
HAL Id: tel-02437285
https://univ-pau.hal.science/tel-02437285

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Long Life Application dedicated to smart-* usage
Riadh Karchoud

To cite this version:
Riadh Karchoud. Long Life Application dedicated to smart-* usage. Other [cs.OH]. UPPA, 2017.
English. �NNT : �. �tel-02437285�

https://univ-pau.hal.science/tel-02437285
https://hal.archives-ouvertes.fr

Universidad del País Vasco (UPV)

Université de Pau et des Pays de l'Adour (UPPA)

Ecole Doctorale des Sciences Exactes et Leurs Applications

LABORATOIRE INFORMATIQUE – LIUPPA

Long Life Application dedicated to smart-* usage

Présenté par

Riadh Karchoud

Pour obtenir le grade de DOCTEUR de l’UPPA et l’UPV

Spécialité : Informatique

Soutenance le 14 Décembre 2017

Devant le jury composé de

M. Philippe ROOSE Directeur de thèse
M. Marc DALMAU Directeur de thèse
Mme. Arantza ILLARRAMENDI Directeur de thèse

M. Jean-Louis PAZAT Rapporteur
M. Noel DE PALMA Rapporteur

M. Sergio ILARRI Examinateur
M. Alfredo Goni Examinateur
M. Jean-Paul ARCANGELI Examinateur

ii

.

Long Life Application dedicated to smart-* usage

By

Riadh Karchoud

iii Dédicaces

. Dédicaces

J’adresse mes sincères remerciements au professeur Jean-Louis PAZAT et au professeur Noel

DE PALMA pour avoir consacré leur temps pour rapporter mon travail de thèse.

Je remercie également M. Alfredo GONI, M. Jean-Pierre ARCANGELI et M. Sergio ILARRI

d’avoir bien voulu faire partie des membres de mon jury. Merci à Sergio pour sa bienveillance, ses

conseils et aussi son amabilité.

Mes plus sincères remerciements à Monsieur Marc DALMAU et Monsieur Philippe ROOSE,

Maîtres de Conférences (HDR) à l’Université de Pau et des Pays de l’Adour, mes directeurs de

thèse, pour leur encadrement et leur soutien. La confiance que vous m’accordez m’a permis de

mener à bon bien cette thèse. Vous m’avez donné suffisamment de liberté pour choisir la direction

de cette thèse. Je remercie également Madame Arantza ILLARRAMENDI pour son encadrement

de valeur et son apport considérable à mon travail. Elle n’a jamais cessé d'accroître ma capacité de

produire et en même temps celle qui fut capable de me tirer vers le haut quand j’en avais besoin.

J’ai rencontré pendant la thèse ceux qui sont devenus depuis mes meilleurs amis. J’ai apprécié

tout ce qu'on a de commun, mais aussi tout ce qu'on a de différent. L’échange culturel que j’ai vécu

avec eux, entre la Chine, le Pérou, le Liban, l’Ethiopie, la Thaïlande, le Venezuela, l’Argentine,

l’Espagne et la France, je ne l’aurai jamais vécu ailleurs.

Merci à mon amour Meriem pour son écoute, sa patience, sa compréhension et son support

inestimable qui m’a permis d’avancer pendant les moments difficiles.

Merci à mes parents Taoufik et Wassila qui m’ont donné l’exemple de comment aimer sans

mesure, donner sans raison et se soucier sans attentes. Je vous dois tous!

À toutes ces personnes qui ne m’ont apporté que du bonheur, merci de faire partie de ma vie!

iv AKNOWLEDGEMENT

. AKNOWLEDGEMENT

.

This work was supported by the the embassy of France in Spain and by the TIN2013-46238-

C(1/4)-4-R, FEDER/TIN2016-78011-C4-(2/3)-R (AEI/FEDER, UE), FEDER/TCVPYR, and

DGA-FSE.

v Résumé

. Résumé

De nos jours, les appareils mobiles hébergent de nombreuses applications directement

téléchargées et installées à partir d'un "Store" d'applications mobiles. L'existence d'une telle quantité

d'applications pour une multitude d'objectifs impose une énorme surcharge sur les utilisateurs, qui

doivent sélectionner, installer, supprimer et exécuter les applications appropriées.

En outre, ces applications ont négligé la prise en compte du contexte de l'utilisateur. Elles

proposent des scénarios d'utilisation statiques et non évolutifs. Ces applications servent à des fins

spécifiques et sont supprimées ou oubliées, la plupart du temps, après la première utilisation. De

plus, ces applications ne tiennent pas compte du monde des objets connectés en raison de leur

architecture monolithique mise en œuvre pour fonctionner sur des appareils individuels.

La solution proposée et intitulée "Long Life Application" offre une nouvelle façon de répondre

aux besoins de l'utilisateur de façon dynamique et distribuée. Elle propose une évolution continue

des applications (encours d'exécution) en ajoutant, supprimant, et déplaçant des fonctionnalités sur

les appareils utilisés par l’utilisateur. Elle permet, aussi, de modifier le mode d'interaction en

distribuant les exécutions sur plusieurs appareils en fonction des besoins de l'utilisateur.

Pendant que l’utilisateur se déplace dans son environnement, l'application détecte des

événements environnementaux et construit des situations contextuellement décrites. Ainsi, ce

travail vise à offrir un nouveau type d'applications mobiles capables de détecter, de formuler et de

comprendre le contexte des utilisateurs puis de réagir en conséquence.

vi Abstract

. Abstract

Nowadays, mobile devices host many applications that are directly downloaded and installed

from mobile application stores. The existence of such a large amount of apps for a myriad of

purposes imposes a huge overhead on users, who are in charge of selecting, installing, and executing

the appropriate apps, as well as deleting them when no longer needed.

Moreover, these applications have mostly neglected to take into account the user’s context, as

they propose static non-evolving scenarios. These applications serve for specific purposes and get

deleted or forgotten most of the time after the first use. Furthermore, these apps fail to consider

the, soon coming, connected world due to their monolithic architecture implemented to work on

single devices.

The proposed long-life application provides a new way to respond to the user’s needs

dynamically and distributedly. It evolves at runtime by including/excluding business functionalities,

updating the interaction mode, and migrating executions on multiple devices according to the user’s

preferences.

While he/she moves in his/her surroundings, the app detects the occurring events and builds

contextually-described situations. So, this work aims to offer a new type of mobile application able

to detect, formulate and understand the users’ context then react accordingly.

vii Contents

. Contents

. DEDICACES .. III

. AKNOWLEDGEMENT .. IV

. RESUME .. V

. ABSTRACT .. VI

. CONTENTS.. VII

. LIST OF FIGURES ... XII

. LIST OF TABLES... XV

CHAPTER 1 INTRODUCTION .. 1

1. THESIS CONTEXT .. 2

2. CHALLENGES ... 3

3. OBJECTIVES ... 4

4. MOTIVATING SCENARIO ... 5

5. ORGANIZATION OF THE THESIS .. 7

CHAPTER 2 RELATED WORK ... 9

1. INTRODUCTION .. 10

2. DISTRIBUTION ASPECT IN MOBILE COMPUTING .. 11

2.1. Middleware dedicated to pervasive applications ... 12

2.1.1. Background .. 12

2.1.2. Existing middleware solutions ... 14

2.1.3. Comparison and discussion ... 21

2.2. Cloud solutions for distributed applications .. 22

2.2.1. Background .. 22

2.2.2. Existing cloud solutions ... 24

2.2.3. Comparison and discussion ... 28

3. CONTEXT AWARENESS IN MOBILE COMPUTING .. 30

3.1. Contextual-awareness representation models and approaches .. 31

viii Contents

3.1.1. Key value models .. 31

3.1.2. Markup Scheme models... 31

3.1.3. Graphical models ... 32

3.1.4. Object-oriented models .. 32

3.1.5. Logic-based models ... 32

3.1.6. Ontology-based models ... 33

3.1.7. Comparison and discussion ... 34

3.2. Modeling situation-awareness for Context-aware applications ... 34

3.3. Platforms dedicated to generating context-aware applications ... 35

4. USER-CENTERED CONTEXT-AWARE MOBILE APPLICATIONS ... 39

4.1. Existing solutions.. 39

4.2. Discussion .. 43

5. CONCLUSION .. 43

CHAPTER 3 LONG LIFE APPLICATION PROPOSAL ... 44

1. INTRODUCTION .. 45

2. APPROACH OVERVIEW ... 46

3. CONTRIBUTIONS... 47

3.1. A rich and user-friendly contextual model ... 47

3.2. A cross-device context detection ... 48

3.3. A modular orchestration of services ... 49

3.4. A collaborative situation injection.. 49

4. APPLICATION’S GENERAL ARCHITECTURE .. 50

4.1. The User Domain ... 51

4.2. Kalimucho .. 53

4.3. Input ... 53

4.4. Output ... 53

4.5. The Injector .. 54

4.6. The Persistence layer ... 54

4.7. The LLA Core ... 54

4.7.1. The Parser .. 54

ix Contents

4.7.2. The Event Manager (EM) .. 55

4.7.3. The Condition Evaluator (CE) ... 55

4.7.4. The Action Orchestrator (AO) ... 55

4.8. The ACL filter ... 55

5. APPLICATION’S GLOBAL WORKFLOW AND DISTRIBUTION STRATEGY ... 56

5.1. The deployment strategy of LLA ... 56

5.2. The workflow of LLA .. 58

6. CONCLUSIONS .. 59

CHAPTER 4 SITUATION-BASED CONTEXTUAL MODEL .. 60

1. INTRODUCTION .. 61

2. SITUATION-BASED CONTEXTUAL MODEL ... 61

2.1. Abstract modeling level .. 62

2.1.1. Concepts .. 63

2.1.2. Operations .. 67

2.1.3. Situations families ... 67

2.1.4. Representations .. 68

2.1.5. Complexity and data formats ... 69

2.2. Service level .. 71

3. CONCLUSIONS .. 71

CHAPTER 5 - CROSS-DEVICE SITUATION DETECTION .. 72

1. INTRODUCTION .. 73

2. CROSS-DEVICE SITUATION DETECTION MECHANISM... 73

2.1. The Input Component (IC) .. 74

2.1.1. Frequency Manager (FM) .. 75

2.1.2. Extractor .. 77

2.1.3. Trigger ... 77

2.2. The Event Manager (EM) ... 78

2.2.1. Dispatcher Component (DC) ... 79

2.2.2. Axes Management Components .. 79

2.2.3. Situation Manager Component (SMC) .. 80

x Contents

3. CONCLUSIONS .. 84

CHAPTER 6 – SITUATION CONTROL AND REACTION STRATEGY ... 86

1. INTRODUCTION .. 87

2. SITUATION CONTROL AND REACTION STRATEGY .. 87

3. CONDITION EVALUATION (CE) .. 88

3.1. The situation priority model and constraints .. 88

3.2. Condition Evaluator module’s components .. 93

3.2.1. The User Constraints Component (UCC) .. 94

3.2.2. The Situation Holder Component (SHC) ... 94

3.2.3. The Priority Component (PC) .. 95

3.2.4. Example ... 95

4. ACTION ORCHESTRATOR (AO) AND ACCESS CONTROL LIST (ACL) DEVICE FILTER 98

4.1. Device capabilities ... 99

4.2. Service composition model and component requirements .. 100

4.2.1. Service Composition .. 101

4.2.2. Component requirements ... 102

4.3. Matching services to situations .. 105

4.4. Orchestration and control components .. 106

4.4.1. Situation Tracker Component (STC) ... 107

4.4.2. Orchestration Component (OC) ... 108

4.4.3. Device Management Component (DMC) .. 108

4.4.4. Example ... 109

5. CONCLUSIONS .. 117

CHAPTER 7 – SITUATION INJECTION MECHANISM ... 118

1. INTRODUCTION .. 119

2. SITUATION INJECTION MECHANISM .. 119

2.1. User's Injection Process ... 120

2.2. Collaborative Social Environment's Injection Process .. 121

2.3. External Providers' Injection Process .. 122

2.3.1. Government providers ... 123

xi Contents

2.3.2. Businesses and private companies ... 123

2.3.3. Institutions/Organizations/Associations ... 124

3. CONCLUSIONS .. 125

CHAPTER 8 – PROTOTYPE AND VALIDATION .. 126

1. INTRODUCTION .. 127

2. ESTABLISHING AND TESTING THE SCENARIO .. 127

2.1. Pre-Conditions ... 127

2.2. John’s travel scenario .. 130

2.2.1. John sets-up LLA ... 131

2.2.2. LLA injects the necessary data .. 137

2.2.3. John starts the journey ... 141

3. RESULTS AND VALIDATION .. 153

3.1. Performance validation .. 153

3.2. Time and storage gain .. 155

4. CONCLUSION .. 156

CHAPTER 9 – CONCLUSIONS AND FUTURE WORK ... 157

BIBLIOGRAPHY .. 160

APPENDIX 1 .. 168

xii List of Figures

. List of Figures

Figure 1 – Computing evolution towards ubiquity [65] ... 10

Figure 2 – Relationship between sensor-networks and IoT [82] .. 11

Figure 3 - Middleware basic architecture [34] ... 13

Figure 4 - Reference model of WSN middleware [104] .. 14

Figure 5 - The XMIDDLE architecture [13] ... 16

Figure 6 - Aura's system [58] ... 16

Figure 7 - The architecture of MUSIC [86] .. 18

Figure 8 - Overview of the MuScADeL process [12] .. 19

Figure 9 - The Osagaia component [32] .. 20

Figure 10 - Cloud layered Architecture .. 23

Figure 11 - CHOReOS architecture [8] ... 24

Figure 12 - BlueMix Architecture [38] .. 25

Figure 13 - Flybits workflow [36]... 26

Figure 14 - Context-aware Provisioning Architecture [66] ... 27

Figure 15 - Computation architecture for context-aware citizen services for smart-cities [64] 28

Figure 16 - Context and Context-aware provisioning [66] .. 30

Figure 17 - Class hierarchy diagram for [47] context ontology... 33

Figure 18 – Cyberdesk’s runtime architecture diagram [27] .. 36

Figure 19 - Care droid's architecture [30] .. 36

Figure 20 - WildCAT's logical model [25]... 37

Figure 21 - Class diagram of the application Places2Go and its relationship [26] .. 38

Figure 22 - LLA PROPOSAL OVERVIEW ... 46

Figure 23 - LLA's General Architecture ... 51

Figure 24 - User's domains ... 52

Figure 25 - LLA running across devices ... 56

Figure 26 - Deployment strategy for starting LLA .. 57

Figure 27 - Deployment strategy for stopping LLA ... 58

Figure 28 - Situation representation model .. 62

xiii List of Figures

Figure 29 - Situation's projection axes .. 65

Figure 30 - Exception's representation model .. 66

Figure 31 - First-level situation representation .. 67

Figure 32 - Second-level situation representation .. 68

Figure 33 - Third-level situation representation... 68

Figure 34 - House alarm situation representation .. 69

Figure 35 - Situation branching ... 70

Figure 36 - Cross-device situation detection component architecture .. 74

Figure 37 - The input component internal process ... 75

Figure 38 - Situation identification process .. 78

Figure 39 - The dispatcher component .. 79

Figure 40 - Time Manager Component ... 80

Figure 41 - The Situation Manager Component ... 81

Figure 42 - Filtering layers of situations ... 89

Figure 43 - Lock zones and priorities .. 90

Figure 44 - Graphical representation of lock zones ... 91

Figure 45 - Morning Busy Zone representation ... 92

Figure 46 - Work Busy Zone representation .. 92

Figure 47 - Sleeping Dead Zone representation.. 93

Figure 48 - Condition Evaluator's internal architecture ... 93

Figure 49 - User Constraints Component ... 94

Figure 50 - Situation Holder Component .. 94

Figure 51 - Priority Component ... 95

Figure 52 - Example scenario representation ... 96

Figure 53 - Service composition architecture ... 101

Figure 54 - Video chat service composition graphical representation .. 104

Figure 55 - Monthly Work Meeting full representation .. 106

Figure 56 - AO and ACL internal architecture .. 107

Figure 57 - Situation Tracker Component .. 107

Figure 58 - Orchestration Component .. 108

xiv List of Tables

Figure 59 - Device Management Component .. 108

Figure 60 - Scenario portion ... 109

Figure 61 - Situations service layers .. 111

Figure 62 - The Injector's workflow .. 119

Figure 63 - Concert event situation ... 122

Figure 64 - Border closing situation .. 123

Figure 65 - Parking situation ... 124

Figure 66 - Training situation .. 124

Figure 67 – Authentification UI in LLA .. 128

Figure 68 – Defining the encryption key ... 128

Figure 69 – Defining home location using LLA .. 129

Figure 70 – Adding a new situation using LLA’s UI .. 130

Figure 71 – John’s travel scenario steps .. 131

Figure 72- John's defined locations ... 131

Figure 73 – News Situation and Wakeup Alarm Situation graphical representations 133

Figure 74 - House Alarm Situation graphical representation ... 133

Figure 75 – Morning Preparation Situation graphical representation ... 133

Figure 76 – LLA web application for injecting situations from external sources 137

Figure 77 - Print screens of LLA's output for step 1 .. 142

Figure 78 - Print screens of LLA's output for step 2 and 3 ... 143

Figure 79 - Print screens of LLA's output for step 5 .. 145

Figure 80 - Print screens of LLA's output for step 6 .. 146

Figure 81 - Print screens of LLA's output for step 7 .. 148

Figure 82 - Print screens of LLA's output for step 12 .. 151

Figure 83: Overtime performance of LLA (10 situations) ... 154

Figure 84: Overtime performance of LLA (100 situations) ... 154

Figure 85: Overtime performance of LLA (1000 situations) ... 154

.

xv List of Tables

List of Tables

Table 1: Comparing middleware ... 21

Table 2: Comparing Cloud platforms ... 29

Table 3: Comparing context modeling approaches .. 34

Table 4: Comparing context-aware end-user applications .. 42

Table 5: Time primitives .. 63

Table 6: Location primitives .. 64

Table 7: Activity primitives .. 64

Table 8: Time*Activity primitives ... 64

Table 9: Time*Location primitives ... 65

Table 10: Location*Activity primitives .. 65

Table 11: Situation analysis by the Event Manager's components ... 83

Table 12: Situation filtering by the Condition Evaluator’s components .. 97

Table 13: Samsung Gear S3 capabilities ... 100

Table 14: Example of User-Domain .. 112

Table 15: Situation analysis by the Event Manager's components ... 114

Table 16: John’s locations data .. 132

Table 17: John’s external injectors .. 132

Table 18: John’s defined lock zones .. 134

Table 19: John’s user-domain .. 135

Table 20: LLA's core modules on step 1 ... 141

Table 21: LLA's main modules results for step 2 and 3 .. 142

Table 22: LLA's core modules on step 4 .. 144

Table 23: LLA's core modules on step 5 ... 144

Table 24: LLA's main modules results for step 6 ... 146

Table 25: LLA's main modules results for step 7 ... 147

Table 26: LLA's main modules results for step 8 ... 147

Table 27: LLA's main modules results for step 9 ... 149

Table 28: LLA's main modules results for step 10 ... 149

xvi List of Tables

Table 29 : LLA's main modules results for step 11 .. 150

Table 30 : LLA's main modules results for step 12 .. 150

Table 31: LLA's main modules results for step 13, 14, and 15.. 151

Table 32: Measurements of performance, accuracy, and sustainability .. 154

Table 33: Comparison of LLA and classical mobile store approach .. 156

1 Chapter 1 Introduction

Chapter 1 Introduction

2 Chapter 1 Introduction

1. Thesis context

Nowadays, mobile devices are hosting a large amount of applications for multiple purposes.

These applications try, in their own categories (social, work, entertainment, etc.), to fulfill the

needs of the user. But the diversity of those needs and the conditions surrounding them makes

it a challenge for mobile applications to accurately understand users and respond to their needs.

Since the appearance of the first native mobile application (mobile apps) on the Apple Store

in 2008 and the Android OS later that year, the mobile apps world has seen three major

transformations [71]. It started, between 2008 and 2010, by the information appliance era where

the apps transformed the phone into a mono-purpose device serving as a tool for a specific need

(calculator, agenda, emails, etc.). In 2011 came the era of `Home apps', where applications

struggled to gain the focus of the user by being filled with tabs of multiple functionalities and

services (news, entertainment, social, etc.) but with no consideration to what the user needs.

The third phase of apps as service layers, or “the new age of mobile apps”, is the “Era of no

apps” where applications are hidden in the background taking advantage of the computing

power of mobile devices and waiting for the right moment to manifest. This era started in 2014

but is still transforming the market and pushing the technology towards a connected ecosystem

where applications are modular, distributed and intelligent. Apps show up only when necessary,

without making the user go to a specific store or install pre-packaged bundles (applications).

Current mobile applications, like the ones we download now, serve for specific purposes and

get deleted or forgotten most of the time after the first use. Anindya Datta says that “An app

that's retained by 30 percent of downloaders is considered sticky” [108]. When speaking to

USA Today, he stated that an estimated 80 to 90 percent of apps are eventually deleted from

users' phones for being stale and static. In a more recent study [99], statistics show that only 25

percent of users return to any given application after the first use.

Moreover, in pervasive environments (e.g. smart-homes and smart-cities), the number of

devices, sensors, GPS modules, services, and applications are strongly multiplying. This rise is

consequently raising a considerable challenge regarding data management and systems

heterogeneity. This challenge will provoke a huge multiplicity of applications (to

install/uninstall), configurations, redundant data and profiles and duplicated functions.

Finally, the growth of this network of smart connected devices obliges app developers to

consider ubiquitous and pervasive computing. Nowadays, many users own more than one

mobile device but with the rise of the Internet of Things (IoT) and smart-* (cities, home,

3 Chapter 1 Introduction

buildings, etc.), users will be confronted and be expected to handle multiple devices

simultaneously (6.58 devices per person in 2020 [24]).

2. Challenges

In this context, the need to have mobile applications, able to understand the user and manage

his/her daily situations regardless of their nature or categories, arises. Nevertheless, before we

propose our solution to these problems, we should understand the nature of everyday end-users

needs. The problem comes from the fact that users have repetitive habits that they perform on

a regular time basis, and evolving needs, that continuously change and shift according to their

physical and social environment. These reasons raise the issue of the relevance of the services

that are automatically offered by this type of applications in order to respond to certain

situations.

Contextual engagement is the key to overcome this challenge. In the specialized literature,

we can find different proposals in the area of context-aware applications. But in general, they

only partially cover the users’ needs because:

Firstly, they focus their work on understanding his/her context under a specific limited area

of expertise (museum guided tours [16], context-aware healthcare, smart-transportation, etc.)

in which users and developers, with no expertise in those domains, could not either improve or

adapt the application to behave accordingly to the actual requirements of the user.

Secondly, for the lack of dynamicity in the predefined rule-based systems that cannot be

either extended to cover wider use cases or enriched to handle more precisely specific personal

situations.

Finally, most of the context-aware applications focus either solely on one device (on which

they are installed) or on a complex network of sensors that should be installed all around the

user in order for their solutions to run correctly.

With a large variety of use cases, diversity of needs and multiplicity of devices, it becomes

a necessity to have one solution to manage everything. We call this kind of solutions “Long

Life Application” (LLA) or “Eternal Applications” as they run ubiquitously, and evolve

constantly by changing their behavior and offering a variety of services according to the user’s

needs.

4 Chapter 1 Introduction

3. Objectives

Lately, end-users are getting accustomed to a high level of comfort (responsive design,

optimized user experience, fast internet, etc.) and expect applications to make their daily life

easier. Studies on computer-human interactions lead the developers to optimize and minimize

the user’s intervention by adapting their applications’ design and workflow towards offering

the easiest and fastest User eXperience (UX). Therefore, comes the need to focus the attention

of the mobile user on one application to manage other applications (services); to offer the widest

range of possibilities; to exploit the biggest number of interactions and shared knowledge

available to the user.

This proposal combines the strength of two important research areas: Ubiquitous Distributed

Computing and Context-Awareness dedicated to the mobile user. For that purpose, we re-think

the architecture of applications dedicated to stand-alone devices and target liquid applications

[4, 7]. We reconsider also the dynamicity and reactivity of mono purposed applications and aim

towards situation-aware applications. Our solution proposes improving the user's mobile

experience by overcoming the rigidness of existing mobile applications and by handling the

user’s multiple expectations in various domains.

Overall, the objective of this proposal is to present a user-centered, context-aware (situation-

based) mobile application able to manage everyday situations and react to them by adapting the

application to the needs of the user.

Our proposal is dedicated to everyday use. It offers its services to the consumers of mobile

applications that until now search, find, install, update and delete their applications on their

devices. Therefore, we propose a Long Life Application that would provide the suitable services

and applications in a transparent way for the user, according to his/her needs and to the current

context.

Our vision of this application is centered on one user in his/her connected environment, that

we call user-domain, making it a distributed mobile application by definition. This app needs

to give the user a new level of comfort and mobile user experience by replying reactively and

proactively to his/her every need and without being confused between the large diversity of

apps and devices.

This solution allows the user to properly use his/her soon-coming smart environment

(composed by his/her own computing devices and other surrounding devices in the Internet of

5 Chapter 1 Introduction

Things) without any confusion due to the multiplicity of devices and the heterogeneity of

systems available.

Moreover, we cannot ignore the exponential growth of the number of apps, the time spent

on apps and the money made by apps [5]. This growth is due to the adoption of the best software

practices in engineering, particularly software reuse practices, which contributed to this rise

despite the lack of efficiency of mobile app developers. According to [56], 17.109 mobile apps

were a direct copy of another app.

This confuses users and pushes them to question the reliability and performance of the

downloaded apps. Besides that, this increasing number is unnecessarily overloading app

markets, users, and devices. Rather than reinventing the wheel, Android and iOS developers

became comfortable turning to the “lazy” work [20] for building blocks for software. This

practice made programmers more pragmatic and more focused on app ideas rather than getting

all the credit for the software stack on which it’s built. In this scope, our solution proposes to

the developers to build their services from a stack of already built components which can be

orchestrated, on demand, to provide the wanted experience to the user.

4. Motivating scenario

Paul Féval said in Le Bossu (1857): « Si tu ne viens pas à Lagardère, Lagardère ira à toi!”

This citation translates to: if you do not come to Lagardère, he will come to you. It inspired us

to make the app go for the user even if he/she does not go for it.

With the rapid growth in the use of smartphones and mobile applications, new ways for the

tourism industry to connect with their visitors while traveling has been created [14]. We apply

our proposal to this area by presenting the following scenario.

Consider John, a 52 years old History teacher from London, who plans a one-week trip to

the Basque Country on the 22nd of November 2017.The main reason for this trip is to take a

relaxing vacation and discover the beauty of the region. But John also plans to use this vacation

time to treat his thoracic trauma condition by visiting the thermal sources across the area. He

plans also to write a paper on the history of these thermal cities and its patrimony.

In order to organize this trip, John needs to do three tasks; He must inform the university

(his employer) about this trip and about its academic value and its benefits on his health. The

university frees his schedule and informs him of the important meetings and tasks that he should

not neglect. He must also contact a travel agency and give them all the details related to this

6 Chapter 1 Introduction

trip and his preferences (period, preferred accommodations, health status, budget, etc.) in order

to have the most optimal and interesting vacation; Finally, John must notify his family and

friends.

On Day 1, John will travel from his house to the hotel (in his destination) city while passing

by different locations and environments. Upon leaving his house, the application activates the

security alarm and shows him the map to the airport on his smart-car monitor. When arriving

at the airport, the airport parking services guide John to the nearest empty spot. As he enters the

airport terminal, it shows him a map of the building and information about his flight

registration/boarding gates. At 11 am (flight time), the application puts the phone into airplane

mode and proposes some entertainment services (games, music, reading, etc.). Upon arrival,

the application deploys the same services for the arrival airport. John goes to the nearest rental

car service to take the car that the agency rented for him. The application allows John to add

the car as one of his connected personal devices for those days in order to be used when needed.

While driving to the hotel, he receives a notification from the university about an urgent meeting

that starts when he arrived at the hotel’s parking. When he enters to the hotel, the app launches

the automatic check-in service on John’s phone. With this service, he can receive all needed

information breakfast time, Wi-Fi code, etc. He agrees to the terms and signs digitally to finalize

the check-in. He gives his luggage to the hotel and goes immediately outside since it is still

early.

John goes to Bayonne’s Office of Tourism. He scans a QR code in front of the office which

provides the application with information about the nearby events and provides John with a free

ticket to the Basque Museum. John decides to go to the museum. When he arrives there, the

app provides him with his free ticket and helps him to navigate inside the museum.

On this day, John has his first thermal session recommended by his doctor. He goes to

“Cambo-les-Bains”, a nearby thermal city, where he does his session. While he is there, the

application monitors his health data and stops all other notifications in order to not disturb him.

After the session is over, John heads back to the hotel.

When he gets exactly in front of his room, an NFC key service is deployed on his smart-

watch to open the door. John takes a shower and stays in his room. He adds the room TV to his

devices and uses it to watch his favorite show. Each evening, John usually takes dinner, drinks

his medicine, and watches some news and a movie before going to sleep. The application is

used to recognize his habits and to give him the needed services to do so. But now it recognizes

7 Chapter 1 Introduction

that he is in a different place, surrounded by different devices so it adapts accordingly. Finally,

it calls his daughter via video chat before he goes to sleep.

This first day gives a clear idea of what to expect from the application. The rest of the days

go as planned.

This scenario illustrates the change of needs, multiplicity of devices and evolution of the

application. It shows the real need for such kind of application to facilitate most of our

redundant tasks and handle new ones all day long. In order to offer these features to John, the

LLA should be aware of his situational and physical context. Situational awareness provides

John with a clear understanding of his needs and therefore responds accordingly. Physical

awareness offers him the freedom and power of using his connected environment and provides

him with a full management over his wide range of different devices. This need for awareness

raises a number of challenges and requires technological and theoretical competencies related

to mobile applications.

5. Organization of the Thesis

The chapters of this report are organized as follows:

 Chapter 2: Related Work

We need to specify that our related work tackle apps dedicated to single end-users

for everyday scenarios. Therefore we study the tools necessary to build these

applications and we compare some finished works offering this kind of applications.

 Chapter 3: Long Life Application proposal

We define clearly what we mean by Long Life Application and how it improves the

limitations of other works. In this section, we describe our approach to implement

LLA by describing the workflow and major concepts that will enable the application

to respect our objectives and contributions.

 Chapter 4: Situation-based contextual mode

This chapter presents our contextual model thoroughly. We redefine clearly what we

mean by the situation and how it could represent a big variety of needs and events

for an end-user in his daily life.

 Chapter 5: Cross-device context detection

Here we present how we extract context from multiple devices in order to detect a

situation. We explain the mechanisms behind this detection.

8 Chapter 1 Introduction

 Chapter 6: Service control and reaction strategy

In this chapter, we continue to explain the part of our approach dedicated to managing

the running situations, their priorities, and their services by monitoring the user’s

devices and controlling their accessibility.

 Chapter 7: Situation injection

Here we present how we propose to enrich the situations to make the application

more dynamic by showing the various sources and examples where this is useful.

 Chapter 8: Prototype and validation

In this chapter, we re-introduce the motivating scenario briefly and then proceed to

show how we use our proposal to answer to the needs of the user in the presented

scenario. We also show the obtained results that demonstrate the validity of our

solution.

 Chapter 9: Conclusion and future work

Finally, we provide a summary of our work and suggests possible future research

directions.

9 Chapter 2 Related Work

Chapter 2 Related Work

10 Chapter 2 Related Work

1. Introduction

The technological advancements, related generally to hardware and more specifically to

semiconductors, pushed the computing world to a high-speed evolution (see Figure 1) that gave

birth to areas that until a decade ago were considered as science-fiction. From mainframe

computing to ubiquitous computing, researchers kept pushing the boundaries in order to achieve

higher, faster and better use of these technologies.

Currently, we are living in the era of ubiquitous computing which provided the possibility

to have more and more mobile applications on more competent devices. Consequently, the

continuous rise of mobile applications opened the door for an unmatched number of diverse

possibilities of what users can do and expect to do. Due to the high demand of apps and the

unstoppable growth of app stores, the computing world is slowly shifting towards an

interconnected, distributed, and context-aware digital ecosystem.

Meanwhile, the hardware is becoming cheaper, faster and more available. The Internet is

getting faster and accessible almost everywhere. Cloud is offering more storage, more

possibilities, and more flexibility. All these factors combined influenced developers and

researchers to re-think mobile applications each in their own vision of a ‘future application’

that will revolutionize the user experience and harness the power of this diverse connected

world. The idea of our work tackles the edge of the computing technology as shown in Figure

1 by combining context awareness with IoT.

Figure 1 – Computing evolution towards ubiquity [65]

11 Chapter 2 Related Work

By 2020, there will be up to 50 to 100 billion devices connected to the Internet [81]. This

huge number raises the crucial question of how applications can be beneficial for the users in

handling the multiplicity of devices and in backward, how these devices might contribute to

constructing more efficient applications. Building these applications requires understanding the

relationship between the lower levels of sensors and actuators, which construct the main entities

of the IoT, the middleware, which provides the management and harmonization of those entities

and, finally, the application and service layer visible to users (see Figure 2).

