistency of the local graphs that are part of the knowledge repre-
senting the discipline and allocate the capabilities between instances of Monitor,
Analyze, Plan, Execute and Touchpoints.

6. Specialize the composition and orchestration according the context (or system
modes).

The set of scenarios presented in 5.7 enables the construction of our first models as
ontologies that represent the operating context of the AV and the managed resources (i.e.
configuration and accessibility of ADCC features). At this step, testing of the detec-
tion verifies their correct classification based on generated and simulated situation. Their
rightful detection leads to the populating of the ontology with new instances for the spe-
cific situation during the operation of the system.

Then, each elicited scenario is analysed and bounded by safety analysis to produce a
set of assessable run-time safety constraints. The decomposition into MAPE and symp-
toms, change request, etc., defines the autonomic processes that the microservices can
perform. It specifies the required contents in the knowledge bases (i.e. relations between
context and observations, symptoms for safety assessment). Thus, a second knowledge
representation step provides ontologies representing the system regarding its structure,
capabilities, data and component exchanges.

The context ontology is illustrated in Figure 5.9. It stores the symptoms from moni-
toring and enables the composition of abstracted context (e.g. a situation) with different
road objects (e.g. Pedestrian, EgoCar) and relevant attributes. In addition, each of the road

Chapter 5. Applications and results 132

Figure 5.9 Ontology representation in the framework for context (top) and situations tag-
ging equivalence (bottom)

users can have several maneuvers allocated (e.g. Decelerating, Stopping) with attached
confidence to represent the uncertainty of perceived behaviours. The zone delimited by
the black rectangle in Figure 5.9 corresponds to the different situations we have model
and that we are trying to identify through the use of the reasoner on the stored symptoms.
Inference can then be performed by evaluating the available individuals by the reasoner
at run-time, as one situation identification rule. One situation detection rule is illustrated
in the ’Equivalent To’ field displayed on the bottom-right of the black rectangle of Figure
5.9.

A more detailled ontological representation of the other MAPE function is available
in Appendix B.

Implementation of the Technical Solutions: First Feedback From Design Phase

The framework encompasses numerous different fields and interplay at different scale.
The complexity of managing such structure can easily be misguiding and generate enor-
mous amount of code. For this purpose, we have used the MBSE methodology and tool
Arcadia/Capella to manage and use as much as existing libraries or API. The method-
ology Arcadia used iteratively have empowered the successive definition and refining of
the architecture model in Capella up to code implementation in ROS. In addition, the

5.3. Case Study: a Pedestrian Crossing Application 133

Figure 5.10 Composition of microservices for the behavioural adaptation

use of template state machines using SMACH6, and AMOR7 for a ROS service imple-
mentation to work with multiple ontologies at run-time, and several design patterns (i.e.
abstraction, strategy, decorator and composite patterns) contributes to the readability and
maintainability of the framework physical structure and code.

A such framework encompasses numerous different fields and at different scale. The
complexity of managing a such project can easily misguided or enormous amount of
code. For this purpose, we have used the MBSE tool Capella to manage and use as much
as existing libraries or API.

The methodology Arcadia used iteratively have empowered the successive definition
and refining of the architecture model in Capella up to code implementation in ROS.

On ROS, we are using SMACH for state machine (and templates), a ROS service im-
plementation of AMOR framework to work with multiple ontologies and design patterns
in our code to deal with abstraction, strategies, decorations and composite pattern.

Experimentation

Our first tests have proven that the integration of the framework to an existing ROS ar-
chitecture is possible as adaptive actions were performed. To verify and validate the
adaptations and the SMS behaviours, we have used and extend the simulator of ADCC
navigation. This simulated environment helps in creating scenario involving the EgoCar
vehicle, others road actors and road infrastructure and in assessing behaviours.

This simulation focuses on the scenario (A) illustrated in Figure 5.7 and aims to run
the SMS for the set of microservices presented in Figure 5.10. These microservice have
been represented in the ontology for this experiment and are implemented in respective
ROS node following the stereotype. During the simulation, we expect the SMS to cor-
rectly detect the situation PEDES_02_01 so that the microservices get deployed and start
to perform adequately their function resulting in adaptives actions.

6http://wiki.ros.org/smach
7https://github.com/EmaroLab/armor

Chapter 5. Applications and results 134

Results Analysis

The analysis and scenario we present is in this section aim to show that the framework can
correctly identify the situation, deploy the safety assessment process illustrated by Figure
5.10. The monitor interfaces publish all the data (state, consistency, heartbeat) that can be
logged or inspect by a future micro-service. Monitored external KPI shows the difference
in the perceive behaviour of the EgoCar and ADCC alone.

Analysis of a simulated scenario

To illustrate our findings, we propose to consider the scenario PEDES_02_01 where “Ego
approaches a crosswalk. Pedestrian’s calculated trajectory will be in the crosswalk when
Ego is predicted to arrive”. We have formalized it as 2-2-XX-CW-STR-PED:S>N:01 in
our scenario database. The detection of the situation correspond to “Detect pedestrian not
on road close to or intending to cross crosswalk”. The expected behaviour are the follow-
ing: (1) Ego slows and comes to a stop in front of the crosswalk and remains stopped.
(2) Ego proceeds through the crosswalk. Figure 5.11 illustrates this different steps the
vehicle and pedestrian had during the record in the simulated environment: Vehicle is
approaching the pedestrian crossing (keyframe 3), Detecting the pedestrian on the side
of the road with the intent to cross (keyframe 5), Reacting to the pedestrian behaviour by
slowing (keyframe 6), Pedestrian has crossed (keyframe 7), Vehicle crosses the pedestrian
crossing and regains speed (keyframe 8-10),

In these screenshots of the simulated environment, the Vehicle is represented by a
blue rectangle, the pedestrian by a square blue dot with a black circle and the pedestrian
crossing by the white rectangle.

To illustrate the behaviour change with the framework, we propose to follow some
physical and safety metrics obtained by the introspection of ADCC and our framework.
Figure 5.12 presents the baseline with the measurements of key metrics for the non-altered
vehicle behaviour with pedestrian. The two setups involved the simulation of the ADCC
vehicle where velocity (speed in x axis), acceleration (in x axis) and detection of the
pedestrian by the sensors are displayed. The scenario starts at 45 seconds with an initial
acceleration to engage the vehicle on the road and to come closer to the pedestrian cross-
ing. Maximum speed is attained at 54s. The pedestrian is then detected by the vehicle
sensors at 57s which triggers the slowing behaviour (acceleration is negative and speed is
deceasing). The vehicle is maintaining a slower velocity the closer the vehicle is to the
pedestrian. At 63s, the pedestrian has been overtaken and the vehicle starts to attain its
maximum speed.

To create a simulated scenario involving our framework, we have altered the ADCC
behaviour to be more aggressive and susceptible to violate some safety constraints we
have identified in our analysis in order to trigger our system. To this end, we have intro-
duced a x1.3 factor to the original values and reduce the potential of acceleration. The
results are illustrated in Figure 5.13. The framework intervenes with the detection of the
PEDES_02_01 situation the moment we start to have pedestrian instances populating the
ontology. This situation is then ignored after the pedestrian crossing has been passed. It
is noticeable to see that the experience with only one pedestrian have created multiple
instances as we keep some information history of the road users identified. The drop in
the number of individual between 63s to 69s is the result of system we have implemented
to overcome excessive numbers of instances that slows the inference. More limitations
are detailled in the next section.

5.3. Case Study: a Pedestrian Crossing Application 135

Figure 5.11 Key frames of the Scenario PEDES_02_01 in the simulated environment.

Chapter 5. Applications and results 136

Figure 5.12 Observed metrics for the Scenario PEDES_02_01 for ADCC with agressive
behaviour.

Figure 5.13 Observed metrics for the Scenario PEDES_02_01

5.4. Conclusions 137

Inherited and Overcome Limitations

During the implementation, we have met several difficulties and overcome some limita-
tions using different solutions.

In the first place, the distance to pedestrian were never violated as ADCC was per-
forming as too protective for the presented scenario. Consequently, we had to make
ADCC more aggressive to trigger the appropriate adaptations and display the correct be-
haviour when corrected.

We had also difficulties storing observations to create symptoms in the ontology as
the number of element were increasing significantly. For this purpose, we have created
of a custom time window to limit the range of the elements concerned by the inference
and regularly save the ontology for debugging purposes. To illustrate, in the case of
more than one sensor, the observations and result can be stored with different timestamp
(due to sensors rate acquisition or monitoring aggregation or correlation processing time).
Thus, synchronization between the data were needed for the scene to contain most of the
entities. We also limited the total number of element stored in the ontology for a road
user concept to keep the inference time relevant for run-time operation.

Finally, the adoption of microservice required a rigorous design and implementation
of the different nodes and library. Coordinating the whole system through its numerous
node have been difficult the first time.

5.4 Conclusions

To assess a “safe by design” adaptive architecture, we have presented the efforts to sys-
tematically integrate and address the dynamic complexity from environment, context-
dependent system’s capabilities, uncertainty and safety. The safety for an AV is addressed
as a system orchestration and composition problem. By using a systematic analysis and
MBSE approach, we help specifying different aspects of software architecture develop-
ment into the knowledge base that can be later be used by the system to perform self-
adaptations. These system attributes and required knowledge are represented to offer a
flexible, composable and observable autonomy. It allows for the system to assess and
perform safely its driving behaviours.

The approach is applied to only address non-functional system properties related to
the safety from a service perspective. Thus, the framework extends the existing ADCC
managed system to provide higher observability and maintainability. The semantic de-
scription helps to expose the complexity of safety mitigation and management at run-
time.

Current iteration of the framework and case study have successfully shown the ap-
plicability of the framework to AV safety. However, the scale of AV scenarios analysis
and knowledge may require much human effort to build models and ontologies. Systems
engineering tools could include the proposed framework to include from inception safety
assurance at run-time while guaranteeing traceability and consistency.

Future work on this research needs to address additional perspectives to first fit fu-
ture industry standards to be appropriately designed and implemented to include safety
assessment procedures throughout the design and development life-cycles. For example,
the manner of observing the context changes, providing interfaces for fault injection or
testing the ability of the different services to learn to avoid and mitigate collisions. As-

Chapter 5. Applications and results 138

sessment of the objectives, additional concerns and future work are discussed in the next
conclusion chapter.

CHAPTER 6

Conclusions and Perspectives

“Somewhere, something incredible is waiting to be known.”

- Carl Sagan, Perhaps

Contents

6.1 Research Objectives Achievement. 139

6.2 Conclusions . 140
Understanding the key aspect of the puzzle that is Autonomy and Safety

in Autonomous Vehicles . 140
Identifying AV behaviours in relation with safety constraints from com-

posed hazard analysis approaches 141
Identifying suitable run-time supervision and management Architecture . 141
Self-adaptive framework providing run-time management of safety as-

sessment processes in a manageable and scalable manner 141
Feasibility of monitoring, diagnosis and adaptation at run-time to real-time 142

6.3 Discussions and Perspectives . 142
Hazard Analysis issues . 142
Design Issues . 142
Implementation issues . 143
Perspectives . 144

This chapter presents the major findings of this PhD thesis, which addresses the fea-
sibility of self-adaptive microservice-oriented safety management framework into an ex-
isting autonomous vehicle system and its impacts on safety in a manageable and scalable
manner. This chapter draws consistent conclusions based around the original objectives
detailed in Chapter 1 and the NFPs identified in the literature (observability, traceabil-
ity, reconfigurability and flexibility). Following the reviews of the reiterated research
objectives, this chapter outlines the key contributions and achievements of this research.
Then, discussions on some issues met and potential future work are presented. In closing,
insights and additional perspectives that enrich this work are suggested.

6.1 Research Objectives Achievement

The main aim of this thesis has been to specify a framework that enables behavioural
safety in a manageable and scalable manner. The refined aims and objectives for this
framework were to identify all aspects and mechanisms necessary to assess internal and
external AV safety as constraints with the non-functional properties of observability,

139

Chapter 6. Conclusions and Perspectives 140

traceability, reconfigurability and flexibility in mind. The proposed framework results
from the fulfillment of the following research objectives detailled in the next section:

• Objective 1: To examine in detail the safety implications related to AD functions
and the methods used in different domains to ensure the safe operation of critical
systems.

• Objective 2: To model all of the AV behaviours and structures of functions with
a systematic approach that connects how the AV system reactions to the different
internal or external events whilst it operates.

• Objective 3: To formulate a control mechanism that configures the functions deter-
mining the behaviour of the AV to maintain the safety constraints, whatever changes
in the vehicle evolving context occurs.

• Objective 4: To include a hierarchical coordination function (i.e orchestration) to
ensure a reduction in complexity and management of the different available mech-
anisms.

• Objective 5: To demonstrate the application of the proposed safety approach via a
use case study.

6.2 Conclusions

This section demonstrates how the thesis objectives reiterated in Section 6.1 have been
investigated and achieved. The benefits provided by this research are also discussed in
relation with the practical application.

.

Understanding the key aspect of the puzzle that is Autonomy and
Safety in Autonomous Vehicles
Key solutions to grasp and solve the safe autonomy puzzle have been presented in Chap-
ter 1 and 2 with composed and personalized safety management and assurance solutions.
Adopting a goal-based, context-based as well as an agnostic methodical approach is a
suitable way to objectively measure and assess how one AV comply with its intended
functionalities, expected performances and meeting the perspectives of robustness, relia-
bility, safety, ethics and social acceptance. The identified NFPs also advocates for more
transparency, a minimum performance and long term perspectives to progress towards
safe autonomy.

These approaches need to combine (1) the new architectural structures (create recon-
figurable and flexible supervision for holistic safety), (2) the representation of the safety
knowledge (concepts of what it is to be safe via independently monitored behavioural re-
quirements like metrics or rules), (3) the system engineering methodology and processes
(integration and enforcement of qualities for safe system design) and (4) their rightful
implementation (programming languages, capabilities, tools and patterns to fit the new
needs). The appropriate composition of these aspects and the orchestration of the compo-
nents shall guide the design of AV towards the creation of consciousness, self-awareness,
and self-organization for the AV safety.

6.2. Conclusions 141

Identifying AV behaviours in relation with safety constraints from
composed hazard analysis approaches

Chapter 3 have explored the way to study and build L4-L5 AV using MBSE with the key
functionalities and safety considerations as design and run-time mitigation. The literature
have shown that different hazard analysis can be combined and applied to identify safety
constraints that eliminate the hazards by design and control them through management.
We have proposed to integrate the awareness and the result of the management strategy
to the system through control loops that we called safety assessment processes.

Identifying suitable run-time supervision and management
Architecture

The literature review about supervising safety in Chapters 2 and 3 presents approaches
that examine the outcomes that may lead to violation of safety-critical properties of the
system. They supervise system operation at run-time, adapt to uncertainties that may
cause faults, and mitigate failures presents applicable ways to keep the system acceptably
safe by using behavioural adaptations. Different classes of behavioural adaptations exist
as they perform fault detection (i.e. detect the violations that can bring a system into an
unsafe state) or failure mitigation (i.e. evaluate the risk, control and to change behaviour
by necessary actions to recover to a safe state). These adaptations are the means to inte-
grate, ensure and guarantee the safety constraints that result from the hazard analysis in
the form of as safety assessment processes. Chapter 3 has explored the way to study and
build self-adaptive systems to design L4-L5 AV using MBSE with the key functionalities
and safety considerations of design and run-time mitigation.