Figure 2 – Relationship between sensor-networks and IoT [82]

2. Distribution aspect in mobile computing

The massive use of new technologies has led to a dramatic multiplication of a wide range of

applications, different usages, and a huge amount of information. Using many different devices

(home and professional PCs, smart-tv, smartphones, etc.) made the user quite confused.

Therefore, we have to consider the fact that the user will continuously be using various personal

devices, switching from his PC to his phone, from his phone to the TV set, etc.

Thus, the first pillar of our proposal is distribution. The central architectural challenge in

supporting computational needs of mobile users is to satisfy two competing goals. The first one

is to maximize the use of available resources that is, effectively exploiting the increasingly

pervasive computing and communication resources in our environments. The second one is to

minimize user distraction and drains on user attention.

Today, a major source of user distraction arises from the need for users to manage their

computing resources in each new environment, and from the fact that the resources in a

particular environment may change dynamically and frequently.

12 Chapter 2 Related Work

Moreover, the issue that users face now is that their applications are

downloaded/installed/ran on one device. As a Java application, which is compiled as a single

JAR file where all the code base is tightly coupled, mobile applications currently follow the

same logic. For Android, an app is an APK artifact compiled and installed on only one device

with no possibility of being broken into modules that could be distributed and communicated

with remotely. This Monolithic Architecture [102] obliges the user to install (duplicate), fully,

the same app on all of his devices in order to have an instance of this app everywhere. To answer

to this challenge, researchers realized the need to build distributed applications able to run

simultaneously on multiple devices regardless of OS, hardware or network. These applications

are based on the theory of decomposing features (service/component = feature/purpose).

Distributed Mobile Applications (DMA) are designed, developed and assembled in order to

provide the desired final product. Their decomposition ensures that each entity is only used to

perform a specific task in a particular context. These entities must comply with a more abstract

architecture (Framework) to manifest when they are needed and disappear after having served

their purpose. They must be able to communicate in a transparent way and transfer data through

the network. DMA trades traditional monolithic architectures with micro-services architectures

that allow a complete flexibility, autonomy, and continuity to the overall application. Beneath

this DMA, two families arise; the first is cloud distributed computing solutions that offer

services reachable from different terminals and the second is Middleware solutions that are

dedicated to ensuring the sustainability of pervasive applications. Each has its advantages and

drawbacks, but both serve the same purposes (sharing computing power, running regardless of

the heterogeneity, sharing data, decomposing the application, fault tolerance etc.).

2.1. Middleware dedicated to pervasive applications

2.1.1. Background

In mobile computing architectures, a distributed platform (middleware) is “a layer of

software above the operating system but below the application program that provides a common

programming abstraction across a distributed system” [10] (see Figure 3). The network is

implemented by the use of the same technique for exchanging information involved in all

applications using mobile components. These components provide communication between the

involved terminals regardless of the hardware and software features, of network protocols, and

13 Chapter 2 Related Work

of operating systems. The most common technical information exchange is the exchange of

messages, calling remote procedures and manipulation of remote objects.

Figure 3 - Middleware basic architecture [34]

Using middleware changes the way how developers construct their applications by

considering a new kind of architecture. When working in heterogeneous environment, the

modularity of the proposed application becomes crucial. Therefore, the implementation process

of the produced applications should respect the paradigm of the middleware on which it is based

on.

Thus, the need for Component-Based Software Engineering (CBSE) arises. In software

engineering, components are viewed as a part of the starting platforms which are service-

oriented. Components are the cornerstone in Service-Oriented Architectures (SOA).

This procedure highlights the separation of concerns in respect of the wide-ranging

functionalities available throughout a given software system. This approach reflects the code

reuse practice to define, implement and compose independent components into overall

applications. This practice aims to bring about an equally to extensive degree of benefits for the

software itself and for organizations that support such software.

For this purpose, middleware emerged. Middleware is a software used to bridge the gap

between applications and low-level constructs is a novel approach to resolve many Wireless

Sensor Network (WSN) issues and enhance application development [50]. As shown in Figure

4, every middleware incorporates four major components:

 Programming abstractions: APIs providing the programmer with the tools

needed to use the middleware.

 System/domain services: Ready-to-use services providing implementations to

achieve the wanted abstractions.

 Runtime support: Extension allowing the operating system to support the

middleware services by providing basic middleware features.

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Software_system

14 Chapter 2 Related Work

 QoS mechanisms: Mechanism ensuring the respect of the quality of services

related to the constraints of the system.

Figure 4 - Reference model of WSN middleware [104]

Adding context-awareness to middleware became a necessity in order to face the new

challenges related to the dynamicity of devices’ availability and capabilities. The context-aware

middleware platforms are an answer to challenges associated with service discovery, mobility,

environmental changes and context retrieval [84]. Nonetheless, contextual data retrieval in

middleware is usually focused on low-level raw data from devices, sensors, and network

(battery level, processing power, network status, etc.).

2.1.2. Existing middleware solutions

In this area, researchers took the challenge to propose the middleware of the future that could

best unify and harmonize devices, OSs, and networks. Studying these works implies

understanding their aim, application domain, advantages, and limitations. In the following, we

present the middleware solutions that offer relevant features to our work.

The Sirac [85] project, developed at INRIA, provides the needed tools to develop and

execute distributed applications. It focuses the developments on two different levels.

The first level considers the distribution aspect of the applications built on this middleware.

On this level, Sirac offers the methods and tools to create adaptable distributed applications

providing the applications with the needed continuity, maintainability and quality of service in

a changing environment (new functions, restructuring, etc.). The second level is the

15 Chapter 2 Related Work

development of software infrastructure for clustering servers built from interconnected

computers. This is relevant when they are used for applications such as Internet data servers.

Even though Sirac has interesting ideas and allows a wide range of possibilities, if the use

of clusters grows, because of their cost/performance, it presents a scaling problem and an un-

efficient use of global resources.

SATIN [110] middleware uses components as the core of its architecture. It proposes a

container where various components, or capabilities, of the middleware, are registered. A

capability, in SATIN, can take various forms. It can be a library providing some functionalities

(e.g. TCP/IP connectivity or compression) or a full application composed of a group of

capabilities. Components that contain functionalities that the developer wants to reuse, should

be encapsulated in a capability. SATIN also provides a versioning and dependency scheme for

capabilities using its capability identifier. Moreover, SATIN is able to dynamically send and

receive Logical Mobile Units (LMU), through the use of the Logical Mobility Deployment

Capability (LMDC).

SATIN relies on a completely modular architecture. With the exception of the core

component, it can be statically/dynamically configured. This allows SATIN to register new

capabilities at runtime. In order to develop an application based on SATIN, it is crucial to

decompose it into separate capabilities. This decomposition promotes maintenance, code-reuse,

and interoperability between applications running on the same or on different terminals. On its

domain service layer, SATIN provides applications with multiple useful capabilities like XML

parsers and communication paradigms. If not, alternative functionality should be provided in

the form of a capability. Its main issue, nonetheless, resides on its dependence on the main core

component. If lost, the application could not be sustained. In LLA’s case, the sustainability is

the most important factor because of dynamic nature of the user, his/her context, and his/her

devices.

Xmiddle [13] is a data sharing mobile middleware created by the University College of

London. It allows mobile hosts a real physical mobility without losing communication threads

and information sharing. It does not require, necessarily, the existence of any fixed network

infrastructure underneath. Mobile hosts are free to move (physically) at any moment, allowing

complicated ad-hoc network configurations in order to recover communication and reconnect

to the other hosts in a symmetric (not transitive) way as it depends mainly on distance.

Data is the main focus of Xmiddle, therefore, it allows mobile devices to store their data in

a tree-structured and useful way. Tree data models offer a refined accessibility and manipulation

16 Chapter 2 Related Work

of data thanks to the ability to define; a hierarchy/relation among the different/same level of

nodes; a set of primitives for tree manipulation. Figure 5, presents the architecture of Xmiddle.

Figure 5 - The XMIDDLE architecture [13]

The contribution that Xmiddle proposes is primarily an approach to sharing that allows

online collaboration, offline data manipulation, synchronization, and application dependent

data reconciliation. When hosts connect to each other in order to communicate, Xmiddle

provides a set of possible access points for the owned data tree needed so that other devices can

link to these points to gain access to this information. Basically, the access points link to

branches of trees that can be modified and read by other hosts so the host could be able to share

data. However, this middleware neglects the four-layered architecture and focuses too much on

data without providing sophisticated services or giving developers the possibility to customize

their use of this middleware. This work motivated us to give a high importance for the data

shared between LLA’s components. It also made us consider a collaborative extendable

contextual data model (see Chapter 7).

In Project Aura [58] at Carnegie Mellon University, they developed a new creative solution

based on the concept of personal “Aura”. The insight that brought this idea revolves around the

idea of personal Aura. This Aura acts as a proxy for the mobile user. In fact, when a user arrives

into a new environment, his/her Aura arranges the appropriate resources to help the user to

perform the wanted task. Additionally, an Aura comprehends the constraints of the user in the

physical context surrounding him/her which relate to the nature of his/her task. Each task may

imply/involve different information sources and applications depending on what it is.

Figure 6 - Aura's system [58]

17 Chapter 2 Related Work

To enable the action of such a personal Aura, an architectural framework (see Figure 6), that

translates the needs to new features and interfaces, is needed. The framework defines

placeholders that capture the nature of the user’s tasks, personal preferences, and intentions.

This information is needed to monitor the environment in order to hide the heterogeneity (OS,

network, hardware) from the user and to accordingly build the reaction strategy. This work

influenced our proposal by considering the importance of user’s tasks while building the

context.

The issue of this middleware resides in the lack of modularity of applications. It adapts the

way to use the application but not the application itself.

LIME [3] is a middleware that follows two principles. It displays physical mobility of hosts

and logical mobility of agents, or both when developing applications. LIME adopts a

coordination perspective inspired by works on the Linda model [28].

In Linda, processes communicate through a shared tuple space (a multiset of tuples that can

be concurrently accessed by several processes) that acts as a repository of elementary data

structures, or tuples [3]. This model provides multiple levels of abstractions that allow

developers a fast, easy and dependable development of mobile applications. LIME offers

control over the context. This context is detected using the mobile units provided by extending

Linda operations with parameters (e.g. location) that handle the projections of the user provided

by a shared tuple space. Tuple location parameters are expressed in terms of agent identifiers

or host identifiers.

Even though LIME is a strong middleware, combining physical and logical mobility it fails

to re-adapt to different scenarios. This bounds the number of use cases and applications that

could help the user in a fast-changing environment.

The MUSIC [86] middleware is an extension of the MADAM [35] planning framework,

which supports the adaptation of component-based architectures. MADAM follows an

architecture-centric approach that manages the architecture while the application is running.

This feature allows the components themselves to be able to control and reason on adaptation

aspects in order to provide fully adaptable applications. These applications, built by developers

based on the MADAM model, are modeled as component frameworks that give the possibility

to dynamically configure functionalities defined by the MUSIC framework (see Figure 7)

respecting their implementations.

18 Chapter 2 Related Work

Figure 7 - The architecture of MUSIC [86]

The concept of adaptation-planning frameworks is used to compute and evaluate the utility

of alternative configurations in response to context changes and evaluates discovered remote

services as alternative configurations for the functionalities required by an application. The

MUSIC extension supports self-adaptation of ubiquitous applications to changes in the service

provider landscape.

MUSIC motivated our work specifically on the service level of our approach. This means

that components and services can be plugged in interchangeably to provide an implementation

of functionalities defined by the component framework.

The drawback of this solution is the complexity to build final user-oriented applications due

to a large number of parameters that should be taken into account and implemented.

CARISMA [63], on the other side, follows a peer-to-peer architecture. It is a mobile

computing middleware that uses the principle of reflection in order to build context-aware

adaptive applications that install/uninstall services and adaptation policies on the fly. When a

contextual change is detected, CARISMA triggers the adaptation automatically for the

deployed applications.

In CARISMA, application profiles are used to choose the appropriate plan of action

accordingly to the detected context and to select application profiles in order to use utility

functions. In the case of a conflict between profiles of different or same application, CARISMA

19 Chapter 2 Related Work

starts an auction-like procedure to resolve conflicts. The auction-like procedure could present

a potential added value when integrated into the MUSIC middleware which provides richer

context awareness and therefore a better adaptability. Nonetheless, CARISMA’s is limited

compared to MUSIC because it does not deal with the discovery of remote services that can

trigger application reconfigurations.

MuScADeL [12] (Multi-Scale Autonomic Deployment Language) is different from other

works because it considers a larger and wider scale of devices. It offers a domain-specific

language (DSL) dedicated to building autonomic software deployment of multi-scale systems.

MuScADeL focuses on multi-scale deployment properties without exact knowledge of the

deployment domain. It gives app designers, who are not necessarily experts in a specific

domain, the possibility to build an adaptable application by following their process (see Figure

8) and taking into account the scale and targets of deployments (e.g. servers).

Figure 8 - Overview of the MuScADeL process [12]

Through a model-driven approach, MuScADeL respects a scale awareness foundation called

MuScA framework (Multiscale distributed systems Scale Awareness framework). This

framework includes a multi-scale characterization process and multi-scale probe generation

software. The problem with large-scale systems is that they raise too many challenges and

uncertainties related to the quality, relevance, continuity, reachability of deployed services.

20 Chapter 2 Related Work

Last but not least, Kalimucho [23] middleware is a supervision platform that, by being

distributed on all peripherals of the application, is aware of the components and connectors

deployed and can retrieve context information that they send to it. To do so, it must monitor the

operation of the components and circulation of data flows between these components. In order

to gather information about these two entities, the use of containers, that provide a solution to

managing the hardware and software heterogeneity of peripherals as well as the mobility of

peripherals, was chosen.

The Osagaia model [32] suggests separating the business logic contained in a business

component from the supervision managed by a container. The Business Component (BC) can

receive several input data flows and produce several output flows. Each output flow can be

duplicated. The container encapsulates one and only one business component and implements

non-functional properties such as lifecycle management, retrieval of data on quality of service

and managing communications. This model is presented in Figure 9.

Figure 9 - The Osagaia component [32]

The middleware handles communications between components by supplying the physical

medium for information flows. It consists of connectors that the platform sets up between the

BCs.

The Kalimucho platform can, therefore, take fully informed dynamic reconfiguration

decisions. It can ensure service continuity while taking account of overall sustainability of the

application. It is, therefore, necessary to capture all contextual changes, whether they are

associated with users' needs for resources or with mobility, and then to interpret these changes

to react in the most appropriate fashion. The platform’s runtime support is able to reconfigure

applications as they are running and to monitor the context. It presents mechanisms to ensure

structural reconfigurations (e.g. dynamic redeployments) including functionalities as migration,

replacement, etc. It involves modular applications based on distributed software components.

21 Chapter 2 Related Work

This modularity offers hot-reconfigurable ad hoc solutions guaranteeing the continuity and

sustainability of applications over time. Applications based in Kalimucho are designed as a set

of interconnected functionalities. Each one is itself made up of a set of software components

linked by connectors. These functionalities can be achieved in different ways using different

component assemblies. The platform can then manage several functional decompositions

corresponding to the various configurations.

2.1.3. Comparison and discussion

In table 1, a comparison of the existing middleware is described based on six different

criteria. Application models represent the key components of these middleware. It is the entity

that the platform deploys and controls. The communication link is the communication

mechanism enabling the components to communicate and exchange data. Context management

shows the way that these middleware consider context awareness in their approach. As for the

Adaptation criteria, it describes how the middleware react to contextual changes or other factors

(Network status, device capabilities, etc.) by either structurally adapting the application or by

making behavioral changes only. Finally, we compare them according to their strengths and

weaknesses.

Table 1: Comparing middleware

Middleware

Application

models

Communication

link

Context

Management

Structural/

Behavioral

Adaptation

Strengths Weaknesses

SIRAC
Participants

(nodes)

Connection

request

Operation

context

Static,

behavioral

Collaborative

work

Rigid

architecture

SATIN Capabilities LMU
Yes, type not

specified

Dynamic,

structural

Flexible

mobility of

services

The

dependence on the

core component

xmiddle
DOM

components

Tree linking via

primitives

Location-

based
Static

Safe efficient

data sharing

Limited

context

Aura
Aura

components
Aura connectors

Situation

recognition proxy

Dynamic,

structural

Dynamic

Distributed

computation

Application

composition

22 Chapter 2 Related Work

LIME
Mobile

Agents

Mobile hosts

connectivity

Linda tuple

space

Dynamic,

Structural and

behavioral

Combine

logical and

physical mobility

Adaptability to

different scenarios

MUSIC

Components

(Web Service,

CORBA, or

UPnP)

Service proxy

binding

Execution

status context

Dynamic,

structural

Open

component

environment [33]

Complexity of

implementation

CARISMA Reflections
According to app

needs

Policies of

app

Dynamic,

structural

Resolving

conflicts

No service

discovery

MuSCaDel Components Not specified

Personalized

high-level context

manager

Dynamic,

behavioral
Rich context

No QoS

management

Kalimucho
Osagaia

components

Korrontea

connectors

Runtime

Execution

Context

Dynamic,

Structural

Fully access

devices

capabilities

Low security

level

Upon this study, we notice that every middleware is dedicated to a different kind of

application. For example, Xmiddle provides applications focused on data sharing, SIRAC

proposes a component-based collaborative work environment for distributed projects, Aura

offers a distribution mostly oriented towards sharing the computing power between devices,

etc.

In the context of LLA, Kalimucho is the most adequate to the needs of a distributed

application dedicated for end users. Kalimucho offers a simple library to implement the

component model with capabilities to make fully informed dynamic reconfiguration decisions.

Moreover, for mobility and continuity, it serves the true purpose of LLA by providing a full

device management and an overall context-aware control of these devices and of the

components running within. Lastly, it runs Java code making the portability of the application

more efficient and widening the range of possible devices that we can explore (Android phones,

PCs, sensors, etc.).

2.2. Cloud solutions for distributed applications

2.2.1. Background

Cloud computing refers to applications and services that run on distributed networks using

virtualized resources and accessed by common internet protocols and networking standards

23 Chapter 2 Related Work

over different layers (see Figure 10). It is distinguished by the notion that resources are virtual

and limitless and that details of the physical systems on which they run are abstract from the

user [94].

Figure 10 - Cloud layered Architecture

In this scope, we focus on SaaS. Under SaaS, the software publishers/providers run and

maintain all necessary hardware and software of their proposed services while users obtain

access to these services using the Internet. It uses common resources in order to support

different clients simultaneously by providing a single instance of the application’s code and

data support behind it.

The Economist (2006, p. 61) states simply, “SaaS is quicker, easier and cheaper to deploy

than traditional software, which means technology budgets can be focused on providing a

competitive advantage, rather than maintenance”.

With the exponential rise of mobile apps, Cloud architecture aimed to overlay a new level

called Mobile Applications as a Service (MAaaS). MAaaS, Features as a Service (FaaS) or

simply Apps as a Service (AaaS) are built with cloud tools and often use both cloud-based and

on-device simulators to help the app builder view and test the app prior to deployment. In most

cases, the app is built “code-free” or “code-lite” using some form of the object-oriented design

process that abstracts most, if not all of the coding from the builder [72].

Once complete, the app is packaged for the target destination by the platform either as

completely native code or, in some cases, using a hybrid wrapper. The app is then published

from the cloud by the client with their own credentials and with no need to understand complex

programming languages.

This concept motivated engineers and researchers to race towards providing their vision of

a Cloud platforms and frameworks aimed to facilitate the creation of cloudified applications

24 Chapter 2 Related Work

dedicated to multiple domains. These frameworks differ in the way they consider the user, their

usability, and their application domains.

2.2.2. Existing cloud solutions

We studied a number of different platforms that provide the cloud infrastructure to deploy

fast, packaged applications on multiple devices for users. These platforms are dedicated to both

single end-users and companies. They aim to accompany the soon coming connected smart-

cities by delivering orchestrated deployments respecting their programming paradigms and

their layered architectures.

CHOReOS [8] implements a framework for scalable choreography development. The goal

of CHOReOS is to provide the possibility for app designers, who should be domain experts but

with no IT or engineering skills, to develop decentralized Ultra-Large-Scale (ULS) solutions

composed of heterogeneous services that are adaptable and QoS-aware.

CHOReOS follows a number of principles for formally grounded abstractions and models

(see Figure 11). First, it provides a dynamic choreography-centric development process.

Second, it offers a governance and a service-oriented middleware manipulation via an

Integrated Development Runtime Environment (IDRE) aimed at overcoming the ULS impact

on software system development dedicated to smart-cities.

Figure 11 - CHOReOS architecture [8]

25 Chapter 2 Related Work

Although CHOReOS is a well-designed framework for providing component-based systems,

its flaw comes from having centralized service base which makes applications in risk of

malfunctioning or missing services due to a problem in reaching that base.

BlueMix [38] is a platform created by IBM dedicated for developers giving them the

advantage to create quick small apps for specific needs based on an infrastructure of data and

cloud services. The “systems of engagement” concept behind BlueMix is promising. It’s a

projection of a new trend that is occurring among solution makers, enterprise software

development companies, and complex systems providers.

The IT phenomenon “systems of engagement” represents systems which are used directly

by employees/users for redundant uses like emails, collaboration systems, and new social

networking and learning systems [65]. They "engage" employees directly by providing

services only when needed.

Figure 12 - BlueMix Architecture [38]

IBM mapped the systems-of-engagement model to their own systems providing a high-level

layer of applications that relate to specific use cases (see Figure 12). These components/services

that compose the app layer, have been implemented in a variety of technologies optimized for

performance, safety, and compliance with complex requirements and standards, but they also

generate a ton of data that could enable countless user-facing applications. The volume of

26 Chapter 2 Related Work

streaming data generated by sensors in the telecommunications and automotive worlds cried

out for the same kinds of opportunities the cloud offered to app builders in the IT world.

Bluemix stands out from other platforms by giving a lot of options to developers allowing

them to easily implement more complex apps. It is built on a big infrastructure of services and

data allowing speed deployment of specific need apps. However, it neglects completely the

user’s point of view.

Likewise, Flybits [36] is a cloud-based mobile app creation framework. When a mobile user

triggers or enters a Zone, the unique app's content and/or services are deployed based on that

context. It is a tool that delivers appropriate applications in the same way as recommendation

systems suggest relevant items [105]. Flybits offers an SDK for iOS and Android which

simplifies to programmers the process of building context-awareness into their mobile apps

without imposing any proprietary development environment or hardware, giving the

programmer total freedom of choice in these areas. It provides all of the infrastructure and

services needed, so they do not need to build it themselves.

Figure 13 - Flybits workflow [36].

Respecting the workflow presented in Figure 13, programmers can use the Experience

Studio to create and change app content and behavior without having to write any additional

code.

27 Chapter 2 Related Work

The limitation of this work is that, although the services are aimed at the user, this platform

is dedicated to businesses giving them the hand on what the user should see.

Hyun Jung La and Soo Dong Kim present a different approach in [66] which is more focused

on context awareness. The presented framework allows the produced application of firstly

capturing context, secondly determining what context-specific adaptation is needed, thirdly

selecting and adapting services for the captured context, and finally running the adapted service.

Figure 14 - Context-aware Provisioning Architecture [66]

The architecture of this framework, presented in Figure 14, consists of three layers; User

Layer, Agent Layer, and Service Layer. The User layer consists of multiple Mobile Internet

Devices (MIDs) on which applications are deployed. The Agent Layer has the task of adapting

services by taking into account the preferences of the user and his/her context information. The

Service Layer represents the cloud infrastructure running the services contained in the Service

Registry used to compose the user’s application. They are called on demand after detecting the

context and tailoring the services to the specific needs of the user.

Nonetheless, this solution lacks dynamicity as it is dependent on the service registry which

can cover a limited range of scenarios and pre-programmed mechanisms of adaptation.

Khan et al. presented the capabilities required in a Cloud environment to acquire integrated

intelligence for urban management systems. These capabilities provide a solid foundation to

respond to smart cities requirements by developing a context-aware component in a Cloud

environment [64].

In [64] the authors present a framework that attempts to define characteristics (what, why,

how and who) of the relevant artifacts and associated components. The artifacts are the main

28 Chapter 2 Related Work

building blocks for the development of cloud-based context-aware services architecture (see

Figure 15). This framework adopts, in a generic way, various artifacts, components, standards,

and technologies depending on the needs of different applications. It is flexible to provide new

artifacts and procedures and also include new technologies and standards for various different

users and use cases.

Figure 15 - Computation architecture for context-aware citizen services for smart-cities [64]

Although this framework is built on a multi-layered architecture and provides context

awareness to the users, the adaptation of the provided services is generic, which reduces their

ability to handle new needs in new application domains.

2.2.3. Comparison and discussion

After we studied some solutions, we categorized them according to some criteria that help

to show the differences between them. Table 2 summarizes a comparison between the existing

frameworks and our proposed Long Life Application.

29 Chapter 2 Related Work

Table 2: Comparing Cloud platforms

Platform Architecture Final product Strengths Weaknesses

Choreos
Service Oriented

Architecture (SOA)

ULS app

deployment

choreography

Cover wide range of

scenarios on a wide

range of devices

Centralized

service base

BluMix
Hybrid cloud

infrastructure

Event-driven

micro services

Fluid and rich

engagement system

(APIs, services, events,

etc.)

Enterprise-

oriented with a

need of high level

of expertise

Flybits Client/Server
Context-aware

user application

Easy to use app

creator (Experience

studio)

Centralized

app provider

[66]
User Layer, Agent

Layer, and Service Layer

Context-aware

user application

Dynamic context

awareness and

application adaptation on

run-time

Limited

scenarios

dependent on

existing services

[64]
Hybrid cloud

infrastructure
Smart-cities Apps

Rich context-aware

data extraction

Only generic

services offered

LLA Decentralized

Distributed

context-aware

mobile application

User-friendly,

Dynamic, Reactive

Considers multiple

scenarios, devices,

contexts.

No security

management

Compared to other works, LLA is based on a dynamic component architecture able to change

continuously in order to keep up with context changes. Thus, it is a dynamic proposal able to

detect the context, evaluate the existing conditions, and take action. Although it is a ready-to-

use application, LLA is also a framework that can be programmed by both, the final user and

other parties, in order to evolve the application and make it more personalized and reactive. It

combines the best advantages of the studied platforms. It covers an unlimited range of use cases,

it provides an easy way to customize and reshape itself as the app that the end-user needs.

30 Chapter 2 Related Work

3. Context awareness in mobile computing

“Mobile Apps need context to hit the right target” as stated by TechRepublic [88]. Indeed,

the main problem with existing mobile apps is their non-consideration for the status (busy, free,

working, etc.) of the user needs.

Therefore, these apps need context to aim in an intelligent way their user’s expectancies and

to avoid bothering them when no longer needed. The studied middleware and platforms have

all shown the potential of context awareness and still try to provide the best solution capable of

comprehending, analyzing and reacting to contextual changes, which brings us to the second

main pillar of our study: the context awareness.

Therefore, we start by defining the context. According to [17], the context is understood as

any information that can be used to characterize the situation of an entity, where an entity can

be a person, place, or physical or computation object”. Being aware of the context is termed

context-awareness.

In [91] context-awareness is defined as: “Computation is becoming increasingly coupled

with the physical world. It is now commonplace for mobile applications and systems to adapt

their functionality to user location, connectivity status, device orientation, and remaining

battery percentage. This ability for software to sense, react, and adapt to the physical

environment has been termed context-awareness”.

The goal of being aware of context is being able to offer the appropriate service accordingly.

This step is called context provisioning (see Figure 16) and is the main objective of context-

aware applications.

Figure 16 - Context and Context-aware provisioning [66]

31 Chapter 2 Related Work

3.1. Contextual-awareness representation models and approaches

When representing context, there is no shortage of diverse models and approaches. Each

researcher proposes their own model and considers different information which relates to the

final application that they aim for. Some consider only the location, whereas others focus on

sensors. Some use ontologies to represent it, while others propose geometrical-spacial

representations. Nonetheless, these representations fall under the specific categories described

thereafter. In the literature, several context modeling approaches can be found. Most relevant

ones have been classified by Strang & Linhoff-Popien [95] according to the scheme of data

structures which are used to exchange contextual information: key-value models, markup

scheme models, graphical models, object-oriented models, logic-based models, and ontology-

based models.

3.1.1. Key value models

This representation is the most basic model. It pairs a key and value tuple to represent simple

context. It uses matching algorithms to detect context when the stored key or value are

retrieved. An example of this model is presented in works like Schilit et al. [9]

3.1.2. Markup Scheme models

Like all markup scheme modeling approaches, this is a hierarchical data structure consisting

of markup tags with attributes and content. In particular, the content of the markup tags is

usually recursively defined by other markup tags.

These models are, usually, based upon a serialization of a more abstract standard called

Standard Generic Markup Language (SGML). SGML is the father of all markup languages such

as XML. Some of them are defined as an extension to the Composite Capabilities / Preferences

Profile (CC/PP) [103] and User Agent Profile (UAProf) [106] standards, which have the

expressiveness reachable by RDF/S and an XML serialization. Indeed, these kinds of context

modeling methods often extend/complete the basic CC/PP and UAProf vocabulary/procedures

to try to better manage complex dynamic contextual information as opposed to more static

representations used to represent static data.

An example of this approach is the Comprehensive Structured Context Profiles (CSCP) by

Held et al. [51].

32 Chapter 2 Related Work

3.1.3. Graphical models

Graphical models are used to generate a representation derived from an entity-relationship

(ER-model) [15]. This approach is efficient in structuring instruments for a relational database

in an information system based on context management architectures such as the one described

in [55]. Indeed, UML is the most common language used to represent this kind of models.

Context Spaces Theory (CST), for example, is a graphical approach for context awareness and

situation awareness. CST uses spatial models to achieve a meaningful and easy to understand

context representation.

CST aims towards a general context model to help thinking and to describe the context. It

offers various design operations for manipulating and utilizing context. The CST concepts use

insights from geometrical spaces and the state-space model to guide reasoning about context

using geometrical metaphors. The model provides a unified and general way to represent

context and enables effective reasoning to be applied over the modeled information.

The foundations of the context spaces theory are provided in the work of Padovitz et al. [17]

as an example of how to use this modeling method.

3.1.4. Object-oriented models

This representation illustrates the main pillars of oriented programming (Encapsulation,

Heritage, and Polymorphism). To describe the context and cover parts of the problems arising

from the dynamics of the context in ubiquitous environments, it employs these pillars to its

benefit. An example of this use would be shown by the fact that the details of context processing

are encapsulated on an object level. It is, therefore, hidden to other components. Therefore

contextual information is provided through specified interfaces only.

3.1.5. Logic-based models

The notion of context and the contextual logic originally developed by John McCarthy in

the field of Artificial Intelligence (AI) aims at providing a solution to the problem of generality,

the problem of representing ordinary knowledge and its integration into inferential processes

operating on knowledge bases [109].

This kind of representation requires a high level of formality, as the context is defined by a

variety of facts, expressions, and rules that need to be checked and validated. Therefore, context

33 Chapter 2 Related Work

can be managed by being inserted, updated and deleted from a logic based system in terms of

facts or inferred from the rules in the system.

An example of logic based context modeling approach has been researched and published

by McCarthy et al. [67, 68].

3.1.6. Ontology-based models

Ontologies are a promising instrument to specify concepts and interrelations [101, 43].

Context ontology is based on a unified vocabulary allowing representing and sharing context

information in a pervasive computing domain.

Ontologies have the advantage of including machine-interpretable definitions of basic

concepts in the domain and relations between those concepts. These models are appropriate for

describing information, which can be used in our daily life, by a data structure utilizable by

computers for wider domains like machine learning and deep learning.

The ontology-based model uses the Web Ontology Language (OWL) to describe the context

ontology. OWL is a semantic markup language that can be used to publish and share ontologies

on the Internet. A resource in OWL is represented as a class, and the relationship between

resources is shown using properties.

Figure 17 is a presentation of a context model based on ontology using OWL to support

various tasks in a context-aware middleware. It supports semantic context representation by

defining the common upper ontology for context information in general; and providing a set of

low-level ontologies which apply to different sub-domains. It models the basic concepts of

person, location, computational entity, and activity; describes the properties and relationships

between these concepts [47].

Figure 17 - Class hierarchy diagram for [47] context ontology

34 Chapter 2 Related Work

The basic concept of this context model is based on an ontology which provides a vocabulary

for representing knowledge about a domain and for describing specific situations in a domain.

Ontology-based modeling is considered as the most promising approach, as it enables a

formal analysis of the domain knowledge, promoting contextual knowledge sharing and reuse

in a ubiquitous computing system, and context reasoning based on semantic web technologies

[39].

3.1.7. Comparison and discussion

In order to evaluate these approaches, we consider factors that are relevant in the context of

LLA. Therefore, the comparison (see Table 3) considers the efficiency of these models

regarding the distribution aspect. The composition and administration of contextual models and

vary considerably with high dynamics in terms of time, network topology and source.

Moreover, we consider the formality of the model and the richness of data supported by that

model. This aspect relates more to the context-awareness aspect of LLA.

Finally, we consider the applicability of these models to user-centered mobile applications

for everyday usage.