Self-adaptive framework providing run-time management of safety
assessment processes in a manageable and scalable manner

Chapter 4 has presented our microservice-oriented and knowledge-based model-driven
framework for designing autonomic and cognitive AV systems. Within this framework,
we combine a set of patterns to perform two levels of adaptations and their respective
knowledge that compose, orchestrate and define the safety assessment processes. We
define the different models and their use in the different functions of the autonomic adap-
tation. The definition of such patterns and models has been motivated by the need of
traceability, flexibility and composability in AV systems. We have introduced the use of
ontologies in order to implement the knowledge base of our reference architecture. In
this work, we have considered basic situations where some can be considered as atomic.
However, a real-world scene would more result of the composition of different abstract
contexts with their own attributes variations. As an example, we can consider a per-
ceived scene as a composition of situations involving a pedestrian crossing the road and
the EgoCar followed by vehicle. To reduce the complexity of the context representation,
our work proposes an ontology to foster the integration of heterogeneous data stemming
from road environment. This ontology also relates the context-dependance of the safety
assessement processes.

Chapter 6. Conclusions and Perspectives 142

Feasibility of monitoring, diagnosis and adaptation at run-time to
real-time
Chapter 5 has detailed the application of both the introduced patterns and models for
safety assessment in a case study involving pedestrians. This study considers a range
of scenario and L4 driving system for which we apply the safety analysis methodology
presented in Chapter 3. We also present the knowledge-based implementation in order to
integrate this kind of scenarios. Our first results have demonstrated that the integration of
the framework to an existing ROS architecture is feasible.

6.3 Discussions and Perspectives

Research conducted during this PhD thesis helped addressing some challenges which hin-
der the development of systems for autonomous vehicles. The issues met and outcomes
of our research work open important and interesting research perspectives. This section
discusses about the different issues met during the thesis and introduces to possible per-
spectives.

Hazard Analysis issues

Hazard Analysis and Constraints Generation

Although the STPA contribute to generate numerous potentially hazardous scenarios and
propagate the safety constraints by causality, STPA remains an iterative process and re-
finement that can be time consuming. In addition, analysis can still grow very large and
become confusing without the use of an appropriate tool and versioning.

Constraints Stability

The hazard management required by the constraints shall not impact the system overall
stability. For instance, multiple system adaptations in a short time-window may result in
system instability. It may be the consequence of the overprovisioning or wrongdoing of
the safety assurance processes, but also an inappropriate detection of the context.

Coherence and Non-blocking Constraints

Our design also imposes to formalize the safety constraints that we transform into safety
assurance processes. In fact, it is necessary to verify that constraints occurring in the same
context are not in conflict. The possible conflicts may be detected directly at the design by
referring to the definition of the different safety assurance processes (actions and managed
resources). In addition, additional check can be performed during the choice of SAP to
deploy so that they or other dimensions do not conflict. This idea has yet to be studied.

Design Issues

Framework Tool chain for Correctness and Completeness

Our approach orients our framework to propose the system model similar to a digital twin
of the architecture. Indeed, the model created in Capella/Arcadia and the implemented

6.3. Discussions and Perspectives 143

systems are closed and shared most of their elements (components description, context-
dependence). Creating a tool chain between the two would fusing the frontier between
both representations. Such project can contribute to a higher flexibility in the design pro-
cess (extension) and facilitating the traceability of the different non-functional properties
and their operational context (via context-dependence relations).

Framework Rigorousness and Consolidation

However, we are far from ensuring that the conditions are in place to develop rigorous
design flows. In fact, our design and implementation are containing some design flaws as
our implementation is a mixed-SIL software without isolation (anti pattern).

Microservice also results in the addition of system complexity if the architecture and
code is not well managed and rigorous. However, the microservices’ flexibility still are
worth the complexity and communication load we are adding by using them. It ease
the frequent functionality change (orchestration) and facilitate the interaction with the
operational context (composition). In our case, the context dependence is also identified
that serves the traceability in design and during system operation.

Framework and MBSE: Applications of Modeling Processes

The model of the framework presented in the different chapter have been done progres-
sively and by iteration with Arcadia/Capella. As we were focusing the architecture design
first, we may have partially integrate concerns of other levels during the function refine-
ment (i.e. working with “grey” boxes in System Analysis, or performing some allocation
in the Logical Architecture). In general, we have tried to avoid common pitfalls and anti-
pattern in the way to work and to model. However, we are far from ensuring that the
conditions are in place to develop rigorous design flows.

Another interesting perceptive with the framework would have been the shift of most
of the ADCC components and functions to microservices following the stereotype.

Semi-formal Interface Between Services

At the start of the thesis, we have introduced binding contracts between services where se-
mantic mediator instance analyzes the service needs and bind it to the appropriate sources.
This concept have been represented in the touchpoint level (L1) of the Capella framework
model. However, this feature is not implemented yet and replaced by the ROS communi-
cation layer as it was not mandatory for a simple proof of concept.

Introducing Learning on Safety in the Framework

Learning is a key for autonomous systems to adapt to totally new contexts. The cre-
ation of orchestration of the meta-learning and meta-understanding of the system can be
investigated to pursue safety assurance.

Implementation issues

Ontologies as a Choice for Symbolic Knowledge Representation

Ontologies have their advantages to model the domain of application with inference on the
concepts, relations and instances. However, a close attention to the system architecture

Chapter 6. Conclusions and Perspectives 144

and design should be paid to ensure appropriate data storage, inference and management
such that the right consistency (strong or eventual) is achieved.

Their ability to be used to learn new knowledge remains limited. Some research such
as Deep Learning for Ontology Reasoning (RDFox) may be relevant.

Additional challenging issues have also been experienced during the analysis, design
and implementation that lead to the creation of new appropriate solutions (e.g. asyn-
chronous storage of the perceived objects, expressiveness of the OWL2 for the inference,
performance limitation of ontologies for real-time operations). They are detailed in Sec-
tion 5.3.

Perspectives
In closing, our research outcomes open important and interesting research perspectives.

A final perspective would be to replace some of our symbolic implemented functions
with probabilistic reasoning. While the composition and the orchestration of the frame-
work remains, this type of multiple “black box” approach might challenge end-to-end
solution in terms of performance. However, it would definitely provide sufficient observ-
ability and traceability if deployed with respect to the framework. Further, the ability to
learn would be facilitated (e.g. detecting X) while its conditions of training (e.g. learning
to detect X in context Y, preconditions, post-conditions) are already defined for specific
contexts of operation. The solution may reside in providing a framework were they can
appropriately expand and operated while being supervised at run-time to assess their good
performances and meeting their objectives (e.g. contract-based appropriate reactions).

Bibliography

[1] Iso 26262 - road vehicles – functional safety, 2018. URL http:
//www.iso.org/iso/home/store/catalogue_tc/catalogue_
detail.htm?csnumber=43464.

[2] ISO/WD PAS 21448 - road vehicles - safety of the intended functionality., January
2019. URL https://www.iso.org/standard/70939.html.

[3] Asim Abdulkhaleq and Stefan Wagner. Integrated Safety Analysis Using Systems-
Theoretic Process Analysis and Software Model Checking. In Floor Koornneef and
Coen van Gulijk, editors, Computer Safety, Reliability, and Security, pages 121–
134, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24255-2.

[4] Asim Abdulkhaleq, Stefan Wagner, Daniel Lammering, Hagen Boehmert, and
Pierre Blueher. Using STPA in compliance with ISO 26262 for developing a safe
architecture for fully automated vehicles. CoRR, abs/1703.03657, 2017. URL
http://arxiv.org/abs/1703.03657.

[5] Dhaminda B. Abeywickrama and Eila Ovaska. Reflexive and evolutional digital
service ecosystems with models at runtime. CEUR Workshop Proceedings, 2019:
184–192, 1 2017. ISSN 1613-0073.

[6] Rachel Abrams and Annalyn Kurtz. Joshua brown, who died in self-
driving accident, tested limits of his tesla. The New York Times, July
2016. URL https://www.nytimes.com/2016/07/02/business/
joshua-brown-technology-enthusiast-tested-the-limits-of-his-tesla.
html.

[7] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for
autonomy. The International Journal of Robotics Research, 17(4):315–337, apr
1998. doi: 10.1177/027836499801700402. URL http://dx.doi.org/10.
1177/027836499801700402.

[8] Nourhène Alaya, Sadok Ben Yahia, and Myriam Lamolle. What makes ontology
reasoning so arduous?: Unveiling the key ontological features. In Proceedings
of the 5th International Conference on Web Intelligence, Mining and Semantics,
WIMS ’15, pages 4:1–4:12, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3293-4. doi: 10.1145/2797115.2797117. URL http://doi.acm.org/10.
1145/2797115.2797117.

[9] J. S. Albus. Outline for a theory of intelligence. IEEE Transactions on Systems,
Man, and Cybernetics, 21(3):473–509, May 1991. ISSN 0018-9472. doi: 10.1109/
21.97471.

[10] James S Albus, Hui-Min Huang, Elena R Messina, Karl Murphy, Maris Juberts, Al-
berto Lacaze, Stephen B Balakirsky, Michael O Shneier, Tsai Hong Hong, Harry A
Scott, et al. 4d/rcs version 2.0: A reference model architecture for unmanned ve-
hicle systems. NIST Interagency/Internal Report (NISTIR)-6910, 2002.

145

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
https://www.iso.org/standard/70939.html
http://arxiv.org/abs/1703.03657
https://www.nytimes.com/2016/07/02/business/joshua-brown-technology-enthusiast-tested-the-limits-of-his-tesla.html
https://www.nytimes.com/2016/07/02/business/joshua-brown-technology-enthusiast-tested-the-limits-of-his-tesla.html
https://www.nytimes.com/2016/07/02/business/joshua-brown-technology-enthusiast-tested-the-limits-of-his-tesla.html
http://dx.doi.org/10.1177/027836499801700402
http://dx.doi.org/10.1177/027836499801700402
http://doi.acm.org/10.1145/2797115.2797117
http://doi.acm.org/10.1145/2797115.2797117

BIBLIOGRAPHY 146

[11] Tiago Amorim, Denise Ratasich, Georg Macher, Alejandra Ruiz, Daniel Schnei-
der, Mario Driussi, Radu Grosu, and Andrea Hoeller. Runtime safety assurance
for adaptive cyber-physical systems: ConSerts M and ontology-based runtime
reconfiguration applied to an automotive case study. In Solutions for Cyber-
Physical Systems Ubiquity, pages 137–168. IGI Global, 2018. doi: 10.4018/
978-1-5225-2845-6.ch006.

[12] P. J. Antsaklis, K. M. Passino, and S. J. Wang. Towards intelligent autonomous
control systems: Architecture and fundamental issues. Journal of Intelligent and
Robotic Systems, 1(4):315–342, Dec 1989. ISSN 1573-0409. doi: 10.1007/
BF00126465. URL https://doi.org/10.1007/BF00126465.

[13] Alexandre Armand. Situation Understanding and Risk Assessment Framework
for Preventive Driver Assistance. IV’14, (2016SACLY008), #May# 2016. URL
https://pastel.archives-ouvertes.fr/tel-01421917.

[14] Alexandre Armand, David Filliat, and Javier Ibañez-Guzmán. Ontology-based
context awareness for driving assistance systems. In 2014 IEEE Intelligent Vehi-
cles Symposium Proceedings, pages 227–233, June 2014. doi: 10.1109/IVS.2014.
6856509.

[15] Uwe Aßmann, Sebastian Götz, Jean-Marc Jézéquel, Brice Morin, and Mario
Trapp. A Reference Architecture and Roadmap for Models@̈run.time Systems,
pages 1–18. Springer International Publishing, Cham, 2014. ISBN 978-3-319-
08915-7. doi: 10.1007/978-3-319-08915-7_1. URL https://doi.org/10.
1007/978-3-319-08915-7_1.

[16] K.J. Åström and B. Wittenmark. Adaptive Control: Second Edition. Dover Books
on Electrical Engineering. Dover Publications, 2013. ISBN 9780486319148. URL
https://books.google.fr/books?id=4CLCAgAAQBAJ.

[17] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. Dependable
and Secure Computing, IEEE Transactions on, 1(1):11–33, 2004. doi: 10.1109/
TDSC.2004.2. URL http://drum.lib.umd.edu/bitstream/handle/
1903/6459/TR_2004-47.pdf?sequence=1.

[18] Gerrit Bagschik, Till Menzel, and Markus Maurer. Ontology based scene creation
for the development of automated vehicles. CoRR, abs/1704.01006, 2017. URL
http://arxiv.org/abs/1704.01006.

[19] Gerrit Bagschik, Torben Stolte, and Markus Maurer. Safety analysis based on
systems theory applied to an unmanned protective vehicle. Procedia Engineering,
179:61 – 71, 2017. ISSN 1877-7058. doi: http://dx.doi.org/10.1016/j.proeng.2017.
03.096. URL http://www.sciencedirect.com/science/article/
pii/S1877705817312122. 4th European {STAMP} Workshop 2016, {ESW}
2016, 13-15 September 2016, Zurich, Switzerland.

[20] Gerrit Bagschik, Marcus Nolte, Susanne Ernst, and Markus Maurer. A system’s
perspective towards an architecture framework for safe automated vehicles. CoRR,
abs/1804.07020, 2018. URL http://arxiv.org/abs/1804.07020.

https://doi.org/10.1007/BF00126465
https://pastel.archives-ouvertes.fr/tel-01421917
https://doi.org/10.1007/978-3-319-08915-7_1
https://doi.org/10.1007/978-3-319-08915-7_1
https://books.google.fr/books?id=4CLCAgAAQBAJ
http://drum.lib.umd.edu/bitstream/handle/1903/6459/TR_2004-47.pdf?sequence=1
http://drum.lib.umd.edu/bitstream/handle/1903/6459/TR_2004-47.pdf?sequence=1
http://arxiv.org/abs/1704.01006
http://www.sciencedirect.com/science/article/pii/S1877705817312122
http://www.sciencedirect.com/science/article/pii/S1877705817312122
http://arxiv.org/abs/1804.07020

BIBLIOGRAPHY 147

[21] Anand Balakrishnan, Aniruddh G. Puranic, Xin Qin, Adel Dokhanchi, Jyotir-
moy V. Deshmukh, Heni Ben Amor, and Georgios Fainekos. Specifying and
evaluating quality metrics for vision-based perception systems. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, mar 2019.
doi: 10.23919/date.2019.8715114.

[22] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & systems
engineering process and tools for the development of autonomous driving intelli-
gence. CoRR, abs/1409.7121, 2014. URL http://arxiv.org/abs/1409.
7121.

[23] Sagar Behere. Architecting autonomous automotive systems: With an emphasis on
cooperative driving. PhD thesis, KTH Royal Institute of Technology, 2013.

[24] Sagar Behere and Martin Törngren. A functional reference architecture for au-
tonomous driving. Information and Software Technology, 73:136 – 150, 2016.
ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2015.12.008. URL
https://sagar.se/files/wasa2015.pdf.

[25] Sagar Behere and Martin Törngren. Systems Engineering and Archi-
tecting for Intelligent Autonomous Systems, chapter 13, pages 313–351.
Springer International Publishing, Cham, 2017. ISBN 978-3-319-31895-0.
doi: 10.1007/978-3-319-31895-0_13. URL https://doi.org/10.1007/
978-3-319-31895-0_13.

[26] Sagar Behere, Fredrik Asplund, Andreas Söderberg, and Martin Törngren. Archi-
tecture challenges for intelligent autonomous machines. In Emanuele Menegatti,
Nathan Michael, Karsten Berns, and Hiroaki Yamaguchi, editors, Intelligent Au-
tonomous Systems 13, pages 1669–1681, Cham, 2016. Springer International Pub-
lishing. ISBN 978-3-319-08338-4.

[27] Nelly Bencomo, Robert France, Betty H. C. Cheng, and Uwe AÃmann. Mod-
els@̈run.time: Foundations, Applications, and Roadmaps. Lecture Notes
in Computer Science 8378 Programming and Software Engineering. Springer
International Publishing, 1 edition, 2014. ISBN 978-3-319-08914-0,978-3-
319-08915-7. URL http://gen.lib.rus.ec/book/index.php?md5=
FE3FB31034F4BF988FFCF0E220BA76F6.

[28] Christian Berger and Bernhard Rumpe. Engineering autonomous driving software.
Experience from the DARPA Urban Challenge, pages 243–271, 2012.

[29] David Bissell. Automation interrupted: How autonomous vehicle accidents
transform the material politics of automation. Political Geography, 65:57
– 66, 2018. ISSN 0962-6298. doi: https://doi.org/10.1016/j.polgeo.2018.
05.003. URL http://www.sciencedirect.com/science/article/
pii/S0962629817303943.

[30] National Transport Safety Board. Preliminary report highway hwy19fh008,
March 2019. URL https://www.ntsb.gov/investigations/
AccidentReports/Reports/HWY19FH008-preliminary.pdf.

http://arxiv.org/abs/1409.7121
http://arxiv.org/abs/1409.7121
https://sagar.se/files/wasa2015.pdf
https://doi.org/10.1007/978-3-319-31895-0_13
https://doi.org/10.1007/978-3-319-31895-0_13
http://gen.lib.rus.ec/book/index.php?md5=FE3FB31034F4BF988FFCF0E220BA76F6
http://gen.lib.rus.ec/book/index.php?md5=FE3FB31034F4BF988FFCF0E220BA76F6
http://www.sciencedirect.com/science/article/pii/S0962629817303943
http://www.sciencedirect.com/science/article/pii/S0962629817303943
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY19FH008-preliminary.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY19FH008-preliminary.pdf

BIBLIOGRAPHY 148

[31] R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp, David P. Miller,
and Mark G. Slack. Experiences with an architecture for intelligent, reactive
agents. Journal of Experimental & Theoretical Artificial Intelligence, 9(2-3):237–
256, 1997. doi: 10.1080/095281397147103. URL https://doi.org/10.
1080/095281397147103.

[32] Neal E. Boudette. Despite high hopes, self-driving cars are ’way in the future’.
The New York Times, Jul 2019. URL https://www.nytimes.com/2019/
07/17/business/self-driving-autonomous-cars.html.

[33] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal
on Robotics and Automation, 2(1):14–23, March 1986. ISSN 0882-4967. doi:
10.1109/JRA.1986.1087032.

[34] Luca Buoncompagni, Alessio Capitanelli, and Fulvio Mastrogiovanni. A ROS
multi-ontology references services: OWL reasoners and application prototyping
issues. CoRR, abs/1706.10151, 2017. URL http://arxiv.org/abs/1706.
10151.

[35] CA-DMV. Reports of Traffic Accidents Involving an Autonomous Vehi-
cle - OL316, 2019. URL https://www.dmv.ca.gov/portal/wcm/
connect/3946fbb8-e04e-4d52-8f80-b33948df34b2/Google+
Auto+LLC+02.14.16.pdf?MOD=AJPERES.

[36] CA-DMV. Reports of Traffic Accidents Involving an Autonomous Vehicle -
OL316, 2019. URL https://www.dmv.ca.gov/portal/dmv/detail/
vr/autonomous/autonomousveh_ol316+.

[37] Betty H. C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A. Müller, Patrizio Pelliccione, Anna Perini, Nauman A. Qureshi, Bern-
hard Rumpe, Daniel Schneider, Frank Trollmann, and Norha M. Villegas. Using
Models at Runtime to Address Assurance for Self-Adaptive Systems, pages 101–
136. Springer International Publishing, Cham, 2014. ISBN 978-3-319-08915-
7. doi: 10.1007/978-3-319-08915-7_4. URL https://doi.org/10.1007/
978-3-319-08915-7_4.

[38] I. Colwell, B. Phan, S. Saleem, R. Salay, and K. Czarnecki. An automated vehicle
safety concept based on runtime restriction of the operational design domain. In
2018 IEEE Intelligent Vehicles Symposium (IV), pages 1910–1917, June 2018. doi:
10.1109/IVS.2018.8500530.

[39] SAE On-Road Automated Vehicle Standards Committee et al. Taxonomy and defi-
nitions for terms related to on-road motor vehicle automated driving systems. Tech-
nical report, 2014.

[40] SAE On-Road Automated Vehicle Standards Committee et al. Taxonomy and defi-
nitions for terms related to on-road motor vehicle automated driving systems. Tech-
nical report, SAE International, September 2016. Revision of J3016_201401.

[41] SAE On-Road Automated Vehicle Standards Committee et al. Taxonomy and defi-
nitions for terms related to on-road motor vehicle automated driving systems. Tech-
nical report, SAE International, June 2018. Revision of J3016_201609.

https://doi.org/10.1080/095281397147103
https://doi.org/10.1080/095281397147103
https://www.nytimes.com/2019/07/17/business/self-driving-autonomous-cars.html
https://www.nytimes.com/2019/07/17/business/self-driving-autonomous-cars.html
http://arxiv.org/abs/1706.10151
http://arxiv.org/abs/1706.10151
https://www.dmv.ca.gov/portal/wcm/connect/3946fbb8-e04e-4d52-8f80-b33948df34b2/Google+Auto+LLC+02.14.16.pdf?MOD=AJPERES
https://www.dmv.ca.gov/portal/wcm/connect/3946fbb8-e04e-4d52-8f80-b33948df34b2/Google+Auto+LLC+02.14.16.pdf?MOD=AJPERES
https://www.dmv.ca.gov/portal/wcm/connect/3946fbb8-e04e-4d52-8f80-b33948df34b2/Google+Auto+LLC+02.14.16.pdf?MOD=AJPERES
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousveh_ol316+
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousveh_ol316+
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4

BIBLIOGRAPHY 149

[42] Shawn A. Cook, Hsing-Hua Fan, Krzysztof Pennar, and Padma Sundaram. Build-
ing behavioral competency into stpa process models for automated driving sys-
tems. March 2018.

[43] Ö. Ş. Taş, F. Kuhnt, J. M. Zöllner, and C. Stiller. Functional system architectures
towards fully automated driving. In 2016 IEEE Intelligent Vehicles Symposium
(IV), pages 304–309, June 2016. doi: 10.1109/IVS.2016.7535402.

[44] Romain Cuer. Démarche de conception sûre de la Supervision de la fonction
de Conduite Autonome. PhD thesis, 2018. URL http://www.theses.fr/
2018LYSEI091. ThÃšse de doctorat dirigÃ c©e par Niel, Eric Automatique Lyon
2018.

[45] Codé Diop, Guillaume Dugué, Christophe Chassot, Ernesto Exposito, and Jorge
Gomez. QoS-aware and autonomic-oriented multi-path TCP extensions for mobile
and multimedia applications. International Journal of Pervasive Computing and
Communications, 8(4):306–328, nov 2012. doi: 10.1108/17427371211283001.

[46] Dmitri A. Dolgov and Christopher Paul Urmson. Us9367065b2. U.S. Patent, Jun
2016.

[47] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,
today, and tomorrow. CoRR, abs/1606.04036, 2016. URL http://arxiv.
org/abs/1606.04036.

[48] Hugh Durrant-Whyte. A critical review of the state-of-the-art in autonomous land
vehicle systems and technology. In Sandia report, volume SAND200I-3685, Al-
buquerque, 2001. Sandia National Laboratories.

[49] Yrvann Emzivat. Safety System Architecture for the Design of Dependable and
Adaptable Autonomous Vehicles. PhD thesis, 2018.

[50] Yrvann Emzivat, Javier Ibanez-Guzman, Herve Illy, Philippe Martinet, and
Olivier H. Roux. A formal approach for the design of a dependable perception sys-
tem for autonomous vehicles. In 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, nov 2018. doi: 10.1109/itsc.2018.8569903.

[51] Francesca Favarò, Sky Eurich, and Nazanin Nader. Autonomous vehicles’ dis-
engagements: Trends, triggers, and regulatory limitations. Accident Analysis &
Prevention, 110:136 – 148, 2018. ISSN 0001-4575. doi: https://doi.org/10.1016/
j.aap.2017.11.001. URL http://www.sciencedirect.com/science/
article/pii/S0001457517303822.

[52] Donald Firesmith. Common concepts underlying safety, security, and sur-
vivability engineering. Technical Report CMU/SEI-2003-TN-033, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2003. URL
http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=6553.

[53] Donald Firesmith. A taxonomy of safety-related requirements. In Proceedings of
the International Workshop on Requirements for High Assurance Systems. Interna-
tional Workshop on High Assurance Systems (RHAS’05), 2005.

http://www.theses.fr/2018LYSEI091
http://www.theses.fr/2018LYSEI091
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
http://www.sciencedirect.com/science/article/pii/S0001457517303822
http://www.sciencedirect.com/science/article/pii/S0001457517303822
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6553
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6553

BIBLIOGRAPHY 150

[54] FiveAI. Certification of highly automated vehicles for use on uk roads: Creating
an industry-wide framework for safety. Technical report, FiveAI, 2019.

[55] Ford. A matter of trust fords approach to developing self-driving vehicles.
techreport, Ford, 2018. URL https://media.ford.com/content/dam/
fordmedia/pdf/Ford_AV_LLC_FINAL_HR_2.pdf.

[56] Martin Fowler and James Lewis. Microservices: a definition of this new archi-
tectural term. ThoughtWorks. http://martinfowler.com/articles/microservices.html
[last accessed on July 06, 2016], 2014. URL http://martinfowler.com/
articles/microservices.html.

[57] Laura Fraade-Blanar, Marjory S. Blumenthal, James M. Anderson, and Nidhi
Kalra. Measuring automated vehicle safety: Forging a framework. Technical
report, RAND Corporation, Santa Monica, CA, 2018. URL https://www.
rand.org/pubs/research_reports/RR2662.html.

[58] Lex Fridman. Elon musk: Tesla autopilot | artificial intelligence (ai) podcast, Apr
2019. URL https://www.youtube.com/watch?v=dEv99vxKjVI.

[59] Erich Gamma. Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

[60] Tom M. Gasser, Clemens Arzt, Mihiar Ayoubi, Arne Bartels, Jana Eier, Frank
Flemisch, Dirk Häcker, Tobias Hesse, Werner Huber, Christine Lotz, Markus
Maurer, Simone Ruth-Schumacher, Jürgen Schwarz, Wolfgang Vogt, and Pro-
jektgruppe Rechtsfolgen zunehmender Fahrzeugautomatisierung. Rechtsfolgen
zunehmender fahrzeugautomatisierung (bast-bericht f 83). techreport vol. 83.,
BASt, Wirtschaftsverl. NW Verl. fÃŒr neue Wissenschaft, Bremerhaven, 2012.
URL http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/
F83.pdf. Gemeinsamer Schlussbericht der Projektgruppe. Berichte der Bunde-
sanstalt fÃŒr Strassenwesen - Fahrzeugtechnik (F).

[61] Erann Gat. Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. In Proceedings of the Tenth
National Conference on Artificial Intelligence, AAAI’92, pages 809–815. AAAI
Press, 1992. ISBN 0-262-51063-4. URL http://dl.acm.org/citation.
cfm?id=1867135.1867260.

[62] General Motors. 2018 self-driving safety report. Technical report, General Mo-
tors Inc., 2018. URL https://www.gm.com/content/dam/company/
docs/us/en/gmcom/gmsafetyreport.pdf.

[63] Xinli Geng, Huawei Liang, Biao Yu, Pan Zhao, Liuwei He, and Rulin Huang.
A scenario-adaptive driving behavior prediction approach to urban autonomous
driving. Applied Sciences, 7:426, 04 2017. URL http://www.mdpi.com/
2076-3417/7/4/426.

[64] S. Geyer, M. Baltzer, B. Franz, S. Hakuli, M. Kauer, M. Kienle, S. Meier, T. Weiss-
gerber, K. Bengler, R. Bruder, F. Flemisch, and H. Winner. Concept and develop-
ment of a unified ontology for generating test and use-case catalogues for assisted
and automated vehicle guidance. IET Intelligent Transport Systems, 8(3):183–189,
May 2014. ISSN 1751-956X. doi: 10.1049/iet-its.2012.0188.

https://media.ford.com/content/dam/fordmedia/pdf/Ford_AV_LLC_FINAL_HR_2.pdf
https://media.ford.com/content/dam/fordmedia/pdf/Ford_AV_LLC_FINAL_HR_2.pdf
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://www.rand.org/pubs/research_reports/RR2662.html
https://www.rand.org/pubs/research_reports/RR2662.html
https://www.youtube.com/watch?v=dEv99vxKjVI
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://dl.acm.org/citation.cfm?id=1867135.1867260
http://dl.acm.org/citation.cfm?id=1867135.1867260
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
http://www.mdpi.com/2076-3417/7/4/426
http://www.mdpi.com/2076-3417/7/4/426

BIBLIOGRAPHY 151

[65] Samuel Gibbs. Crash involving self-driving google car injures
three employees. The Guardian, July 2015. URL https:
//www.theguardian.com/technology/2015/jul/17/
crash-self-driving-google-car-injures-three.

[66] Samuel Gibbs. Tesla model s cleared by auto safety regulator af-
ter fatal autopilot crash. The Guardian, January 2017. URL
https://www.theguardian.com/technology/2017/jan/20/
tesla-model-s-cleared-auto-safety-regulator-after-fatal-autopilot-crash.

[67] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J. Ramirez, Paola In-
verardi, Sebastian Wätzoldt, and Siobhán Clarke. Living with Uncertainty in the
Age of Runtime Models, pages 47–100. Springer International Publishing, Cham,
2014. ISBN 978-3-319-08915-7. doi: 10.1007/978-3-319-08915-7_3. URL
https://doi.org/10.1007/978-3-319-08915-7_3.

[68] Armin Haller, Krzysztof Janowicz, Simon JD Cox, Maxime Lefrançois, Kerry Tay-
lor, Danh Le Phuoc, Joshua Lieberman, Raúl García-Castro, Rob Atkinson, and
Claus Stadler. The modular ssn ontology: A joint w3c and ogc standard specifying
the semantics of sensors, observations, sampling, and actuation. Semantic Web,
Pre-press(Pre-press):1–24, 2018. doi: 10.3233/SW-180320.

[69] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller. Decision making for
autonomous driving considering interaction and uncertain prediction of surround-
ing vehicles. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1671–1678,
June 2017. doi: 10.1109/IVS.2017.7995949.

[70] Markus C Huebscher and Julie A McCann. A survey of autonomic computing
– degrees, models, and applications. ACM Computing Surveys (CSUR), 40(3):7,
2008.

[71] Javier Ibañez-Guzmán, Christian Laugier, John-David Yoder, and Sebas-
tian Thrun. Autonomous Driving: Context and State-of-the-Art, pages
1271–1310. Springer London, London, 2012. ISBN 978-0-85729-085-4.
doi: 10.1007/978-0-85729-085-4_50. URL https://doi.org/10.1007/
978-0-85729-085-4_50.