Table 3: Comparing context modeling approaches

Modeling Approach Distribution

efficiency

Formality/richness Applicability

Key-Value models - - +

Markup scheme models + - +

Graphical models - + +

Object oriented models + + +

Logic models + + -

Ontology-based models + + +

3.2. Modeling situation-awareness for Context-aware applications

This modeling approach distinguishes between the concepts of Context and of Situation.

Context is the information used in a model for representing real-world situations. On the other

hand, situations are perceived as a meta-level concept over context [2]. The process of assessing

the association and mapping between context and situations, or in other words, determining

35 Chapter 2 Related Work

occurrences of situations based on information in a model, is the task of reasoning. This

relationship between context and situations is represented in a general way by the concepts of

state and space.

Situation awareness modeling is generally used in the command and control domain for

situation assessment and decision support. It is based on the Endsley’s three-layer structure

(Endsley, 1995), but with the addition of a terrain model for the command and control domain.

Incoming data is first represented at the Perception layer (level 1) of the situation model.

The Comprehension layer (level 2) then interprets the data and provides an assessment of the

current situation. To support anticipatory decision-making, the Projection layer (level 3)

predicts future states based on the understanding of the current situation. At present, only some

basic projection functions have been implemented for illustration purpose. All three layers of

the situation awareness model function concurrently and iteratively.

For an end-user application, this model is the most suitable representation. It combines the

advantages of most representations. LLA uses a situation-aware model using the key-value

model to match context to services, markup scheme model to textually describe situations, logic

models to build Event-Condition-Action approach as a global workflow and graphical models

to represent and understand situations semantically. This modeling is a paradigm used by

context-aware platforms in order to build their vision of context-aware applications.

3.3. Platforms dedicated to generating context-aware applications

In this scope, many works provide a way to automatically generate context-aware

applications for users. These platforms are based on the studied contextual models and

approaches. Each of them has its own vision and features for the produced applications. On this

study, we focus mainly on mobile applications and services (see Figure 18).

CyberDesk [27] is a component-based framework written in Java that supports the automatic

integration of software applications. This framework is flexible and can be easily customized

and extended. In CyberDesk, components treat all data, in the same way regardless of the source

(PC, PDA, Phone, etc.).

36 Chapter 2 Related Work

Figure 18 – Cyberdesk’s runtime architecture diagram [27]

CyberDesk’s user applications provide automatically their services to the user by an

intelligent interface. It displays, selectively, services that are relevant to the user’s context

instead of overloading him/her with unnecessary services. The context, in CyberDesk, includes

a wide range of data like the time of day, the user’s physical location, emotional state, social

environment, objects in the room, etc. CyberDesk is capable of working with this information

regardless of the device.

CAreDroid [30] is a framework dedicated exclusively to Android applications. It produces

context-aware applications by setting up an easy development process that separates

functionality, mapping, and monitoring and by integrating context adaptation into the runtime.

In CAreDroid, context-aware methods are defined in application source code, the mapping of

methods to context is defined in configuration files, and context-monitoring and method

replacement are performed by the runtime system (see Figure 19).

Figure 19 - Care droid's architecture [30]

37 Chapter 2 Related Work

In order to reduce code volume, applications using CAreDroid do not directly monitor or

handle changes in context. CAreDroid introduces context-monitoring at the system level so it

avoids the overhead of reading sensor data in the application layer. This approach makes

context-aware applications more efficient.

WildCAT [25] system is a lightweight, general and powerful Context-Awareness Java-based

Toolkit. It provides a simple API to discover, reason about and be notified of events occurring

in their execution context, represented in Figure 20, which makes creating context-aware

applications relatively easier to Java developers. It enables the sharing of the low-level code to

gather information about the context, in order to reflect the code reuse practice and offer

comfort and time gain for application programmers.

Figure 20 - WildCAT's logical model [25]

WildCAT was created as a part of SAFRAN [52], an extension of the Fractal component

model [83] for the creation of self-adaptive applications. It provides a simple interface for

programmers to make their applications context-aware, without imposing too many restrictions

on the actual implementation of sensors in order to enable the integration of many different

kinds of context information like local hardware probes or sensor networks. Although WildCat

is a simple to use tool that could be used and integrated easily, it does not introduce

groundbreaking ideas regarding context awareness.

38 Chapter 2 Related Work

CodeDroid [26] aims to use the concept of a profile in the design of context-aware

applications. It helps a designer in the development of context-aware mobile applications for

different domains. The goal of the CodeDroid framework is to assist the development of mobile

context-aware applications for the Android platform.

Figure 21 - Class diagram of the application Places2Go and its relationship [26]

CodeDroid allows a user to add other features dynamically by implementing engineering

practices applied to the object-oriented contextual model, presented in Figure 21 (use case of a

tourism application). These practices are derived from programming and conception design

patterns: the adaptation of the MVC pattern to develop Android applications, a greater

modularity; a definition of an access point to the sensing services based on the Facade standard;

an implementation of notifications as a result of context changes based on the Observer design

pattern; a definition of the “entity” for representing context; a profile abstraction allowing its

management in a transparent manner; and providing services for the collection of context

sensing.

To summarize, these platforms propose interesting ideas. They simplify the process of

creating context-aware applications by providing code generators, context creators, and

toolkits. Nonetheless, the produced application still suffer limitations related to their reactivity

and richness.

When using these platforms, the programmers build applications with contextual awareness

related to only one domain. The reason behind this comes simply from the fact that

programmers cannot predict all the possible rules and situations for each different user.

39 Chapter 2 Related Work

4. User-centered Context-aware mobile applications

The final goal of our work is proposing an end-user context-aware dynamic context-aware

application. After studying all the areas that lead to build and run this kind of applications, we

present now both commercial and research applications providing the wanted features for

common usage on mobile devices. In the following, we present a set of existing application that

provides similar features to what we want to achieve.

4.1. Existing solutions

Google is one of the biggest companies putting an effort to aim their work in the area of

dynamic applications able to detect context and offer services to their users. Their main

application is called ‘Google’ [40] or ‘Google Now’. This application is triggered by contextual

changes or voice commands. It detects/gathers relevant data (home location, work location,

calendar events, Google+, etc.) about users and saves their Google searches using Google

knowledge graph. It uses other Google services (Google Maps, Google Images, and Google

Alert, etc.) to provide features like getting updates on sports, movies, and events. In a recent

build, Google fully integrated Google Now and combined it with an AI into the Android layer

of their first smartphone (Google Pixel). Google also took other interesting initiatives with

context-aware applications but in a different format with Google Instant Apps [41, 57]. They

offer the possibility for developers to decompose their applications into smaller apps dedicated

to specific needs and triggered by, either clicking on a link from the web or by NFC (example:

to buy an item on Amazon, the user reaches the item on Google and them when he/she are about

to pay, the Amazon payment instant app is launched with no installation required). The parking

micro-app is only launched when the user faces the parking machine and places their phone on

the machine to trigger the parking app. It uses an approach similar to Micro-apps [96]. The

strength of these solutions comes from the fact that they are built on the multiple services of

Google. Nonetheless, Google focuses their applications on predictive recommendations that

may be interesting to the user in a limited range of situations because they only use their tools

to achieve to respond (notification, alerts and Google applications) to the needs of the user.

Grokr [21] is the equivalent of Google Now for iOS focused on context-aware

recommendation (predictive search engine) and notification system. It notifies for nearby events

(concerts, sports events, and important occasions to the user (birthday, calendar events). These

services are also integrated into applications like Osito [22] and Tempo [97] but with a slight

40 Chapter 2 Related Work

difference in the way that they are presented and in the mechanisms behind them. The Grokr

advantage over Google Now by being able to pull information about the user from social graphs

(Facebook, Twitter, LinkedIn, and Google+) while Google links only with Google+. The

drawback of this application is that the same as Google Now, it has limited services and doesn’t

allow flexibility when inputting context.

Easily Do [94], 24me [1] and Tempo [97] are all personal assistants solution to productivity

planning and scheduling. Tempo is based on an AI able to pull user contextual information and

predict meeting places and attendees. 24me integrates the user’s calendar, tasks, notes and

personal accounts together in order to customize the application and have automated reminders

about paying bills, sending gifts and going to doctor appointments etc. The problem of these

application comes from the limitations of AI (redundancy of recommendations, lack of

dynamicity, get the control out of the user’s hands etc.) and lack of diversity of their services

(notifications, recommendations etc.).

IFTTT [80] is another interesting solution. It considers the user domain (devices) and

exploits it by using web services able to communicate, link and control remote devices

(connected lamps). Although its contextual model is poor, it offers pertinent useful scenarios

(turn on lights automatically at 7 pm). Therefore, IFTTT is dependent on those services and is

repetitive and not really aware of the user’s situations.

The applications, presented so far, are commercial apps created by companies. Now, our

focus is on research works tackling this area.

SECE [79] (Sense Everything, Control Everything) is an application for context-aware

service composition offering a rule-based approach in a more user-friendly way enabling users

to define the expected behavior of a set of web-based services under certain situations. These

situations are used to trigger the composed service execution. They are based on basic

contextual information like location, time. Even though it is user-friendly, inputting rules in a

written manner is always considered a boring task to mobile end-users.

DoTT [44] is another rules-based system using context providers in order to be aware of the

user situations instantly. It is built over a reasoning engine able to comprehend the adaptation

rules and react to the user’s context changes following those rules. As output, it has an

interactive interface that can host the services provided by the system. The difference between

this approach and other rule-based systems is that the rules in this work are presented in a natural

language following a specific grammar (sentences). The drawback of this work is the limit of

its basic services (messaging, calls, calendar and social).

41 Chapter 2 Related Work

Dig-Event [111] is a mashup service that allows the users to define and order activities like

trips and meetings by providing them with recommendations of a diversity of relevant services

for performing those activities. The service recommendations rely on context-based selection

criteria including time, type of activity, budget, etc. Nevertheless, this system lacks flexibility

in context acquiring. In this work, the user context is the result of the manually entered

information when declaring the activity but it doesn’t consider context changes when doing that

activity.

The last type of context-aware applications is called trail-based applications [18]. A trail is

a contextually scheduled collection of activities and represents a generic model that can be used

to satisfy the activity management requirements of a wide range of context-based time

management applications. Combining the trails concept with mobile, context-aware technology

creates opportunities for innovative activity-based application development. Hermes [19] is a

software framework for mobile, context-aware trails-based applications which will support

developers by providing generic components containing structure and behavior common to all

trails-based applications. It organizes, using a mathematical model, the activities of the user

according to his/her previous trails. The problem with this approach is that it is too much

focused on travel scenarios rather than everyday situations that can be indoors.

Table 4 compares the existing works to our proposal (LLA) based on different criteria:

contextual model variables, the existence of context detection mechanism and its type

(distributed or centralized on one device), whether contextual growth is considered and what

are the sources of that growth, services offered and finally the ubiquity of the offered services.

42 Chapter 2 Related Work

Table 4: Comparing context-aware end-user applications

Application Context
Context

detection/Type

Contextual growth/

Sources
Services

Ubiquitous

response

Google Now

Search history,

location, calendar,

emails

Yes/Distributed No/None

Alerts,

Notifications,

recommendations,

Google services

No

Google Instant

Apps
NFC, link Yes/Distributed No/None Instant apps Yes

Grokr

Search history,

location, social

accounts

Yes/Centralized No/None

Alerts,

Notifications,

recommendations

No

Osito
Location, calendar,

emails
Yes/Centralized No/None Alerts, updates No

Tempo
Calendar, Location,

Contact list
Yes/Centralized No/None

Notifications,

Context prediction
No

24me
Calendar, tasks,

notes, social accounts
Yes/Centralized Yes/User Reminders No

Easily Do

Location, time,

calendar,

communication events

Yes/Centralized Yes/User Mobile services Yes

DoTT
Location, time,

communication events
Yes/Centralized Yes/User

Call,

Messaging, social,

calendar

management

No

Dig Event

Location, time,

activity, budget,

presence

No/None Yes/User Widgets No

IFTTTT

Information

provided by the web

service

Yes/Distributed No/None Web services Yes

SECE
Calendar, time,

location, presence
Yes/Centralized Yes/User

Email, message,

call
No

Hermes
Activity, locations,

previous trails
Yes/Distributed No

Optimized

activity scheduling
No

LLA

Time, location,

activity,

Time*Location,

Time*Activity,

Location*Activity

Yes/Distributed

Yes/User, Social,

External providers

(Government,

Businesses,

SHERLOCK)

Kalimucho

components,

Composed services

Yes

43 Chapter 2 Related Work

4.2. Discussion

To summarize, our proposal called Long Life Applications is anchored in the center of

context-aware mobile applications. Our novel contribution is mainly focused on the contextual

situation injection (Contextual growth), the modularity and the ubiquity of our proposal.

Although some works consider injecting context (by rules, natural language or voice

commands), they only consider the user for this task. Our work proposes a richer injection

mechanism (see Chapter 7) that allows the user to have a more diverse experience and offers

him/her more freedom without having to rely on any programming skills (opposed to traditional

rule-based systems). Furthermore, the services offered by our proposal are limitless due to the

fact that they are related specifically to the situations. It means these services are specified by

the creator of the situation. Finally, our application is pervasive and built on a modular

architecture able to run simultaneously on many devices regardless of their capabilities, OS or

network.

5. Conclusion

Context-aware applications have been the topic of discussion for more than a decade and are

still being studied by a lot of researchers. Each of them presented their own views, brought their

own contributions and built their own solutions. The depth of this area stems from the diversity

of proposals and richness of factors to take into account when trying to offer the needed solution

that reflects the expectancies of the usage of this kind of applications.

Proposing a new kind of mobile applications for the future requires having a full

understanding of the state of art related mainly to the expectancies of the users and to the

technological advancements. Therefore we propose to incorporate context awareness to regain

the interest of users in mobile applications by proposing a fluid, dynamic application able to

understand their needs and evolve accordingly. We consider also the technological advances by

proposing to incorporate the distribution aspect into their applications in order to take advantage

of the ubiquity and computing power of the new coming smart connected age of technology.

In summary, in this chapter, we presented a thorough study of the areas surrounding our

work. We believed necessary to tackle this domain from its most important aspects that lay the

grounds to present our proposal.

44 Chapter 3 Long Life Application Proposal

Chapter 3 Long Life Application Proposal

45 Chapter 3 Long Life Application Proposal

1. Introduction

With so many possible use cases and such diverse user needs, is it desirable to have one

application that does it all? Has it become a necessity to have one application able to understand

users and eliminate the need for other applications? In order to answer these questions, we first

need to clearly define Long Life Application.

LLA is a context-aware distributed mobile application dedicated to everyday users. It offers

modular mobile services to the consumers of mobile applications that, until now, search, find,

install, update and delete their applications on their devices. This kind of applications is called

long-life Applications (or Eternal Applications) as it runs constantly and evolves by changing

its behavior and offering a variety of services according to the user’s needs.

Our vision of this application is centered on one user in his connected environment, that we

call user-domain, making it a distributed mobile application by definition. This app needs to

offer to the users a high level of comfort and a better-customized user experience by replying

both re-actively and pro-actively to the users’ needs without confusing them by the large

diversity of apps and devices.

This app needs to be contextually aware of the users and their surroundings giving them the

opportunity to be operationally connected entities in their future smart world. In our proposal,

the context awareness manifests in situations that represent the current context of the user.

These situations are the main entity of our application. They can represent the user’s everyday

life according to his contextual information (see Chapter 4 and 5).

After understanding the user’s situation, the application offers the appropriate services that

can answer to his need in the best dynamic distributed way. It deploys/migrates software

components on the devices of his smart-domain (his devices) and then deletes them when no

longer needed.

Nonetheless, no application can neither predict nor autonomously handle all the possible

situations that could happen to the user in all different areas (shopping, work, travel, etc.) due

to the infinite possibilities. Therefore, our proposal allows to dynamically add new situations,

from both non-experts (e.g. everyday users) and domain experts (e.g. travel agent), into the

user’s application (see Chapter 7).

In order to achieve these goals, we present in this chapter an overview of the proposed

approach and how it answers the raised issues with existing solutions (see Chapter 2). In this

46 Chapter 3 Long Life Application Proposal

chapter, we also present the novelties and contributions of this proposal in regards to the area

of mobile applications dedicated to everyday usage.

2. Approach Overview

LLA, as we define it in [59], is basically a transparent application that starts once and

continuously (long life) monitors the user’s context in order to offer him/her the appropriate

services (a group of software components connected to each other) when needed and on the

appropriate device. It changes the classical approach where the user looks for the applications

and instead it makes the services come to the user. Therefore, LLA has to be context-aware and

distributed on the devices of the user.

In order to offer context awareness, the application needs to be able to detect the context of

the user and react accordingly. Hence, the first step would be to collect information about the

user and feed it to our application as an input. The application is based on a modular architecture

(framework) that is able to detect, understand, and react by offering services related to the users’

needs (see Figure 22).

Figure 22 - LLA PROPOSAL OVERVIEW

The architecture that we propose answers to the most critical challenges surrounding

contextual awareness in user-centered everyday applications as well as the distribution aspects

for this kind of applications (see Chapter 2).

The main components of this proposal are the user-domain, the context collectors, the service

output, the middleware, and finally the main core of the application. All these components are

built using the Kalimucho [23] middleware in order to manage the distribution aspect of our

47 Chapter 3 Long Life Application Proposal

proposal. From the user’s perspective, the visible part of LLA (front -end) is only the deployed

services, the device possesses a screen, LLA provides (in addition to the deployed service) a

management UI that allows the user to manage the application (configurations) and use its

features. The rest of the components are completely transparent (back-end) but keep running

continuously so they can provide the user with the required services.

The general process of LLA starts by extracting contextual information from the user-

domain and then inputting it into the core architecture in order to animate it. Inside the core of

our proposal, we implement a process respecting the Event Condition Action (ECA) approach

[76, 9]. When fed to the core, this contextual information helps to construct an event, to verify

if conditions surrounding that event are met and to, finally, deploy services as an action for that

event. Through this process, the contextual information respects a defined situation-based

contextual model that structures and represents the data extracted from the devices in order to

build an entity (Situation), which can be understood by both the application and the users.

After defining the main components of our proposal and describing the workflow process,

we evaluate this proposal by comparison to existing solutions. This comparison (see Table 2,

3, and 4) shows that our solution improves on the limitation of existing applications by

providing a number of novel contributions on the theoretical and technical level. These

contributions are the solutions to the issues raised by the studied works.

3. Contributions

In the studied works, some issues appear to be common between these context-aware

distributed applications. These issues are of course related firstly to the awareness of the

application and secondly to the distribution aspects.

3.1. A rich and user-friendly contextual model

When dealing with context, one of the aspects that developers and researchers have to

consider is creating a contextual model that can be, on one hand, rich enough to express very

specific and detailed situations, and on the other hand, simple enough for users to comprehend

(user-friendly). Therefore, we present a user-friendly (for a non-expert), rich (for experts),

extendable, and situation-based contextual model [60, 61].

The context of LLA, as we defined it, is a variety of situations that occur to the user while

he/she evolves in his/her environment. The totality of these situations shapes the user’s

48 Chapter 3 Long Life Application Proposal

application. The main entity, called Situation, is the element defining the application’s behavior.

This model will define the rules of our representation of the user’s context and our answer for

context management challenge.

The situation, presented in chapter 4, in our system is the key component. It combines the

best benefits of the context representation models studied in chapter 2. It is an overlapping

between schema markup, graphical and logic models. We use scheme markup to textually write

these situations so they can be analyzed and parsed by the different modules of the application.

The graphical aspects of our model are reflected through the representation of the situations in

a multidimensional coordinate system with limits and restrictions. Last but not least, this model

follows rules that match the situations to services and reaction strategies.

In chapter 4, our proposed model is described thoroughly by presenting its main constituents

and by showing examples that illustrate the way that users and experts can easily exploit this

model to represent their needs.

3.2. A cross-device context detection

Context-awareness requires, by definition, a system able to detect the context and understand

it. An important drawback of existing applications comes from identifying the user with one

and only one device. These applications limit their detection on the user's mobile phone. This

issue motivated our work to be oriented to cross-device context detection dedicated to end-users

and enabling the application to accurately follow and detect context changes.

LLA allows the user to properly use his/her soon-coming smart environment (composed by

his/her own computing devices and other surrounding devices in the Internet of Things) without

any confusion due to the multiplicity of devices and the heterogeneity of systems available. For

that purpose, we re-think the architecture of traditional applications, dedicated to stand-alone

devices, and aim towards liquid applications [6, 100] by implementing a distributed context

detection mechanism [78] able to continuously query the user’s devices for the contextual data

needed in order to detect and evaluate his/her current context.

This mechanism presents advantages for monitoring contextual changes from every angle

by incorporating an innovative cross-device context detection in order to draw the bigger

picture of the user’s context. This support for multiple devices enhances the capability to detect

situations, anywhere and anytime, as data captured from different devices and sensors can be

49 Chapter 3 Long Life Application Proposal

combined. Besides, it is a suitable solution for the common case of a user with multiple devices,

as he/she is not obliged to manage only one specific device.

3.3. A modular orchestration of services

In the middle of this rapidly increasing connected world, users will be faced with a huge

overhead to manage their devices. Besides managing these devices, users are looking forward

to having a rich user experience that spans on multiple terminals making him/her feel as the

center of his/her environment.

Existing context-aware applications that consider distribution propose only generic services

that run specifically if a set of sensors and/or devices is present and fully functional. For

example, YouTube has distribution features that allow the user to project the videos on his/her

TV. Nonetheless, that requires having a Chromecast [107] device connected to the TV.

Moreover, the use cases of the distribution aspects are limited to streaming or sending simple

data between devices. This is due to the fact that current mobile applications are installed as an

enclosed runnable bundle (.apk, .ipa, .cab, .ipk, etc.) that contains all the compiled code base

which makes the modules of that application tightly-coupled.

In our work, we use a different more flexible approach. We consider a service as a set of

atomic, independent and connected mobile components able to run, stop, migrate, and

communicate with each other.

The benefit of this approach is the number of possibilities of different user experiences that

the application will provide for the user. By decomposing the services into software

components, LLA is able to target the deployment of these components to the best fitting device

that possesses the hardware capabilities required to run these components in an optimal and

useful way. Moreover, this approach ensures the continuity, sustainability, and scalability of

the application by being able to move components freely between devices at run-time if the host

is for example overwhelmed with the component processing requirements or if it has a low

battery level and about to go offline soon.

3.4. A collaborative situation injection

From a mobile application’s point of view, what users expect is an application that

understands what they expect and most importantly application that is dynamic and non-

repetitive. Therefore, we propose a semi-automatic collaborative injection mechanism to ensure

50 Chapter 3 Long Life Application Proposal

the growth of the user’s application in order to continuously provide the user with richer

contextual awareness, better-adapted user experience, and more adequate services. The real

motivation behind this mechanism is to overcome one of the most common limitations of

context-aware applications. This limitation is their dependence on knowledge about a certain

domain (hospitals, museums, supermarkets, etc.). This knowledge is usually provided by those

domains experts to the researchers or developers in order to build their applications rules and/or

ontologies that represent that specific knowledge base. This makes these applications consider

a limited area of expertise with limited pre-defined use cases and generic services.

LLA breaks that limitation by externalizing the definition of situations to enable the experts

of those domains to input their descriptions of their users’ needs following our situation

contextual model and providing the most fitting services for those needs.

Mainly, the injection mechanism [62] enables the application to keep evolving and be

customized exactly to what the user’s needs, likes and does. Using this approach, the application

is able to always enrich the user experience by adding, deleting or modifying the users’

situations. This mechanism (see Chapter 7) is based on our user-friendly situation model in

order to make the injection an easy and understandable mechanism that can be performed even

by end users with no understanding of context awareness. Consequently, the collaborative

injection makes context detection richer, more accurate and user-centered by giving him/her

the possibility to create his/her own situations or extract them automatically from his/her social

environment (Facebook, Calendar, Twitter, etc.). The user can also receive nation-wide

situations provided by the government (e.g., closing borders, hurricane alerts, and elections).

Moreover, he/she trust external developers, companies or businesses (shopping centers,

suppliers, restaurants, etc.) to inject new situations.

4. Application’s General Architecture

After defining the overall approach and the main contributions of this work, we introduce,

in this section, the global architecture of LLA. This architecture displays, in a general

presentation, the main modules constituting the application and running in the background

(back-end). Accordingly, these modules reflect and respect the claimed contributions.

Due to the distribution requirements of this kind of application, all the building blocks

(modules, components, files, etc.) are dynamic, functionally independent, and controlled by

Kalimucho middleware. This aspect ensures the continuity of the application in case one of the

51 Chapter 3 Long Life Application Proposal

core components faces some issues while running. In Figure 23, we present the global core

architecture of our back-end application.

Figure 23 - LLA's General Architecture

As described in Section 2, the process of the application starts by collecting contextual

information from different devices (user domain) as input, evaluates this data, determines the

current situation of the user, and ends by providing a distributed component-based output.

Each module of this architecture has its own internal architecture and workflow. They

interact with each other by exchanging data on runtime. Once started, these modules are

deployed on the user’s devices following a defined distribution strategy (see Section 5). After

that, they keep running continuously (thus the term “Long Life”) in order to go together with

the user in his/her fast changing everyday context and react accordingly.

4.1. The User Domain

The User-Domain is used to collect data for building contextual situations and host the

adequate services. This concept defines the list of the user’s available devices that host an

instance of LLA and which are accessible to the user.

 Hosting LLA: The device needs to have LLA installed on an Operating

System (OS) able to run the Java Virtual Machine (JVM). This requirement does not

mean that the application will run entirely (in the same way) on all the devices. The

deployment strategy of the application (see Section 5) organizes the modules

52 Chapter 3 Long Life Application Proposal

between the devices that have an instance of LLA. This solves the issue of

duplication of current mobile applications on users’ devices.

 Availability: In order for the application to function properly on these

devices, it needs to recognize the other devices. This means that when the user

wishes to use the application the device should be turned on, connected to any

network (Wi-Fi, 3G, 4G, Wired-networks, etc.) and allowing data-exchange on

those networks.

 Accessibility: In LLA we define two types of accessibility level in order

to organize the user-domain, avoid confusion between the devices of different users

and ensure the security of the user and the protection of his/her data (see Figure 24).

The user has the possibility to fully manage the devices surrounding him/her. Using

the LLA Management UI, he/she can add new devices, delete existing devices,

monitor connected devices, modify accessibility and configure security preferences.

Figure 24 - User's domains

o The Private Domain: This level of accessibility represents the user’s own

personal devices that are accessible only to him/her. This means that no other

user is able to extract data from or deploy component on those devices. In order

to securely use this domain, the user defines a Shared Secure Key (SSK) between

all his/her private devices in order to have a closed and protected domain.

o The Public Domain: These devices are accessible to any user at any time.

The motivation of adding this layer comes from the multiplicity and availability

of this kind of public devices everywhere (e.g. airports, bus stations, hospitals,

etc.). Nonetheless, these terminals are solely used to deploy services. It makes no

sense to extract contextual data from these devices since they do not represent the

personal context of the user (except the location).

53 Chapter 3 Long Life Application Proposal

The User-Domain enables LLA to keep the user’s devices organized and categorized. In

respect to the stated contributions (3 and 4), the User-Domain helps LLA to clearly identify the

devices, surrounding its user, in order to properly extract relevant context and optimally run the

expected services.

4.2. Kalimucho

In order to manage the devices in the user-domain, LLA needs to use software components

able to communicate regardless of the differences between these devices. Thus comes the need

to use a middleware offering a component model suitable for the requirements of LLA (see

Chapter 2).

4.3. Input

The first step of detecting context is extracting relevant data from the user’s devices.

Therefore, we introduce on the input level a cross-device contextual data extraction. This

mechanism, continuously and optimally, provides LLA with pertinent information about the

current context of the user from multiple sources (User Private Domain) simultaneously. It is

the starting point of the workflow.

The data extracted on this level is used to verify the occurrence of the user’s situations

respecting the situation-based contextual model defined in Chapter 4.

4.4. Output

The goal of context awareness is to offer adequate services when the right context is verified.

Therefore the final output of LLA (front-end and/or back-end) are the services that it

deploys/stops/migrates in response to detecting a situation.

Consequently, the services are a group (or single) of Kalimucho components (see Chapter

6) able to run, communicate, stop, and migrate to any device on the domain. If the output

requires running/stopping a new component, that component could be either ran/stopped on the

background (with no UI) or added to/removed from the main LLA management UI (with UI).

Migrating components is the process that can be done manually by the user or automatically by

the app if the quality of service (QoS) is not ensured. It combines stopping the component on

the one device and running it on the other while keeping its status.

54 Chapter 3 Long Life Application Proposal

4.5. The Injector

The Injector is a mechanism (see Chapter 7) that allows a collaborative dynamic injection of

new high-level context (situations described using the proposed situation-based contextual

model) into the user’s LLA [62].

The main novelty of this mechanism is a cooperative workflow that enables users and other

external sources to continuously and pro-actively contribute to the growth of the user’s

application, in order to improve its understanding and reliability and overcome the lack of

dynamicity in current context-aware applications, which causes that only 25 percent of users

return to any given application after the first use [3].

Our proposal for situation injection and detection is a hybrid approach that combines both

high-level context (top-down approach), by injecting user-related context, and low-level

context (bottom-up approach), by inferring it from sensor data.

4.6. The Persistence layer

The persistence layer is a cloud and local storage dedicated to storing data about the user

(situations, conditions, mapping, Kalimucho components, and services descriptions). Each

device has a local persistence layer that communicates and synchronizes with his/her private

cloud storage.

4.7. The LLA Core

LLA’s core represents the application’s engine. It is based on an Event-Condition-Action

[76, 110] approach. This approach is adequate to context-aware applications due to its reactivity

and ability to adapt to changing conditions.

The core is the center of our proposal. It receives data from the input, deploys services as an

output and communicates with the user’s persistence layer.

4.7.1. The Parser

Communicating with the persistence layer requires a module able to parse and construct data

into the appropriate situation-based format. This module acts as a monitor and manager for the

files in the persistence layer. It notifies LLA if there are any changes in those files. This

optimizes the access time and the efficiency of the overall application.

55 Chapter 3 Long Life Application Proposal

4.7.2. The Event Manager (EM)

The Event Manager is in charge of receiving the input of current relevant contextual data

(e.g. time, location and activity) from different devices, scanning the situations repository in

order to find out if the received data triggers a new situation or ends an existing one. Triggered

and ending situations are transferred to the next module (Condition Evaluator).

4.7.3. The Condition Evaluator (CE)

The Condition Evaluator evaluates the conditions, limitations and the priority levels between

situations. The CE receives, from the EM, the list of ending and starting situations and filters

them by verifying whether they violate any user limitation and by calculating their priority

levels.

4.7.4. The Action Orchestrator (AO)

The Action Orchestrator is the module that will respond to the situations using the available

services and devices by consulting the device filter. It orchestrates the deployment of those

services following an optimal deployment strategy in regards to the capabilities of the available

devices.

It also keeps track of the currently happening situations so it can be able to stop them when

they are no longer needed by sending the appropriate commands to the Kalimucho platform in

order to run or stop any service in the user’s domain through the ACL filter.

4.8. The ACL filter

This layer is a filter mechanism based on the Access Control Lists (ACL) approach [90]. It

helps the AO to get information (hardware capabilities, processing power, memory usage, etc.)

about available devices in the network considering their accessibility. It handles the user-

domain and secures the transference of data between them and hides devices from non-

authorized access.

After passing through the Condition Evaluator, Action Orchestrator and Access Control

Lists (ACL), the application sends commands to the Kalimucho platform in order to launch or

remove the appropriate components.

56 Chapter 3 Long Life Application Proposal

5. Application’s global workflow and distribution strategy

Due to the distributed nature of LLA, the key modules defined in LLA’s architecture should

respect a distribution strategy in order to exploit the user’s environment and keep the continuity,

relevance, and sustainability of the application. Figure 25 shows the status of the application

across four different devices.

Figure 25 - LLA running across devices

The strategy and workflow illustrate the stated contributions. They allow the cross-device

context detection, the collaborative contextual injection and the modularity of services.

Therefore, clear definitions of the workflow and the distribution strategy are needed.

5.1. The deployment strategy of LLA

The deployment strategy is the plan that organizes how, when, and where the key modules

of LLA (Input, EM, CE, AO, ACL, and Injector) must be deployed. It ensures mainly that the

application is well-aware of the user-domain and that there is neither redundancy nor

concurrency between the modules of LLA.

When the user starts the application on any of his/her devices, the LLA management UI

(front-end), the ACL and Input modules (back-end) are always launched first. After that, two

scenarios could occur (see Figure 26).

57 Chapter 3 Long Life Application Proposal

Figure 26 - Deployment strategy for starting LLA

The first scenario happens if that device is the first device (Device 1), which is private,

available on the network and meets the requirements (see Section 4.1), that started LLA. This

means that no other device (Device 2) has an instance of LLA already running. In this case,

LLA deploys all the modules on Device 1. Device 1 becomes, for now, the user’s controller

device. After that, this device keeps running LLA and monitoring the user’s domain for new

devices to join in.