[72] J.Kaplan, R. Glon, S. Edelstein, and L. Chang. Deadly uber crash
was ’entirely avoidable’ had the driver not been watching hulu. Digi-
tal Trends, 2018. URL https://www.digitaltrends.com/cars/
self-driving-uber-crash-arizona/.

[73] Rolf Johansson, Jonas Nilsson, Carl Bergenhem, Sagar Behere, Jörgen Tryg-
gvesson, Stig Ursing, Andreas Söderberg, Martin Törngren, and Fredrik Warg.
Functional Safety and Evolvable Architectures for Autonomy, pages 547–560.
Springer International Publishing, Cham, 2017. ISBN 978-3-319-31895-0.
doi: 10.1007/978-3-319-31895-0_25. URL https://doi.org/10.1007/
978-3-319-31895-0_25.

[74] Nidhi Kalra and Susan M. Paddock. Driving to safety: How many miles of driv-
ing would it take to demonstrate autonomous vehicle reliability? Technical re-
port, RAND Corporation, 2016. URL http://www.sciencedirect.com/
science/article/pii/S0965856416302129.

https://www.theguardian.com/technology/2015/jul/17/crash-self-driving-google-car-injures-three
https://www.theguardian.com/technology/2015/jul/17/crash-self-driving-google-car-injures-three
https://www.theguardian.com/technology/2015/jul/17/crash-self-driving-google-car-injures-three
https://www.theguardian.com/technology/2017/jan/20/tesla-model-s-cleared-auto-safety-regulator-after-fatal-autopilot-crash
https://www.theguardian.com/technology/2017/jan/20/tesla-model-s-cleared-auto-safety-regulator-after-fatal-autopilot-crash
https://doi.org/10.1007/978-3-319-08915-7_3
https://doi.org/10.1007/978-0-85729-085-4_50
https://doi.org/10.1007/978-0-85729-085-4_50
https://www.digitaltrends.com/cars/self-driving-uber-crash-arizona/
https://www.digitaltrends.com/cars/self-driving-uber-crash-arizona/
https://doi.org/10.1007/978-3-319-31895-0_25
https://doi.org/10.1007/978-3-319-31895-0_25
http://www.sciencedirect.com/science/article/pii/S0965856416302129
http://www.sciencedirect.com/science/article/pii/S0965856416302129

BIBLIOGRAPHY 152

[75] Aaron Kane, Omar Chowdhury, Anupam Datta, and Philip Koopman. A case
study on runtime monitoring of an autonomous research vehicle (arv) system. In
Ezio Bartocci and Rupak Majumdar, editors, Runtime Verification, pages 102–117,
Cham, 2015. Springer International Publishing. ISBN 978-3-319-23820-3.

[76] Viktor Kaznov, Johan Svahn, Per Roos, Fredrik Asplund, Sagar Behere, and Martin
Törngren. Architecture and Safety for Autonomous Heavy Vehicles: ARCHER,
pages 571–581. Springer International Publishing, Cham, 2017. ISBN 978-3-319-
31895-0. doi: 10.1007/978-3-319-31895-0_27. URL https://doi.org/10.
1007/978-3-319-31895-0_27.

[77] J Kephart, D Chess, Craig Boutilier, Rajarshi Das, and William E Walsh. An ar-
chitectural blueprint for autonomic computing. IBM White paper, June 2006. doi:
10.1.1.150.1011. URL https://pdfs.semanticscholar.org/0e99/
837d9b1e70bb35d516e32ecfc345cd30e795.pdf.

[78] R. Koh-Dzul, M. Vargas-Santiago, C. Diop, E. Exposito, and F. Moo-Mena.
A smart diagnostic model for an autonomic service bus based on a probabilis-
tic reasoning approach. In 2013 IEEE 10th International Conference on Ubiq-
uitous Intelligence and Computing and 2013 IEEE 10th International Confer-
ence on Autonomic and Trusted Computing, pages 416–421, Dec 2013. doi:
10.1109/UIC-ATC.2013.35.

[79] P. Koopman and M. Wagner. Autonomous vehicle safety: An interdisciplinary
challenge. IEEE Intelligent Transportation Systems Magazine, 9(1):90–96, Spring
2017. ISSN 1939-1390. doi: 10.1109/MITS.2016.2583491.

[80] Phil Koopman. An Overview of Draft UL 4600: Standard for
Safety for the Evaluation of Autonomous Products. Medium,
Jun 2019. URL https://medium.com/@pr_97195/
an-overview-of-draft-ul-4600-standard-for-safety-for-the-evaluation-of-autonomous-products-a50083762591.

[81] Philip Koopman. Autonomous vehicles: Safety validation and edge case
testing, June 2018. URL https://users.ece.cmu.edu/~koopman/
lectures/2018_chinaav.pdf.

[82] Philip Koopman. The big picture for self-driving car safety, April 2019.

[83] Philip Koopman and Frank Fratrik. How many operational design domains, ob-
jects, and events? Safe AI 2019: AAAI Workshop on Artificial Intelligence Safety,
January 2019. URL https://users.ece.cmu.edu/~koopman/pubs/
Koopman19_SAFE_AI_ODD_OEDR.pdf.

[84] Philip Koopman and Michael Wagner. Toward a framework for highly auto-
mated vehicle safety validation. In SAE Technical Paper. SAE International, 04
2018. doi: 10.4271/2018-01-1071. URL https://doi.org/10.4271/
2018-01-1071.

[85] Philip Koopman, Aaron Kane, and Jen Black. Credible autonomy safety argumen-
tation. 2019.

https://doi.org/10.1007/978-3-319-31895-0_27
https://doi.org/10.1007/978-3-319-31895-0_27
https://pdfs.semanticscholar.org/0e99/837d9b1e70bb35d516e32ecfc345cd30e795.pdf
https://pdfs.semanticscholar.org/0e99/837d9b1e70bb35d516e32ecfc345cd30e795.pdf
https://medium.com/@pr_97195/an-overview-of-draft-ul-4600-standard-for-safety-for-the-evaluation-of-autonomous-products-a50083762591
https://medium.com/@pr_97195/an-overview-of-draft-ul-4600-standard-for-safety-for-the-evaluation-of-autonomous-products-a50083762591
https://users.ece.cmu.edu/~koopman/lectures/2018_chinaav.pdf
https://users.ece.cmu.edu/~koopman/lectures/2018_chinaav.pdf
https://users.ece.cmu.edu/~koopman/pubs/Koopman19_SAFE_AI_ODD_OEDR.pdf
https://users.ece.cmu.edu/~koopman/pubs/Koopman19_SAFE_AI_ODD_OEDR.pdf
https://doi.org/10.4271/2018-01-1071
https://doi.org/10.4271/2018-01-1071

BIBLIOGRAPHY 153

[86] Philip Koopman, Beth Osyk, and Jack Weast. Autonomous vehicles
meet the physical world: RSS, variability, uncertainty, and proving
safety. In Lecture Notes in Computer Science, pages 245–253. Springer
International Publishing, 2019. doi: 10.1007/978-3-030-26601-1_17.
URL https://www.slideshare.net/PhilipKoopman1/
autonomous-vehicles-meet-the-physical-world-rss-practical-experience-report.

[87] John Krafcik. Waymo one: The next step on our self-driving jour-
ney. Medium, Dec 2018. URL https://medium.com/waymo/
waymo-one-the-next-step-on-our-self-driving-journey-6d0c075b0e9b.

[88] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An architecture
for general intelligence. Artificial Intelligence, 33(1):1 – 64, 1987. ISSN 0004-
3702. doi: https://doi.org/10.1016/0004-3702(87)90050-6. URL http://www.
sciencedirect.com/science/article/pii/0004370287900506.

[89] Edward A Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE In-
ternational Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 363–369. IEEE, 2008.

[90] Stéphanie Lefèvre. Risk estimation at road intersections for connected vehicle
safety applications. PhD thesis, INRIA Grenoble, 10 2012.

[91] Stéphanie Lefèvre, Christian Laugier, and Javier Ibañez-Guzmán. Risk assessment
at road intersections: Comparing intention and expectation. In 2012 IEEE Intel-
ligent Vehicles Symposium, pages 165–171, June 2012. doi: 10.1109/IVS.2012.
6232198.

[92] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. A survey on motion
prediction and risk assessment for intelligent vehicles. ROBOMECH Journal, 1
(1):1, 2014. ISSN 2197-4225. doi: 10.1186/s40648-014-0001-z. URL http:
//dx.doi.org/10.1186/s40648-014-0001-z.

[93] Nancy Leveson. A systems approach to risk management through leading safety
indicators. Reliability Engineering & System Safety, 136:17–34, apr 2015. doi:
10.1016/j.ress.2014.10.008.

[94] Nancy Leveson. Engineering a safer and more secure world, March 2018.

[95] Nancy G Leveson. Safeware: System Safety and Comput-
ers. Addison-Wesley, New York, NY, USA, 1995. ISBN 0-201-
11972-2. URL http://ocw.alfaisal.edu/NR/rdonlyres/
Aeronautics-and-Astronautics/16-358JSpring-2005/
DD631F49-C42B-4804-8536-2EA6D67DC3FC/0/book_1_2.pdf.

[96] Nancy G. Leveson. An approach to designing safe embedded software. In Alberto
Sangiovanni-Vincentelli and Joseph Sifakis, editors, Embedded Software, pages
15–29, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-
45828-9.

[97] Nancy G. Leveson. Engineering a Safer World - Systems Thinking Applied to
Safety. The MIT Press, 2012. URL https://mitpress.mit.edu/sites/

https://www.slideshare.net/PhilipKoopman1/autonomous-vehicles-meet-the-physical-world-rss-practical-experience-report
https://www.slideshare.net/PhilipKoopman1/autonomous-vehicles-meet-the-physical-world-rss-practical-experience-report
https://medium.com/waymo/waymo-one-the-next-step-on-our-self-driving-journey-6d0c075b0e9b
https://medium.com/waymo/waymo-one-the-next-step-on-our-self-driving-journey-6d0c075b0e9b
http://www.sciencedirect.com/science/article/pii/0004370287900506
http://www.sciencedirect.com/science/article/pii/0004370287900506
http://dx.doi.org/10.1186/s40648-014-0001-z
http://dx.doi.org/10.1186/s40648-014-0001-z
http://ocw.alfaisal.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-358JSpring-2005/DD631F49-C42B-4804-8536-2EA6D67DC3FC/0/book_1_2.pdf
http://ocw.alfaisal.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-358JSpring-2005/DD631F49-C42B-4804-8536-2EA6D67DC3FC/0/book_1_2.pdf
http://ocw.alfaisal.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-358JSpring-2005/DD631F49-C42B-4804-8536-2EA6D67DC3FC/0/book_1_2.pdf
https://mitpress.mit.edu/sites/default/files/titles/free_download/9780262016629_Engineering_a_Safer_World.pdf
https://mitpress.mit.edu/sites/default/files/titles/free_download/9780262016629_Engineering_a_Safer_World.pdf

BIBLIOGRAPHY 154

default/files/titles/free_download/9780262016629_
Engineering_a_Safer_World.pdf.

[98] Nancy G. Leveson and John P. Thomas. STPA Handbook. MIT Part-
nership for a Systems Approach to Safety (PSAS, March 2018. URL
http://psas.scripts.mit.edu/home/get_file.php?name=
STPA_handbook.pdf.

[99] Nancy G. Leveson, John P. Thomas, and MIT. STPA Primer. MIT Partnership
for a Systems Approach to Safety (PSAS), 2015. URL sunnyday.mit.edu/
STPA-Primer-v0.pdf.

[100] Matt Luckcuck, Marie Farrell, Louise Dennis, Clare Dixon, and Michael Fisher.
Formal Specification and Verification of Autonomous Robotic Systems: A Survey.
arXiv preprint arXiv:1807.00048, 2018.

[101] J. Lygeros, D. N. Godbole, and M. E. Broucke. Design of an extended archi-
tecture for degraded modes of operation of ivhs. In American Control Confer-
ence, Proceedings of the 1995, volume 5, pages 3592–3596 vol.5, Jun 1995. doi:
10.1109/ACC.1995.533806.

[102] Michael T. Fisher Martin L. Abbott. The Art of Scalability. Addison Wesley,
2015. ISBN 0134032802. URL https://www.ebook.de/de/product/
23633910/martin_l_abbott_michael_t_fisher_the_art_of_
scalability.html.

[103] M.Sc. Matthew Wood, Dr. Philipp Robbel, Dr. Michael Maass, Dr. Radboud Duin-
tjer Tebbens, M.Sc. Marc Meijs, M.Sc. Mohamed Harb, B.Sc. Jonathon Reach,
Karl Robinson, M.Sc. David Wittmann, M.Sc. Toshika Srivastava, Dr.-Ing.
Mohamed Essayed Bouzouraa, MBA Siyuan Liu, BS, MA Yali Wang, Dr.-
Ing. Christian Knobel, Dipl.-Inf. David Boymanns, Dr.-Ing. Matthias Löhning,
Dr. Bernhard Dehlink, M.Sc. Dirk Kaule, Dipl.-Ing. Richard Krüger, Dr. Je-
lena Frtunikj, Dr. Florian Raisch, Dipl.-Math. Miriam Gruber, M.Sc. Jes-
sica Steck, Dipl.-Psych. Julia Mejia-Hernandez, Dipl.-Ing. Sandro Syguda, Dipl.-
Ing. Pierre Blüher, Dr.-Ing. Kamil Klonecki, Dr. Pierre Schnarz, Dr. Thomas
Wiltschko, Dipl.-Inf. Stefan Pukallus, Dr.-Ing. Kai Sedlaczek, M.Sc. Neil Gar-
bacik, BSAE David Smerza, Dr. Dalong Li, Dr. Adam Timmons, Marco
Bellotti, BS Michael O’Brien, Michael Schöllhorn, Dipl.-Ing. Udo Dan-
nebaum, M.Sc. Jack Weast, BS, BS Alan Tatourian, Dr.-Ing. Bernd Dornieden,
Dr.-Ing. Philipp Schnetter, Dr.-Ing. Dipl.-Wirt.Ing. Philipp Themann, Dr.-
Ing. Thomas Weidner, and Dr. rer. nat. Peter Schlicht. Safety first for au-
tomated driving (safad). Technical report, Aptiv Services US, LLC; AUDI
AG; Bayrische Motoren Werke AG; Beijing Baidu Netcom Science Technol-
ogy Co., Ltd; Continental Teves AG & Co oHG; Daimler AG; FCA US LLC;
HERE Global B.V.; Infineon Technologies AG; Intel; Volkswagen AG, 2019.
URL https://www.daimler.com/documents/innovation/other/
safety-first-for-automated-driving.pdf.

[104] A. Meystel. Intelligent control: A sketch of the theory. Journal of Intelligent
and Robotic Systems, 2(2):97–107, Jun 1989. ISSN 1573-0409. doi: 10.1007/
BF00238683. URL https://doi.org/10.1007/BF00238683.

https://mitpress.mit.edu/sites/default/files/titles/free_download/9780262016629_Engineering_a_Safer_World.pdf
https://mitpress.mit.edu/sites/default/files/titles/free_download/9780262016629_Engineering_a_Safer_World.pdf
https://mitpress.mit.edu/sites/default/files/titles/free_download/9780262016629_Engineering_a_Safer_World.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
sunnyday.mit.edu/STPA-Primer-v0.pdf
sunnyday.mit.edu/STPA-Primer-v0.pdf
https://www.ebook.de/de/product/23633910/martin_l_abbott_michael_t_fisher_the_art_of_scalability.html
https://www.ebook.de/de/product/23633910/martin_l_abbott_michael_t_fisher_the_art_of_scalability.html
https://www.ebook.de/de/product/23633910/martin_l_abbott_michael_t_fisher_the_art_of_scalability.html
https://www.daimler.com/documents/innovation/other/safety-first-for-automated-driving.pdf
https://www.daimler.com/documents/innovation/other/safety-first-for-automated-driving.pdf
https://doi.org/10.1007/BF00238683

BIBLIOGRAPHY 155

[105] Helen Monkhouse, Ibrahim Habli, John McDermid, Siddartha Khastgir, and Gun-
want Dhadyalla. Why functional safety experts worry about automotive systems
having increasing autonomy. In 2017 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computed, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6. IEEE, 2017.

[106] Hausi A Müller, Liam O’Brien, Mark Klein, and Bill Wood. Autonomic comput-
ing. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFT-
WARE ENGINEERING INST, 2006.

[107] NHTSA. Preliminary statement of policy concerning automated vehicles. techre-
port, NHSTA, 2013. URL https://www.nhtsa.gov/staticfiles/
rulemaking/pdf/Automated_Vehicles_Policy.pdf.

[108] NHTSA. Automated driving systems 2.0: A vision for safety. Tech-
nical report, U.S. Department of Transportation, 2017. URL https:
//www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/
13069a-ads2.0_090617_v9a_tag.pdf.

[109] Marcus Nolte, Gerrit Bagschik, Inga Jatzkowski, Torben Stolte, Andreas Reschka,
and Markus Maurer. Towards a skill- and ability-based development process for
self-aware automated road vehicles. CoRR, abs/1708.02532, 2017. URL http:
//arxiv.org/abs/1708.02532.

[110] Milos Ojdanic. Systematic literature review of safety-related challenges for au-
tonomous systems in safety-critical applications. Master’s thesis, MÃlardalen Uni-
versity, School of Innovation Design and Engineering, VÃsterÃs, Sweden, 2019.

[111] Sean O’Kane. Tesla defends Autopilot after fatal Model X crash. The Verge, March
2018. URL https://www.theverge.com/2018/3/28/17172178/
tesla-model-x-crash-autopilot-fire-investigation.

[112] Sean O’Kane. Tesla hit with another lawsuit over a fatal autopilot crash, Au-
gust 2019. URL https://www.theverge.com/2019/8/1/20750715/
tesla-autopilot-crash-lawsuit-wrongful-death.

[113] Kelly Pierce. Udot makes safety upgrades after autonomous shut-
tle accident injures man in salt lake city. KSL News Radio,
Jul 2019. URL https://kslnewsradio.com/1908556/
udot-makes-safety-upgrades-after-autonomous-shuttle-accident-injures-man-in-salt-lake-city/.

[114] Horia Porav and Paul Newman. Imminent collision mitigation with reinforcement
learning and vision. CoRR, abs/1901.00898, 2019. URL http://arxiv.org/
abs/1901.00898.

[115] PATH Program. Peer review of behavioral competencies for avs. techre-
port, University of California, Oakland, CA, USA, February 2016. URL
https://www.nspe.org/sites/default/files/resources/
pdfs/Peer-Review-Report-IntgratedV2.pdf.

https://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles_Policy.pdf
https://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles_Policy.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
http://arxiv.org/abs/1708.02532
http://arxiv.org/abs/1708.02532
https://www.theverge.com/2018/3/28/17172178/tesla-model-x-crash-autopilot-fire-investigation
https://www.theverge.com/2018/3/28/17172178/tesla-model-x-crash-autopilot-fire-investigation
https://www.theverge.com/2019/8/1/20750715/tesla-autopilot-crash-lawsuit-wrongful-death
https://www.theverge.com/2019/8/1/20750715/tesla-autopilot-crash-lawsuit-wrongful-death
https://kslnewsradio.com/1908556/udot-makes-safety-upgrades-after-autonomous-shuttle-accident-injures-man-in-salt-lake-city/
https://kslnewsradio.com/1908556/udot-makes-safety-upgrades-after-autonomous-shuttle-accident-injures-man-in-salt-lake-city/
http://arxiv.org/abs/1901.00898
http://arxiv.org/abs/1901.00898
https://www.nspe.org/sites/default/files/resources/pdfs/Peer-Review-Report-IntgratedV2.pdf
https://www.nspe.org/sites/default/files/resources/pdfs/Peer-Review-Report-IntgratedV2.pdf

BIBLIOGRAPHY 156

[116] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source Robot Op-
erating System. In ICRA Workshop on Open Source Software, volume 3, page 5,
May 2009. URL http://www.willowgarage.com/sites/default/
files/icraoss09-ROS.pdf.

[117] A. Ramaswamy, B. Monsuez, and A. Tapus. An extensible model-based frame-
work for robotics software development. In 2017 First IEEE International Con-
ference on Robotic Computing (IRC), pages 73–76, April 2017. doi: 10.1109/IRC.
2017.21.

[118] Amir Rasouli and John K. Tsotsos. Autonomous vehicles that interact with pedes-
trians: A survey of theory and practice. CoRR, abs/1805.11773, 2018. URL
http://arxiv.org/abs/1805.11773.

[119] Thomas Raste, Hagen BÃ¶hmert Ali, and Ali Houry. Fallback strategy for auto-
mated driving using stpa. In 3rd European STAMP Workshop, 2015.

[120] Art Raymond. Utah driverless shuttle mishap doesn’t slow 76-
year-old state employee. Deseret News Utah, Jul 2019. URL
https://www.deseretnews.com/article/900080444/
utah-driverless-shuttle-accident-state-employee.html.

[121] A. Reschka, G. Bagschik, S. Ulbrich, M. Nolte, and M. Maurer. Ability and skill
graphs for system modeling, online monitoring, and decision support for vehicle
guidance systems. In 2015 IEEE Intelligent Vehicles Symposium (IV), pages 933–
939, June 2015. doi: 10.1109/IVS.2015.7225804.

[122] Andreas Reschka and Markus Maurer. Conditions for a safe state of automated
road vehicles. it - Information Technology, 57(4), jan 2015. doi: https://doi.org/10.
1515/itit-2015-0004.

[123] Andreas Reschka, Jürgen Rüdiger Böhmer, Tobias Nothdurft, Peter Hecker, Bernd
Lichte, and Markus Maurer. A surveillance and safety system based on perfor-
mance criteria and functional degradation for an autonomous vehicle. In 2012
15th International IEEE Conference on Intelligent Transportation Systems, pages
237–242. IEEE, 2012.

[124] Edge Case Research and Underwriters Laboratories. Ul 4600: The first com-
prehensive safety standard for autonomous products, June 2019. URL https:
//edge-case-research.com/ul4600/.

[125] D. Rodrigues, R. de Melo Pires, E. A. Marconato, C. Areias, J. C. Cunha, K. R.
L. J. Castelo Branco, and M. Vieira. Service-oriented architectures for a flexible
and safe use of unmanned aerial vehicles. IEEE Intelligent Transportation Systems
Magazine, 9(1):97–109, Spring 2017. ISSN 1939-1390. doi: 10.1109/MITS.2016.
2611038.

[126] Pascal (Consultant) Roques. Systems Architecture Modeling with the Arca-
dia Method. ISTE Press Ltd - Elsevier Inc, 2017. ISBN 9781785481680.
URL https://www.ebook.de/de/product/29025440/pascal_
consultant_roques_systems_architecture_modeling_with_
the_arcadia_method.html.

http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://arxiv.org/abs/1805.11773
https://www.deseretnews.com/article/900080444/utah-driverless-shuttle-accident-state-employee.html
https://www.deseretnews.com/article/900080444/utah-driverless-shuttle-accident-state-employee.html
https://edge-case-research.com/ul4600/
https://edge-case-research.com/ul4600/
https://www.ebook.de/de/product/29025440/pascal_consultant_roques_systems_architecture_modeling_with_the_arcadia_method.html
https://www.ebook.de/de/product/29025440/pascal_consultant_roques_systems_architecture_modeling_with_the_arcadia_method.html
https://www.ebook.de/de/product/29025440/pascal_consultant_roques_systems_architecture_modeling_with_the_arcadia_method.html

BIBLIOGRAPHY 157

[127] Donald Rumsfeld. Known and Unknown: A Memoir. Penguin Group USA, 2011.
ISBN 978-1-59523-067-6. URL https://www.ebook.de/de/product/
12544690/donald_rumsfeld_known_and_unknown_a_memoir.
html.

[128] Giedre Sabaliauskaite, Lin Shen Liew, and Jin Cui. Integrating autonomous vehicle
safety and security analysis using stpa method and the six-step model. Interna-
tional Journal on Advances in Security, 11:160–169, July 2018. URL https:
//www.researchgate.net/profile/Giedre_Sabaliauskaite/
publication/326504334_Integrating_Autonomous_Vehicle_
Safety_and_Security_Analysis_Using_STPA_Method_and_
the_Six-Step_Model/links/5b595f430f7e9bc79a656f09/
Integrating-Autonomous-Vehicle-Safety-and-Security-Analysis-Using-STPA-Method-and-the-Six-Step-Model.
pdf.

[129] Rick Salay, Rodrigo Queiroz, and Krzysztof Czarnecki. An analysis of iso 26262:
Using machine learning safely in automotive software. ArXiv, abs/1709.02435,
2017.

[130] J. Schlatow, M. Moostl, R. Ernst, M. Nolte, I. Jatzkowski, M. Maurer, C. Her-
ber, and A. Herkersdorf. Self-awareness in autonomous automotive systems. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2017, pages
1050–1055, March 2017. doi: 10.23919/DATE.2017.7927145.

[131] Daniel Schneider and Mario Trapp. B-space: dynamic management and assurance
of open systems of systems. Journal of Internet Services and Applications, 9(1):
15, Aug 2018. ISSN 1869-0238. doi: 10.1186/s13174-018-0084-5. URL https:
//doi.org/10.1186/s13174-018-0084-5.

[132] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent,
reinforcement learning for autonomous driving. CoRR, abs/1610.03295, 2016.
URL http://arxiv.org/abs/1610.03295.

[133] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model
of safe and scalable self-driving cars. CoRR, abs/1708.06374, 2017. URL http:
//arxiv.org/abs/1708.06374.

[134] Joseph Sifakis. System design in the era of iot - meeting the autonomy challenge.
In Simon Bliudze and Saddek Bensalem, editors, Proceedings of the 1st Inter-
national Workshop on Methods and Tools for Rigorous System Design, Thessa-
loniki, Greece, 15th April 2018, volume 272 of Electronic Proceedings in Theo-
retical Computer Science, pages 1–22. Open Publishing Association, 2018. doi:
10.4204/EPTCS.272.1.

[135] Joseph Sifakis. Autonomous systems – an architectural characterization.
In Models, Languages, and Tools for Concurrent and Distributed Program-
ming, pages 388–410. Springer International Publishing, 2019. doi: 10.1007/
978-3-030-21485-2_21.

[136] R. G. Simmons. Structured control for autonomous robots. IEEE Transactions
on Robotics and Automation, 10(1):34–43, Feb 1994. ISSN 1042-296X. doi:
10.1109/70.285583.

https://www.ebook.de/de/product/12544690/donald_rumsfeld_known_and_unknown_a_memoir.html
https://www.ebook.de/de/product/12544690/donald_rumsfeld_known_and_unknown_a_memoir.html
https://www.ebook.de/de/product/12544690/donald_rumsfeld_known_and_unknown_a_memoir.html
https://www.researchgate.net/profile/Giedre_Sabaliauskaite/publication/326504334_Integrating_Autonomous_Vehicle_Safety_and_Security_Analysis_Using_STPA_Method_and_the_Six-Step_Model/links/5b595f430f7e9bc79a656f09/Integrating-Autonomous-Vehicle-Safety-and-Security-Analysis-Using-STPA-Method-and-the-Six-Step-Model.pdf
https://www.researchgate.net/profile/Giedre_Sabaliauskaite/publication/326504334_Integrating_Autonomous_Vehicle_Safety_and_Security_Analysis_Using_STPA_Method_and_the_Six-Step_Model/links/5b595f430f7e9bc79a656f09/Integrating-Autonomous-Vehicle-Safety-and-Security-Analysis-Using-STPA-Method-and-the-Six-Step-Model.pdf
https://www.researchgate.net/profile/Giedre_Sabaliauskaite/publication/326504334_Integrating_Autonomous_Vehicle_Safety_and_Security_Analysis_Using_STPA_Method_and_the_Six-Step_Model/links/5b595f430f7e9bc79a656f09/Integrating-Autonomous-Vehicle-Safety-and-Security-Analysis-Using-STPA-Method-and-the-Six-Step-Model.pdf
https://www.researchgate.net/profile/Giedre_Sabaliauskaite/publication/326504334_Integrating_Autonomous_Vehicle_Safety_and_Security_Analysis_Using_STPA_Method_and_the_Six-Step_Model/links/5b595f430f7e9bc79a656f09/Integrating-Autonomous-Vehicle-Safety-and-Security-Analysis-Using-STPA-Method-and-the-Six-Step-Model.pdf
https://www.researchgate.net/profile/Giedre_Sabaliauskaite/publication/326504334_Integrating_Autonomous_Vehicle_Safety_and_Security_Analysis_Using_STPA_Method_and_the_Six-Step_Model/links/5b595f430f7e9bc79a656f09/Integrating-Autonomous-Vehicle-Safety-and-Security-Analysis-Using-STPA-Method-and-the-Six-Step-Model.pdf
https://www.researchgate.net/profile/Giedre_Sabaliauskaite/publication/326504334_Integrating_Autonomous_Vehicle_Safety_and_Security_Analysis_Using_STPA_Method_and_the_Six-Step_Model/links/5b595f430f7e9bc79a656f09/Integrating-Autonomous-Vehicle-Safety-and-Security-Analysis-Using-STPA-Method-and-the-Six-Step-Model.pdf
https://www.researchgate.net/profile/Giedre_Sabaliauskaite/publication/326504334_Integrating_Autonomous_Vehicle_Safety_and_Security_Analysis_Using_STPA_Method_and_the_Six-Step_Model/links/5b595f430f7e9bc79a656f09/Integrating-Autonomous-Vehicle-Safety-and-Security-Analysis-Using-STPA-Method-and-the-Six-Step-Model.pdf
https://doi.org/10.1186/s13174-018-0084-5
https://doi.org/10.1186/s13174-018-0084-5
http://arxiv.org/abs/1610.03295
http://arxiv.org/abs/1708.06374
http://arxiv.org/abs/1708.06374

BIBLIOGRAPHY 158

[137] Santokh Singh. Critical reasons for crashes investigated in the national motor ve-
hicle crash causation survey. (traffic safety facts crash stats. report no. dot hs 812
115). techreport, Washington, DC: National Highway Traffic Safety Adminis-
tration., February 2015. URL https://crashstats.nhtsa.dot.gov/
Api/Public/ViewPublication/812115.