The second scenario happens when the device is not the first one to start LLA. This means

that when the user starts the application on this device (Device 1), there is another instance of

LLA already running on another device (Device 2). In this case, two things can happen. If

Device 1 has better hardware capabilities than Device 2 (Device 1> Device 2), LLA migrates

the architecture, already running on Device 2, to Device 1. Otherwise, Device 1 links its Input

to the EM of Device 2.

When stopping (see Figure 27) the application on one device, LLA verifies if that device

hosts the whole architecture (ECA) and asks the user whether he/she wants to fully stop the

application on all devices or just on this one. If the user chooses to stop it just on that device

the architecture is migrated to the best available device and reconnects the inputs from the rest

of the devices. In case the architecture is hosted on another device, LLA simply stops on that

device by stopping the ACL and the Input making that device unavailable for the User’s

Domain.

58 Chapter 3 Long Life Application Proposal

Figure 27 - Deployment strategy for stopping LLA

5.2. The workflow of LLA

LLA is the application that replaces all the other existing applications by assisting the user

continuously. Therefore, after all, modules are running (on one or multiple devices), LLA keeps

running in the background until the user chooses to stop it manually.

When LLA is newly installed on a device, the user chooses (using LLA management UI) the

Shared Secure Key (see Section 4.1). This key will allow LLA to join that device to the user’s

Private Domain. The user could also choose to offer that device as a public device that could

be used by other users.

When LLA starts, the Parser extracts the situations from the user’s Persistence Layer in order

to start evaluating them according to the detected contextual data. The Parser is also used to

synchronize with the Persistence Cloud Layer and refresh the situation repository in case of any

new changes (coming from the Injector).

Once running, LLA’s workflow starts by monitoring the user’s context. To do so, the

distributed Inputs keep feeding the ECA core with relevant information about the user.

Specifically, every time that one of the Input modules send data to the EM, the ECA core

evaluates the situations in order to determine the ones about to start and the one about to end.

59 Chapter 3 Long Life Application Proposal

If LLA needs to start a new service to respond to a newly detected situation, the AO looks

for the needed service and deploys it on the best fit devices available. LLA looks for the services

(a group of executable jar files) first in the Local Service Repository (LSR), the on the LSR of

other available devices, and finally on the Cloud Service Repository (CSR) (see Figure 25).

Once it finds the needed services, the AO consults the ACL filter about the accessibility and

capabilities of the available devices on the network in order to run those services on the most

adequate devices. If the services have a visible UI, they are added to the LLA management UI

of their respective devices. Otherwise, they run on the background of those devices.

Ending situations trigger the opposite process. When LLA detects the end of a situation,

which is already active, it looks for the services that are related to that situation in order to stop

them on their respective devices. Stopping those services stops consequently the components

by removing their UI from the LLA UI or simply stopping them transparently if they run in the

background.

6. Conclusions

When dealing with context-aware distributed mobile applications, the challenges are

multiple and the solutions are different. In our proposal, we tackled those problems by

presenting the idea of LLA.

To summarize, LLA is a modular distributed mobile application that spans across a network

of connected devices in order to understand its user’s context and provide him/her with the most

adequate services while offering an open user experience that could be enriched continuously.

Following the distribution strategy and workflow, LLA is able to work harmoniously on the

user-domain and changes the way that he/she interacts with his/her applications, devices, and

overall experience.

LLA modules, interactions, rules, strategies, and mechanisms embody the stated

contributions. These contributions are the solutions to the limitations of current mobile

applications. Therefore, the next chapters are dedicated to showing a detailed presentation of

the modules constituting LLA. These modules are all composed of sub-modules, components,

and mechanisms that reflect our contributions and the behavior of the application.

The next chapter is dedicated to present the first contribution of this work. It focused on the

modeling aspects of situation-based context.

60 Chapter 4 Situation-based contextual model

Chapter 4 Situation-based contextual model

61 Chapter 4 Situation-based contextual model

1. Introduction

The fundamental objective of context-awareness is to provide services not only to people at

any time, anywhere, with any media but specifically to communicate the right thing at the right

time in the right way [53]. To achieve this, applications should be aware of their context [48,

49, 74].

All context-aware applications have their own ideas, methods, and techniques to represent

and understand the user’s context. The common factor between all of them is that they all follow

the same patterns. They, first, select the type and source of relevant data needed to build the

context of the user. They categorize and normalize that data. They build their

rules/representations/models which will later be used to evaluate and react to the user’s current

context.

All things considered, the context representation is the first step and the determining factor

in how context-aware applications react to changes and adapt to the user's needs. In LLA, it is

crucial to be aware of the user’s behavior and the environment surrounding him/her.

Consequently, LLA needs a contextual representation model centered on the user and

considering his/her needs in all circumstances.

When LLA succeeds in obtaining the data it needs at the time it needs them, the challenge

of extracting actionable intelligence out of that raw data appears. We need to find a simple way

to extract useful knowledge out of basic data, so as to construct different contexts of usage for

the application to react. Defining the context rules and the associated actions is our main goal.

The main question is whether this should be automatically learned by the system (based on the

user's actions) or specified by the user by using a rule-and-action language.

Our focus is offering a user-friendly, understandable, concise yet open model able describe

the daily needs of users over multiple scenarios.

2. Situation-based contextual model

Situation awareness is commonly defined as the perception of environmental elements with

respect to time or space, the comprehension of their meaning, and the projection of their future

behavior (e.g. Endsley, 1988, 1995).

The situation is the key component in our system [78]. According to the Cambridge

dictionary, a situation is: «The set of things that are happening and the conditions that exist at

a particular time and place”.

62 Chapter 4 Situation-based contextual model

 The set of things = Activity -- What are you doing?

 Time -- When?

 Location -- Where?

 Conditions = Exceptions -- What are the exceptions?

Besides, for the context-awareness to be effective, we need to answer another question to

know what the user expects when this situation happens:

 Service -- What do you expect to happen?

Figure 28 represents the building blocks of the situation representation model in our

application.

Figure 28 - Situation representation model

In our proposal, a situation is represented on two different levels. The first level is the

abstract modeling level where the rules that build any situation are defined. The second level

is the service level in which the reaction strategy to those situations is defined.

2.1. Abstract modeling level

On the abstract modeling level, the situation is represented by a combination of data and

concepts. A situation, in LLA, is a combination of multiple projections on different axes. Each

projection is a combination of times, locations, and activities projected using binary describers

(primitives). Besides, there may be exceptions, which follow the same axes and primitives. The

only difference is that an exception can be another situation entirely.

63 Chapter 4 Situation-based contextual model

Before getting into describing a situation, we need to define our key concepts and variables.

The following variables are related to the axes of our situation:

2.1.1. Concepts

Tag: The tag represents the information related to the priority and source of this situation

(see Chapter 6).

Projection: It represents the set of primitives (on axes) that combined together trigger the

situation. For example, the house alarm of the user is activated if he/she is outside the house or

if the time is after 10 pm. These are two different projections using different axes for the same

situation (see Figure 29).

Tolerance: It represents the accuracy of a certain value related to the primitive. This

tolerance can be interesting in scenarios where the user is not precise about his/her situations.

For example, if the user wants his/her garage door to open if he/she is more or less about 10

meters from his/her house, then the tolerance, in this case, would be 10 meters related to his/her

house.

Axis: Axes represent the dimensions of our situations (see Figure 29). For example, the time

axis is one of the dimensions that can represent a situation.

Primitive: It is an atomic operation on a given axis (e.g., before, while, and after, for the time

axis). The result of this operation is a Boolean value. For example, to represent a situation where

the user is inside a location we use an inside primitive on the location axis. Tables 5, 6, 7, 8, 9,

and 10 describe the primitives related to each axis. Since primitives are atomic, their output

should be unique, therefore, they cannot be derived from more than two axes simultaneously.

A primitive derived from three axes is the situation itself.

Table 5: Time primitives

Primitives Parameters Abbreviation Description

Before
Date-Time,

DTPrecision
B

Returns true if the date-time given in the

parameters is before the current date-time.

After
Date-Time,

DTPrecision
A

Returns true if the date-time given in the

parameters is after the current date-time.

While
Date-Time,

DTPrecision
W

Returns true if the date-time given in the

parameters is equal to the current date-time.

64 Chapter 4 Situation-based contextual model

Table 6: Location primitives

Primitives Parameters Abbreviation Description

Inside
Location,

LPrecision
I Returns true if the user is inside a given area.

Outside
Location,

LPrecision
O Returns true if the user is outside a given area.

Table 7: Activity primitives

Primitives Parameters Abbreviation Description

Free
TaskList,

Activity
F

Returns true if the user is free (no tasks or

activities).

PlannedTask
TaskList,

Activity
PT

Returns true if the user is doing a planned

task.

UnplannedTask
TaskList,

Activity
UT

Returns true if the user has an opportunity

to do an unplanned task.

Table 8: Time*Activity primitives

Primitives Parameters Abbreviation Description

AlmostStart
Date-Time,

DTPrecision, Task
AS

Returns true if the date-time is near the

start time of the task.

AlmostFinish
Date-Time,

DTPrecision, Task
AF

Returns true if the date-time is near the

end time of the task.

+ The rest of Time and Activity primitives combined (BF, BUT, BPT, etc.)

65 Chapter 4 Situation-based contextual model

Table 9: Time*Location primitives

Primitives Parameters Abbreviation Description

Closer
Location, Date-Time,

DTPrecision, LPrecision, Speed
C

Returns true if the user is getting closer to

a certain location in a given time frame.

Further
Location, Date-Time,

DTPrecision, LPrecision, Speed
F

Returns true if the user is getting further

from a certain location in a given time frame.

+ The rest of Time and Location primitives combined (BI, BO, WI, etc.)

Table 10: Location*Activity primitives

Figure 29 - Situation's projection axes

Value: Values are used to evaluate if the required primitives are verified (i.e., the conditions

are evaluated to true) by comparing them to the current user context values (i.e., values for the

time, location, etc.). For example, we consider that for the primitive After (Time axis) and the

current time of the user 11 pm, if the value given to the primitive is 10 pm then the primitive

returns true.

Primitives Parameters Abbreviation Description

Opportunity

Location,

LPrecision,

Task

Op
Returns true if an opportunity to do a certain

task in a certain location arises.

+ The rest of Location and Activity primitives combined (IF, OF, IUT, etc.)

66 Chapter 4 Situation-based contextual model

 DTPrecision: It is the accuracy of the time and date that will allow

primitives to leave a margin of tolerance. It must be provided in the same form

as the date, in order to ensure time calculations.

 LPrecision: It is the tolerance for the localization.

 TaskList: It is the schedule of the user, that contains all the tasks planned

(or unplanned).

 Date-Time: It is the date and time value.

 Location: It is the physical location (coordinates, address, etc.).

 Activity: It is the task (meeting, sleeping, running, etc.) that the user is

doing. There is no precision tolerance value for the Activity because it not a

continuous axis, compared to time and location.

Exception: Exceptions can be related to the axes of the situation or can be represented by a

whole situation. They follow a similar logic as situations, as they can be represented by (axes)

primitives (see Figure 30). The difference lies in the fact that they can be represented by

complete situations. This helps the application to handle multiple situations happening at the

same time, by verifying if they are exceptions for each other.

Figure 30 - Exception's representation model

For example, in an everyday scenario, we can imagine a user having a breakfast situation

every day at 7 am except on Sundays.

67 Chapter 4 Situation-based contextual model

2.1.2. Operations

Combination: Combines two concepts (projections, axes), through a logic AND operation.

For example, combining two axes (Axis*Axis) allows us to extract new primitives related to

that combination. This operation applies also on primitives and exceptions. For example, if we

combine Time and Location we obtain a Time*Location axis that allows the user to express

situations related to speed and relativity to a location. For example, the user can use this to

express a situation that can be detected if he/she is getting closer to his/her house.

Selection: Acts as an OR operator (i.e., it verifies whether at least one of the variables is

true).Our model uses it in order to represent a situation with multiple independent different

projections or multiple different exceptions. For example, considering an aged user, the doctor

can create a situation that sends him an alert when the user comes to his/her medical weekly

check-up OR if he/she runs out of medication.

2.1.3. Situations families

First-level Situations: In this level, the most basic and general situations, that involve only

one of the axes are represented (see Figure 31).

Figure 31 - First-level situation representation

Second-level Situations: It combines two axes to represent a situation. In fact, combining

axes generates richer situations (see Figure 32). The combination is produced by using basic

primitives like, for example, Before (B) and Outside (O), combined to produce BO, which

returns true if the user is before a given date/time & outside a given location. The combination

produces also new primitives related to the combination of the combined axes.

68 Chapter 4 Situation-based contextual model

Figure 32 - Second-level situation representation

Third-level Situations: In this level, the richest situations are considered. A situation can be

built as the combination of all the axes at once in order to position the situation in a precise

contextual state. Figure 33 shows how a situation is built using the previously-stated primitives

in all their possible combinations. As an example, we consider a user who has a meeting

situation where he/she is in the meeting room AND it’s between 8 am and 6 pm OR if the date

of the monthly department meeting is due.

Figure 33 - Third-level situation representation

Furthermore, situations are represented using the presented concepts while respecting at the

same time exceptions to those representations.

2.1.4. Representations

Graphically: Using operations and variables, a situation is represented through the defined

concepts. The graphical representation is used to have a clearer understanding of the situations

(see Figure 31, 32, and 33).

69 Chapter 4 Situation-based contextual model

Textually: A situation S is presented textually in the following format, where P is a

projection (the Tag will be discussed in Chapter 6):

S : Tag ; Pn [Axis(Primitive(values, tolerance)...); ...] [..] .. EXCEPT [Situation/Axis(..)]

In the persistence layer (see Chapter 3), these textual representations are translated into XML

and injected into the user’s application (Situation Repository) in order to define his/her

situations.

For example, we present a 3rd level situation S1 (House Alarm Situation) that happens when

the user is either outside his/her home with a 20 meters tolerance value (Projection1) or if the

time is between 10 pm and 6 am with a 20 minutes tolerance (Projection2). The exception to

this is being in only on Sundays. For our example, the graphical representation is shown in

Figure 34. Textually it is presented like: S1: Projection1[Time(A(22,20) B(6,20)); Location(

I(Home,5))] OR Projection2 [Location(O(Home,20))] EXCEPT [(Time(Sunday))]

Figure 34 - House alarm situation representation

2.1.5. Complexity and data formats

Even though this representation is user-friendly regarding the way it is expressed, its

management is complex. The complexity of detecting a specific situation can be estimated by

considering the number of primitives involved in its computation by counting the number of

projections and exceptions and multiplying the number of axes, primitives, and values involved

((∑˅pi # primitives pj) + # exceptions). As different data get involved and the application

grows, the situations can get detailed and complex. In Figure 35, we show how a situation can

branch using all the concepts that we defined. It shows the richness and completeness of this

modeling approach.

For the different axes, the data (values) are represented differently:

70 Chapter 4 Situation-based contextual model

 Time-related values (Date-Time, DTPrecision): These values use the

time DD.MM.YYYY.hh.mm;ss

 Location related values (Location, LPrecision): They are represented

through geometrical geographical zones (GZ) delimited by points defined using

GPS coordinates.

 Activity related values (Task, TaskList): An entity extracted from the

user’s calendars.

 Speed: This value is represented in the metric system (KmH).

Figure 35 - Situation branching

71 Chapter 4 Situation-based contextual model

2.2. Service level

On this level (see Chapter 6), our model allows describing the behavior expected when LLA

detects situations. In order to react properly to these situations, the application needs to find the

appropriate services.

Service: Services are the product of the application and its way to respond to contextual

changes. They are the way the system responds when detecting that situation.

Component: The components are entities composing the service. The components can be

divided into 3 categories: Input, Core, and Output (see Chapter 6). These components run

simultaneously in a distributed environment composed of the users' devices. Each component

serves a specific need and has hardware requirements (CPU load, RAM, camera, etc.) that need

to be provided in order to run in an optimal way. Therefore, the representation on this level

includes also the capabilities needed for components to run correctly.

Mapping: Mappings are associated with each situation. The mapping, (stored in the

persistence layer) links the situations to the services. It describes the list of Kalimucho

components needed to build the service.

3. Conclusions

A relevant aspect of the proposed application is the adequate detection of the context. For

that purpose, the Long Life Application incorporates a rich situation model that considers any

type of combination of three dimensions (Time, Location, and Activity) to represent different

context situations where users can be involved, as well as exceptions for those situations.

For users, defining situations implies a simple understanding of the basic concepts.

Therefore, using this model, they can easily define their basic situations and select/download

the services adequate to those situations. For more experienced experts, the proposed model

allows representing accurate specific situations related to their area of expertise using multiple

projections, combined actions, specific tolerances, etc.

The next chapter is dedicated to present the second contribution of this work. It is focused

on explaining in details the internal behavior of the cross-device context detection mechanism

which is based on our situation-based contextual model.

72 Chapter 5 - Cross-device situation detection

Chapter 5 - Cross-device situation detection

73 Chapter 5 - Cross-device situation detection

1. Introduction

Context detection is the process of detecting changes in the context. In order to capture the

context of the user, the application needs to collect the available information (such as time,

location, and activity). This information needs to be extracted continuously, mostly by using

the devices around the user.

In ubiquitous computing, context is often captured from one or more specialized

sensor/device that could be physically close or attached to the user (phone, watch, tablet, etc.)

or distributed around the user in his/her smart-environment.

LLA raises some challenges, due to its specific design requirements and the lack of an

existing methodology and appropriate tools. The main important difficulties are related to the

problem of context detection, software/hardware heterogeneity management, and the need to

distribute the application around the available user's devices.

In this chapter, we present our proposal for a cross-device situation detection mechanism

dedicated to the user’s domain (see Chapter 3).

2. Cross-device situation detection mechanism

Context-awareness requires, by definition, a system able to detect the context and understand

it. An important drawback of existing applications comes from identifying the user with one

and only one device or from a pre-installed sensor network. Also, these applications limit their

detection on the user's mobile phone. This issue motivated our work to be oriented to cross-

device context detection dedicated to end-users and enabling the application to accurately

follow and detect context changes.

In LLA, the context is represented by situations (see Chapter 4). Therefore, the proposed

context detection mechanism considers the situation-based contextual model that we defined

[78]. In order to detect situations (starting or ending), LLA starts by collecting contextual data

input and then identifying situations.

From a technical and architectural point of view, the cross-device situation detection

mechanism is composed of two main modules (see Figure 36).

74 Chapter 5 - Cross-device situation detection

Figure 36 - Cross-device situation detection component architecture

The first module is the distributed Input module which is deployed on the user-domain (see

Chapter 3). The second one is the Event Manager which evaluates the received data in order to

identify possible situations that started and/or ended.

In Figure 36, the IC is the Input Component, the DC is the Dispatcher Component, the TLMC

is the Time*Location Manager Component, the LMC is the Location Manager Component, the

LAMC is the Location*Activity Manager Component, the AMC is the Activity Manager

Component, the TAMC is the Time*Activity Manager Component, and the SMC is the

Situation Manager Component.

2.1. The Input Component (IC)

The first step in the process of detecting the context is to extract relevant data from the user's

devices. In order to achieve this, LLA duplicates the IC on all the available and accessible

devices of the user. The main objective of this component is to collect contextual information

(current time, location, and activity) and send it to the Event Manager module.

This component is always running and waiting for contextual changes that can be interesting

to trigger and send contextual data to the Event Manager (EM). The problem resides in the

frequency at which this component should extract and deliver those data due to the hardware

limitations of the device (e.g. battery). The simplest answer would be to perform it continuously

75 Chapter 5 - Cross-device situation detection

with a high frequency (e.g., every second), but this would require more processing power and

drain the battery life faster.

Therefore, we propose a different mechanism, able to optimize its performance and not

overload the EM. The modules that constitute the IC are shown in Figure 37.

Figure 37 - The input component internal process

2.1.1. Frequency Manager (FM)

The IC orders the Extractor to extract data. Therefore, it takes into account the user's situation

list. From this list, the FM calculates and optimizes the frequency at which the contextual data

should be extracted from each device. In order to achieve this, granularities regarding the

situation axes are taken into account by our proposal. Calculating these granularities, which

affects the frequency, requires monitoring the situations for each axis separately. Any situation

could have projections on each axis (time, place, activity) and must, therefore, trigger the

extraction in time.

For the time axis, it is enough to awaken the process at certain well-chosen moments using

awake(S,D,Td):

 S = set of known situations for one day

 D = set of start and end dates for these situations

 Td = set of tolerances on these dates

We do not need a frequency because we know the dates. If D is ordered by growth dates and

T is ordered in accordance with D, it is sufficient to wake up the process at each extraction time

ETime = start date - the associated tolerance and each ETime = end date + the associated

tolerance.

76 Chapter 5 - Cross-device situation detection

For the activity axis, the FM uses the same process used with the time axis, awake(S,A,C):

 A = set of activities for these situations

 C = planned and non-planned tasks of the user

When considering planned tasks we need to define any frequency because we know their

details (time, location). However, for non-planned tasks, there is no way to predict if the user

is potentially interested in doing that task in a specific time/location frame.

For the location axis, we do not have a defined order since we do not know when the user

will enter/leave these places (L). All we have are localizations (geographical areas with a

tolerance).

 L = The set of places at the beginning and end of these situations

 Tl = set of tolerances on these places

A Geographical Zone (GZ = zone + a tolerance) is a greater geographical area, therefore,

one reduces to geographical zones only (L and Tl are combined to form a single set L). These

areas may overlap.

It is necessary to monitor the position of the user permanently to know when he/she is

coming in / out of one or more of these zones. The extraction frequency, in this case, is

complicated to define. Other works, consider a maximum extraction frequency and leave the

GPS running all the time.

We propose to sample the accelerometer to detect the beginning of movements and launch

the GPS using awake(L, T1). If two position measurements are taken separated by a known

delay, it is possible to determine the position and the speed of movement of the user. As the

current speed is known, it is possible to calculate the Minimal Time (MT) to reach/leave the

geographical zone.

For each of the graphical zones (the shortest distance to get in/out of this zone), the minimal

distance is calculated "on the fly" so the user cannot get in/out of that zone faster than the

estimated minimum time. A new position and speed sampling will then be triggered within this

period to see if this has occurred or not. The result will determine whether the situation begins

or ends or a new delay to repeat the operation.

Each time the accelerometer gives a new value, the above process is repeated so that this

delay is adjusted according to the new position/speed of the user. If the accelerometer does not

77 Chapter 5 - Cross-device situation detection

give anything, it means that the speed is constant and that the last calculation (MT) remains

valid.

The last issue with this process is to determine the frequency at which the accelerometer is

consulted. If it is awoken at a slow rate, we risk missing beginnings/end of movements and thus

missing inputs/outputs of zones. Therefore, we decided to consider a high rate frequency

because there is no way to predict that the user will move. This choice is justified by the

comparison of power consumption of the accelerometer compared to that of the GPS, which

proves that the accelerometer uses 7 times less the amount of energy used by a GPS [11].

2.1.2. Extractor

The extractor receives notifications from the FM to retrieve the current time, location and

activity on its device. The retrieved data could differ from one device to another. In a scenario

where the user is traveling, some of his/her devices might be at home and therefore have a

different time set on them.

This is interesting to ensure the continuity of the user situations even when he/she is in a

different time zone. Locations are also different from one device to another, which is interesting

but raises a problem of knowing where the user is physically located. For activities, the retrieved

data will be the same between devices. Finally, the extractor transfers this data to the Trigger.

2.1.3. Trigger

The trigger is the sub-module in charge of sending the data to the EM. Nevertheless, before

sending that data, it verifies two important things.

First, it checks the real location of the user and the device with which the user is interacting

(the one with which he interacts at that moment or he has lastly interacted with) by verifying if

its screen is active or has been active lately.

The reason behind this is due to the fact that the IC is duplicated, and therefore it will be

sending multiple times, locations and activities to the EM. This might cause the application to

detect a situation without the user being really in that situation. This problem is related to the

difficulty of creating a user experience that spans multiple devices [57].

 For example, if the user is at work with his/her smartphone but he/she left his/her tablet at

home, the context detected from the tablet is irrelevant to the user because of his/her current

position. If the tablet detects a situation and reacts to it, the user will not be part of that situation.

78 Chapter 5 - Cross-device situation detection

The application should be able to understand that the user is actually at work and therefore

detect only situations relevant to his/her true context.

In order to achieve this, the Trigger verifies first if the device where it is hosted has changed

its position. If the device changed its position it means that it is moving with the user and

therefore it is eligible to detect situations.

The second step is verifying whether the device being used by the user (active device). In

case we have no position changes and no active devices, the application considers data only

from the last used device or the devices in proximity of that device in order to have a relevant

context.

Finally, the IC sends the collected relevant data to the EM in order to start the process of

identifying the situations that are possibly beginning or ending.

2.2. The Event Manager (EM)

The EM is the entry point to our application’s core and represents the E in our ECA approach.

Overall, this module is dedicated to detecting context changes. For that purpose, it first receives

the input coming from the IC and then runs a discovery process on the potential situations. As

output, it delivers lists of situations that are about to start and those about to finish.

The Event Manager module (see Figure 36) is in charge of detecting contextual information

from around the user (from his/her devices), analyzing these data, and defining a context

respecting the situation model.

The situation identification process (see Figure 38), integrated into the Event Manager, is

the mechanism that monitors the different axes and creates the appropriate situations by using

collected data from around the user and combining them with primitives.

Figure 38 - Situation identification process

79 Chapter 5 - Cross-device situation detection

The task manager extracts data from social media and rich sources of information available.

After organizing the tasks (task list) and finding the users' free time, it feeds the activity axis.

Simultaneously, it identifies the possible situations by monitoring the time and locations of the

user.

EM is composed of components (see Figure 36) that interact together to achieve the situation

detection. These components each have their inputs and outputs.

2.2.1. Dispatcher Component (DC)

This component (see Figure 39) considers the importance of the main starting point of

distributed architectures. In these architectures, it is necessary to have a component capable of

managing the rest of components and communicating with them in order to know their status

and workflow.

As its name suggests, this component dispatches the received data to the appropriate

components. It represents the entry point to the workflow and the main component of the EM.

Besides, it monitors the other components of the EM.

Figure 39 - The dispatcher component

2.2.2. Axes Management Components

Time, Location, Activity, Time * Location, Time * Activity, and Location * Activity

Manager Components are respectively TMC, LMC, AMC, TLMC, TAMC, and LAMC.

When the ECA core starts, the parser goes through the situations in the persistence layer in

order to send to each component the situations related to their specific axis. They apply the

primitives related to their specific axis. They start by receiving the current time/location/activity

from the DC and then begin to analyze the situations. After identifying the valid situations

(situations that verify their primitives on the respective axes), these components send them to

the SMC (see Figure 40).

80 Chapter 5 - Cross-device situation detection

Figure 40 - Time Manager Component

2.2.3. Situation Manager Component (SMC)

While receiving a list of valid situations from the other components TMC, LMC, AMC,

etc.), the SMC (see Figure 41) constructs one final list containing the situations (received from

the other components) according to their occurrences and their projections. In this way, this

component delivers two final lists of situations as a final output of the EM. These situations

could be either situations that will be starting or situations that are no longer valid and need to

end.

In order to identify the starting situations, the SMC calculates for each received situation the

number of projections and axes represented in that projection and compares them with the input

of the other components (TMC, TLC, etc.). If the number of incoming instances of a situation

(verified by the primitives) matches one of the projections, it is considered as a possible

situation to start (to start a situation, it should verify at least all the primitives of one projection).

For example, if a situation S0 happens when the first projection is verified (user is home at 5

pm), the SMC should receive 2 instances of S0 coming from TMC and LMC.

For ending situations, the SMC uses the opposite mechanism: if at least, one occurrence is

not sent to the SMC, it considers that situation as a stopping situation (to break the situation, it

is enough that one primitive verification fails). Using the same example of S0, if the user leaves

the house and the SMC receives only one instance (coming from TMC), it means that the

projection of S0 is no longer verified then it should be stopped.

81 Chapter 5 - Cross-device situation detection

Then, the SMC verifies the exceptions related to situations about to start. If they violate any

of the exceptions they are retracted from the starting list. For ending situations, the exceptions

can expand the lifespan of a situation as long as that exception is valid.

This component has also a list of Active Situations, which represents situations that are

already running (still verify the primitives of their projections). A possible starting situation

will not necessarily be an active one, as it might be filtered later by one of the next modules

(CE, AO, or ACL). For ending situations, however, they must be already active in order to be

stopped.

Finally, the final lists of situations are transferred to the Condition Evaluation (CE) module.

Figure 41 - The Situation Manager Component

In this example, we consider the previously described House Alarm Situation (see Figure

34). We describe below a number of various situations that could happen to the user daily.

82 Chapter 5 - Cross-device situation detection

In Table 11, we present an example of a user having the situations described above. In this

example, the user has three devices where LLA is installed. We follow him/her on three steps

where the user changes time, location and activity over the day. We consider that the IC only

extracts data those three times. Initially, we propose that S0 (House Alarm Situation in Figure

34) is an active situation, the time is 6 am; the day is Monday and he/she is at home.

In table 11:

 T: Time;

 L: Location;

 A: Activity;

 Sits: Situations;

83 Chapter 5 - Cross-device situation detection

Table 11: Situation analysis by the Event Manager's components

Device 1 (Smart-Watch) Device 2 (Tablet) Device 3 (Smart-Phone)

Input Input Input Event Manager

T L A T L A T L A DC TMC LMC AMC TLMC TAMC LAMC SMC

S

t

e

p

1

Data 07:00 home free 08:00 home free 07:00 home free 07:00 home free
07:00,

home

07:00,

free

home,

free

Valid. Sits

S1, S2 S0, S1, S2, S9 S8 -- -- --

Activ. Sits

S0

Start. Sits S1, S2

End. Sits S0

S

t

e

p

2

Data 10:00 Office work 10:00 home work 10:00 Office work 10:00 Office work
10:00,

Office

10:00,

work

Office,

work

Valid. Sits

S4 S4, S6 -- S3 -- --

Activ. Sits

S1, S2

Start. Sits S4

End. Sits S1, S2

S

t

e

p

3

Data 18:00 MCenter free 18:00 home free 18:00 Mcent free 18:00 MCent free
18:00,

MCent

18:00,

free

MCent,

free

Valid. Sits

S7 S7 S8 -- -- --

Activ.Sit

S4

Start.Sit S7

End. Sits S4

84 Chapter 5 - Cross-device situation detection

84

In Step 1, the data extracted from all the devices is the same (07:00, Home, Free). The DC

distributes the data to the rest of components (running on the Smart-Phone). We considered that

S0 (House Alarm Situation) was already active. After all, components send the valid situations

to the SMC, it calculates the starting and ending situations. It decides to stop S0, because one

of its primitives (Before(6,20)) is no longer verified, and to start S1 (Sleep/Wakeup) and S2

(Breakfast Situation) because all the primitives in their respective projection are verified.

In Step 2, the user left home but left his/her tablet there. Therefore, the data extracted from

that tablet will not be sent to the EM. The data considered comes from the Smart-Phone and

Smart-Watch (10:00, Office, Work). The DC distributes the data to the rest of components.

After all, components send the valid situations to the SMC, it calculates the starting and ending

situations. It decides to stop S1 and S2 (already active), because their primitives are no longer

verified, and to start S4 (First work shift situation) because all the primitives in its projection P1

are verified.

In Step 2, the data considered still comes from the Smart-Phone and Smart-Watch (18:00,

MCenter, Free). The DC distributes the data to the rest of components. After all, components

send the valid situations to the SMC, it calculates the starting and ending situations. It decides

to stop S4 (already active) and to start S7 (Massage session situation).

This example presents the workflow of the cross-device detection mechanism. The output

(Staring situations, Ending situations) of this mechanism is sent to the rest of the architecture

(CE, AO, ACL) in order to finish the rest of the process.

3. Conclusions

To summarize, our proposal provides a mechanism able to detect, formalize and understand

the user context. The EM provides a set of components working simultaneously and

independently in order to detect events and understand situations regardless of the source.

However, detecting situations is not our main goal. In related works, most application use rule-

based languages to detect events and to understand the context, others use information collected

from sensors in order to formalize a context from that raw data.

Our approach differs in the way we address context detection as we aim our model to be

centered on the user daily needs in a connected environment. This means that our mechanism

can handle both basic and complex representations of everyday situations. It considers high-

85

85

level context understandable by the user and that does not need necessarily the presence of, a

sensor network or a huge set of complex rules.

Our approach provides a light, dynamic and open to growth contextual model. The second

phase of responding to the contextual change is handling this change on the service layer of the

application. Therefore, the next chapter presents the situation control and handling strategy

which is integrated into LLA and dedicated to offering an improved user experience.

86 Chapter 6 – Situation Control and Reaction strategy

86

Chapter 6 – Situation Control and Reaction strategy

87 Chapter 6 – Situation Control and Reaction strategy

87

1. Introduction

After defining the modules specialized in modeling, understanding, and detecting context,

we present in this chapter the way that LLA handles the contextual changes.

In context-aware applications, handling contextual changes comes in various and different

ways and forms (see Table 4). The common aspect between these applications is that they offer

services in response to contextual changes. Using the same logic, LLA translates situations to

use cases that are submitted to conditions and that could trigger a change in the service layer if

needed.