[138] Ion Stoica, Dawn Song, Raluca Ada Popa, David A. Patterson, Michael W. Ma-
honey, Randy H. Katz, Anthony D. Joseph, Michael Jordan, Joseph M. Heller-
stein, Joseph Gonzalez, Ken Goldberg, Ali Ghodsi, David E. Culler, and Pieter
Abbeel. A berkeley View of Systems Challenges for ai. Technical Report
UCB/EECS-2017-159, EECS Department, University of California, Berkeley,
Oct 2017. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2017/EECS-2017-159.html.

[139] Sardar Muhammad Sulaman, Armin Beer, Michael Felderer, and Martin Höst.
Comparison of the fmea and stpa safety analysis methods–a case study. Software
Quality Journal, Dec 2017. ISSN 1573-1367. doi: 10.1007/s11219-017-9396-0.
URL https://doi.org/10.1007/s11219-017-9396-0.

[140] Phil Tetlow, Jeff Z. Pan, Daniel Oberle, Evan Wallace, Michael Uschold, and Elisa
Kendall. Ontology driven architectures and potential uses of the semantic web
in systems and software engineering, 2006. URL https://www.w3.org/
2001/sw/BestPractices/SE/ODA/.

[141] Kristinn R. Thórisson. A new constructivist AI: From manual methods to self-
constructive systems. In Atlantis Thinking Machines, pages 145–171. Atlantis
Press, 2012. doi: 10.2991/978-94-91216-62-6_9.

[142] Eric Thorn, Shawn Kimmel, and Michelle Chaka. A framework for automated
driving system testable cases and scenarios. techreport, U.S. Department of
Transportation, National Highway Traffic Safety Administration, NHTSA, 1200
New Jersey Avenue SE., Washington, DC 20590, September 2018. URL https:
//www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/
13882-automateddrivingsystems_092618_v1a_tag.pdf.

[143] Debra Topham, Gary Ford, David Ward, Christian Zott, and Piero Mor-
tara. Vehicle probe use cases and test scenarios. resreport, SAFESPOT,
2006. URL http://www.safespot-eu.org/documents/D1.2.1_
Vehicle_probe_use_case-and_test_scenarios.pdf.

[144] Martin Törngren, Xinhai Zhang, Naveen Mohan, Matthias Becker, Xin Tao, DeJiu
Chen, and Jonas Westman. Architecting safety supervisors for high levels of auto-
mated driving. In the 21st IEEE Internal Conference on Intelligent Transportation
Systems, 2018.

[145] Mario Trapp and Daniel Schneider. Safety Assurance of Open Adaptive Systems –
A Survey, pages 279–318. Springer International Publishing, Cham, 2014. ISBN
978-3-319-08915-7. doi: 10.1007/978-3-319-08915-7_11. URL http://dx.
doi.org/10.1007/978-3-319-08915-7_11.

[146] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer. Defining and
substantiating the terms scene, situation, and scenario for automated driving. In

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html
https://doi.org/10.1007/s11219-017-9396-0
https://www.w3.org/2001/sw/BestPractices/SE/ODA/
https://www.w3.org/2001/sw/BestPractices/SE/ODA/
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
http://www.safespot-eu.org/documents/D1.2.1_Vehicle_probe_use_case-and_test_scenarios.pdf
http://www.safespot-eu.org/documents/D1.2.1_Vehicle_probe_use_case-and_test_scenarios.pdf
http://dx.doi.org/10.1007/978-3-319-08915-7_11
http://dx.doi.org/10.1007/978-3-319-08915-7_11

BIBLIOGRAPHY 159

2015 IEEE 18th International Conference on Intelligent Transportation Systems,
pages 982–988, Sept 2015. doi: 10.1109/ITSC.2015.164.

[147] Qi Van Eikema Hommes et al. Assessment of safety standards for automotive
electronic control systems. Technical report, United States. National Highway
Traffic Safety Administration, 2016.

[148] Mark A. Vernacchia. Gm presentation for introducing stamp/stpa
tools into standards. March 2018. URL http://psas.
scripts.mit.edu/home/wp-content/uploads/2018/04/
SAE-STPA-Recom-Pract-Task-Force-Overview-Mark-Vernacchia-GM-27mar18-Rev1.
pdf. MIT STAMP Workshop.

[149] David Vernon. Artificial cognitive systems: A primer. MIT Press Ltd, 2014.
ISBN 9780262028387. URL https://www.ebook.de/de/product/
23292892/david_professor_of_informatics_university_of_
skovde_vernon_artificial_cognitive_systems.html.

[150] Thomas Vogel and Holger Giese. Model-Driven Engineering of Self-Adaptive Soft-
ware with EUREMA. PhD thesis, 2018. URL http://arxiv.org/abs/
1805.07353.

[151] Walther Wachenfeld, Hermann Winner, J. Chris Gerdes, Barbara Lenz, Markus
Maurer, Sven Beiker, Eva Fraedrich, and Thomas Winkle. Use Cases for Au-
tonomous Driving, pages 9–37. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016. ISBN 978-3-662-48847-8. doi: 10.1007/978-3-662-48847-8_2. URL
http://dx.doi.org/10.1007/978-3-662-48847-8_2.

[152] Waymo. Waymo safety report - on the road to fully self-driving. techreport,
Waymo, Google, 2017. URL https://storage.googleapis.com/
sdc-prod/v1/safety-report/waymo-safety-report-2017.
pdf.

[153] Waymo. Waymo safety report - on the road to fully self-driving. techreport,
Waymo, Google, 2018. URL https://storage.googleapis.com/
sdc-prod/v1/safety-report/waymo-safety-report-2017.
pdf.

[154] Ran Wei, Jan Reich, Tim Kelly, and Simos Gerasimou. On the transition from
design time to runtime model-based assurance cases. 10 2018.

[155] Ran Wei, Tim P. Kelly, Xiaotian Dai, Shuai Zhao, and Richard Hawkins. Model
based system assurance using the structured assurance case metamodel. Journal of
Systems and Software, 154:211–233, aug 2019. doi: 10.1016/j.jss.2019.05.013.

[156] Ruffin White and Henrik Christensen. Robot Operating System (ROS), chapter 9,
pages 285–307. 707. Springer International Publishing, 2017. ISBN 978-3-319-
54927-9. doi: 10.1007/978-3-319-54927-9.

[157] David Wittmann, Cheng Wang, and Markus Lienkamp. Definition and identifica-
tion of system boundaries of highly automated driving. 2015.

http://psas.scripts.mit.edu/home/wp-content/uploads/2018/04/SAE-STPA-Recom-Pract-Task-Force-Overview-Mark-Vernacchia-GM-27mar18-Rev1.pdf
http://psas.scripts.mit.edu/home/wp-content/uploads/2018/04/SAE-STPA-Recom-Pract-Task-Force-Overview-Mark-Vernacchia-GM-27mar18-Rev1.pdf
http://psas.scripts.mit.edu/home/wp-content/uploads/2018/04/SAE-STPA-Recom-Pract-Task-Force-Overview-Mark-Vernacchia-GM-27mar18-Rev1.pdf
http://psas.scripts.mit.edu/home/wp-content/uploads/2018/04/SAE-STPA-Recom-Pract-Task-Force-Overview-Mark-Vernacchia-GM-27mar18-Rev1.pdf
https://www.ebook.de/de/product/23292892/david_professor_of_informatics_university_of_skovde_vernon_artificial_cognitive_systems.html
https://www.ebook.de/de/product/23292892/david_professor_of_informatics_university_of_skovde_vernon_artificial_cognitive_systems.html
https://www.ebook.de/de/product/23292892/david_professor_of_informatics_university_of_skovde_vernon_artificial_cognitive_systems.html
http://arxiv.org/abs/1805.07353
http://arxiv.org/abs/1805.07353
http://dx.doi.org/10.1007/978-3-662-48847-8_2
https://storage.googleapis.com/sdc-prod/v1/safety-report/waymo-safety-report-2017.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/waymo-safety-report-2017.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/waymo-safety-report-2017.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/waymo-safety-report-2017.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/waymo-safety-report-2017.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/waymo-safety-report-2017.pdf

BIBLIOGRAPHY 160

[158] Lihua Zhao, Ryutaro Ichise, Seiichi Mita, and Yutaka Sasaki. Core ontologies for
safe autonomous driving. International Semantic Web Conference, 2015.

[159] Lihua Zhao, Ryutaro Ichise, Tatsuya Yoshikawa, Takeshi Naito, Toshiaki Kaki-
nami, and Yutaka Sasaki. Ontology-based decision making on uncontrolled in-
tersections and narrow roads. In 2015 IEEE Intelligent Vehicles Symposium (IV),
pages 83–88. IEEE, June 2015. doi: 10.1109/IVS.2015.7225667.

[160] Chris Ziegler. A google self-driving car caused a crash for the first time. The Verge,
Feb 2016. URL https://www.theverge.com/2016/2/29/11134344/
google-self-driving-car-crash-report.

https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report

APPENDIX A

Safety vocabulary from ISO26262

The next definitions of relevant terms from Part 1 contribute to the best understanding of
safety. They are divided into three categories and will be applicable in the next discussions
and referenced works in the thesis.

A.1 Safety

harm, physical injury or damage to the health of persons.
fault, abnormal condition that can cause an element or an item to fail.
failure, termination of the ability of an element, to perform a function as required.
error, discrepancy between a computed, observed or measured value or condition,

and the true, specified, or theoretically correct value or condition.
hazard, potential source of harm caused by malfunctioning behaviour of the item.
malfunctioning, behavior failure or unintended behaviour of an item with respect to

its design intent.
unreasonable risk, risk judged to be unacceptable in a certain context according to

valid societal moral concepts.
residual risk, risk remaining after the deployment of safety measures.
safety, absence of unreasonable risk.
safety architecture, set of elements and their interaction to fulfil the safety require-

ments.
safe state, operating mode of an item without an unreasonable level of risk, e.g. in-

tended operating mode, degraded operating mode or switched-off modes.
safety mechanism, technical solution implemented by E/E functions or elements, or

by other technologies, to detect faults or control failures in order to achieve or maintain a
safe state.

degradation, strategy for providing safety by design after the occurrence of failures.
safety goal, top-level safety requirement as a result of the hazard analysis and risk

assessment. NOTE: One safety goal can be related to several hazards, and several safety
goals can be related to a single hazard.

safety case, argument that the safety requirements for an item are complete and sat-
isfied by evidence compiled from work products of the safety activities during develop-
ment, e.g. the safety case is a collection of documents, goals, arguments and evidences
which provide reasoning why the system is justifiable safe enough to not produce a haz-
ard NOTE: Safety case can be extended to cover safety issues beyond the scope of this
standard.

functional safety concept (FSC), specification of the functional safety requirements,
with associated information, their allocation to architectural elements, and their interac-
tion necessary to achieve the safety goals.

161

Chapter A. Safety vocabulary from ISO26262 162

functional safety requirement (FSR), specification of implementation-independent
safety behaviour, or implementation-independent safety measure, including its safety-
related attributes.

technical safety requirement (TSR), requirement derived for implementation of as-
sociated functional safety requirements.

A.2 System
item system or array of systems to implement a function at the vehicle level, to which
ISO 26262 is applied.

architecture representation of the structure of the item or functions or systems or
elements that allows identification of building blocks, their boundaries and interfaces,
and includes the allocation of functions to hardware and software elements.

component non-system level element that is logically and technically separable and
is comprised of more than one hardware part or software unit.

life-cycle entirety of phases from concept through decommissioning of the item.
functional concept specification of the intended functions and their interactions nec-

essary to achieve the desired behaviour.
availability capability of a product to be in a state to execute the function required

under given conditions, at a certain time or in a given period, supposing the required
external resources are available.

controllability ability to avoid a specified harm or damage through the timely reac-
tions of the persons involved, possibly with support from external measures.

intended functionality behaviour specified for an item, system, or element excluding
safety mechanisms.

baseline version of a set of one or more work products, items, or hardware or soft-
ware, elements, that is under configuration management and used as a basis for further
development through the change management process.

robust design design that has the ability to function correctly in the presence of in-
valid inputs or stressful environmental conditions. NOTE: Robustness can be understood
as follows: for software, robustness is the ability to respond to abnormal inputs and con-
ditions, for hardware, robustness is the ability to be immune to environmental stress and
stable over the service life within design limits.

A.3 Process
model-based development development that uses models to describe the functional be-
haviour of the elements which are to be developed. NOTE: Depending on the level of
abstraction used for such a model, the ,model can be used for simulation or code genera-
tion or both.

assessment, examination of a characteristic of an item or element.
verification, determination of completeness and correct specification or implementa-

tion of requirements from a previous phase or sub-phase.
safety validation, assurance, based on examination and tests, that the safety goals are

sufficient and have been achieved.

APPENDIX B

Environment model & SOSA/SSN

This chapter is an appendix to detail how the different knowledge bases of the MAPE-K
loops are represented.

B.1 Existing representations of architecture models,
contextual ontologies and system description

Existing work have already proposed some representations of some identified purposes in
Table 4.1 for the following topics:

• Road environment: representation of the road entities and the scenery (i.e. road
geometry) in [13, 14, 18, 63, 64, 146, 159].

• System capability and functions: behaviour representation and the ability to infer
the most corresponding future behaviour that it should have.

• Relationships and interactions between entities: problem of interaction between
road entities, and construction of scenery in [13, 14, 18, 63, 64, 146, 159].

• Uncertainty: use or capture result of probabilistic approaches taking into account
uncertainty on data or decision.

• Chain reactions: models that do not take into account chain reactions alone in
[14].

• System description: model of the system architecture (e.g. capabilities, functions,
features of interest, and the relations between components and system concepts)
and configuration (e.g. topography of the components, states) that is machine read-
able and understandable in [68].

All of those solutions store the knowledge of entities and their relation to be used by the
system after design. Besides, increased interests arise out of representations that involve
enable reasoning and have been using in the cited references to provide some decision-
making, situation assessment or behaviour planning. As we have presented earlier in
Section 4.4, run-time reasoning can infer additional knowledge from the terminological
(i.e. concepts) and assertional boxes (i.e. individuals). The reasoner can perform associa-
tion between similar concepts and individuals (e.g. relations of inclusion or equivalence),
identification of missing hierarchical terminological concepts, and consistency check over
the knowledge bases (e.g. assessment of restrictions like disjoints or cardinality relations
between concepts).

As a matter of fact, we will mainly use ontologies to model the relevant semantic
pieces of information (i.e. symptoms, change request, change plan and performed actions)
and to perform monitoring and diagnostic operated by the reasoner. We are using an
OWL-DL ontology using the Terminological box (T-box) to represent the structure of the

163

Chapter B. Environment model & SOSA/SSN 164

system representation and the Assertional Box (A-box) to store run-time observations or
deployed microservices as individuals. On this basis, we adopt the guideline to make the
T-Box remain static during the system operation while the content of the A-Box evolves
to represent the different changes of the system.

The next sections present how those different pieces of knowledge are captured and
represented using five different models.

B.2 Context models

Ontology representing the safety symptoms of the environment of the
vehicle and the ADS
A first ontology captures the key concepts and structure of the observable context. The
representation of the environment of the vehicle is performed using classes representing
an urban environment marked inspired by the layers presented in [18]. In Figure B.1,
we illustrate the considered entities such as dynamic objects (e.g. pedestrian, car, bus),
static objects (e.g. stationary obstacles, traffic lights), the road geometry (e.g. lane, inter-
section, crosswalk), their interactions and also possible maneuvers (e.g. crossing activity
from the pedestrian). Each road objects that is a road user is considered as dynamic and
has the possibility to have different maneuvers. It helps to describe how the road entity is
operating or acting within the scene. Current perceived actions (i.e. maneuvers) of the en-
tities and their respective interrelations are described using object properties. Additional
information regarding the entities can be captured using the data properties (e.g. position,
speed, heading, id, age) to integrate some relevant readings or correlations from sensor.

Instead of allocating only one maneuver to a road user, we propose to extend the
possible cardinality of the relation. The understanding of the behaviours of the other road
entity is a fundamental key for automated driving. It is a matter of considering the actions
(i.e. what it is currently performing), the intentions (i.e. know what it will perform
next) and the expectations (i.e. know what will be the next actions) of each respective
entity. They contributes semantically enhance the scene. We see the solution for their
representations as twofold.

First, we satisfy the fact that maneuvers are not all atomic, some can result from the
composition of others and some are interchangeable. Such claims can be identified to a
commonly occurring problem in software engineering that can be address by the Design
Pattern Strategy firstly introduced by the Gang-Of-Four [59]. As a way to configure a
class with one of many behaviours, it aims to lets the algorithm vary independently from
clients that use it. Thus, the term Strategy in Maneuver Strategy refers to the applica-
tion of the Design Pattern and not robotic usage. In application, the Pedestrian Strategy
concept contributes to semantically identify and represent the main maneuvers, moves
or interactions the pedestrian can perform. In our scope, we consider that the pedestrian
can perform Crossing, Crossing_Crosswalk, Jaywalking, Running, Standing_still, Stay-
ing_waiting and Walking.

Second, the identification of the perceived maneuvers are subject to uncertainties due
to observability restriction raised in [144] for example. In fact, the uncertainty reflects
the capacity of the observation to be false or partial. Thus, methods as Dempster–Shafer
theory and Bayesian method are commonly used to perform the reasoning in an uncertain
world for safety monitoring according [144]. The confidence is largely used to express
a weighting on how much we are sure of a specific sampling. In order to allow more

B.2. Context models 165

Figure B.1 Ontology representation of the environment of the vehicle with road entities

than one cardinality for road-user/maneuvers relation, we choose to create an Strategy
instance for each maneuvers and attach the confidence of the observed result as a data
property. The link between road user and possible maneuvers are then represented by
the has behaviour semantic relation. The existence of Strategy individual associated to a
specific road users or the value of the confidence can be used in our framework to create
symptoms of specific scenes or situations.

The idea behind this context ontology is to keep a representation of the world that
is both human and machine readable. Hence, we have the possibility to store all sort of
observations and results regarding the vehicle external context. However, only relevant
symptoms from the monitoring (i.e. aggregations and correlations from sensor informa-
tion processing and ADS information) aims to be stored within the ontology to serve as
a base for inference. In fact, ontologies shows limitations in processing a large amount
of information (e.g. number of axioms in the T-Box, A-Box for the types, individuals,
relations and equivalence rules) in a short time. Certain ontology features can also impact
the reasoner performances and might causing unexpected reasoning results according the
analysis presented in [8]. However, ontologies tend to remains the most efficient when
reasoning with individuals and relations where composition are involved.

An application on the observation of a pedestrian is illustrated in Figure B.2. The
pedestrian Ex01_Pedestrian is represented as a individual (marked by purple diamond)
from the perceived context.

On one hand, the object can be described by data properties (i.e. id, age, pose, speed,
heading, IsOnRoad, IsOnLane ...) and by its current maneuvers. Applicable strategies

Chapter B. Environment model & SOSA/SSN 166

Figure B.2 Representation of the environment of the vehicle using observations of road
entities

for pedestrian are a subclass of Pedestrian Strategy. In our example, the Ex01_Pedestrian
have two possible maneuvers: Standing still and Jaywalking. The existence of two ma-
neuvers (i.e. possibly more than one) helps integrating the uncertainty within the obser-
vation of the context. The confidence is then stored in the dataproperty hasConfidence for
each strategies.

On the other hand, the chain of relations between the Result, Observation and Monitor
serves the traceability of the observation. Indeed, we are able to know which microservice
has produced or contributed to the information creation or semantic augmentation by
timestamping.

Ontology for the representation of the current context of the vehicle
as symptoms
Context abstractions such as use cases or situations are also captured as concepts within
the same ontology. They aims to offer a higher-level representation of the context to fa-
vor scene understanding, scene tagging and identification. For example, they serve as a
support for inference to identify known compositions of contextual road objects. They ex-
amine the enriched symptoms from perceived information from sensors (e.g. perception,
localization) and the a-priori knowledge (e.g. HD digital map data, identification rules,
context-dependence). We can envisage them as patterns that match the different parts we
intend to study like the concepts introduced in [146]. Figure B.3 illustrates the differ-
ent forms of context abstractions we propose to capture based on the following specific

B.2. Context models 167

Figure B.3 Ontology representation of the use cases for situations encounter using com-
position of road entities

representation goals and prerequisites.
A Scene corresponds to a snapshot of the scenery and the self-representation of the

dynamic elements (i.e. it can encompass the state, intention or expectation of each of the
road objects).

A Situation is an extended representation of the perceived scene where some infor-
mation are selected (i.e. only consider relevant entities for defined driving functions and
subjective restricted observation) and some are semantically enhanced (e.g. added infor-
mation as relation or property) fitting with the current objectives of the ego vehicle (e.g.
goals and values for realizing Yielding to pedestrian safety goal).

A Scenario corresponds to a sequence of scenes using Maneuvers (i.e. from actions
or events) as transitions with at least an initial scene. This concept helps representing
context abstractions where temporal development is needed.

An Use case captures the guidance of one or several scenarios where a functional
range (e.g. roadway) is specified and a desired behaviour (e.g. yield to pedestrian) are
involved. This concept helps covering the definitions of use cases from ISO26262 [1].

Finally, we have included a last category for the gathering of the edge cases or threat-
ening situations in which the system needs to perform a specific strategy or meet specific
objectives.

Figure B.4 shows the classes of situations covering the Pedestrian crossing the road
on crosswalk use case within the black selection. The image is a screenshot of the class
hierarchy of our ontology on the Protégé tool. Each displayed PEDES_XX_XX_XX axiom
captures the different entities and describes the expected relations between the different
road objects (e.g. EgoCar approaching crosswalk or a Pedestrian crossing the road) that
are involved. For example, the highlighted PEDES_02_01_01 situation aims to detect the
pedestrian’s calculated trajectory will be in the crosswalk when EgoCar is predicted to
arrive to the crosswalk. An a-priori definition of the requirements to meet is described
as an Equivalent To relation. Figure B.2 illustrates the relation of equivalence for the
PEDES_02_01_01 situation at the bottom-right panel. The abstraction aims to detect a
pedestrian that may cross or have the intention to cross in the proximity of a crossroad
but is currently not on the road.

Chapter B. Environment model & SOSA/SSN 168

Figure B.4 Ontology representation of the use cases for situations encounter using com-
position of road entities. Partial repost of Figure 5.9

Based on the descriptions of the context abstractions, the reasoner can actually per-
form scene identification by inferring on the provided equivalence relations and obser-
vations. The context identification fulfills the role of Monitor function in the OAM. The
identified context abstraction constitute symptoms in the OAM adaptation loop.

Other more complex contexts can be described using more extended equivalences or
SWRL rules. In our approach, we only capture high-level observations and do not store
raw observations or raw data to keep the ontology at a run-time manageable scale and the
reasoning time efficient.

We have introduced the use of an ontology as representation of different situations
where some can be consider as atomic. However, a real-world scene would more result
of the composition of different abstract contexts with their own attributes variations. As
an example, we can consider a perceived scene as a composition of situations involving a
pedestrian crossing the road and the EgoCar followed by vehicle. Further explanations on
the use and the composition will be presented in Chapter 5 within a more thoroughgoing
pedestrian crossing case study.

Ontology for the symptoms characterizing the current status of the
AMs

The second level of adaptation assures that all safety constraints relevant to the current
context are appropriately guaranteed and none out-of-context are wrongly ensured. The
assurance of context-dependence between context abstractions and the status of the AMs
requires a rightful model and symptoms to be defined at design. At run-time, the reasoner
infers on the specific model and contributes to deploying the different appropriate AMs
upon the vehicle context.

For this purpose, the model shall be able to answer to the following question: What
are the microservices that are required to the current context? Answering it requires
two requests to different sources of information: “What are the current context abstrac-
tions identified?” refers to the symptoms identified from context; “What are the relevant

B.2. Context models 169

microservices for these identified abstractions?” points out the existence of specified
context-dependence relation between the microservices operating range and the current
identified context abstractions.

Thus, we create a reflexive model of the system that captures the configuration, struc-
ture, properties, deployment and operating range of the AMs. It actually means that we
need to semantically describe the ODD for each safety assurance process and their pos-
sible restrictions. Additional sources of information can also be integrated to this struc-
ture and contribute to increasing the relevance of the reasoning (e.g. integrating some
properties promoted by functional safety). For instance, we are targeting supplementary
representations of insufficient performance, abnormal heartbeat, error state and data in-
consistency for each microservices involved in the AMs. More information regarding
those properties, the introspection functions, individual monitoring and the logical struc-
ture of the microservices are have been presented in Section 5.2 on page 121.

In brief, we need to design a run-time representation that abstract our system’s config-
uration and is operable by the OAM. For this purpose, the use of the existing SOSA/SSN
ontology from [68] contributes to the descriptive model of our system as a collection
of Sensor, Sampler, Actuator systems and their respective Observation, Actuation and
Sampling records. However, the generic vocabulary introduced by the SOSA/SSN may
bring confusion over some actual terms (e.g. sensor and actuator are used differently in
Autonomous Vehicles and Autonomic Computing). To solve any ambiguity, we have cre-
ated equivalent classes for the reference System classes (i.e. Sensor, Sampler, Actuator)
to manipulate our Monitor, Analyze, Plan, and Execute types of microservices rightfully.
We illustrate the created equivalences between the SOSA/SSN classes and our MAPE
types of systems in Figure B.5 on the following page. We represent them as follows:
A Monitor service is identified as a Sensor system and produces Observation that con-
tributes to building up symptoms. Analyze and Planning services are Sampler systems
and produce Sampling that constitutes the change request and change plans respectively.
Finally, an Execute service identified as Actuator and produces Actuation to changes the
states of the outside world.

The extended ontology now represents a collection of microservices where each de-
ployed system are identified to a particular type, and the associated individual contains
information regarding its current configuration and restrictions.

Furthermore, the use of the optional ssn-system namespace1 normalizes the repre-
sentation of system capabilities, operating ranges and conditions which open rooms for
traceability and extension. The representation of the system with these concepts con-
tributes to specify the primary purpose of the system, how capabilities and properties are
affecting it and define a representation of the system’s normal operating environment. The
information that is collected through these concepts is close to what the ODD and OEDR
needs to capture in the field of AV. OperatingRange describes the Conditions in which
the system is expected to operate. If the Conditions are not met, the system is consider as
operating out of operating range and the SystemCapability specifications may no longer
hold.

Based on these concepts of the ssn-system ontology, we identify an equivalence be-
tween the Condition and the Abstract Context axioms as they both specify ranges for
qualities and compositions. The equivalence between the two concepts also facilitates the
manipulation and readability of the ontology. As a result, we can semantically represent

1http://www.w3.org/ns/ssn/systems/

Chapter B. Environment model & SOSA/SSN 170

Figure B.5 Ontology representation of the microservices of the framework as system
using SOSA/SSN

the relation between the system components and the different context abstractions (i.e.
symptoms) in which they aim to be operated only.

Figure B.6 on the next page illustrates the representation of the context-
dependence relation between the Monitor Pedestrian_Detection microservice called
Ex03_Pedestrian_Detection_Presence and some specific context abstractions. In this ex-
ample, we show the operating range as only one situation: PEDES_02_01_01. The oper-
ating range Pedestrian_Detection_ORange semantically represents the relationship with
both the situation and the microservice.

Those relations between the AM microservices and the context abstractions (i.e. use
cases, situations, scenes, etc) are a-priori knowledge stored in the T-Box and aims to
reflect relevance and restrictions of the microservice deployment.

Besides, system properties (e.g. frequency, detection limit, resolution, etc) can be
represented as well using the Pedestrian_Detection_SCapability property to describe the
system further.

B.3 Configuration models
The configurations models aim to provide an architectural view of the current state of the
managed resources for both design and run-time. It defines what the external managed
resources are, how they can be accessed and how our system can control them. In our

B.3. Configuration models 171

Figure B.6 Ontology representation of a Monitor microservice performing Pedestrian
detection isolating speed and range

approach, this configuration model contributes to describe a part of the mechanisms pro-
vided by the manageability interfaces of the AC paradigm. Hence, we can model, store
and access log files, events, commands, application programming interfaces (APIs) and
configuration files related to the managed resources. Events and commands are directly
related to the observations and control actions. By using a microservice architecture, the
managed resources share and get that information from a publish/subscribe communica-
tion mechanism.

Furthermore, adopting a microservice architecture provides service repository mech-
anisms that capture the state of all deployed services. The service repository acts as a
catalogue of services to see what services are registered and available in the system. At
run-time, it holds a list of all currently deployed or deployable microservices.

Our contribution does not aim to redefine the service repository but integrates it into
our knowledge management as a source of information for context understanding. Con-
sequently, the model holds two parts: a static part characterizing the access and control
over the managed resources (i.e. interface specifications); a changeable part reflecting the
current configuration of the system (i.e. managed resources status).

In the first place, the model of the system logical architecture represents and char-
acterize these two parts as interactions between as components, interfaces and compo-
nents exchanges. To pursue our idea of having a reflexive system, a second step uses
the resulting model information and convert it into an ontology representing the possible
interactions between the system and its managed resources.

We have it as a part of the configuration model as ontologies. More information on the
system interfaces and use of the models is provided in Section 5.2 with the presentation
of the resulting logical architecture of a template microservice.

In our implementation, the adoption of the same service-oriented middleware than

Chapter B. Environment model & SOSA/SSN 172

in the ADS makes us use the same publish/subscribe communication mechanisms. The
application and the coding of the interfaces result to be simplified. Although the imple-
mentation of the complete touchpoints and manageability interfaces (i.e. events, formats,
metrics, state) is made more accessible, the ontology still needs to carry information on
the interfaces and current status of the managed resources. The following paragraphs
detail the configuration models for each of the two levels of adaptation available in our
approach.

Current configuration of the AD system, sensors and effectors status
(operated by Touchpoints management in layer 1)

The first configuration model aims to represent a run-time catalogue of the available sen-
sors and effectors of the ADS. It also characterizes what the ADS can offer in terms of
observations, and control actions, and their exchange interfaces and formats.

In this first level of adaptation, the identified external managed resources are the ADS
perception and navigation. They are accessible through specific topic names and type of
messages. The AMs control the ADS behaviour through the navigation system (e.g. topic
and interface to alter the vehicle motion with new trajectory or speed).

The representation of the configuration model is mainly based on the axioms of Input
and Output and their relation with Procedure and System from the SOSA/SSN ontology.
Such use allows us to model the relation between the systems, and to precise the type
of input, and to define how the measuring, sampling or executing need to be performed.
However, those axioms alone are not sufficient to express our type of exchanges between
services. Hence, we introduce new axioms in the ontology that precise which topic or
which need the system consumes or provides. The axioms Topic or Need precise what
information is available for publish/subscribe in the system. A Topic corresponds to the
direct source of information the system needs to subscribe. A Need represents the type
of information the system need to provide or to operate with. The information of a need
gives relative access to the information and requires to be treated by an interpreter. Thus,
a semantic mediation shall provide the rightful set of topics based on the expressed needs.