Nonetheless, when it comes to reacting to context, applications struggle to provide the

adequate services that users expect because they limit their architectures to pre-packaged

features that are already coded inside the applications. This limitation bounds their application

and narrows the range of use cases that could be handled.

Moreover, they do not usually consider the user’s preferences, constraints, and priorities

when it comes to overlapping situations and handling priorities. Works like [31] use preset goal

hierarchies that they deem relevant and interesting to their users.

In this chapter, we present the rest of the architecture (see Figure 23), discussed in chapter

3, by showing the interactions between the modules dedicated to offering a response when the

context of the user changes.

2. Situation control and reaction strategy

This part represents the reactive aspect of our proposal. It is the combination of different

mechanisms and modules that work simultaneously inside the main application. The main goal

of these modules is to respond to the detected situation in the best way possible for the user.

The process of reacting to these situations starts by evaluating them. The Condition

Evaluator (CE) acts as an organizer and a filter for new situations. It considers the user’s

constraints and restrictions (e.g. the user does not want to be bothered between 5 and 10 pm)

and manages the concurrency of situations by following a defined priority model.

The second level is the Action Orchestrator (AO) module. It takes as input both starting and

ending situations and launches/stops the appropriate services for that specific situation by using

the Kalimucho platform commands (see Appendix 1). Nonetheless, before launching/stopping

the services on the user domain, the AO needs to be aware of the available and accessible

devices in the user-domain.

88 Chapter 6 – Situation Control and Reaction strategy

88

Therefore, the last module is a domain management filter based on ACL [89] which scans

the environment continuously for new connected devices, secures the data transfer, and keeps

monitoring the user-domain.

3. Condition Evaluation (CE)

Condition evaluation is the second constituent of the ECA core. This module is required to

consider the user as the main interest of his/her application by giving him/her the upper hand

(control) and making him/her define the constraints that bind LLA.

As he/she is constantly moving and evolving in his/her surroundings (Time, Location and

Activity), multiple situations could be detected simultaneously which will trigger the

application to react automatically in order to respond to those situations.

Thus, the user could be overwhelmed with situations and deployed services. In order to

remedy this problem, the Condition Evaluator module respects a priority model that calculates

the situations’ priorities in order to filter the least important ones or put the other ones on hold

until LLA detects a change in context.

Moreover, it considers constraints described by the user in order to stop, filter, hold situations

if the user does not want to be disturbed. In our vision of LLA, it is necessary to consider the

status of the user. The status represents if the user is free, busy or wants to not be disturbed at

all. Most users have different schedules through the day. For example, a person with a daily job

in an office is usually busy working from 9 am to 5 pm and does not want to be disturbed at

night. This motivated us to implement the CE module that takes into account all these

parameters. This module complements the contextual awareness of our proposal.

3.1. The situation priority model and constraints

Context-aware applications are, most of the time, dynamic and autonomous. LLA is centered

on the user and dedicated to his/her needs and constraints. Therefore, our proposal implements

the CE module in order to consider the user’s constraints and give him/her the ability to fully

control what happens.

In order to achieve this, the CE follows the constraints and priority model expressed by the

user. Expressing this information is done following three steps:

89 Chapter 6 – Situation Control and Reaction strategy

89

 Tagging the situation with an importance level. This tag is defined when injecting

the situation for the first time. The Tag is described textually in this format:

[priority=P(x); source=”Source”]. It serves as the default priority value of a situation.

This value could be altered for specific conditions (see Figure 42). LLA considers

three different importance levels:

o Casual situations: Situations with the least priority (1) representing the

user’s everyday situations.

o Important situations: Situations with medium priority (2) representing use

cases related to work, travel, etc.

o Urgent situations: Highest priority situations (3) representing urgent use

case that need to be handled immediately.

 Creating and activating “lock zones” (see Figure 43) that allow filtering situations

considering their level of priority. These zones can be described only on Time and

Location axes because they define the status of the user (free, busy, to not be

disturbed) and this status cannot be linked to the human activity of the user. This

means that a zone can be timely or geographically defined. We defined three levels

of zones:

o Free zone: This zone is the default level where any situation is equal and

able to be handled. If no other zone is defined, this zone will be considered

as the default state if no other zone is active.

o Busy zone: This level allows only important and urgent situations to be

handled.

o Dead zone: This is the highest level zone where only urgent situations are

allowed. It represents the zone where the user does not want to be bothered

with anything unless it is urgent.

Figure 42 - Filtering layers of situations

90 Chapter 6 – Situation Control and Reaction strategy

90

 Defining the priority level for the different sources (see Chapter 7) of situations.

These values are needed to calculate the relative importance of any given situation

to the user of the application. As every user is different, these values will reflect how

he/she presents his/her understanding of the importance of his/her situations. In

Chapter 7, we introduce the concept of situation sources (User, Social, and External).

The Situation Source Priorities shown in Figure 43 are the default values used if the

user does not specify any different values. The calculated priorities help the CE to

manage situation concurrency when and if it happens. In figure 43, we show the

relation between priorities, dynamicity, and privacy. When going from the free to the

dead zone we gain in privacy. In the other way, the user gains in dynamicity and

reactivity. By implementing this concept we allow the user to choose the way he/she

wished his/her application reacts.

Figure 43 - Lock zones and priorities

Inside the conditions repository of LLA, all information related to zones and priorities are

stored into a Conditions file that is synchronized with his/her cloud storage. Using the LLA

management UI, the user can, at any time, modify/delete/add/activate/de-activate lock zones.

He/she also can redefine any priority for any specific situation or injection source inside a

defined zone. These zones and priorities (conditions) are described using the same rules,

primitives, and operations as the contextual model (see Chapter 4) in order to keep the

coherency of the approach. Therefore, conditions can be described both graphically and

textually, except for the free zone because it represents the default state where no description is

needed and LLA is freely running.

91 Chapter 6 – Situation Control and Reaction strategy

91

 Graphically: This representation (see Figure 44) shows that for each zone, except

the free zone, the user could redefine the priorities regarding his/her sources and

situations.

Figure 44 - Graphical representation of lock zones

 Textually: The lock zone could be also defined textually using the following

representation where Z is a zone, D is a description, ISP is Injection Sources

Priorities, SSP is Specific Situations Priorities, and P is a priority:

Z: [Time/Location (Primitive (values, tolerance)...)]; [ISP [(Source, P)…]; SSP

[[(situation, P)…]]

The constraints and situation model helps LLA fully understand the user’s preferences and

filter situations in order to only consider pertinent ones.

An example for this could be shown by a user who represents his/her constraints in order to

reflect his/her habits. Let’s consider that this user splits his/her day into four zones. In the

following paragraph, we describe these zones graphically and textually.

 The first zone (see Figure 45) is a busy zone defined on the time axis starting

from 6 am to 8 am with 10 minutes tolerance. In this zone, the user wants to

prioritize situation injected by himself/herself and his/her social environment

and related to his morning habits.

Morning Busy Zone: [Time (After (6am, 10m); Before (8am, 10m))]; [ISP [(User, 3);

(Facebook, 3); (Google, 2)]; SSP [[(Coffee Situation, 3); (Weather Situation, 3); (Email

Situation, 2)]]

92 Chapter 6 – Situation Control and Reaction strategy

92

Figure 45 - Morning Busy Zone representation

 The second zone (see Figure 46) represents his work environment. It is

represented using the location axis (workplace) with 50 meters tolerance. In

this zone, he/she prioritizes work-related situations injected from his/her

employer.

Work Busy Zone: [Location (Inside (Workplace, 50m))]; [ISP [(User, 1); (Boss, 3); (Google,

1)]; SSP [[(Work Situation, 3); (Meeting Situation, 3); (Email Situation, 2)]]

Figure 46 - Work Busy Zone representation

 The third zone is a dead zone (see Figure 47) that highly limits and filters

situations in order to not disturb the user unless something urgent happens

(Government). This zone is defined from 10 pm until 6 am at the user’s house.

Sleeping Dead Zone: [Time (After (10pm, 10m); Before (6am, 10m)); Location (Inside

(Home, 50m))]; [ISP [(User, 1); (Government, 3); (Security Company, 3)]; SSP [[(Alarm

Situation, 3); (Wakeup Situation, 3); (Email Situation, 1)]]

93 Chapter 6 – Situation Control and Reaction strategy

93

Figure 47 - Sleeping Dead Zone representation

 The fourth zone represents the rest of the day. It is, by default, a free zone.

According to what the user has defined, in a free zone, situations coming from

social and external sources are prioritized.

3.2. Condition Evaluator module’s components

This CE, presented in Figure 48, is composed of three kalimucho components running

simultaneously in order to provide the wanted result.

Figure 48 - Condition Evaluator's internal architecture

The process of evaluating conditions starts by the User Constraints Component (UCC) which

monitors if the detected situations (from the Event Manager) violate the user’s constraints then

transfers them either to the Situation Holder Component (SHC) or the Priority Component (PC).

If the situation has the needed priority and does not violate the user’s constraints, it is

transmitted to the Action Orchestrator in order to deploy the appropriate services. This module

94 Chapter 6 – Situation Control and Reaction strategy

94

follows the condition repository where the application stores the user’s constraints and priority

model.

3.2.1. The User Constraints Component (UCC)

Figure 49 - User Constraints Component

The UCC (see Figure 49) has one input which consists of a list of situations that are detected

and th1at are about to start (coming from the Event Manager). This component verifies that

these situations do not violate the user’s zones (see Figure 42). It ensures that only situations

that are eligible to start are transferred to the PC. The ones violating these zones are sent to

another component that keeps them on hold (see SHC). This component also notifies the SHC

when there is a change in the current lock zone (e.g. from Free to Busy) so the SHC can re-send

the held situations to be re-evaluated by this component.

3.2.2. The Situation Holder Component (SHC)

Figure 50 - Situation Holder Component

This component (see Figure 50) acts as a holder for two types of situations: Situations

violating constraints; Situations that are valid but could not be handled due to the lack of a

required resource (camera, micro etc.). This component is a thread continuously verifying if the

held situations are still valid, which means that those situations didn’t overflow their respective

projections.

95 Chapter 6 – Situation Control and Reaction strategy

95

If it receives a constraint notification from the UCC, it sends back all the held situations to

the UCC in order to re-verify if they do not violate the constraints. If it receives a list (or single)

of situations to stop it removes them from the list of situations held.

3.2.3. The Priority Component (PC)

Figure 51 - Priority Component

This component (see Figure 51) is in charge of managing priority aspects for the user’s

situations. Using the defined priority model, this component calculates, according to the

urgency level of that situation and its source, the level of priority it has. It receives 2 types of

situations: Situations about to finish, which it will transfer to the next module without any

changes; Situations about to start (from SHC and UCC) for which it calculates the priority

levels. When multiple situations (starting and stopping) are detected and sent to this component

at the same time, it sorts them according to their priority and then transfers them to the AO. In

order to have a better chance of deploying the needed services, this component prioritizes

stopping already running situations if they have higher priority than the situations that are about

to be handled. When a situation is successfully handled it sends back a Success Notification to

tell the PC to send the next situation. If it fails it sends a failure notification so that situation is

transferred back to the UCC.

3.2.4. Example

In order to illustrate how the Condition Evaluator works, we study the example described in

Figures 52. The user is in a busy zone before 6 pm, on a free zone from 6 pm to 10 pm, and on

a dead zone after 10 pm. An interesting use case is presented in this scenario. When sleeping,

unexpectedly, a terrorist attack happened in Paris. To check that people are safe, the police

96 Chapter 6 – Situation Control and Reaction strategy

96

urgently notify anybody near the attack location to change their direction, Facebook also sends

their safety verification service to check if people around the attack area are safe. At the same

time, the app detects that there is an important situation to John, injected by his boss, but cannot

handle the situation because the situation is not urgent.

Figure 52 - Example scenario representation

For the purpose of focusing on condition evaluation, in the textual description below, we

only show the default tag of priorities and sources (see Chapter 6) of situations (no textual

contextual representation).

** New Movie (S0): [priority=P(1); source=External/cinema]

** Parking situation (S1): [priority=P(1); source=External/Carrefour]

** Shopping situation (S2): [priority=P(1); source=User]

** Home preparation situation (S3): [priority=P(1); source=User]

** Dinner situation: S4: [priority=P(1); source=User]

** Health situation (S5): [priority=P(2); source=External/Doctor]

** Family call situation (S6): [priority=P(2); source=User]

** Showtime (S7): [priority=P(1); source=External/Netflix]

** Home security situation (S8): [priority=P(3); source=External/SecurityCompany]

** Attack Alert situation (S9): [priority=P(3); source=Social/Facebook]

** Work situation (S10): [priority=P(2); source=External/Boss]

Table 12 presents the evolution of the user’s situation and priorities relative to his/her current

lock zones. It shows the inputs and outputs of the CE components.

97 Chapter 6 – Situation Control and Reaction strategy

97

Table 12: Situation filtering by the Condition Evaluator’s components

Busy

zone
Free zone Dead zone

--6pm 6pm-7pm 7pm- 8pm 8pm-9pm 9pm-10pm 10pm--

UCC

Inputs
Starting

situations
S0 S1, S2 S1, S3 S4, S5 S6,S7 88 S9, S10

Outputs

Constraint

notification
-- Free -- -- -- Dead zone

Starting

Situations

violating

constraints

S0 -- -- -- -- -- S10

Starting

Situations not

violating

constraints

-- S1,S2 S1, S3 S4, S5 S6, S7 S8 S9

SHC

inputs

Stopping

situations

--

--
S0, S1

(first)
S1, S3 S4, S5 S6, S7

Starting

Situations

violating

constraints

S0 -- -- -- -- S10

Constraint

notification
-- Free -- -- -- Dead zone

Situations

that cannot

be handled

-- -- -- --
-

-
S7 --

outputs
Situations

still valid
-- S0 -- --

-

-
S7 --

PC inputs

Starting

Situations not

violating

constraints

-- S0,S1,S2 S1, S3 S4, S5 S6, S7 S8, S9

Finishing

situations
-- --

S0, S1

(first)
S1, S3 S4, S5 S6, S7

Success

notification
--

S0,S1,S2

success

S1, S3

success

S4, S5

Success

S6 success

S7 failure

S8, S9

success

98 Chapter 6 – Situation Control and Reaction strategy

98

outputs

Situations

that cannot

be handled

-- -- -- --
-

-
S7

--

Situations to

deploy
--

S0 then

S1 then S0

S1

then S3

S4 then

S5
S6 then S7 S8, S9

Situations to

stop
-- --

S0, S1

(first)
S1, S3 S4, S5 S6, S7

AO --
S0, S1,

S2
S1, S3 S4, S5 S6, S7 S8, S9

The most interesting output of this module comes from the PC, which decides the order of

the situations eligible to be handled and those that will be stopped. This output is linked to the

action module of the ECA core.

4. Action orchestrator (AO) and Access Control List (ACL) device filter

After detecting the user’s context and considering his/her constraints and conditions, the

process of LLA comes to the final step. This step is focused on the devices instead of the user

in order to illustrate our fourth and final contribution of this work (see Chapter 3).

In this part, we present two mechanisms that work simultaneously to exploit the user-domain

(see Figure 26). These modules allow LLA to react to the detected situations in the way that the

user expects.

LLA handles the received situations (to start or to stop) by deploying or removing services

on/from the devices in a user-centered yet distributed way. This approach guarantees the

continuity, sustainability, and scalability of the services integrated into LLA by being able to

move their components freely between devices at run-time. In order to apply this approach,

LLA needs to implement the concepts of the service level of the situations (see Chapter 4).

Thus comes the need to categorize and specify the capabilities of the devices that will host

the services of the user. This also helps LLA in the matching process which links situations to

services expected by the user. Moreover, we need a modular service composition allowing the

needed dynamicity for LLA and providing a clear definition of the requirements and goals of

the components. Finally, we present the components composing the AO and ACL filter by

defining their inputs/outputs and workflow.

99 Chapter 6 – Situation Control and Reaction strategy

99

4.1. Device capabilities

The distributed nature of LLA imposes that we consider a great number of devices

simultaneously. These devices are usually different in terms of hardware and capabilities. This

factor is very important for LLA because it affects directly where and how services run inside

the user-domain.

Therefore, for each device, LLA should have a clear full description of its capabilities and

accessibility (see Chapter 3). To do so, every device on the domain must provide to the rest of

the devices its description (capabilities and accessibility). This information is stored into the

“DeviceCapabilities” file when LLA is first installed. This file contains three categories of

information.

 Dynamic capabilities: These capabilities represent the hardware specifications that

have different states (Status). For example, the Battery level is a changing value that

could be interesting to be monitored on the run in order to sustain LLA and have no

interruptions. This is represented by the “Status” column.

 Static capabilities: These capabilities represent hardware specifications that cannot

evolve (Model, Power, Unit, Returned data type). A camera with 12MG, for

example, will always retain that feature all the time.

 Concurrency capabilities: The concurrency (Availability) represents the availability

of the resources that cannot support multiple usages or be shared between different

services. The Microphone, for example, is a resource that requires being used only

by one process (component) at a time.

This information is presented in a structured way that helps the AO to know the full status

of the device and decide if it is eligible to deploy the component.

Capability Model Power Unit Returned data type Status Availability

As an example, we consider a Samsung Gear S3 [45] (smart-watch) that has LLA installed

and running. Table 13 represents its capabilities at a random time when the user is making a

phone call using it.

100 Chapter 6 – Situation Control and Reaction strategy

100

Table 13: Samsung Gear S3 capabilities

Capability Model Power Unit Returned data

type

Status Availability

Microphone -- -- -- Sound -- Taken

GPS GLONASS -- -- GPS

coordinates

-- Free

Accelerometer -- -- -- Acceleration -- Free

Gyroscope -- -- Degrees Angular

position

-- Free

Heart-rate

sensor

-- -- BPM Heart frequency -- Free

Barometer -- -- Pa Atmospheric

pressure

-- Free

Battery Li-Ion 380 mAh Charging Level 35% Free

Processor Dual-core 1.0 GHz Processing

power

80% Free

RAM -- 768 MB Memory usage 300 Free

Storage -- 4 GB Storage capacity 1.5 Free

Network Wi-Fi 802.11 -- Bandwith -- Free

Display Super

AMOLED

1.3 inches -- -- Free

Audio -- -- -- Sound -- Taken

Vibration -- -- -- -- -- --

4.2. Service composition model and component requirements

LLA services are expected to run on connected rich environments. Therefore, they should

be mobile, adaptable, and most importantly modular. The mobility aspect is ensured by the

Kalimucho middleware. The adaptability aspect comes from the awareness of the devices that

host these services. The modularity aspect is ensured by the de-composition aspect that we

propose. Indeed, LLA services, are composed by Kalimucho components that are mutually

exclusive and atomic and who communicate only by exchanging relevant data.

101 Chapter 6 – Situation Control and Reaction strategy

101

Furthermore, each component has hardware requirements in order to run as expected. These

requirements are related to the nature of the task and the category of the component.

4.2.1. Service Composition

Using the same logic as the global architecture of LLA, the service is composed of three

main categories of components (see Figure 53).

Input Components: These components act as extractors of data from devices, sensors, or

from the user’s physical input (keyboard, click). They can either run in the background if no

interaction is needed or be joined to LLA’s UI if the user’s input is needed (back-end/front-

end).

Core components: These components require usually heavy processing because they

coordinate the service’s overall workflow and execute the most important tasks. These

components always run in the background (back-end) never to be seen by the user.

Output Components: These components are what the user expects to see (front-end) when

his/her context changes. They are the interface of the service and they join the LLA’s main UI

as an incorporated feature into the application. They are removed from the interface when the

context changes or when the user stops the service manually. Stopping them manually will stop

the entire service.

Figure 53 - Service composition architecture

Nonetheless, it is not mandatory to have all three kinds of components in the same time for

the service to be able to run. Some services, like reminders and notifications, for example,

require only an output.

102 Chapter 6 – Situation Control and Reaction strategy

102

4.2.2. Component requirements

Due to the different tasks performed by the components, the hardware requirements vary

greatly. For each category of components, LLA focuses on a specific set of requirements. In

order to present this into LLA, the general query rule is:

 !Ressource: This query means that the component request and needs the

presence of a specific resource. For example, “!GPS” means that the device

should have a GPS in order to run that component.

We use the following query rules for static capabilities:

 S!Ressource = “M”: This query means that the component request and needs

the presence of a specific resource with the specific model M.

 S!Ressource >, <, >= or <= Power unit: This query means that the component

request and needs the presence of a specific resource and preferably with a power

value greater than a value (Power unit). For example, “(S!Processor = ARMv7)

> 1.5Ghz” or “S!DISPLAY < 12inch” .

For dynamic resources, which can change their status during runtime, LLA understands the

following rules:

 D!Ressource >, <, >= or <= Status unit: This query means that the component

request the presence of a specific resource that has the required status. For

example, “D!Ram>200MB” means that the device should have a RAM which

has more than 200MB of free memory.

 D!Ressource is Free: This query means that the component needs a resource

which is either free or taken.

These rules consider binary “&” and “||” binary operations. For example, if the component

requires the presence of a camera and 4GB RAM, the rule is defined like: ((!Camera)&(s!RAM

> 4GB)). The different categories of components have a variety of requirements.

Firstly, input components focus on extracting data from devices which makes them require

the presence of a specific set of resources. The data could be in any format (video, sound, text,

etc.) and extracted from any device meeting the requirements. Therefore, we identified 2

categories of hardware requirements:

103 Chapter 6 – Situation Control and Reaction strategy

103

 Service related: Camera, Microphone, Keyboard, Mouse, Fingerprint scanner,

and GPS.

 Sensor related: Accelerometers, Gravity Sensors, Gyroscopes, Rotational

Vector Sensors, Barometers, Photometers, Thermometers, Orientation Sensors,

Magnetometers, Heart rate, etc.

Secondly, core components focus on running the heavy calculations and handling the most

important components of the service. Therefore, they consider, most importantly, the hardware

specification related to calculation time and space. For these components, we identify the

following requirements:

 Battery: Even though having a battery is not mandatory for all devices (e.g. computer),

for portable devices this feature is useful in knowing the level of charge and therefore

knowing the state of the device.

 Processor: These components ask the device for their processor’s type, capacity in

terms of processing power and current status.

 RAM: For components that require an important amount of memory usage, this resource

is very important.

 Cache: This requirement represents the ability to store data so future requests for that

data can be served faster; the data stored in a cache might be the result of an earlier

computation or the duplicate of data stored elsewhere.

 Storage: Some services might require storing data on the device thus the need for a

physical memory storage.

 Network: This feature presents the connectivity options on the device.

 Graphics: For components with 3D animations, like video games, for example, this

feature could be required and helpful.

 Finally, output components focus on running UI and other forms of feedback like sound

and vibrations. Since LLA is running in a distributed environment that might be filled

with different devices, choosing the best form of feedback is an important factor to

ensure a fluent and interesting user experience. For these components, we identify the

following requirements:

 Display: This is the main feature for interacting with the user. The devices possessing a

screen will host the UI of LLA and the services.

104 Chapter 6 – Situation Control and Reaction strategy

104

 Audio: For components that require an audio output, this requirement is very important.

 Vibration: Most devices, nowadays, are able to vibrate. Therefore, this is considered an

important type of feedback.

 LED: This is the most primitive, yet still used, type of feedback. Illuminating a led in a

different color could be a good indication of the type of feedback.

 OTHER: This category is for any other non-conventional format of output like, for

example, temperature coming from a connected heating system.

The service composition and requirements are specified by the developer of the service and

added in the description of the service in the Services description & requirements file in the

persistence layer (see Chapter 3). The description is presented both textually and graphically.

Graphically: The graphical representation is used to have a clearer understanding of the

composition strategy for the service (see Figure 53).

Textually: A description for service is presented textually in the following format.

Service: [Input [Component (Component requirements &,||…); ...]; Core […]; Output

[…] | Links (ComponentN -> ComponentN+1;…)]

For example, a video chat service (see Figure 54) that uses our modular composition would

contain 5 components: Picture feed component, Sound feed component, Text feed component,

Video chat core component, and Video chat UI component.

Figure 54 - Video chat service composition graphical representation

105 Chapter 6 – Situation Control and Reaction strategy

105

Textually, this service is presented as follows:

Video chat service: [Input [Picture feed component (!Camera); Sound feed component

(!Microphone); Text feed component ((!Keyboard)||(!Display))]; Core [Video chat core

component (D!RAM>1GB)]; Output [Video chat UI component (S!Display>10inch);] | Links

(Picture feed component -> Video chat core component; Sound feed component -> Video chat

core component; Text feed component -> Video chat core component; Video chat component -

> Video chat UI component;)]

These components are linked to each other, via Kalimucho connectors, yet work separately

on their specific tasks in order to form the overall behavior of the service. Naturally, these

components have hardware requirements that the devices need to provide in order for the

service to be executed in a functional state.

4.3. Matching services to situations

In LLA, for each situation, a mapping is considered. The mapping matches situations to

services in order to respond to contextual changes when needed. Using the service composition

and component requirement concepts, the matching defines clearly the needs of the service in

terms of optimal distribution. A mapping M is presented textually in the following format,

where P is a projection and Sn is a situation.

M : Sn [P(1..n) [Service; …]]

In the persistence layer (see Chapter 3), these textual representations are translated into XML

and injected into the user’s application (Mapping) in order to define his/her responses to the

detected situations.

Having defined the service layer (see Chapter 4), we have the full description of the situation

(context and service). For example, in figure 55, a graphical full description is shown. This

representation shows an example of an important (P(2)) monthly work meeting situation done

remotely using a video chat service.

106 Chapter 6 – Situation Control and Reaction strategy

106

Figure 55 - Monthly Work Meeting full representation

Using the same video chat service example (see Figure 55), the textual representation of the

mapping is as follows:

M1: Monthly work meeting [Projection1 [Video chat service]]

This indicates that when the Monthly Work Meeting situation is detected and is about to

start, LLA will deploy the video chat service. If the situation is ending, LLA stops the service

by stopping all its components.

4.4. Orchestration and control components

After explaining the concepts related to service composition, situation mappings, and device

capabilities, the focus of this part is to define the internal components that work inside the

Action Orchestrator and ACL filter. These components use the defined concepts (Mappings,

Service descriptions, Requirements, Device capabilities, and User-Domain) in order to launch

or stop the services needed in the best way possible while taking into account their requirements

and the status of the user-domain.

This internal architecture, represented in Figure 56, is composed of multiple components

each performing a task separately and simultaneously while communicating the results to each

107 Chapter 6 – Situation Control and Reaction strategy

107

other. The Parser is the module enabling these components to access the data stored in the files

in the persistence layer.

Figure 56 - AO and ACL internal architecture

The process of orchestrating services starts by receiving the results of the previous module

(CE). Using these results, it adapts LLA to the needs of the user by stopping and starting

services.

4.4.1. Situation Tracker Component (STC)

Figure 57 - Situation Tracker Component

This component (see Figure 57) keeps track of all the situations that are currently running.

It consults the mapping file in order to know how to respond to a certain situation.

It takes as input the list of situations that are able to start (organized according to their

priorities). It receives also from the Situation Manager component a list of ending situations. It

consults the mappings, received from the Parser, and then identifies the service that needs to be

started and stopped. For each starting services that this component sends to the Orchestrator

component, it receives a success/failure notification indicating if that service was successfully

108 Chapter 6 – Situation Control and Reaction strategy

108

deployed on the user’s devices. When this notification is received, this component sends it to

the previous component, which is the Priority Component (CE module).

4.4.2. Orchestration Component (OC)

Figure 58 - Orchestration Component

This is the main component (see Figure 58) that will shape LLA into the application that the

user requires and expects. It orchestrates how the application will run in the user-domain

(devices). It takes the list of components to deploy and those to stop. It also takes in the list of

available devices, their capabilities, and their accessibility.

According to the requirements of the components about to be launched, it chooses the best

fit device to host that component. These choices make the orchestration of the application

around the user optimal. As output, it sends deployment and stopping commands (see Appendix

1) to the Kalimucho platform.

For launching commands, Kalimucho fetches the required component firstly in the local

CREP (Component Repository), Secondly in the CREP of the other devices accessible to the

user (domain) and finally on the cloud layer. For stopping commands, Kalimucho simply stops

the components.

4.4.3. Device Management Component (DMC)

Figure 59 - Device Management Component

109 Chapter 6 – Situation Control and Reaction strategy

109

This component (see Figure 59) scans the domain and receives the status, capabilities, and

accessibilities of all the other devices around the user. It considers the same things for the

internal device hosting this instance of the platform. It sends the information about the internal

device to the other devices in the domain.

4.4.4. Example

In order to demonstrate how the Action Orchestrator and ACL filter both work, we study a

portion of the example described in Figures 60. The focus on this example is to show the

evolution of actions of LLA by adding and removing services on multiple devices.

Figure 60 - Scenario portion

The considered situations all happen consecutively while the user is at home. For each one,

LLA deploys different services and closes others. The mapping for these situations is textually

represented as follows.

** M1: Dinner Situation [Projection1 [News service]]

** M2: Health Situation [Projection1 [Health check service]; Projection2 [Medicine

Reminder Service]]

** M3: Family Call Situation [Projection1 [Skype service]]

The service description for these mappings is textually represented as follows.

110 Chapter 6 – Situation Control and Reaction strategy

110

**News Service: [Input [Remote Control component ((S!Display>=5inch)&

(S!Network=Infrared||Bluetooth\\Wifi))]; Core [News Stream component (S!RAM>2GB;

S!Network=Infrared&WiFi)]; Output [Image output component (S!Display>28inch); Sound

output component (S!Audio>50dB)]) | Links [Remote Control component -> News Stream

component; News Stream component -> Image output component; News Stream component -

> Sound output component)]

**Health Check Service: [Input [Health data collector component ((!Heart rate sensor)&

(!Accelerometer)&(!Gyroscope))]; Core [Health data analyzer component (D!RAM>1GB)];

Output [Results component (S!Display>5inch)] | Links (Health data collector component ->

Health data analyzer component; Health data analyzer component -> Results component;)]

**Medicine Reminder service: [Output [Results component (!Display;)]]

**Skype service: [(Input [Picture feed component (S!Camera=”CMOS-High Def”); Sound

feed component (!Microphone); Text feed component ((!Keyboard)||(!Display))]; Core [Skype

core component (D!RAM>2.5GB)]; Output [Image output component (S!Display>16inch);

Text UI component (S!Display>10inch); Sound output component (S!Audio<40dB)] | Links

(Picture feed component -> Skype core component; Sound feed component -> Skype core

component; Text feed component -> Skype core component; Skype core component -> Image

output component; Skype core component -> Sound output component; Skype core component

-> Text UI component;)]

Graphically, the service layers of these situations are represented in Figure 61.

111 Chapter 6 – Situation Control and Reaction strategy

111

Figure 61 - Situations service layers

112 Chapter 6 – Situation Control and Reaction strategy

112

Table 14: Example of User-Domain

Device Capability Model Power Unit Returned data type Status Availability

Samsung

Gear S3

See Table 13.

HP Envy

Laptop [54]

Processo

r

Intel® Core™

i7-7500U-Dual

3,5 GH

z

Processing power 90% Free

RAM DDR4 12 GB Memory usage 6.8 Free

Storage SSD 256 GB Storage capacity 160 Free

Camera -- 8 MP Photo/Video -- Free

Display -- 15,6 inc

hes

-- -- Free

Keyboar

d

-- -- -- Text -- Free

Home

audio

system [75]

Audio Pro 7.1Ch

400W

104 dB Sound -- Free

Display -- 2 inc

hes

-- -- Free

Network Wi-Fi,

Infrared,

Bluetooth

-- -- -- -- Free

Sony

KDL-

43W805C

Smart-TV

[93]

Display X-Reality 43 inc

hes

-- -- Free

Network Wi-Fi,

Infrared,

Bluetooth

-- -- -- -- Free

Audio -- 40 dB Sound -- Free

Microsof

t Kinect 2

[69]

Camera CMOS- High

Def

3.5 MP Photo/Video -- Free

Color,

Tilt, Depth

sensors

-- -- -- -- -- --

113 Chapter 6 – Situation Control and Reaction strategy

113

When these situations happened (initial state), the user is in his/her home where he/she has

a user-domain (Domain 1) of devices represented in Table 14. In this table, all the devices are

private to the user and we only present the features interesting for the example around the time

when the Dinner situation is detected. Table 15 presents the evolution of the orchestration

process through the component considering the available devices and required capabilities. It

shows the inputs and outputs of the AO and ACL components. In table 13:

 Domain 2 and Domain 3 both contain the devices presented in Table 14.

They represent the evolution/changes (new device detected, a device left the

domain, etc.) of Domain1 that the LLA started with. These changes affect also

the dynamic and concurrency capabilities (see 1. Device Capabilities).

 The success and failure notification row is represented using two

columns because of the delay in receiving back the notification

Microph

one

-- -- -- Sound -- Free

Samsung

Galaxy S4

[46]

Microph

one

-- -- -- Sound -- Free

Camera Back, Front 12, 2 MP Photo/Video -- Free

GPS -- -- -- Coordinates. -- Free

Battery Li-Ion 2600 m

Ah

Charging Level 80% Free

Processo

r

Octa-core

(Cortex-A15

,Cortex-A7)

1.2&1

.6

GH

z

Processing power 90% Free

RAM -- 2 GB Memory usage 1,2 Free

Storage -- 16 GB Storage capacity 3.2 Free

Network Wi-Fi,

Infrared,

Bluetooth, NFC

-- -- -- -- Free

Display Super

AMOLED

5 inc

hes

-- -- Free

Audio -- 30 dB Sound -- Free

114 Chapter 6 – Situation Control and Reaction strategy

114

Table 15: Situation analysis by the Event Manager's components

STC Inputs Situations about to start Dinner Situation (projection1) Health Situation (projection1) Family call Situation

Situations about to finish -- Dinner Situation Health Situation

Success/failure notification -- Dinner situation Success -- Health situation Success -- Family call Success

Outputs Services to deploy News Service Health Check Service Skype Service

Services to stop -- News Service Health Check Service

Success/failure notification -- Dinner situation Success -- Health situation Success -- Family call Success

DMC Inputs Other Devices cap, access Devices in domain 1 Device in domain 2 Devices in domain 3

Outputs Domain (device list) Domain1 (see Table 14) Domain 2 Domain 3

Device status, cap, access HP Envy Laptop HP Envy Laptop HP Envy Laptop

OC Inputs Domain Domain 1 Domain 2 Domain 3

Services to deploy News Service Health Check Service Skype Service

Services to stop -- News Service Health Check Service

Outputs Success/failure notification Dinner situation Success Health situation Success Family call Success

Launch commands Commands 1 Commands 2 Commands 4

Stopping commands -- Commands 3 Commands 5

115 Chapter 6 – Situation Control and Reaction strategy

115

The most interesting output of this module comes from the OC, which launches the

commands that can be interpreted by the Kalimucho middleware in order to start and stop

components on the appropriate devices. In the following, we present the commands required in

order to orchestrate the services on the user-domain after selecting the best eligible devices.

 Commands 1 (deploying the News Service):

SamsungGalaxyS4 : CreateConnector RCC SamsungGalaxyS4 HpEnvyLaptop

HpEnvyLaptop ; CreateConnector IOC HpEnvyLaptop SonyKDL

HpEnvyLaptop : CreateConnector SOC HpEnvyLaptop HomeAudioSystem

SamsungGalaxyS4: CreateComponent RemoteControl

application.BBC.News.Input.RemoteControlBC [null] [RCC]

HpEnvyLaptop: CreateComponent NewsStream

application.BBC.News.Core.NewsStreamingBC [RCC] [IOC SOC]

SonyKDL: CreateComponent ImageOutput

application.BBC.News.Output.VideoPlayerBC [IOC] [null]

HomeAudioSystem: CreateComponent SoundOutput

application.BBC.News.Output.SoundPlayerBC [SOC] [null]

Compared to Domain 1, Domain 2 contains the same devices. The first change is that the

availability of the Audio capability of the HomeAudioSystem is changed to Taken after

launching the News service. The second change is on the status level of the HpEnvyLaptop’s

RAM and Processor capability. After deploying the NewsStream component, which takes an

amount of memory and processing power, the status values are changed.

 Commands 2 (deploying the Health Check Service):

SamsungGearS3 : CreateConnector HDC SamsungGearS3 HpEnvyLaptop

HpEnvyLaptop : CreateConnector HSC HpEnvyLaptop SonyKDL

SamsungGearS3: CreateComponent HealthDataCollector

application.HospitalBayonne.Karchoud.Input.DataCollectorBC [null] [HDC]

HpEnvyLaptop: CreateComponent HealthDataAnalyzer

application.HospitalBayonne.Karchoud.Core.DataAnalyzerBC [HDC] [HSC]

116 Chapter 6 – Situation Control and Reaction strategy

116

SonyKDL: CreateComponent HealthStatus

application.HospitalBayonne.Karchoud.Output.ResultsBC [HSC] [null]

 Commands 3 (stopping the News Service):

SamsungGalaxyS4 : RemoveConnector RCC

HpEnvyLaptop : RemoveConnector IOC

HpEnvyLaptop : RemoveConnector SOC

SamsungGalaxyS4: RemoveComponent RemoteControl

HpEnvyLaptop: RemoveComponent NewsStream

SonyKDL: RemoveComponent ImageOutput

HomeAudioSystem: RemoveComponent SoundOutput

The change in Domain 3 happens on the availability level of the Audio capability of the

HomeAudioSystem is changed back to Free after stopping the News service. The RAM and

Processor statuses are also affected accordingly. The HealthDataAnalyzer affects also the RAM

and Processor of the HpEnvyLaptop.

 Commands 4 (deploying the Skype Service)

MicrosoftKinekt1520 : CreateConnector PFC MicrosoftKinekt1520 HpEnvyLaptop

HpEnvyLaptop : CreateConnector SFC SamsungGalaxyS4 HpEnvyLaptop

HpEnvyLaptop : CreateConnector TFC HpEnvyLaptop HpEnvyLaptop

HpEnvyLaptop : CreateConnector TUIC HpEnvyLaptop HpEnvyLaptop

HpEnvyLaptop : CreateConnector IOC HpEnvyLaptop SonyKDL

HpEnvyLaptop : CreateConnector SOC HpEnvyLaptop SamsungGalaxyS4

MicrosoftKinekt1520: CreateComponent PictureFeed

application.Skype.Input.PictureFeedBC [null] [PFC]

SamsungGalaxyS4: CreateComponent SoundFeed

application.Skype.Input.SoundFeedBC [null] [SFC]

HpEnvyLaptop: CreateComponent TextFeed

application.Skype.Input.TextFeedBC [null] [TFC]

HpEnvyLaptop: CreateComponent SkypeCore

application.Skype.Core.SkypeCoreBC [PFC SFC TFC] [IOC TUIC SOC]

117 Chapter 6 – Situation Control and Reaction strategy

117

SonyKDL: CreateComponent ImageOutput

application.Skype.Output.ImageOutputBC [IOC] [null]

SamsungGalaxyS4: CreateComponent SoundOutput

application.Skype.Output.SoundPlayerBC [SOC] [null]

HpEnvyLaptop: CreateComponent ChatUIOutput

application.Skype.Output.ChatUiBC [TUIC] [null]

 Commands 5 (stopping the Health Check Service) :

SamsungGearS3 : RemoveConnector HDC

HpEnvyLaptop : RemoveConnector HSC

SamsungGearS3: RemoveComponent HealthDataCollector

HpEnvyLaptop: RemoveComponent HealthDataAnalyzer

SonyKDL: RemoveComponent HealthStatus

After Kalimucho runs Command 4 and Commands 5, Domain 3 has the following changes:

the availability of the Sound and Microphone capabilities of SamsungGalaxyS4 is changed to

Taken; the availability of the Camera capability of MicrosoftKinekt1520 is also changed to

Taken.

5. Conclusions

User preferences and user experience are major factors that developers and designers should

consider when implementing their applications if they want to keep up with the evolution of the

user’s connected world and evolving needs.

LLA incorporates a mechanism that enables the user to have a better, distributed, and hands-

free experience using a distributed adaptable service layer tailored to his/her specific needs and

hardware limitations.

In our proposal, we highly consider the user’s status and conditions by incorporating a Lock

Zone approach capable of filtering the user’s possible situations according to his/her current

availability status (free, busy, etc.). We also provide a dynamic priority management feature

that handles the concurrency of situations and organizes them while considering their own

importance level, the user’s status, and their sources importance level.

These sources are presented in the next chapter, which is dedicated to showing how LLA

enables furthermore dynamicity by offering a new concept called context injection.

118 Chapter 7 – Situation Injection Mechanism

118

Chapter 7 – Situation Injection Mechanism

119 Chapter 7 – Situation Injection Mechanism

119

1. Introduction

A major issue with mobile applications in general and context-aware applications, in

particular, is their repetitiveness and limitation to restricted application domains or closed

spaces equipped with sensors [52].

With the aim of overcoming this issue, the LLA application handles a semi-automatic,

collaborative, open injection mechanism that continuously provides the user with richer

contextual awareness and more suitable services. In this way, we ensure the continuous growth

of LLA by making it able to enhance and enrich the user experience by managing (adding,

deleting, or modifying) new situations introduced through the injection mechanism. This

mechanism is based on a user-friendly situation model in order to make the injection an easy

and understandable procedure that can be performed even by end-users with no understanding

of technical issues.

The injection mechanism has multiple sources of injection and communicates directly with

the persistence layer of the application.

2. Situation injection mechanism

One main novelty of LLA is a collaborative mechanism [62] that enables users and other

external sources to continuously and proactively introduce new situations into the user's

application, in order to improve its understanding and reliability and overcome the lack of

dynamicity in current context-aware applications.

Figure 62 - The Injector's workflow

120 Chapter 7 – Situation Injection Mechanism

120

The injector acts as an input (inserter) dedicated to enriching the context awareness

considered for the user from diverse sources. It can inject/modify/delete/update situations

and/or services without having to access directly the devices of the user. These sources can

inject the situation's description into the user's app by interacting with the persistence layer of

the user (see Figure 62). The data of this layer is stored in a cloud storage and is shared among

all the user's devices. This solution avoids redundancy and inconsistencies among user devices

regarding his/her situations in order to keep the coherence of LLA.

One benefit of using this high-level contextual injection mechanism, which extracts context

data from multiple sources, is the capability to provide a way of increasing continuously the

repository of monitored situations and thus be more customized to the user.

The LLA needs to be aware of the user's habits, needs, and social environment. Three main

categories of context injection sources are considered by the application. Each main source of

injection uses a different process to collaboratively update the application of the user in a

transparent way that does not require any unnecessary downloads.

The advantage of this mechanism resides in eliminating the time and network usage usually

needed, by current existing applications, to do regular heavy updates for even the simplest

changes in the code base. Using our approach, the updates will be occasional and probably

affect only the situation's file or the mapping file by using already-stored components. Even on

the service level, developers will be able to modify components separately and therefore have

fewer and lighter updates.

2.1. User's Injection Process

The first source of situations is the user himself/herself, and more precisely his/her needs

and habits. What motivated us to propose this is the repetitiveness that users feel while they set

their alarm every night or while they open their emails every morning. These habits can be

automated in order to help the user to have the same experiences without having to always

perform those same tasks again and again.

To do so, the user has the possibility to use either the injector's UI, which is accessible from

his/her LLA's Manager UI (mobile version) or the Web Injector. In the first case (see Figure 62

“Uses (2)''), the mobile injector is dedicated to building simple and fast situations by working

on only 1 projection and 3 axes per situation.

In the second case (see Figure 62 ``Uses (3)''), the web application allows a more precise

and rich description of situations and services using multiple projections and 6 axes.

121 Chapter 7 – Situation Injection Mechanism

121

 In both cases, the user can either create, delete or modify a situation by inputting/modifying

the required values (like the time, location and activity) and then update or create a matching

by selecting a service or a set of services to be deployed when the situation is detected. The user

can also decide to share these situations with other users.

After selecting the service/services, the user verifies if the components composing the

selected service exist in his/her repository. A possible extension from this end would be to have

a store for services instead of applications, where users can select services to download into

their local or cloud storage in order to use them willingly when needed. Nonetheless, if the user

wishes for the required service to not stay on his/her storage space, he/she could specify to

trigger the download only when the situation is detected and ask to be deleted when that

situation finishes.

Finally, the user has the possibility to subscribe to, or unsubscribe from, other injection

sources freely, giving these sources the possibility to provide him/her with new situations,

mappings, and services.

2.2. Collaborative Social Environment's Injection Process

Social media has become the largest source of information about users' activities,

preferences, etc. Moreover, we live nowadays in the age of media sharing.

In this scope, the injector incorporates into the LLA's architecture a transparent component

running in the background, which monitors the user's social media (if the user subscribes to it

and allows this monitoring) in order to suggest/recommend new situations.

In order to build these suggestions, the injector follows a specific process (see Figure 62

``Monitors (4)''). After extracting events and birthdays from Facebook, tasks from Google

Calendar, etc., the injector mechanism asks the user to specify the tolerance and the expected

reaction to these potential situations. The user can select services from the Services Repository

to be deployed automatically when the situation is detected.

If the monitor detects a new shared situation coming from another user, it suggests it to the

user and allows him/her to choose whether to download the services that other users recommend

for that specific situation or select his/her own services. Otherwise, if the user does not specify

any reaction strategy, the application creates a situation and assigns a reminder service by

default. This widens the applicability of contextual engagement by giving the user the

possibility to create/share his/her own situations or extract them automatically from his/her

social environment (using data from Facebook, Google Calendar, Twitter, etc.).

122 Chapter 7 – Situation Injection Mechanism

122

For example (see Figure 63), if the user received an invitation to a concert event on Facebook

(Tuesday 25th July 2017 at Bayonne Center) and he/she chooses to participate, the injector's

recommendation component, which is monitoring the user's social media, detects this event,

builds a situation, and proposes to the user to add it to his/her own situations; then, the user

accepts this situation; finally, he/she also selects a ticket provider service and a video streaming

service that he/she wishes to use when the concert situation happens.

Figure 63 - Concert event situation

2.3. External Providers' Injection Process

This is a very important source of injection in this proposal, as it completes the mechanism

with an open system that can provide endless possibilities to the user by continuously proposing

new situations and services. Whereas the other sources of injection (user and social) handle

private and social situations, this source covers a wider range of situations related to a variety

of domains that otherwise could not be considered. The providers are external sources that the

user can subscribe to in order to allow them to inject his/her application with situations and

provide him/her with services.

For these sources, the process of injecting situations (see Figure 62 ``Uses (1)'') is done with

the help of the web application. Providers can create situations (like users), and then select

among their subscribers the ones that are concerned by that situation. Nonetheless, they should

implement their own services and components using the Kalimucho framework. Finally, the

injector broadcasts those situations, mappings, and services, to the concerned users.

123 Chapter 7 – Situation Injection Mechanism

123

The situations and mappings are described via a web application and then injected to the

subscribers of the provider along with the appropriate services (software components). The

providers are classified into three main categories;

2.3.1. Government providers

The first category is formed by government organisms and services (universities, hospitals,

the police, etc.). If the user subscribes to these organisms, he/she allows them to inject

situations.

 For example (see Figure 64), if the police decide to close the borders due to an emergency,

it injects that situation to all the users in the vicinity, in order to notify them and propose another

road when the user gets close to the borders on that specific date.

Figure 64 - Border closing situation

2.3.2. Businesses and private companies

Any business (MacDonald, Carrefour, a gas station, etc.) can offer its situations and allow

users to subscribe and use its services. Considering other applications that use context

awareness to aim advertisements for users, our proposal provides a new way to engage those

users, not limited to texts and notifications but enhanced by the possibility to offer dedicated

customizable services instead.

For example (see Figure 65), a parking company can construct and inject a situation into the

users' situation repository that, upon detecting that the user entered one of its parking areas,

124 Chapter 7 – Situation Injection Mechanism

124

deploys a parking service to help the user find the closest empty space and remind him/her

where he/she parked when he/she gets back to leave.

Figure 65 - Parking situation

2.3.3. Institutions/Organizations/Associations

These providers represent the non-governmental entities that do not necessarily have a

financial gain from the user.

An example (see Figure 66) of this would be a football team that injects training sessions

situations to its players' applications. When the defined primitives are verified and service

hardware requirements are met, LLA deploys the Biometric Monitor Service.

Figure 66 - Training situation

125 Chapter 7 – Situation Injection Mechanism

125

3. Conclusions

In a world where users are surrounded by smart objects, fast Internet, and almost-unlimited

data storage, users have higher expectations from their apps. Contextual awareness is essential

to the survival of mobile applications. However, current context-aware applications have

multiple limitations in terms of dynamicity and evolution.

The LLA surpasses these limitations by offering a dynamic injection mechanism allowing

users, developers, and other entities, to expand the application and customize it according to

the user's needs.

At this level, we already presented how situations are injected, detected, stored and

manipulated. The next chapter presents the prototype that we implemented in order to study the

feasibility and applicability of our proposal.

126 Chapter 8 – Prototype and Validation

126

Chapter 8 – Prototype and Validation

127 Chapter 8 – Prototype and Validation

127

1. Introduction

In the previous chapters, we presented our proposal following a sequential order starting by

injecting and capturing context and ending by deploying or stopping services. This process is

clearly defined (on both a technical and abstract level) step by step which makes following the

workflow of LLA a simple task. Moreover, when implementing LLA, we inserted logging

events in all the components in order to effortlessly follow the functioning and evolution of the

process.

Due to the huge amount of possibilities and parameters considered by LLA, we propose to

present the whole process by implementing the scenario described in Chapter 1. This scenario

will help to validate our proposal, exhibit our claimed contributions, test the feasibility of our

approach, and demonstrate the sustainability of our prototype.

In order to achieve this, we firstly present in this chapter, the evolution of LLA when applied

to John’s travel scenario. Secondly, we show and discuss the limits, metrics, measures, and

results of our proposal.

2. Establishing and testing the scenario

When using LLA, users do not have to worry about installing/deleting/updating/configure

multiple applications. Nonetheless, for LLA to function properly, some preconditions need to

be verified.

In the following sub-section, we present the pre-conditions that John needs to set up in order

to LLA to provide him with the expected behavior.

2.1. Pre-Conditions

 The most basic pre-condition that needs to be met is, of course, installing LLA on all

the devices that the user wishes to use. All the installed instances communicate with

each other and work collectively as one application (see Figure 26).

 A newly installed LLA is an empty application. When installing it for the first time, the

user should provide a set of information necessary to enable the application to work

properly. This set information is the following:

o User account: Authenticating the user with a Facebook or a Google account (see

Figure 67). This authentication will help LLA recognize the user and

128 Chapter 8 – Prototype and Validation

128

synchronize his/her devices and cloud persistence layer. Moreover, linking LLA

with Facebook and Google will help the Injector to extract the bio information

(age, birthdate, birthplace, picture, etc.), events, and interests of the user which

helps the Injector to propose new situations and start to fill the Situations file in

the persistence layer.

Figure 67 – Authentification UI in LLA

o User private Encryption Key and Device Name: This key is a text provided by

the user and used by LLA to discover other instances installed on other devices

and to encrypt the exchanged data between them (see Figure 68). The Device

Name is an optional value that names the device as the user prefers to name it.

Figure 68 – Defining the encryption key

129 Chapter 8 – Prototype and Validation

129

o Locations: This is an optional input but recommended in order to help LLA

understand the user in a more efficient way. The user can define (see Figure 69)

geographically some interesting locations related to his/her everyday life

(Home, Workplace, School, etc.).

Figure 69 – Defining home location using LLA

o Injection Sources: The user should subscribe to sources of situation injections

that he/she deems interesting (see Figure 62). This step is optional but

recommended if the user wishes to have a richer and more dynamic application.

This step can be undone later by unsubscribing from those sources if the user

wishes to do so.

o Lock Zones: This step is also optional and can be done (or undone) later in the

process. The user can define his/her lock zones (zones that filter the user’s

situations and manage priorities) and injectors’ priorities. By default LLA

considers the user to be free.

o Situations: In order for LLA to start reacting to contextual changes, the user

needs to either subscribe to external injectors and/or define his/her own basic

everyday situations (see Figure 70). Defined situations can be deleted or de-

activated later.

130 Chapter 8 – Prototype and Validation

130

Figure 70 – Adding a new situation using LLA’s UI

 The user should verify the connectivity and stability of his/her devices. Although LLA

is able to function off-line, it is highly recommended to keep the devices reachable at

all time in order to have a richer user experience and ensure the sustainability and

dynamicity of the application.

 Finally, the user has the possibility to select a preferred device to run LLA’s

architecture. This device should preferably the most stable and efficient regarding

connectivity and performance. If the user doesn’t specify this device, LLA will

dynamically select the most capable device whenever it is started/re-started (see Figure

26).

After verifying these pre-conditions, LLA starts to run continuously to monitor the user’s

context and help him/her throughout their everyday life.

2.2. John’s travel scenario

Now that our architecture and the concepts of LLA are clearly defined, we take the scenario

(see Figure 71) described in Chapter 1 and we apply to LLA by feeding it all the necessary

information in order to have the anticipated behavior. The information presented in this section

is all fictitious and is only considered as a simulation.

131 Chapter 8 – Prototype and Validation

131

Figure 71 – John’s travel scenario steps

2.2.1. John sets-up LLA

To start using LLA, John needs to install it and to verify the stated preconditions.

He, firstly, logs-in using his Google account, allows LLA to access his social environment

(Facebook, Google+), and defines his encryption key.

 Name: John Brand

 Age: 52

 Birthdate: 12/03/1965

 Birth Place: Yorkshire

 School: Cambridge

 City: London

 Country: Great Britain

 Job: Historian/Teacher

in University Kingston

John defined the following locations where he frequently goes (see Figure 72 and Table 16).

Figure 72- John's defined locations

132 Chapter 8 – Prototype and Validation

132

Table 16: John’s locations data

Place Owner Address Shape Coordinates

Home John
59 Southbury Road

London EN1 1PJ
Circle

Center: 51.637818, -0.063590

Radius: 50 meters

University

Campus
Public

Kingston University

London, Kingston Hill

Campus, Kingston Hill,

Kingston upon Thames

KT2 7LB

Polygon

Point 1: 51.430595, -0.265797

Point 2 : 51.430383, -0.261499

Point 3: 51.428940, -0.261417

Point4 : 51.427568, -0.262367

Point 5 : 51.428302, -0.267347

Point 6 : 51.429822, -0.266934

John subscribes to the injection sources (see Table 17) which will help him in the travel’s

organization. He also called Trailfinder travel agency to book the plane tickets and rent a car

for him. He calls the Regina Hotel to book a room for the length of the trip. He calls his doctor

to organize the thermal session for him. Finally, John’ daughter Patrice suggested injecting a

family call situation in his application.

Table 17: John’s external injectors

Injector’s Name Category Importance

Trailfinder Travel agency External/Business P(2)

London Heathrow Airport External/Government P(1)

Biarritz Airport External/ Government P(1)

Regina Hotel External/Business P(2)

Bayonne Office of tourism External/ Government P(1)

Doctor Michal Prager External/Business P(3)

Kingston University External/ Government P(2)

Patrice Social P(1)

Since John wants to use LLA also for personal needs, he injected his daily situations and

selected the services that he wishes to use for those situations. In figures 73, 74, and 75, we

present the graphical representations of the situations injected by John.

133 Chapter 8 – Prototype and Validation

133

Figure 73 – News Situation and Wakeup Alarm Situation graphical representations

Figure 74 - House Alarm Situation graphical representation

Figure 75 – Morning Preparation Situation graphical representation

134 Chapter 8 – Prototype and Validation

134

The next step is defining the Lock Zones. Since he is traveling, John defines his zones (see

Table 18) according to his availability on that day. These zones could be changed later when

John comes back from the travel.

Table 18: John’s defined lock zones

Zone Time Location Injection Source Priorities
Special Situation

Priorities

Morning Busy

Zone

7 am -

10 am
--

Trailfinder Travel agency: P(3)

London Heathrow Airport: P(2)

John: P(2)

Kingston University: P(1)

--

Flight Dead Zone

10 pm

- 12

pm

-- John: P(3) --

Evening Busy

Zone

12 pm

- 4 pm
--

Trailfinder Travel agency: P(3)

Biarritz Airport: P(2)

Regina Hotel: P(3)

--

Relaxation Dead

Zone

6 pm -

8 pm

Center: 51.637818,

-0.063590

Radius: 3600 m

John: P(1)

Kingston University: P(1)

Facebook: P(1)

--

Initially, John possesses a list of devices that he added into LLA. But we consider the public

devices that he used along the journey. All the devices are described in Table 19. Since these

devices are hard to acquire, some of them will be simulated in this experiment.

135 Chapter 8 – Prototype and Validation

135

Table 19: John’s user-domain

Device
Private/

Public
Capability Model Power Unit

Returned

data type
Status Availability

Samsung

Gear S3
Private See Table 13.

iMac [6] Private

Network
Wifi

802.11ac
-- -- -- -- --

Network Ethernet -- -- -- -- --

Processor
Intel

Core i5
3,6

G

Hz
--

90

%
Free

RAM DDR4 32
G

B

Memory

usage
-- Free

Storage Fusion 1000
G

B

Storage

capacity
820 Free

Camera 4K 8
M

P

Photo/Vi

deo
-- Free

Display Retina 21,5
inc

hes
-- -- Free

Keyboard Magic -- -- Text -- Free

Mouse Magic 2 -- -- -- -- Free

Graphic Raedon 4
G

B
-- -- Free

Audio
Pro 7.1Ch

400W
104 dB Sound -- Free

Nest 2nd

G [77]
Private

SmokSensor -- -- -- -- -- --

Heat-

sensor
-- -- -- -- -- --

Humidity

-sensor
-- -- -- -- -- --

Presence-

sensor
-- -- -- -- -- --

Light-

sensor
-- -- -- -- -- --

Network Wi-Fi -- -- -- -- --

Network Bluetooth -- -- -- -- --

Sony

KDL-

43W805

C Smart-

TV [93]

Public

(Hotel)

Display X-Reality 43
inc

hes
-- -- Free

Network Wi-Fi, -- -- -- -- --

Network Infrared -- -- -- -- --

Network Bluetooth -- -- -- -- --

Audio -- 40 dB Sound -- Free

Model S

Tesla

[98]

Private
Display LCD 17

inc

hes
-- -- Free

GPS-sensor -- -- -- -- -- Free

136 Chapter 8 – Prototype and Validation

136

Processor AMD -- -- -- -- Free

Network Cellular -- -- -- -- --

Network Bluetooth -- -- -- -- --

Sound -- -- dB -- -- --

Samsung

Galaxy

S4 [46]

(Preferre

d device)

Microphone -- -- -- Sound -- Free

Camera Back, Front 12, 2 MP Photo/Video -- Free

GPS -- -- --
Coordinat

es.
-- Free

Battery Li-Ion 2600 mAh
Charging

Level
80% Free

Processor

Octa-core

(Cortex-A15

,Cortex-A7)

1.2&1.6 GHz
Processin

g power
90% Free

RAM -- 2 GB
Memory

usage
1,2 Free

Storage -- 16 GB
Storage

capacity
3.2 Free

Network Wi-Fi -- -- -- -- --

Network Infrared -- -- -- -- --

Network Bluetooth -- -- -- -- --

Network NFC -- -- -- -- --

Network Cellular -- -- -- -- --

Display
Super

AMOLED
5 inches -- -- Free

Audio -- 30 dB Sound -- Free

Mr.

Coffee

Smart

[73]

Private

Network
Wifi

802.11ac
-- -- -- -- --

Cofee-engine -- -- -- -- -- --

Nest

Cam IQ

[78]

Private

Network Wi-Fi -- -- -- -- --

Network Bluetooth -- -- -- -- --

Camera -- 8 MP Photo/Video -- Free

Microsof

t surface

pro 4

[70]

Private

Microphone -- -- -- Sound -- Free

Camera Front 5 MP Photo/Video -- Free

GPS -- -- -- Coordinates. -- Free

Battery -- -- mAh
Charging

Level
-- --

Processor Intel Core i5 2.6 GHz -- -- Free

RAM -- 4 GB
Memory

usage
-- Free

Storage -- 512 GB
Storage

capacity
-- Free

Network Wi-Fi -- -- -- -- --

Light-sensor -- -- -- -- -- --

Network Bluetooth -- -- -- -- --

137 Chapter 8 – Prototype and Validation

137

Camera Back 8 MP Photo/Video -- --

Network Cellular -- -- -- -- --

Display PixelSense 12.3 inches -- -- Free

Audio -- 30 dB Sound -- Free

GPS-

sensor
-- -- -- -- -- Free

Vibration -- -- -- -- -- Free

Audi A3

2016 [7]

Public

(Hertz)

Display LCD 12 inches -- -- Free

GPS-sensor -- -- -- -- -- Free

Network Wifi -- -- -- -- --

Network Cellular -- -- -- -- --

Interacti

ve

Display

Screen

[87]

Public

airport

Display LCD 50 inches -- -- Free

Network Wi-Fi -- -- -- -- --

Network Bluetooth -- -- -- -- --

2.2.2. LLA injects the necessary data

After finishing setting up LLA, and preparing the trip, the injection process starts in order to

fill John’s persistence layer and allow the core modules (ECA) to start functioning. The injector

inserts the situations, mappings, conditions, services description, and services.

In order for external providers to inject data into the user’s persistence layer, they need the

approval of the user and his subscription. In order to define the situations easily, we propose a

web (see Figure 76) application enabling to define situations, mappings, descriptions, and

upload the services as Jars.

Figure 76 – LLA web application for injecting situations from external sources

138 Chapter 8 – Prototype and Validation

138

- Injected Situations: They are injected using LLA’s injection UI and web app.

** Morning Preparation situation (S1): [priority=P(2); source=”User/John”]; Projection1 [

Time(After(6,5), Before(7,30)); Location(Inside(Home, 0)); Activity(Free(TaskList))] EXCEPT [(

Time(While(Sunday,0)) ; Time(While(Satuday,0)))]

** News Situation (S2): [priority=P(1); source=”User/John”]; Projection1 [

Time(After(21,15)); Location(Inside(Home, 0)); Activity(Free(TaskList))]

** Wakeup Alarm Situation (S3): [priority=P(3); source=”User/John”]; Projection1[

Time(While(6,0))] EXCEPT [(Time(While(Sunday,0)) ; Time(While(Satuday,0))]

** Drive to the airport situation (S4): [priority=P(2); source=”External/Business/

TrailfinderTravel Agency”]; Projection1 [Time(After(22/11/2016-7:0:0,20) Before(22/11/2016-

8:0:0,20)); Time*Location(Closer(Heathrow Airport, 22/11/2016-7:0:0, 22/11/2016-

8:0:0,100,25))]

** Heathrow Airport Parking Situation (S5): [priority=P(2); source=”External/Government/

Heathrow Airport”] Projection1 [Location (Inside (Heathrow airport parking, 10))]

** Heathrow Airport Navigation Situation (S6): [priority=P(2); source=”External/

Government/Heathrow Airport”] ; Projection1 [Location(Inside(Heathrow airport, 10))]

** Biarritz Airport Navigation Situation (S7): [priority=P(2); source=”External/

Government/Biarritz Airport”] ; Projection1 [Location(Inside(Heathrow airport, 10))]

** Boarding Situation (S8): [priority=P(3); source=” External/ Business//TrailfinderTravel

Agency”]; Projection1 [Time(After(22/11/2016-9:30:0,30) Before(22/11/2016-10:0:0,30));

Location(Inside(Heathrow airport, Terminal 1, 10))]

** Flight Situation (S9): [priority=P(3); source=” External/ Business//Trailfinder Travel

Agency”]; Projection1 [Time(After(22/11/2016-10:0:0,60) Before(22/11/2016-12:0:0,60));

** Landing Situation (S10): [priority=P(2); source=” External/ Business//Trailfinder Travel

Agency”]; Projection1 [Time(After(22/11/2016-12:0:0,30) Before(22/11/2016-13:0:0,30));

Location(Inside(Biarritz Airport, 60))]

** Urgent Department Meeting Situation (S11): [priority=P(3);

source=”External/Governement/KingstonUniversity”]; Projection1 [Time(After(22/11/2016-

13:0:0,5), Before(22/11/2016-13:30:0,5)); Activity(PlannedTask(“Dpt meeting”,TaskList))]

** Check-in Situation (S12): [priority=P(3); source=”External/Business/ReginaHotel”] ;

Projection1[Time(While(22/11/2016,0)); Location (Inside(Regina Hotel Biarritz, 60))]

** Room Unlocking situation (S13): [priority=P(3); source=”External/Heathrow Airport”] ;

Projection1 [Time(After(22/11/2016-12:0:0,30) Before(27/11/2016-12:0:0,30));

Location(Inside(Regina Hotel, Floor 3, Room 51, 5))]

** Thermal Sessions situation (S14): [priority=P(3); source=”External/Business/

DoctorPaiger”] ; Session1 [Time(After(22/11/2016-18:0:0,20) Before(22/11/2016-20:0:0,20));

Location(Inside(Cambo-les-bain, SpaResort, 20))] OR Session2 [Time(After(24/11/2016-

18:0:0,20) Before(24/11/2016-20:0:0,20)); Location(Inside(Cambo-les-bain, SpaResort,, 20))] OR

Session3 [Time (After(26/11/2016-18:0:0,20) Before(26/11/2016-20:0:0,20));

Location(Inside(Cambo-les-bain, SpaResort,, 20))]

**Medication Reminder Situation (S15): [priority=P(3); source=”External/Business/

DoctorPaiger”] Projection1[Time(While(21,30))]; Activity(Free(TaskList))]

** Free Basque Museum Visit Situation (S16): [priority=P(1);

source=”External/Government/ BayonneOfficeOfTourism”]; Projection1 [Time(

After(22/11/2016) Before(27/11/2016)); Location(Inside(Basque Museum, 10));]

** BAB Local Event Situation (S17): [priority=P(1); source=”External/Government/

BayonneOfficeOfTourism”]; Projection1 [Location(Inside(Basque Country, 1000));]

** Family Call Situation (S18): [priority=P(2); source=”Social/Patrice”]; Projection1 [Time(

While(22/11/2016-21:0:0,10));]

139 Chapter 8 – Prototype and Validation

139

- Defined Conditions: These conditions are the lock zones defined using LLA.