Figure B.7 on the facing page shows the representation as an ontology of the con-
figuration model for the managed resources of the ADS. The axioms of System, Proce-
dure, Output, Input on the left of the figure are from the SOSA/SSN ontology. Man-
aged_resources, Managed_Procedures, Source_to_Publish, Source_on_Subscribe, Need
and Topic are the axioms we have added to fit the use of service-oriented approach.
Figure B.7 on the next page justifies of their origin from the original axioms. Then,
the remaining classes based on the extension contribute to define how the managed re-
sources.ADS_Perception_Pub, ADS_Navigation_Pub and ADS_Navigation_Sub are in-
teracting. Hence, the ADS provides two sources of observations and one source that
consume actuation. In the presented example, the Topic axiom regroups all observa-
tions from the fusion-based perception sensor on the Ex03_obstacle topic and from
navigation predictions on Ex03_planned_trajectory. It also collects the actuation on
Ex03_controlled_trajectory in charge of the control of the navigation trajectory.

B.4. Capability models 173

Figure B.7 Ontology representation of the configuration model for the ADS

Current configuration of the safety assessment via the currently
deployed and running MAPE microservices

The second configuration model similarly represents the AMs that are contributing to the
safety assessment. Contrary to the previous model, the managed resources are part of
the reference architecture we are designing so that some models of the first level already
covers part of the definition for the touchpoint and manageability interfaces. However,
interfaces and communications exchange still needs to be specified and detailed. Figure
B.8 on the following page illustrates the configuration model for the managed resources
(i.e. MAPE microservices) of the AMs.

B.4 Capability models

We are using distinct capability models to support each of the two levels of adaptation
loops that both aim to semantically explicit how the decisions can be made. They detail
the knowledge to support the decision using the relations between the managing system
capabilities (i.e. available plans to study) and the behaviours (i.e. possible maneuvers
or reconfigurations). They also contribute to specify how the maneuvers influence the
managed resources through their touchpoint manageability interface’s mechanisms and
which effectors have to be interfaced with. We diligently use the term “manageability

Chapter B. Environment model & SOSA/SSN 174

Figure B.8 Ontology representation of the configuration model for the AMs

mechanisms” with the capability and plan model to designate the effector behaviour as
the way of affecting the state, attributes or variables of the managed resources.

With this model, we do not express the selection of the behaviours using directly
hard-coded functions. We prefer to exploit the semantic relations established between
the Plan microservices in the AMs or OAM, the available mechanisms that can affect
the behaviour of the managed resources (i.e. high-level or low-level control as plan of
composed of maneuvers or constrained value) and the actions to undergo on the managed
resources via the effectors to perform such plan. The Plan microservice achieves the
plan selection by requesting and evaluating plans for a set of relevant planning services
in parallel. Finally, it selects the most relevant plan according to its current goals and
triggers the next step of Execution.

The plan models of the framework are based on the definitions and relations provided
by the T-Box of an ontology. Hence, the plans can be built up and composed of instances
involving the capabilities, behaviour, actions, managed resources, and relations between
them. The two levels of adaptation of the reference architecture require two distinct
capability models.

Capability model of the AMs to influence the ADS using
maneuver-based mechanisms
The first capability model aims to provide knowledge on the planning maneuvers mecha-
nisms and traces how the ADS behaviour adaptation are performed. It entails the relations
between the AMs Plan microservices that request plan generation using sets of vehicle

B.4. Capability models 175

Figure B.9 Ontology representation of the capability model involving the planning and
possible vehicle maneuvers the AMs can perform on the ADS

maneuvers for a given change request. According to the catalog of available and accept-
able plan generation services, several service of plan generation plans can be requested
(i.e. plans consisting of simple maneuver or of a composition of maneuvers which the
EgoCar can perform) and then selected.

As an example of application, Figure B.9 illustrates an individual Planner microser-
vice named PedestrianPresence_Planner that can request a plan from SlowOnPedestrian
that involves a Maneuver_Strategy called Decelerating. This slowing maneuver can be
operated by the EgoCar and specify how it actually affects the vehicle behaviour or con-
figuration. It can be achieved by affecting new values such as speed or heading, or di-
rectly impact the selected trajectory of EgoCar, or imposing additional restriction for the
choice of ADS-computed future maneuvers (e.g. via top-level mechanisms as minimum
horizontal spacing or low-level as speed). For instance, Ex04_Maneuver_Slow contains
information regarding a new speed and heading to adopt.

Capability model of the OAM to influence the AMs using service
reconfiguration mechanisms

The next capability model possesses a similar set of relations but involves the reconfigura-
tion of microservices as a mechanism of the second level of adaptation. This mechanism
involves the management of the current deployment status and configuration of each mi-
croservice. Figure B.10 presents the T-Box that details the concepts and relations between
the Plan microservices of the OAM, the microservices that compose plans to evaluate and
the actions to interact with the microservice’s state. Four types of actions are possible:
Launch, Idle, Reconfigure, and Stop. Indeed, a resulting change plan uses the structure
proposed by the capability model to compose a change plan for each relevant and avail-
able microservices.

Chapter B. Environment model & SOSA/SSN 176

Figure B.10 Ontology representation of the capability model involving the planning and
possible service reconfiguration the OAM can perform on the AMs

B.5 Plan models
The plan models acts as the collection of the change plans that are evaluated by the Plan
microservices. They are based on the structure of the capability model in the framework
and stored as individuals. For example, individuals in Figure B.9 and B.10 respectively
represents plans for the two levels.

The shared structure between the plan model and capability model ensures that no
“out-of-range” or inappropriate actions may be performed according the given design.
Such context restrictions impose the evaluation of only a specific set of change plan or
can narrow the set of possible actions in the specific context abstractions.

Each evaluated plans have also an unique identifier with a timestamp. Hence, the plan
model contributes to store an history of the previous evaluations and selected plans to
detail the called functions performed output actions to the effectors.

Goal & Adaptation models
The goal & adaptation models seek to semantically represent where and how the evalua-
tions of the different configurations, symptoms or plans are performed and tuned.

Firstly, the semantic relations between the context and capability models already spec-
ify the context-dependence restrictions (i.e. plans and actions to be evaluated and per-
formed upon the context). They associate the means of adaptation of the system (i.e. how
it is expected to change over time and its mechanisms based on specific requirements
inherited from the MBSE design) with the different contexts that may require system
adaptations (e.g. meeting a specific or combined situation). It is achieved using the Oper-
atingRange to specify where the system operates as Conditions as presented in the section
of the context model.

Secondly, goal & adaptation model also contributes to define the different settings and
the tuning of the Monitor, Analyze, Plan, and Execute functions. We use OperatingProp-
erty instances as identifiable characteristics that represent how the system operates. More
than one OperatingProperty can extend a single OperatingRange to specify the config-

B.5. Plan models 177

Figure B.11 Ontology representation of the goal model to model the possible configura-
tions of an Analyze microservice

urations of the system (e.g. range of values for a variable, value of a constant, property
to verify). For instance, it specifies how a threshold shall be set to escalate detected
symptoms in an Analyze function.

The specification of such values and the relations of context-dependence between the
components are originally inherited from the requirements at the design of the system ar-
chitecture (i.e. during system analysis). Indeed, the use of a MBSE tool is recommended
to systematically represent the system, and its components, and possible configurations.
The resulting model of the architecture acts for us as a static source of information of the
system and can be used as a basis for our ontological reflexive model.

Assessment of the behaviour and the intention of the ADS in the scope of one safety
constraint The first goal model details how the adaptations of the ADS may be tuned.
Hence, it details the different configuration for the AMs to perform its function (i.e. spe-
cific computation or value of constants) and their operating range.

Figure B.11 shows how the possible configurations are specified in the ontology for
a given Analyze microservice in the AMs. It depicts the relations between the microser-
vice, the values for the configuration and the context in which the microservice and its
values are appropriate. We can see that the Pedestrian_Distance_Analyze is related to
the Pedestrian_Distance_Analyze_ORange and specify the restrained operating context
as the situation PEDES_02_01_01. Besides, the Pedestrian_Distance_Analyze_MinDist
property extends the Pedestrian_Distance_Analyze_ORange and defines the minimum
distance to ensure between the car and the pedestrian in this situation.

Metrics for the evaluation of future configuration from the current
context

The second goal and adaptation model mainly specifies how the Analyze and Plan func-
tions need to be performed in the OAM. It provides a sufficient source of knowledge to

Chapter B. Environment model & SOSA/SSN 178

determine whether the current managed AMs requires a reconfiguration for the current
context.

In the OAM, the Analyze function exploits the operating range and the current set of
identified Abstract Context individuals to identify all the AM microservices defined as
relevant. Previous Figure B.11 already illustrates the context-dependence of an Analyze
microservice that answer to such request.

Then, the Plan function evaluates the outputs of the planning services that propose
future possible and relevant configurations for the current situation. We design this eval-
uation around two metrics: distance and semantic coverage of the configuration. They
both take the current configuration as origin of comparison. The distance determines the
number of changes that need to be performed between the two configurations. It aims to
monitor and evaluate the stability of the system regarding the reconfiguration. The seman-
tic coverage serves to identify the number of semantic relations the future reconfiguration
is involving. According to the complexity of the decision process and the evaluation of
its outputs, some change plans may result to be reckon as an optimum plan (i.e. optimiz-
ing all available restrictions), or the most relevant one with the less AM reconfigurations
(i.e. optimizing the number of reconfiguration) for example. Those metrics contribute to
specify the type of change plan or a sensitivity interval to adopt for the evaluation in the
OAM’s Plan function.

B.6 Service-orientation for shared knowledge and
MSBE

In the previous sections, we have presented the different parts of the ontology that con-
stitute the knowledge bases and the levels of adaptation for the framework. They possess
refined and semantic models that drive the decision-making to provide more explainabil-
ity and transparency.

The service-orientation of the framework and the resulting different microservices are
initially captured by the model of the architecture in a MBSE tool. It embeds all the
specifications for the different microservices, configurations and input/output bindings.

We have seen that the use of an ontology is an additional step based on this existing
model to build up a reflexive model of the system. It also provides composable mecha-
nisms and resources to understand and adapt to its environment appropriately. Hence, it
would be definitely interesting to streamline the original structure and the changes per-
formed on the initial model in the MBSE tool to the ontology.

Table B.1 presents the origin of the requirements of the particular models of our refer-
ence architecture (i.e. from the MBSE tool to the ontology or from the ontology directly).
It also summarizes the involvement of the different types of microservices in the models.
Finally, Figure B.12 provides a view of the central axioms and the relations that drive the
two levels of adaptation at run-time. Straight arrows correspond to an inheritance rela-
tion from the child to the ancestor while dot arrows correspond to the specified labelled
relation.

B.6. Service-orientation for shared knowledge and MSBE 179

Table B.1 Choice of knowledge representation for each levels and types of model in our
reference architecture

Types Grid of
microservices

(Layer 2)

Semantic
Orchestrator

(Layer 3)

MAPE run-time
usage

Context model O O + O In: M
Out: M,A

Configuration
model

D to O D to O In: M
Out: A,P

Capability model D to O O In: None
Out: A,P

Plan model O O In: P
Out: E

Goal &
Adaptation

D to O O In: None
Out: M, A

O stands for: Ontology, D to O: from Design on MBSE tool to Ontology, M: Monitor, A:
Analyze, P: Plan, E: Execute

Figure B.12 Overview of the main axioms and the relations of the ontology per model in
the framework

ECOLE DOCTORALE :
ÉCOLE DOCTORALE SCIENCES EXACTES ET LEURS APPLICATIONS - ED 211

LABORATOIRE :

Collège STEE – Côte Basque, LIUPPA, Anglet, France

CONTACT

Matthieu CARRE
matthieu.carre@outlook.com

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Context
	Vehicle Autonomy
	Autonomy and Highly Automated Vehicles
	Functional Architecture of an Autonomous Vehicle
	Autonomous Vehicles, Operational Complexity

	Safety in Autonomous Vehicles
	Definitions
	Safety as a Complex Endeavour
	Summary of accidents involving AV

	Rationale and Research Questions
	Rationale
	Research Questions

	Purpose and Objectives
	Contributions
	Thesis Structure

	Autonomous Vehicles and Safety
	Introduction
	Autonomous Vehicles and Autonomy
	Autonomy in Complex Systems
	Autonomous Vehicles and Autonomy

	Safety in Autonomous Vehicles
	Safety Definition in Systems
	Safety Approaches for AVs
	Synthesis

	Conclusions

	Methodology and Architecture for Safety Management
	Introduction
	AV Safety and Systems Engineering
	System Design Complexity in Autonomy
	``Safe-by-Design'' Architectures towards run-time Safety Representation and Assurance
	Ensuring Safe Operations with Self-adaptive Software
	Composable and flexible systems

	Modeling for Safety Assessment with MBSE in AV
	Application scope
	Background on MBSE
	Modeling with Arcadia/Capella
	Integrating dynamic safety analysis and management in Arcadia/Capella

	Problem reformulation
	Rationales for potential solutions
	Potential technical solutions in logical and physical view

	Conclusions

	Framework for Safety in Autonomous Vehicles
	Introduction
	Requirement Analysis
	Reference Architecture
	Architectural Design Process
	Component Descriptions
	Conclusion

	Reference Implementation
	Implementation Requirement Analysis
	Structural and Behavioural Implementation
	Design of the Knowledge Bases and Semantic Models

	Conclusions

	Applications and results
	Introduction
	Framework Implementation
	System Scope and System Architecture
	Implementation Overview
	Implementation of the Logical View of the Refined Model-based Design of the Framework Architecture

	Case Study: a Pedestrian Crossing Application
	Presentation of the Case Study and Illustration
	Application of the Framework
	Experimentation
	Results Analysis

	Conclusions

	Conclusions and Perspectives
	Research Objectives Achievement
	Conclusions
	Understanding the key aspect of the puzzle that is Autonomy and Safety in Autonomous Vehicles
	Identifying AV behaviours in relation with safety constraints from composed hazard analysis approaches
	Identifying suitable run-time supervision and management Architecture
	Self-adaptive framework providing run-time management of safety assessment processes in a manageable and scalable manner
	Feasibility of monitoring, diagnosis and adaptation at run-time to real-time

	Discussions and Perspectives
	Hazard Analysis issues
	Design Issues
	Implementation issues
	Perspectives

	Bibliography
	Safety vocabulary from ISO26262
	Safety
	System
	Process

	Environment model & SOSA/SSN
	Existing representations of architecture models, contextual ontologies and system description
	Context models
	Ontology representing the safety symptoms of the environment of the vehicle and the ADS
	Ontology for the representation of the current context of the vehicle as symptoms
	Ontology for the symptoms characterizing the current status of the AMs

	Configuration models
	Current configuration of the AD system, sensors and effectors status (operated by Touchpoints management in layer 1)
	Current configuration of the safety assessment via the currently deployed and running MAPE microservices

	Capability models
	Capability model of the AMs to influence the ADS using maneuver-based mechanisms
	Capability model of the OAM to influence the AMs using service reconfiguration mechanisms

	Plan models
	Goal & Adaptation models
	Metrics for the evaluation of future configuration from the current context

	Service-orientation for shared knowledge and MSBE