** Work Busy Zone (Z0): [Time(After(7,0) Before(10,0)]); [ISP [(Trailfinder Travel agency,3);

(London Heathrow Airport,2); (John,2); (Kingston University,1)]; SSP[]]

** Flight Dead Zone (Z1): [Time(After(10,0) Before(12,0))]; [ISP [(John,2)]; SSP[]]

** Evening Busy Zone (Z2): [Time(After(12,0) Before(16,0))]; [ISP (Trailfinder Travel

agency,3);(Biarritz Airport,2);(Regina Hotel,3)]; SSP[]]

** Relaxation Dead Zone (Z3): [Time(After(18,0) Before(20,0); Location(Inside(Cambo-Les-

Bains, SpaZone, 0))]; [ISP [(John,1);(Kingston University,1);(Facebook,1)]; SSP[]]

- Injected Mappings: The mappings are also injected along the situations to link them

to services.

** M0: House Alarm Situation [Projection1 [Security Alarm Service]]

** M1: Wake Alarm Situation [Projection1 [Alarm Clock Service]

** M2: Morning Preparation Situation [Projection1 [Weather Service, News Tv Service,

Coffee Service]]

** M3: News Situation [Projection1 [News Tv Service]]

** M4: Drive to airport situation [Projection1 [Road Service]

** M5: Heathrow Airport Parking Situation [Projection1 [Parking Service]]

** M6: Heathrow Airport Navigation Situation [Projection1 [Airport Navigation Service]]

** M7: Biarritz Airport Navigation Situation [Projection1 [Airport Navigation Service]]

** M8: Boarding Situation [Projection1 [Boarding Pass Service]]

** M9: Flight Situation [Projection1 [Music Service]]

** M10: Landing Situation [Projection1 [Car Rental Service]

** M11: Urgent Department Meeting Situation [Projection1 [Skype Service]]

** M12: Check-in Situation [Projection1 [Check-in Service]]

** M13: Room Unlocking Situation [Projection1 [Door Lock Service]

** M14: Thermal Session Situation [Session1 [Health Monitor Service]; Session2 [Skype

Service]; Session3 [BioMetric Measuring Service]]

** M15: Medication Reminder Situation [Projection1 [Reminder Service]]

** M16: Free Basque Museum Visit Situation [Projection1 [Entry Ticket Service; Museum

Guide Service]

** M17: BAB Local Event Situation [Projection1 [Event Recommender Service]]

** M18: Family Call Situation [Projection1 [Skype Service]]

- Injected Services descriptions: The services composition and requirements are

defined by the developer of those services using the web app.

**News Tv Service: [Input [Remote Control component ((S!Display>=5inch)&

(S!Network=”Infrared”||”Bluetooth”\\”Wifi”))]; Output [News Stream component

(S!Display>28inches)) | Links [Remote Control component -> News Stream component]

**Road Service: [Input [Tracker Component (!GPS-sensor))]; Output [Map component

(S!Display>7inches)) | Links [Tracker Component -> Map component]

**Car Rental Service: [Input [Tracker Component (!GPS-sensor))]; Output [Rental

component (S!Display>=5inches)) | Links [Tracker Component -> Rental component]

**Airport Navigation Service: [Input [Tracker Component (!GPS-sensor))]; Output

[Airport Map component (S!Display>7inches)) | Links [Tracker Component -> Airport Map

component]

**Museum Guide Service: [Input [Tracker Component (!GPS-sensor))]; Output [Museum

Map component (S!Display>7inches)) | Links [Tracker Component -> Airport Map

component]

140 Chapter 8 – Prototype and Validation

140

**Parking Service: [Input [Tracker Component (!GPS-sensor))]; Output [Parking

Payment component ((S!Display>7inches)&(S!Network=”Wifi)) | Links [Tracker Component

-> Parking Payment component]

**Event Recommender Service: [Input [Tracker Component (!GPS-sensor))]; Output

[Near By Events component ((S!Display>7inches)&(S!Network=”Wifi)) | Links [Tracker

Component -> Near By Events component]

**Door Lock Service: [Core [Locker Component (S!Network=”NFC”))]; Output [Lock UI

component (S!Display>7inches) | Links [Tracker Component -> Lock UI component]

**Health Monitor Service: [Input [Health data collector component ((!Heart rate

sensor)& (!Accelerometer)&(!Gyroscope))]; Core [Health data analyzer component

(D!RAM>1GB)]; Output [Results component (S!Display>5inch)] | Links (Health data

collector component -> Health data analyzer component; Health data analyzer component ->

Results component;)]

**BioMetric Measuring Service: [Input [Heat component (!Heat-sensor))]; Core [Health

data analyzer component (S!RAM>2GB)]; Output [Results Sender (S!Display>5inch)] | Links

(Heat component -> Health data analyzer component; Health data analyzer component ->

Results Sender component;)]

** Reminder Service: [Output [Reminder component (!Display)]]

** Reminder Service: [Output [Music component ((!Sound)&(!Display))]]

** Weather Service: [Output [Weather component (!Display)]]

** Boarding Service: [Output [Boarding Pass component (!Display)]]

** Landing Service: [Output [Rental Contract component (!Display)]]

** Check-in Service: [Output [Check-in Signature component (!Display)]]

** Entry Ticket Service: [Output [Ticket component (S!Display<5)]]

** Alarm Clock Service: [Output [Alarm Clock Component ((!Display)& (S!Sound>20dB)

&(!Vibration))]]

**Skype Service: [(Input [Picture feed component (!Camera); Sound feed component

(!Microphone); Text feed component ((!Keyboard)||(!Display))]; Core [Skype core component

(D!RAM>2.5GB)]; Output [Image output component (S!Display>16inch); Text UI component

(S!Display>10inch); Sound output component (S!Audio<40dB)] | Links (Picture feed

component -> Skype core component; Sound feed component -> Skype core component; Text

feed component -> Skype core component; Skype core component -> Image output component;

Skype core component -> Sound output component; Skype core component -> Text UI

component;)]

**Security Alarm Service: [Input [Video Surveillance component ((!Camera)&

(S!Network=”Wifi); Fire detector component(!Smoke-sensor)]; Core [Security monitoring

component (D!RAM>1GB)]; Output [Security status component (S!Display<5inches)] | Links

(Video Surveillance component -> Security monitoring component; Fire detector component -

> Security monitoring component; Security monitoring component -> Security status

component;)]

**Coffee Service: [Input [Coffee Chooser UI Component (S!Display=5inches))]; Core

[Coffee Maker component (!Coffee-engine)) | Links [Coffee Chooser UI Component -> Coffee

Maker component]

141 Chapter 8 – Prototype and Validation

141

2.2.3. John starts the journey

LLA evolves following John’s movements. As the scenario involves different locations,

times, and activities, we chose to simulate them in order to facilitate the testing process. For

locations, we use a mock location application called Mock Locations [42]. For activities, we

use a dedicated Google Calendar where we inserted the required activities. Some of the figures

in this section are created only to show the potential of LLA but were not really tested on those

devices (car, interactive panel, and smart-watch) due to lack of resources.

In order to respond to his needs, LLA needs to be aware of his context at all times. We

provide for each step (see Figure 71) of the travel the inputs and outputs of the main modules

and we show, using some screenshots, how LLA deploys and integrates services into its UI so

John can be able to use them. John starts the day with all his available devices (User-Domain)

(see Table 19) except for his car which is turned off in the garage.

 Step 1: John woke up and started the morning (see Figure 77).

Table 20: LLA's core modules on step 1

Input

Component

Event Manager Condition Evaluation Action

Orchestration

Time: 06:00

Location:

Home

Activity:

Free

Starting Situations: S1, S2,

S3

Ending Situations: --

Active Situations: --

Lock Zone: Free Zone

Sorted Starting Situations:

S3, S1, S2

Ending Situations: --

Starting

Commands 1

Starting Commands 1 (deploying Alarm Clock Service, Weather Service, News Tv

Service, and Coffee Service):

SamsungGalaxyS4 : CreateConnector UICM SamsungGalaxyS4 iMAC

SamsungGalaxyS4 : CreateConnector RCTV SamsungGalaxyS4 MrCoffeeSmart

MicrosoftSurfacePro: CreateComponent AlarmClock

application.User.Morning.output.AlarmClockBC [null] [null]

SamsungGalaxyS4: CreateComponent CoffeeChooserUI

application.User.Morning.Input.CoffeeUIBC [null] [UICM]

MrCoffeeSmart: CreateComponent CoffeeMaker

application.User.Morning.core.CoffeeMakerBC [UICM] [null]

iMAC: CreateComponent AccuWeather application.Accu.output.AccuWeatherBC

[null] [null]

142 Chapter 8 – Prototype and Validation

142

SamsungGalaxyS4: CreateComponent RemoteControl

application.BBC.News.Input.RemoteControlBC [null] [RCTV]

iMAC: CreateComponent NewsStream application.BBC.News.Output.VideoPlayerBC

[RCTV] [null]

 User-Domain: After John uses these services and is about to leave

the house, he starts his car which is added to his domain and turned

off his tablet and put it on his bag.

Figure 77 - Print screens of LLA's output for step 1

 Step 2 and 3: John leaves his house and heads to the airport (see Figure 78).

Table 21: LLA's main modules results for step 2 and 3

Input

Component

Event Manager Condition Evaluation Action

Orchestration

Time: 07:10

Location:

Driving

Activity: “To

the airport”

Starting Situations: S0,

S4

Ending Situations: S1,

S2, S3

Active Situations: --

Lock Zone: Z0

Sorted Starting Situations: S0,

S4

Ending Situations: S1, S2, S3

Starting

Commands 2

Stopping

Commands 1

 Starting Commands 2 (deploying House Alarm Service, Road Service):

ModelSTesla : CreateConnector DAS ModelSTesla ModelSTesla

Nest2G : CreateConnector FCSA Nest2G iMAC

NestCamIq : CreateConnector PDSA NestCamIq iMAC

iMAC : CreateConnector SASM iMAC SamsungGearS3

143 Chapter 8 – Prototype and Validation

143

Nest2G: CreateComponent FireDetector

application.SafeCorp.input.FireDetectorBC [null] [FCSA]

Nest2G: CreateComponent VideoSurveilance

application.SafeCorp.input.SurveilanceBC [null] [PDSA]

iMAC: CreateComponent SecurityMonitor

application.SafeCorp.core.SecurityMonitorBC [FCSA PDSA] [SASM]

SamsungGearS3: CreateComponent SecurityStatus

application.SafeCorp.output.SecurityStatusBC [UICM] [null]

ModelSTesla: CreateComponent Tracker application.User.input.TrackerBC

[null] [DAS]

ModelSTesla: CreateComponent RoadMap application.User.input.MapBC [DAS]

[null]

 Stopping Commands 1 (stopping Alarm Clock Service, Weather Service, News Tv

Service, and Coffee Service):

SamsungGalaxyS4 : RemoveConnector UICM

SamsungGalaxyS4 : RemoveConnector RCTV

SamsungGalaxyS4: RemoveComponent RemoteControl

iMAC: RemoveComponent NewsStream

SamsungGalaxyS4: RemoveComponent CoffeeChooserUI

MrCoffeeSmart: RemoveComponent CoffeeMaker

MicrosoftSurfacePro: RemoveComponent AlarmClock

iMAC: RemoveComponent AccuWeather

 User-Domain: There has been no change in the user-domain after

these deployments.

Figure 78 - Print screens of LLA's output for step 2 and 3

144 Chapter 8 – Prototype and Validation

144

 Step 4: John arrives at the airport’s parking

Table 22: LLA's core modules on step 4

Input Component Event Manager Condition Evaluation Action

Orchestration

Time: 07:55

Location: Heathrow

Airport Parking

Activity: Free

Starting Situations: S5, S6

Ending Situations: S4

Active Situations: S0

Lock Zone: Z0

Sorted Starting

Situations: S5, S6

Ending Situations: S4

Starting

Commands 3

Stopping

Commands 2

 Starting Commands 3 (deploying Parking Service, Airport Navigation Service):

ModelSTesla : CreateConnector PS ModelSTesla ModelSTEsla

SamsungGearS3 : CreateConnector ANS SamsungGearS3 SamsungGalaxyS4

ModelSTesla: CreateComponent Tracker application.User.input.TrackerBC

[null] [PS]

ModelSTesla: CreateComponent ParkingPaeyment

application.HethrowAirport.output.PayementUIBC [PS] [null]

SamsungGearS3: CreateComponent Tracker application.User.input.TrackerBC

[null] [ANS]

SamsungGalaxyS4: CreateComponent HeathrowNavigation

application.HethrowAirport.output.NavigationBC [ANS] [null]

 Stopping Commands 2 (stopping Road Service):

ModelSTesla : RemoveConnector DAS

ModelSTesla: RemoveComponent Tracker

ModelSTesla: RemoveComponent RoadMap

 User-Domain: John left the parking and stopped his car and therefore

it is removed from his domain. When he enters the airport, he added

the interactive panel public device available in the airport.

 Step 5: John is about to board the plane (see Figure 79)

Table 23: LLA's core modules on step 5

Input

Component

Event Manager Condition Evaluation Action

Orchestration

Time: 09:35

Location:

Heathrow Airport

Terminal 1

Activity: Free

Starting Situations: S8

Ending Situations: S5

Active Situations: S0,

S6

Lock Zone: Z0

Sorted Starting Situations: S8

Ending Situations: --

Starting Commands

4

Stopping

Commands 3

145 Chapter 8 – Prototype and Validation

145

 Starting Commands 4 (deploying Boarding Service):

SamsungGalaxyS4: CreateComponent BoardingPass

application.Airfrance.output.BoardingPassBC [null] [null]

 Stopping Commands 3 (stopping Parking Service):

ModelSTesla : RemoveConnector PS

ModelSTesla: RemoveComponent Tracker

ModelSTesla: RemoveComponent ParkingPaeyment

 User-Domain: After John gets in the plane migrates the security

component to his iMac manually and puts all his devices that he is

carrying with him (Samsung Galaxy S4, Samsung Gear 3, and

Microsoft Surface Pro) on airplane mode. LLA continues to run on

the available devices at his home.

Figure 79 - Print screens of LLA's output for step 5

146 Chapter 8 – Prototype and Validation

146

 Step 6: John is on the plane (see Figure 80).

Table 24: LLA's main modules results for step 6

Input

Component

Event Manager Condition Evaluation Action Orchestration

Time: 10:05

Location: Unknown

Activity: Flight to

Biarritz

Starting Situations: S9

 Ending Situations: S8, S6

Active Situations: S0

Lock Zone: Z1

Sorted Starting Situations: S9

Ending Situations: S8, S6

Starting Commands 5

Stopping Commands 4

Migration Commands

1

 Migration Commands 1 (migrating House Alarm Security; done manually by John):

SamsungGearS3 : SendComponent SecurityStatus iMac

 Starting Commands 5 (deploying Music Service):

SamsungGalaxyS4: CreateComponent MusicPlayer

application.Deezer.output.MusicPlayerBC [null] [null]

 Stopping Commands 4 (stopping Airport Navigation Service):

SamsungGearS3 : RemoveConnector ANS

ModelSTesla: CreateComponent Tracker

ModelSTesla: CreateComponent HeathrowNavigation

 User-Domain: After John gets in the plane he puts all his devices that

he is carrying with him (Samsung Galaxy S4, Samsung Gear 3, and

Microsoft Surface Pro) on airplane mode. LLA continues to run on

the available devices at his home.

Figure 80 - Print screens of LLA's output for step 6

147 Chapter 8 – Prototype and Validation

147

 Step 7: John lands in Biarritz.

Table 25: LLA's main modules results for step 7

Input Component Event Manager Condition Evaluation Action

Orchestration

Time: 12:15

Location: Biarritz

Airport

Activity: Free

Starting

Situations: S7, S10

Ending Situations:

S9

Active Situations:

S0

Lock Zone: Z2

Sorted Starting Situations:

S7, S10

Ending Situations: S9

Starting Commands

6

Stopping

Commands 5

 Starting Commands 6 (deploying Car Rental Service and Biarritz Navigation Service):

SamsungGearS3 : CreateConnector RCC SamsungGearS3 SamsungGalaxyS4

SamsungGearS3 : CreateConnector BAC SamsungGearS3 SamsungGalaxyS4

SamsungGearS3: CreateComponent Tracker application.User.input.TrackerBC

[null] [RCC BAC]

SamsungGalaxyS4: CreateComponent RentalContract

application.Hertz.output.ContractBC [RCC] [null]

SamsungGalaxyS4: CreateComponent BiarritzNavigation

application.BIQAirport.output.NavigationBC [BAC] [null]

 Stopping Commands 5 (stopping Music Service):

SamsungGalaxyS4: RemoveComponent MusicPlayer

 User-Domain: John puts his devices back online and reconnects to

the home devices running LLA. He adds the car that he rented (Audi

A3) to his user-domain.

 Step 8: John is in the hotel parking and stops to take his meeting call (see Figure 81).

Table 26: LLA's main modules results for step 8

Input Component Event Manager Condition Evaluation Action

Orchestration

Time: 13:05

Location: Regina

Hotel Parking

Activity: Urgent

Meeting

Starting Situations:

S11

Ending Situations: S7,

S10

Active Situations: S0

Lock Zone: Z2

Sorted Starting Situations:

S11

Ending Situations: S7

Starting

Commands 7

Stopping

Commands6

148 Chapter 8 – Prototype and Validation

148

 Starting Commands 7 (deploying Skype Service):

SamsungGalaxyS4 : CreateConnector TFC SamsungGalaxyS4 AudiA3

SamsungGalaxyS4 : CreateConnector PFC SamsungGalaxyS4 AudiA3

SamsungGalaxyS4 : CreateConnector VFC SamsungGalaxyS4 AudiA3

AudiA3 : CreateConnector SOSC AudiA3 AudiA3

AudiA3 : CreateConnector UIOSC AudiA3 AudiA3

SamsungGalaxyS4: CreateComponent TextFeed

application.Skype.input.KeyboardBC [null] [TFC]

SamsungGalaxyS4: CreateComponent VoiceFeed

application.Skype.input.KeyboardBC [null] [VFC]

SamsungGalaxyS4: CreateComponent PictureFeed

application.Skype.input.KeyboardBC [null] [PFC]

AudiA3: CreateComponent SkypeCore application.Skype.core.SkypeBC [TFC VFC

PFC] [SOSC UIOSC]

AudiA3: CreateComponent ChatSound application.Skype.output.SoundBC [SOSC]

[null]

AudiA3: CreateComponent SkypeUI application.Skype.output.SkypeUIBC [UIOSC]

[null]

 Stopping Commands 6 (stopping Car Rental Service):

SamsungGearS3 : RemoveConnector RCC

SamsungGearS3 : RemoveConnector BAC

SamsungGearS3: RemoveComponent Tracker

SamsungGalaxyS4: RemoveComponent RentalContract

SamsungGalaxyS4: RemoveComponent RentalContract

 User-Domain: While the Skype Service is running, the

SamsungGalaxyS4 phone host components that take the camera and

microphone which changes these capabilities’ availability to Taken.

Figure 81 - Print screens of LLA's output for step 7

149 Chapter 8 – Prototype and Validation

149

 Step 9: John does the check-in

Table 27: LLA's main modules results for step 9

Input Component Event Manager Condition Evaluation Action

Orchestration

Time: 14:00

Location: Regina

Hotel Reception

Activity: Check-In

Starting Situations:

S12

Ending Situations: S11

Active Situations: S0

Lock Zone: Z2

Sorted Starting Situations:

S12

Ending Situations: S11

Starting

Commands 8

Stopping

Commands7

 Starting Commands 8 (deploying Check-in Service):

MicrosoftSurfacePro: CreateComponent Check-in

application.Regina.output.CheckInBC [null] [null]

 Stopping Commands 7 (stopping Skype Service):

SamsungGalaxyS4 : RemoveConnector TFC

SamsungGalaxyS4 : RemoveConnector PFC

SamsungGalaxyS4 : RemoveConnector VFC

AudiA3 : RemoveConnector SOSC

AudiA3 : RemoveConnector UIOSC

SamsungGalaxyS4: RemoveComponent TextFeed

SamsungGalaxyS4: RemoveComponent VoiceFeed

SamsungGalaxyS4: RemoveComponent PictureFeed

AudiA3: RemoveComponent SkypeCore

AudiA3: RemoveComponent ChatSound

AudiA3: RemoveComponent SkypeUI

 User-Domain: No changes happened to the user-domain.

 Step 10: John goes to the office of tourism of Bayonne

Table 28: LLA's main modules results for step 10

Input Component Event Manager Condition Evaluation Action Orchestration

Time: 15:20

Location: Office

Tourism Bayonne

Activity: Free

Starting Situations: --

Ending Situations: S12

Active Situations: S0

Lock Zone: Z2

Sorted Starting Situations: -

-

Ending Situations: S12

Stopping Commands8

 Stopping Commands 8 (stopping Check-in Service):

MicrosoftSurfacePro: RemoveComponent Check-in

150 Chapter 8 – Prototype and Validation

150

 User-Domain: No changes happened to the user-domain.

 Step 11: John arrives at the museum.

Table 29 : LLA's main modules results for step 11

Input Component Event Manager Condition Evaluation Action

Orchestration

Time: 15:40

Location: Basque

Country Museum

Activity: Free

Starting Situations:

S16

Ending Situations: --

Active Situations: S0

Lock Zone: Z2

Sorted Starting Situations:

S16

Ending Situations: --

Starting

Commands 9

 Starting Commands 9 (deploying Entry Ticket Service and Museum Guide Service):

SamsungGearS3 : CreateConnector MTC SamsungGearS3 SamsungGalaxyS4

SamsungGearS3: CreateComponent Tracker application.User.input.TrackerBC

[null] [MTC]

SamsungGalaxyS4: CreateComponent MuseumMap

application.BasqueMeuseum.output.MuseumMapBC [RCC] [null]

SamsungGear3: CreateComponent MeuseumTicket

application.BABEvents.output.TicketBC [null] [null]

 User-Domain: No changes happened to the user-domain.

 Step 12: John is doing his heat treatment session in the resort (see Figure 82).

Table 30 : LLA's main modules results for step 12

Input Component Event Manager Condition Evaluation Action

Orchestration

Time: 18:02

Location: Cambo-

Spa Resorts

Activity: Heat-

treatment session

Starting Situations:

S14

Ending Situations: S16

Active Situations: S0

Lock Zone: Z3

Sorted Starting Situations:

S14

Ending Situations: S16

Starting Commands

10

Stopping

Commands 9

 Starting Commands 10 (deploying Health Monitor Service):

SamsungGearS3 : CreateConnector DCC SamsungGearS3 iMAC

SamsungGearS3 : CreateConnector RCC iMAC SamsungGearS3

SamsungGearS3: CreateComponent DataCollector

application.DePaige.input.HealthDataCollectorBC [null] [DCC]

151 Chapter 8 – Prototype and Validation

151

iMAC: CreateComponent DataAnalyzer

application.DePaige.core.HealthDataAnalyzerBC [null] [DCC]

SamsungGearS3: CreateComponent HealthResults

application.DePaige.output.HealthStatusBC [RCC] [null]

 Stopping Commands 9 (stopping Free Ticket Service and Museum Guide Service):

SamsungGearS3 : RemoveConnector MTC

SamsungGearS3: RemoveComponent Tracker

SamsungGalaxyS4: RemoveComponent MuseumMap

SamsungGear3: RemoveComponent MeuseumTicket

 User-Domain: When John leaves he turns back on his devices

Figure 82 - Print screens of LLA's output for step 12

 Step 13, 14, and 15: John finally heads back to his hotel room.

Table 31: LLA's main modules results for step 13, 14, and 15

Input Component Event Manager Condition Evaluation Action

Orchestration

Time: 21:22

Location: Regina

Hotel, Floor 3, Room

51

Activity: Free

Starting Situations:

S13, S15, S18

Ending Situations:

S14

Active Situations: S0

Lock Zone: Free

Sorted Starting Situations:

S13, S15, S18

Ending Situations: S14

Starting Commands

11

Stopping

Commands 10

 Starting Commands 11 (deploying Door Unlocking Service, Medicine Reminder, and

Skype Service):

152 Chapter 8 – Prototype and Validation

152

MicrosoftSurfacePro :CreateConnector TFC MicrosoftSurfacePro

MicrosoftSurfacePro

MicrosoftSurfacePro : CreateConnector PFC MicrosoftSurfacePro

MicrosoftSurfacePro

MicrosoftSurfacePro : CreateConnector VFC MicrosoftSurfacePro

MicrosoftSurfacePro

MicrosoftSurfacePro : CreateConnector SOSC MicrosoftSurfacePro Sony-KDL-

43W805

MicrosoftSurfacePro : CreateConnector UIOSC MicrosoftSurfacePro Sony-KDL-

43W805

SamsungGalaxyS4: CreateComponent DoorLock

application.ReginaHotel.output.LockBC [null] [null]

SamsungGearS3: CreateComponent MedecineReminder

application.DrPaiger.output.ReminderBC [null] [null]

MicrosoftSurfacePro: CreateComponent TextFeed

application.Skype.input.KeyboardBC [null] [TFC]

MicrosoftSurfacePro: CreateComponent VoiceFeed

application.Skype.input.KeyboardBC [null] [VFC]

MicrosoftSurfacePro: CreateComponent PictureFeed

application.Skype.input.KeyboardBC [null] [PFC]

Sony-KDL-43W805: CreateComponent SkypeCore application.Skype.core.SkypeBC

[TFC VFC PFC] [SOSC UIOSC]

Sony-KDL-43W805: CreateComponent ChatSound application.Skype.output.SoundBC

[SOSC] [null]

Sony-KDL-43W805: CreateComponent SkypeUI application.Skype.output.SkypeUIBC

[UIOSC] [null]

 Stopping Commands 10 (stopping Health Monitor Service):

SamsungGearS3 : RemoveConnector DCC

SamsungGearS3 : RemoveConnector RCC

SamsungGearS3: RemoveComponent DataCollector

iMAC: RemoveComponent DataAnalyzer

SamsungGearS3: RemoveComponent HealthResults

 User-Domain: I the hotel room, John adds the Sony-Tv to his personal user-domain in

order to use it with LLA.

To summarize, this scenario proves the feasibility and usability of our proposal with all

its aspects (context-awareness, distribution, injection, etc.).

153 Chapter 8 – Prototype and Validation

153

3. Results and validation

3.1. Performance validation

The management of the scenario described in this Chapter involves many different

mechanisms. Thus, we present in this section the results obtained after implementing the

proposed architecture (see Chapter 3) and testing it on an Android device (Samsung Galaxy S4

running Android 5.0.1 on an ARMv7 processor and 2GB RAM).

For evaluation purposes, in the developed prototype we have included a generator that

creates a specified number of situations. We injected the considered scenario described above

into the situation generator, and we ran the application while simulating the location, time and

activity of the user.

For this experiment, we set up a time-frequency for data extraction (Input Component,

IC) of 20 seconds and a location frequency of 10 meters (i.e., the data extraction is triggered

when the user moves 10 meters). On the user's device, all other apps (except the mock location

app) were disabled, the GPS was activated, the Wi-Fi was activated, and the battery was

plugged.

We simulated a scalability experiment for different numbers of situations, and we

calculated and observed the following metrics: the average CPU usage when the app is launched

and while it is running later, the average memory usage while the app is running, the response

time values:

 Start-Parse: The time that took the app to launch/generate/parse

 Extract-Detect: The time that it took from the moment that the IC sent the

detected data until the situation was detected.

 Detect-React: The time since the situation is detected until the services are

physically launched on the user’s devices.

We also present the accuracy of situation detection which represents the percentage of

detecting the correct situation. The main performance results are shown in Table 32. Besides,

we also verified that the situations were correctly detected.

154 Chapter 8 – Prototype and Validation

154

Table 32: Measurements of performance, accuracy, and sustainability

Number Average CPU Average

Memory

Use

Response Time Accuracy

At launch Run

ning

Start -

Parse

Extract

- Detect

Detect

- React

10 20% 1.1% 23 MB 4s 0.2s 0.4s 100%

102 30% 1.2% 30.6 MB 10s 0.5s 0.4s 100%

103 40% 21% 56 MB 2m 25s 0.5s 100%

These results show that our proposal is stable overall (see Figures 83, 84, and 85). When

the number of considered situations increases, a critical point is not reached until having a very

large number of situations to detect (in our experiments, above 104), which is highly-improbable

for everyday usage.

Figure 83: Overtime performance of LLA (10 situations)

Figure 84: Overtime performance of LLA (100 situations)

Figure 85: Overtime performance of LLA (1000 situations)

When reaching 103 situations, the application keeps running well but takes a larger time

to start and demands more memory space and time to process data, which is logical considering

155 Chapter 8 – Prototype and Validation

155

the complexity and possible combinations of situations. Nonetheless, even if this number is

high (2 minutes) it is only done when starting the application for the first time or when there is

a major change in the situations file.

Besides, this is not a final product, but a prototype and the performance is expected to

increase when the architecture is deployed in a real user domain using more advanced devices

(e.g., high-end smartphones or computers). The experiments that we have performed show the

feasibility, scalability, and sustainability of our proposal.

3.2. Time and storage gain

Using LLA, users don’t have to download applications an all the devices that they

possess. This offers a considerable amount of data and memory gain compared to the classic

approach of duplicating the application everywhere, which requires the updates to be done on

all the devices.

In LLA, the component-based services require updates to be done separately and in a

centralized way towards the user’s cloud persistence layer. In order to calculate this gain, we

consider the services used in John’s scenario and we compared to using the current approach

of downloading those services as stand-alone applications.

In order to measure this gain, we compare LLA to the classical approach (currently used

mobile applications). This comparison is done by considering an estimate of the required

storage size and the time required for the different operations (install/update/delete).

For LLA the real storage size on the device is the size of the basic application (ECA

core components size = 10 MB) which is installed on John’s 11 devices (see Table 19). Even

though, the services that LLA uses come from the cloud persistence layer, we consider in this

calculation that the user downloaded locally all the services in order to use them offline across

his/her devices.

Size of LLA = (Size of core components* Number of devices) + Size of services.

For the classical approach, John has to download all the applications on all the devices.

For this calculation, we consider applications related to the services. For example, a Map

Service in LLA is equivalent to an application like Google Maps. We also consider an average

size of the application since the sizes vary according to the device it is installed on. For example,

Skype installed on Android require, on the estimate, 96.28 MB but 88.8 MB on a computer

(Windows) so we consider the round average of 92MB.

Size of Classical approach = Number of devices * Size of applications

156 Chapter 8 – Prototype and Validation

156

The operation time aspect represents the time taken by John to download, install LLA,

configure it, update it, and deleting it. For the classical approach, it represents the time taken

by John to download, install, update, and delete all the different applications on all the devices.

For these calculations, we consider the Samsung Galaxy S4 device and an internet speed of

4.29 MB/s.

Table 33: Comparison of LLA and classical mobile store approach

 LLA Classical approach

Overall Size 374 MB 2904 MB

Total Download 01:29 11: 40

Installation Time 00:23 01:33:30

Total Delete Time 00:02 00:22

Total Update (Delete +

Download + Installation) Time
01:54 01:45:32

These results (see Table 33) demonstrate that using LLA offers a considerable amount

of time and storage gain due to its dynamicity and the distributed nature of its services.

4. Conclusion

In this chapter, we demonstrated the feasibility of our proposal. Long Life Application

is a concept that requires major changes in the way we consider mobile applications. Compared

to the currently used mobile store system of multiple stand-alone applications, our solution

targets specific services towards the users only when they need them.

These changes will push developers to think in terms of context awareness and therefore

provide more personalized user experiences. From the point of view of the user, LLA gives the

possibility to have a richer, open, and hands-free experience.

Another factor that we defended in this chapter is the sustainability and performance of

our proposal regardless of the large diversity of possibilities existing inside the connected-

environment of the user.

157 Chapter 9 – Conclusions and future work

157

Chapter 9 – Conclusions and future work

158 Chapter 9 – Conclusions and future work

158

The proposal presented in this Ph.D. work is an innovative concept. Proposing only

ONE application per user, to perform all his/her tasks and manage transparently all the

functionalities, is an ideal solution not available nowadays. The utopian future where mobile

apps will know what we need, even before we interact with them, is approaching. In this sense,

many research works are oriented to the development of those future apps and they found out

that contextual awareness is essential to the survival of mobile applications.

Our proposal for this is called Long-life Application, a name that reflects the nature of

the continuity and evolution that we demonstrate clearly in our scenario. This application will

evolve while running according to the users’ needs (personal and/or professional) and will

provide continuously relevant context-adapted services.

A relevant aspect of the proposed application is the adequate detection of the context.

For that purpose, the long-life application incorporates a rich situation model that considers any

type of combination of three dimensions (time, location, and activity) to represent different

context situations where users can be involved. Furthermore, it also incorporates an innovative

cross-device context detection mechanism. This support for multiple devices enhances the

capability to detect situations, anywhere and anytime, as data captured from different devices

and sensors can be combined.

Moreover, LLA incorporates a dynamic injection mechanism allowing users,

developers, and other entities, to expand the application and customize it according to the user’s

specific needs. This contribution presents the main novelty of our proposal in the mobile

context-aware mobile world.

In a world where users are surrounded by smart objects, users have higher expectations

from their apps. This evolution pushes the need to have an application able to consider the

connected-world of the user. In this scope, LLA is able to deploy and distribute its services, if

needed, among the different devices that the user is operating while hiding their heterogeneity

by using Kalimucho.

To summarize, our proposal provides a mechanism able to detect, formalize and

understand the user’s context. It provides a set of components working simultaneously and

transparently in order to inject, detect and understand situations regardless of its source. Also,

it is a suitable solution for the common case of a user with multiple devices, as he/she is not

obliged to manage only one specific device. It takes into account the multiplicity of devices and

orchestrates the services of the application accordingly. It offers a new user experience that

reflects the technological advances that we are witnessing every day.

159 Chapter 9 – Conclusions and future work

159

Nonetheless, there is much work that could be done to improve LLA and make even

more efficient for its users.

As future lines for this work, a process that identifies the semantics from either locations

or events could be integrated. It should categorize them according to different semantic domains

(sport, lifestyle, entertainment, etc.) in order to infer appropriate services.

Another major improvement that could be considered to improve the dynamicity of the

application would be to integrate an intelligent situation recommender based on machine/deep

learning based algorithm that digs deeper into the personality of the user in order to propose

more personal situations.

Moreover, with the advancement of technology and the riser of green and energy-aware

computing, we must take into consideration this important area which is in the center of smart-

environments. This perspective could bring LLA to next age of power-efficiency and present

to the world as an application that deeply cares about the environment.

Last but not least, we cannot discuss IoT without bringing the issue of security. The

security issue is a non-ending conflict between hackers and programmers. Although LLA uses

Kalimucho’s encryption-key system to securely transfer data, it lacks its own security layers

and protocols that ensure the anonymity and protection of a user possessing multiple devices

inside a non-secured network. This is an important issue to consider to its importance for every

user, especially when he is managing more than one device and when he relies most of the time

on information transfer between his/her devices.

LLA proposal, somehow, may imply a revolution in the way we interact with computers,

as we propose a single long-life application that adapts itself dynamically to the current

situation. This application is still on a prototype level based on thorough research on the related

domains. But the promising results that we acquired made us consider pushing it to a

commercial level and contacting possible investors and providers.

160 Bibliography

160

Bibliography

[1] 24me, https://www.twentyfour.me/ [Online; accessed 06-December-2017].

[2] Akman, Varol, and Mehmet. S. "The use of situation theory in context modeling." Computational

Intelligence: An International Journal 13.3: 427-438. 1997.

[3] Amy L. Murphy, Gian Pietro Picco, Gruia-Catalin Roman, LIME: A Middleware for Physical

and Logical Mobility, Proceedings of the 21st International Conference on Distributed Computing,

524—533, 2001.

[4] Antero. T, Tommi. M, and Kari Syst¨a. Liquid software manifesto: the era of multiple device

ownership and its implications for software architecture. In 38th Annual Computer Software and

Applications Conference (COMPSAC), pages 338–343. IEEE, 2014.

[5] AppAnnie, App Annie 2016 Retrospective Research\Analyze, 2017.

[6] Apple, https://www.apple.com/tn/imac/ [Online; accessed 06-December-2017].

[7] Audi, http://www.audi.fr/fr/web/fr/gamme/a3/a3.html [Online; accessed 06-December-2017].

[8] Autili, Marco, Paola Inverardi, and Massimo Tivoli. "CHOREOS: large scale choreographies for

the future internet." Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),

2014 Software Evolution Week-IEEE Conference on. IEEE, 2014.

[9] Bailey, James, et al. "An event-condition-action language for XML." Web Dynamics. Springer

Berlin Heidelberg. 223-248. 2004.

[10] Bakken, David. "Middleware." Encyclopedia of Distributed Computing 11” (2001).

[11] Ben Abdesslem, F., Phillips, A., & Henderson, T. (2009, August). Less is more: energy-efficient

mobile sensing with senseless. In Proceedings of the 1st ACM workshop on Networking, systems, and

applications for mobile handhelds (pp. 61-62). ACM.

[12] Boujbel, Raja, et al. "Muscadel: A deployment dsl based on a multiscale characterization

framework." Computer Software and Applications Conference Workshops (COMPSACW), 2014 IEEE

38th International. IEEE, 2014.

[13] Cecilia Mascolo, Licia Capra, Stefanos Zachariadis and Wolfgang Emmerich, xmiddle: A Data-

Sharing Middleware for Mobile Computing, Wireless Personal Communications, 77—103, 2002

 [14] Cheverst, Keith and Davies, Nigel and Mitchell, Keith and Friday, Adrian and Efstratiou,

Christos. Developing a context-aware electronic tourist guide: some issues and experiences. Proceedings

of the SIGCHI conference on Human Factors in Computing Systems, pages 17—24. ACM, 2000.

 [15] CHEN, P.-S. The entity-relationship model - toward a unified view of data. ACM Transaction

on Database Systems 1, 1, 9–36. 1976.

https://www.twentyfour.me/
https://www.apple.com/tn/imac/
http://www.audi.fr/fr/web/fr/gamme/a3/a3.html

161 Bibliography

161

[16] Chia-Chen Chen and Tien-Chi Huang. Learning in a u-museum: Developing a context-aware

ubiquitous learning environment. Computers & Education, 59(3):873–883, 2012.

[17] CHTCHERBINA, E., AND FRANZ, M. Peer-to-peer coordination framework (p2pc): Enabler

of mobile ad-hoc networking for medicine, business, and entertainment. In Proceedings of International

Conference on Advances in Infrastructure for Electronic Business, Education, Science, Medicine, and

Mobile Technologies on the Internet (SSGRR2003w), 2003.

[18] Clarke, Siobhán, and Cormac Driver. "Context-aware trails [mobile

computing]." Computer 37.8: 97-99. 2004.

[19] Clarke, Cormac Driver Siobhán. "Hermes: Generic Designs for Mobile, Context-Aware Trails-

Based Applications.» 2004.

[20] Coding Horror, https://blog.codinghorror.com/lazyweb-calling/ [Online; accessed 06-

December-2017].

[21] Crunchbase, https://www.crunchbase.com/organization/grokr#/entity [Online; accessed 06-

December-2017].

[22] Crunchbase, https://www.crunchbase.com/organization/osito#/entity [Online; accessed 06-

December-2017].

 [23] Da, Keling, Marc Dalmau, and Philippe Roose. "Kalimucho: Middleware for mobile

applications." Proceedings of the 29th Annual ACM Symposium on Applied Computing. ACM, 2014.

[24] Dave Evans. The internet of things: How the next evolution of the internet is changing

everything. Technical report, Cisco, 2011.

[25] David, Pierre-Charles, and Thomas Ledoux. "WildCAT: a generic framework for context-aware

applications." Proceedings of the 3rd international workshop on Middleware for pervasive and ad-hoc

computing. ACM, 2005.

[26] de Oliveira, L., and A. Loureiro. "CodeDroid: A Framework to Develop Context-Aware

Applications." The Fourth International Conferences on Advances in Human-oriented and Porsonalized

Mechanisms, Technologies, and Services. 2011.

[27] Dey, Anind K., Gregory D. Abowd, and Andrew Wood. "CyberDesk: A framework for

providing self-integrating context-aware services." Knowledge-Based Systems 11.1: 3-13. 1998.

 [28] D. Gelernter. Generative Communication in Linda. ACM Computing Surveys, 7(1):80–112,

Jan. 1985.

[29] Edison.tech https://www.easilydo.com/ [Online; accessed 06-December-2017].

[30] Elmalaki, Salma, Lucas Wanner, and Mani Srivastava. "Caredroid: Adaptation framework for

android context-aware applications." Proceedings of the 21st Annual International Conference on

Mobile Computing and Networking. ACM, 2015.

[31] Endsley, M. R., Bolte, B., & Jones, D. G. Designing for situation awareness: an approach to

user-centered design. Boca Raton, FL: CRC Oress. 2003.

https://blog.codinghorror.com/lazyweb-calling/
https://www.crunchbase.com/organization/grokr#/entity
https://www.crunchbase.com/organization/osito#/entity
https://www.easilydo.com/

162 Bibliography

162

[32] E. Bouix, M. Dalmau, P. Roose F. Luthon - A Multimedia Oriented Component Model - AINA

2005 - The IEEE 19th International Conference on Advanced Information Networking and Applications

- Tamkang University, Taiwan - March 28 - March 30, 2005.

[33] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani, I. Crnkovic, J. A. Stafford,

H. W. Schmidt, and K. Wallnau, An open component model and its support in java. In Proceedings of

the 7th International Symposium on Component-Based Software Engineering (CBSE 2004), volume

3054, pages 7–22, Edinburgh, Scotland, Springer-Verlag. 2004.

 [34] Fatoohi, Rod, David McNab, and David Tweten. "Middleware for Building Distributed

Applications Infrastructure." Report NAS-97-026, 1997.

[35] Floch, J., Hallsteinsen S., Stav E., Eliassen E., Lund K., Gjørven E.: Using architecture models

for runtime adaptability. IEEE Software, 23, 2, 62–70. 2006.

[36] Flybits, https://flybits.com/ [Online; accessed 06-December-2017]

[37] Forbes, https://www.forbes.com/sites/joshbersin/2012/08/16/the-move-from-systems-of-

record-to- systems-of-engagement/#72fdafe647f5 [Offline; accessed 06-December-2017].

[38] Gheith, A., et al. "IBM Bluemix Mobile Cloud Services." IBM Journal of Research and

Development 60.2-3: 7-1. 2016.

[39] Glassey, R., Stevenson, G., Richmond, M., Nixon, P., Terzis, S., Wang, F., Ferguson R. I.:

Towards a Middleware for Generalised Context Management. First International Workshop on

Middleware for Pervasive and Ad Hoc Computing, Middleware, 2003.

[40] Google, https://www.google.com/intl/fr/landing/now/ [Online; accessed 06-December-2017]

[41] Google, https://developer.android.com/topic/instant-apps/overview.html [Online; accessed 06-

December-2017].

[42] Google Play, https://play.google.com/store/apps/details?id= ru.gavrikov.mocklocations&hl=fr

[Online; accessed 06-December-2017].

[43] GRUBER, T. G. A translation approach to portable ontologies. Knowledge Acquisition 5, 2,

199–220. 1993.

[44] Chihani, B., Bertin, E., & Crespi, N. A user-centric context-aware mobile assistant.

In Intelligence in Next Generation Networks (ICIN), 2013 17th International Conference on (pp. 110-

117). IEEE. 2013.

 [45] GsmArena, http://www.gsmarena.com/samsung_gear_s3_classic-8309.php [Online; accessed

06-December-2017].

[46] GsmArena, http://www.gsmarena.com/samsung_i9500_galaxy_s4-5125.php [Online; accessed

06-December-2017].

[47] Gu, Tao, et al. "An ontology-based context model in intelligent environments." Proceedings of

communication networks and distributed systems modeling and simulation conference. Vol. 2004. 2004.

https://flybits.com/
https://www.forbes.com/sites/joshbersin/2012/08/16/the-move-from-systems-of-record-to-%20systems-of-engagement/#72fdafe647f5
https://www.forbes.com/sites/joshbersin/2012/08/16/the-move-from-systems-of-record-to-%20systems-of-engagement/#72fdafe647f5
https://www.google.com/intl/fr/landing/now/
https://developer.android.com/topic/instant-apps/overview.html
http://www.gsmarena.com/samsung_gear_s3_classic-8309.php
http://www.gsmarena.com/samsung_i9500_galaxy_s4-5125.php

163 Bibliography

163

[48] G. D. Abowd: “Software Engineering Issues for Ubiquitous Computing” Int. Conf. on Software

Engineering, Los Angeles, 1999.

[49] G. D. Abowd and E. D. Mynatt, “Charting past, present, and future research in ubiquitous

computing”, ACM Trans. Comput.-Hum. Interact. 7, 1, Pages 29 – 58, 2000.

[50] Hadim, Salem, and Nader Mohamed. "Middleware: Middleware challenges and approaches for

wireless sensor networks." IEEE distributed systems online 7.3: 2006.

[51] HALPIN, T. A. Information Modeling and Relational Databases: From Conceptual Analysis to

Logical Design. Morgan Kaufman Publishers, San Francisco, 2001.

[52] Harter, A., Hopper, A., Steggles, P., Ward, A., & Webster, P. (2002). The anatomy of a context-

aware application. Wireless Networks, 8(2/3), 187-197.

[53] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., & Retschitzegger, W.

Context-awareness on mobile devices-the hydrogen approach. In System Sciences, 2003. Proceedings

of the 36th Annual Hawaii International Conference on (pp. 10-pp). IEEE. 2003.

 [54] Hp Customer Support, https://support.hp.com/ca-en/document/c05349072 [Online; accessed

06-December-2017].

[55] INDULSKA, J., ROBINSONA, R., RAKOTONIRAINY, A., AND HENRICKSEN, K.

Experiences in using cc/pp in context-aware systems. In LNCS 2574: Proceedings of the 4th

International Conference on Mobile Data Management (MDM2003), M.-S. Chen, P. K. Chrysanthis, M.

Sloman, and A. Zaslavsky, Eds., Lecture Notes in Computer Science (LNCS), Springer, pp. 247–261.

2003.

[56] Israel J. Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst, Thorsten Berger, Ahmed

E. Hassan, A Large Scale Empirical Study on Software Reuse in Mobile Apps, IEEE Software Vol. 31

No. 2 Pg. 78--86, 2014.

[57] Jeffrey S. Pierce and Jeffrey Nichols. An infrastructure for extending applications' user

experiences across multiple personal devices. In Proceedings of the 21st annual ACM symposium on

User interface software and technology (UIST '08). ACM, New York, NY, USA, 101-110, 2008.

[58] João Pedro Sousa and David Garlan, Aura: An Architectural Framework for User Mobility in

Ubiquitous Computing Environments, Software Architecture: System Design, Development and

Maintenance, World Computer Congress, Conference on Software Architecture, August 25-30,

Montreal, Canada, 2002.

 [59] Karchoud, R., Roose, P., Dalmau, M., de Courchelle, I., & Dibon, P. (2015, March). Kalimucho

for smart-∗: One step towards eternal applications. In Industrial Technology (ICIT), IEEE International

Conference on (pp. 2426-2432). 2015.

[60] Karchoud, R., Roose, P., Dalmau, M., Illaramendi, A., & Ilarri, S. Long Life Application:

Approach for User Context Management and Situation Understanding. In Ubiquitous Computing and

https://support.hp.com/ca-en/document/c05349072

164 Bibliography

164

Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS),

International Conference on (pp. 45-53). IEEE. 2016.

[61] Karchoud, R, ILLARRAMENDI, A, ILARRI, S, et al. Long-life application. Personal and

Ubiquitous Computing, p. 1-13, 2017.

 [62] Karchoud, R, et al. "All for One and One For All: Dynamic Injection of Situations in a Generic

Context-Aware Application." Procedia Computer Science 113: 17-24, 2017.

[63] Ke Zhai and Boni Xu and W. K. Chan and T. H. Tse, CARISMA: a context-sensitive approach

to race-condition sample- instance selection for multithreaded applications, 221—231, International

Symposium on Software Testing and Analysis, {ISSTA}, 2012, Minneapolis, MN, USA, July 15-20,

2012.

[64] Khan, Zaheer, Saad Liaquat Kiani, and Kamran Soomro. "A framework for cloud-based context-

aware information services for citizens in smart cities." Journal of Cloud Computing 3.1 (2014): 14.

[65] Knappmeyer, Michael, et al. "Survey of context provisioning middleware." IEEE

Communications Surveys & Tutorials 15.3: 1492-1519, 2013.

[66] La, Hyun Jung, and Soo Dong Kim. "A conceptual framework for provisioning context-aware

mobile cloud services." Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on.

IEEE, 2010.

[67] MCCARTHY, J. Notes on formalizing contexts. In Proceedings of the Thirteenth International

Joint Conference on Artificial Intelligence, R. Bajcsy, Ed., Morgan Kaufmann, pp. 555–560, 1993.

[68] MCCARTHY, J., AND BUVACˇ. Formalizing context (expanded notes). In Working Papers of

the AAAI Fall Symposium on Context in Knowledge Representation and Natural Language, S. Buvacˇ

and Ł. Iwanska, ´ Eds., American Association for Artificial Intelligence, American Association for

Artificial Intelligence, pp. 99–135, 1997.

[69] Microsoft, https://developer.microsoft.com/fr-fr/windows/kinect/hardware [Online; accessed

06-December-2017].

[70] Microsoft, https://www.microsoft.com/fr-fr/surface/devices/surface-pro-4/overview [Online;

accessed 06-December-2017].

[71] Matthew Panzarino. Foursquares swarm and the rise of the invisible app.

https://www.techcrunch.com/2014/05/15/ foursquares-swarm-and-the-rise-of-the-invisible-app, 2014.

[Online; accessed 06-December-2017].

[72] Mobile News, John, 5th June 2014, http://www.appmachine.com/blog/apps-service-moving-

mobile-cloud/ [Online; accessed 06-December-2017].

[73] MrCoffee, http://www.mrcoffee.com/wemo-landing-page.html [Online; accessed 06-

December-2017].

[74] M. Weiser: "The Computer for the 21st Century", Scientific American, 265, 3, September 1991.

[75] Nakamichi, https://www.nakamichi-usa.com/ [Online; accessed 06-December-2017].

https://www.microsoft.com/fr-fr/surface/devices/surface-pro-4/overview
http://www.appmachine.com/blog/apps-service-moving-mobile-cloud/
http://www.appmachine.com/blog/apps-service-moving-mobile-cloud/
http://www.mrcoffee.com/wemo-landing-page.html
https://www.nakamichi-usa.com/

165 Bibliography

165

[76] Nakagawa, T., Doi, C., Ohta, K., & Inamura, H.. Customizable Context Detection for ECA rule-

based Context-aware Applications. ICMU, May, 30, 60. 2012.

[77] Nest, https://nest.com/smoke-co-alarm/tech-specs/ [Online; accessed 06-December-2017].

[78] Nest, https://nest.com/fr/cameras/nest-cam-iq-indoor/overview/ [Online; accessed 06-

December-2017].

[79] Omer B, Victoria B, and Henning S. Bridging communications and the physical world: Sense

everything, control everything. In GLOBECOM Workshops, pages 1735–1740. IEEE, 2010.

[80] Ovadia, S. "Automate the internet with “if this then that” (IFTTT)." Behavioral & Social

Sciences Librarian 33.4: 208-211, 2014.

[81] Perera, C, et al. "A survey on internet of things from industrial market perspective." IEEE

Access 2: 1660-1679, 2014.

[82] Perera, C, et al. "Context aware computing for the internet of things: A survey." IEEE

Communications Surveys & Tutorials 16.1, 414-454, 2014.

[83] P.-C. David. Développement de composants Fractal adaptatifs : un langage ddi l’aspect

d’adaptation. Phd thesis, Université de Nantes école des Mines de Nantes, July 2005.

[84] Romero, Daniel, et al. "An sca-based middleware platform for mobile devices." Enterprise

Distributed Object Computing Conference Workshops, 2008 12th. IEEE, 2008.

[85] R. Balter, S. Krakowiak , Bilan des activités du laboratoire et du pro jet Sirac , 18 décembre

2001, http://lig-membres.imag.fr/krakowia/Files/Publi/bilan-sirac.pdf [Online; accessed 06-December-

2017].

 [86] Rouvoy, Romain, et al. "Composing components and services using a planning-based

adaptation middleware." International Conference on Software Composition. Springer Berlin

Heidelberg, 2008.

 [87] Samsung, http://www.samsung.com/uk/business/interactive/education/ [Online; accessed 06-

December-2017].

[88] Scott Matteson, October 27, 2015 http://www.techrepublic.com/article/mobile-apps-need-

context-to-hit-the-right-targets/ [Online; accessed 06-December-2017]

[89] Shalabi, S. M., Doll, C. L., Reilly, J. D., & Shore, M. B. U.S. Patent Application No. 13/311,278,

2011.

[90] SHALABI, Sami M, DOLL, Cassandra Lynn, REILLY, James D., et al. Access control list.

U.S. Patent Application No 13/311,278, 5. 2011.

[91] Schilit B, Theimer M. Disseminating active map information to mobile hosts. Network,

IEEE. 8(5):22–32. 1994.

[92] SCHILIT, B. N., ADAMS, N. L., AND WANT, R. Context-aware computing applications. In

IEEE Workshop on Mobile Computing Systems and Applications (Santa Cruz, CA, US, 1994).

https://nest.com/smoke-co-alarm/tech-specs/
https://nest.com/fr/cameras/nest-cam-iq-indoor/overview/
http://www.samsung.com/uk/business/interactive/education/
http://www.techrepublic.com/meet-the-team/us/scott-matteson/
http://www.techrepublic.com/article/mobile-apps-need-context-to-hit-the-right-targets/
http://www.techrepublic.com/article/mobile-apps-need-context-to-hit-the-right-targets/

166 Bibliography

166

[93] Sony, https://www.sony.co.uk/electronics/support/televisions-projectors-lcd-tvs-android-/kdl-

43w805c/specifications, [Online; accessed 06-December-2017].

[94] Sosinsky, Barrie. Cloud computing bible. Vol. 762. John Wiley & Sons, 2010.

[95] Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: Workshop on Advanced

Context Modelling, Reasoning and Management, UbiComp, 2004

[96] Syer, Mark D., et al. "Exploring the development of micro-apps: A case study on the blackberry

and android platforms." Source Code Analysis and Manipulation (SCAM), 2011 11th IEEE

International Working Conference on. IEEE, 2011.

[97] Tempo, https://tempo.io/mobile/ [Online; accessed 06-December-2017].

[98] Tesla, https://www.tesla.com/models [Online; accessed 06-December-2017].

[99] Todd Grennan. Spring 2016 mobile customer retention report an analysis of retention by day.

Technical report, Appboy, 2016.

 [100] Tommi Mikkonen, Kari Systa, and Cesare Pautasso. Towards liquid web applications. In

International Conference on Web Engineering (ICWE), pages 134–143. Springer, 2015.

[101] USCHOLD, M., AND GR¨UNINGER, M. Ontologies: Principles, methods, and applications.

Knowledge Engineering Review 11, 2, 93–155. 1996.

[102] Villamizar, Mario, et al. "Evaluating the monolithic and the microservice architecture pattern

to deploy web applications in the cloud." Computing Colombian Conference (10CCC), 2015 10th.

IEEE, 2015.

[103] W3C. Composite Capabilities / Preferences Profile (CC/PP). http://www.w3.org/Mo-

bile/CCPP [Online; accessed 06-December-2017]

 [104] Wang, Miao-Miao, et al. "Middleware for wireless sensor networks: A survey." Journal of

computer science and technology 23.3: 305-326, 2008.

[105] Wasinger, Rainer, et al. "Scrutable user models and personalized item recommendation in

mobile lifestyle applications." International Conference on User Modeling, Adaptation, and

Personalization. Springer Berlin Heidelberg, 2013.

[106] WAPFORUM. User Agent Profile (UAProf). http://www.wapforum.org. [Online; accessed 06-

December-2017].

[107] Weber, S. Chromecast user’s manual: stream video, music, and everything else you love to

your TV. Weber Systems Inc. 2014.

[108] Yinmeng Zhang. 16 Mobile Mistakes That Plummet User Retention Rates.

https://apptimize.com/blog/2015/10/16-mobile-mistakes-that-plummet-user-retention-rates, 2015,

[Online; accessed 06-December-2017].

[109] Yves Bouchard, Contextual Logic and Epistemic Contexts, Springer, 2014.

https://www.sony.co.uk/electronics/support/televisions-projectors-lcd-tvs-android-/kdl-43w805c/specifications
https://www.sony.co.uk/electronics/support/televisions-projectors-lcd-tvs-android-/kdl-43w805c/specifications
https://tempo.io/mobile/
https://www.tesla.com/models
http://www.wapforum.org/
https://apptimize.com/blog/2015/10/16-mobile-mistakes-that-plummet-user-retention-rates

167 Bibliography

167

[110] Zachariadis, Stefanos, Cecilia Mascolo, and Wolfgang Emmerich. "Satin: a component model

for mobile self organisation." On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and

ODBASE : 1303-1321, 2004.

[111] Zhao, Zhenzhen, Ji Liu, and Noel Crespi. "The design of activity-oriented social networking:

Dig-Event." Proceedings of the 13th International Conference on Information Integration and Web-

based Applications and Services. ACM, 2011.

168 Appendix 1

168

Appendix 1

Writing execution scripts
Components in a Kalimucho application are not launched by themselves. This is achieved by

sending commands to the Kalimucho platform. This can be done either:

- By creating an initial deployment script file that will execute each time the

application is launched

- By creating a component that uses the platform service to send commands the

platforms.

The commands accepted by the platform are not solely to launch components, but can also

connect components, remove components, migrate components, etc. Below is the full list of

commands accepted by the platform and their parameters.

1. List of commands

a. Creating a component

CreateComponent name class [input input …] [output output …]

- name = the name of the component (symbolic name used by the platform to name it)

- class = the class of the component on the form: application.

package…nameOfTheClass

- [input …] = list of the names of the connectors linked to the inputs of the component

(will be [null] if the component as no input). Each element of the list can be :

- a name of connector if only one connector is linked to this input

- {c1 c2 ... cN} if connectors c1, c2, ... cN are connected to this input

- "not_used" if the input is, for the moment, not connected. It can be connected later.

- [output …] = list of the names of the connectors linked to the outputs of the component

(will be [null] if the component as no output). Each element of the list can be :

- a name of connector if only one connector is linked to this output

- {c1 c2 ... cN} if connectors c1, c2, ... cN are connected to this output

- "not_used" if the output is, for the moment, not connected. It can be connected later.

The component is created. The connectors can be indifferently created before or after the

component. A component with no input and no output can be also created (the two last

parameters are [null] [null]).

Remark: More connectors can be added later to the created component thanks to the

commands ReconnectInputComponent and DuplicateOutputComponent.

169 Appendix 1

169

Example: CreateComponent navigator application.nav.gps.Navigator [fromGPSReader

fromSupervisor] [{toLogger toSupervisor}]

b. Removing a component

RemoveComponent name

- name = the name of the component (symbolic name used by the platform to name it)

The component is stopped then removed; the connectors to which it was linked are only

disconnected and can be destroyed or connected again.

Example: RemoveComponent navigator

c. Component migration

SendComponent name to

- name = the name of the component (symbolic name used by the platform to name it)

- to = name of the device to send this component to. A name is constituted of a friendly

name

defined by the device's user followed by a : followed by the type of the device (PC or

Android) followed by a unique number.

The component is stopped then its internal state is sent by serialization. The platform which

sends the component also executes the redirection of all the linked connectors to the new device.

The sent component will not execute the init method but will directly start in the run_BC

method.

Example: SendComponent navigator Kalimucho:Android50CCF8C78679

d. Disconnection of an input of a component

DisconnectInputComponent name number designation

- name = the name of the component (symbolic name used by the platform to name it)

- number = the number of the input to reconnect (zero-based)

- designation = the name of the input connector to disconnect

An input connector of the component is disconnected. The component will be suspended if it

tries to read on this input and if there is no more linked connector remaining. It will be restarted

and terminate its reading when this input will be connected again and provides new data.

Example: DisconnectInputConnector navigator 1 fromSupervisor

170 Appendix 1

170

e. Reconnection of an input of a component

ReconnectInputComponent name number input

- name = the name of the component (symbolic name used by the platform to name it)

- number = the number of the input to reconnect (zero-based)

- input = the name of the connector to connect to this input

Adds a connector on an input of the component. If the component was suspended while reading

on this input, it will be restarted when a new data will be available on the connector.

Example: ReconnectInputComponent navigator 1 fromSupervisor

f. Disconnection of an output of the component

DisconnectOutputComponent name number output

- name = the name of the component (symbolic name used by the platform to name it)

- number = the number of the input to disconnect (zero-based)

- output = the name of the output connector to disconnect

An output connector of the component is disconnected. According to the method used by the

component to write on this output, it can be suspended if there is no more linked connector

remaining. It will be restarted and terminate its writing when this output will be connected

again.

Example: DisconnectOutputComponent navigator 2 toLogger

g. Reconnection or duplication of an output of the component

DuplicateOutputComponent name number output

- name = the name of the component (symbolic name used by the platform to name it)

- number : the number of the output to connect or duplicate (zero-based)

- output = the name of the connector to connect or add to this output

Adds a connector on an output of the component. If there was yet at least one connector linked

to this output, the platform only duplicates output date in this new connector.

Example: DuplicateOutputComponent navigator 0 toLogger

h. Creation of a connector

CreateConnector name input output

- name = the name of the connector (symbolic name used by the platform to name it)

171 Appendix 1

171

- input = "internal" or the name of the device from which this connector arrives.

- output = "internal" or the name of the device to which this connector goes

A device name is constituted of a friendly name defined by the device's user followed by a :

followed by the type of the device (PC or Android) followed by a unique number.

This command creates a connector. The word “internal” indicates that this end of the connector

is on the device that creates it. The name of a device is used when this connector comes or goes

to another device. In this case, the local platform sends a command to the distant one in order

it creates the other part of the connector.

Example: CreateConnector fromSupervisor internal Kalimucho:Android50CCF8C78679

i. Removing a connector

RemoveConnector name

- name = the name of the connector (symbolic name used by the platform to name it)

The connector is removed.

If the input or the output of this connector is on another device, the local platform sends a

command to the distant platform in order it removes its part of the connector.

Example: RemoveConnector toLogger

2. Writing an initial deployment file

An initial deployment file will be executed each time the application launches, inside this file,

you can define a list of commands that the platform will process when it starts.

The initial deployment file name is init.txt this file needs to be:

_ In the Kalimucho/KalimuchoInitialDeployment folder of a PC application

_ In the assets/Kalimucho/KalimuchoInitialDeployment folder of an Android

application

The file is constituted of blocks of commands describing deployments. The empty lines or the

lines starting with # are ignored. A block of commands can be put between tags indicating when

it must be executed. The tag normally contains the name of a device and the command will be

executed as soon as this device will be present on the network.

- An opening tag is the name of a device or * between < and >

- A closing tag is the name of a device or * between </ and >

Commands that are not enclosed in tags are non-conditional commands which will be

immediately executed.

172 Appendix 1

172

Commands enclosed in tags are executed as soon as the device named in the tag is present. If

the named device is * these commands are executed at each arrival of a new device.

A command a can be preceded by the name of a device or * followed by: (this command will

be executed by the platform of this device, * will be replaced by the name of the newly detected

device).

A command without a name of the device followed by: is a command executed by the local

platform. When a device is indicated in a command, it can be:

- The name of a machine (as defined by the user)

- * that will be replaced by the name of the new detected device

- localDevice that indicates the device which executes the initial deployment.

In order to avoid components and connector name duplications, a name that contains the

character * in a command will be replaced by this name completed by the name of the device

indicated in the tag in which this command is included or by the name of the newly detected

device if the tag is <*> or, at last, by "localDevice" if this command is outside of tags.

After what, the names really used by the platform will be, moreover, completed by the name of

the device that executes the initial deployment. This in order to avoid duplications of names

due to the execution of the same deployment file on several devices.

The usable commands are the following:

- CreateComponent namec classe [namek namek …] [namek namek …]

- CreateConnector namek device device

- DisconnectInputComponent namec namek

- DisconnectOutputComponent namec namek

- ReconnectInputComponent namec numero namek

- ReconnectOutputComponent namec numero namek

Remarks:

- In these commands the names (namec and namek) can include the character * in order

to be completed by the name of the device indicated in the tag.

- In these commands the names of devices (device) can be the name of a machine * that

is replaced by the name of the device indicated in the tag localDevice which is the name

of the device executing the deployment internal for an internal end of connector.

Example of initial deployment file:

Command executed locally: creation of local components

CreateComponent display application.display.Display [not_used not_used] [null]

173 Appendix 1

173

CreateComponent transmit application.transmit.Transmitter [{c5}] [{c4}]

Remark: in these commands the names of the components (display and transmitter don't contain

* because this command is executed locally and only one time: at starting)

Commands executed when the device called "Example" is present

The first and the third are executed by the device called "Example"

<Example>

Nexus: CreateComponent rec application.receive.Receive [{c4}] [{c5}]

CreateConnector c5 Example internal

Example: CreateConnector c4 localDevice internal

</Example>

Remark: in these commands the names of components and connectors (rec, c4 and c5 don't

contain * because this command is executed only one time: when the device called Example is

present)

Commands executed each time a new device is detected

The first and the third are executed by the new device

The others are executed by the local device

In the last two commands the name of the component "display" matches the one

created by a local command (see below), it does not change for each new device.

On the other hand the connectors (c1 and c2) and the component (send) will have

a different name for each detected device

<*>

: CreateComponent send application.send.Send [null] [{c1*} {c2*}]

CreateConnector c1* * internal

: CreateConnector c2 internal localDevice

ReconnectInputComponent display 0 c1*

ReconnectInputComponent display 1 c2*

</*>

