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A B S T R A C T

This study presents a validation of the OpenFOAM multiphase solver (i.e., multiphaseInterFoam) with
respect to the elementary processes involved in the simulation of waves generated by high mobility subaerial
landslide with a specific focus on the computation of energy terms. These processes include slide flow over
a slope, impulse wave generation, wave dispersion, wave propagation and breaking. The simulations are
conducted in 2D. The results allow to determine the minimum number of cells and the appropriate model
tuning to reach acceptable accuracy while maintaining the computation time in a reasonable limit. To respect
energy conservation, the choice of the turbulence model appears critical. Only, with a turbulence including
a buoyancy term in the equations to account for the multiphase flow, and optimized initial values of the
turbulence model parameters, could be the energy components of the flow accurately calculated. This study
highlights the complexity of the phenomenon and the care with which, simulations should be conducted for
the accurate computation of the energy transfers in the context of subaerial landslides.
1. Introduction

The simulation of impulse waves generated by subaerial landslides
poses great challenges to the scientific community as it involves com-
plex slide rheology, turbulent flows and free surface processes. To
address this complexity, advanced models are developed and need to
be properly validated. It is the objective of the present study to provide
a thorough validation of one of the most used model in the community
(i.e., OpenFOAM) including original aspects which will be developed
further.

Landslide wave models are usually composed of a slide model
coupled with a hydrodynamic model. For subaerial landslides, the
hydrodynamic model should be able to describe the full range of
physical processes occurring, such as vertical flow acceleration, vortices
and multiple interface reconnections due to wave breaking for instance.
This disqualifies models based on strong physical assumptions such as
shallow water models (Cecioni and Bellotti, 2010) or more generally
depth-integrated models (Tarwidi et al., 2022), boundary elements
models (Grilli et al., 2002), non-hydrostatic Navier–Stokes models as-
suming a single valued water surface (Ma et al., 2015). Note that if
these models cannot represent the whole complexity of the generation
area, they may be able to obtain satisfactory results in the far field.

∗ Corresponding author.
E-mail addresses: aparvinashti@univ-pau.fr (A.H. Parvin), stephane.abadie@univ-pau.fr (S. Abadie), kamal.el-omari@univ-reunion.fr (K.E. Omari),

yves.leguer@univ-pau.fr (Y.L. Guer).

Navier–Stokes models with a VOF algorithm for the interfaces treat-
ment are the most common alternative to simulate the phenomenon.
Here, we restrict our review to works focused on subaerial landslides
impulse waves. The modeling community needs reference cases to
which models can be compared, for validation purpose. At first, the
experimental works presented in Fritz (2001), Fritz et al. (2003),
involving 2D granular subaerial slides with high impact velocities,
were extensively used to validate subaerial landslide impulse wave
models. Hence, Weiss et al. (2009) compared the results obtained
with the multi-material hydrocode iSALE (Impact Simplified Arbitrary
Lagrangian Eulerian) with Fritz (2001). Basu et al. (2010) employed the
FLOW3D solver with three phases and two different turbulence models
to simulate the same reference case. A comparable work was made
in Biscarini (2010) using the FLUENT solver. Abadie et al. (2010) also
qualitatively compared the results obtained using THETIS, a Navier–
Stokes VOF model with three Newtonian phases, run in laminar flow
condition, with the experimental snapshots of a subaerial granular
slide penetrating water (Fritz et al., 2003). The first 2D experiments
of Fritz (2001), Fritz et al. (2003) were later completed by 3D mea-
surements in Mohammed and Fritz (2012). These experiments were,
for instance, used as validation case in Kim et al. (2020) for the
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TSUNAMI3D model. Viroulet et al. (2013) conducted an experimental
study involving, among others, a triangular granular subaerial slide
released from a resting position located just above the water free
surface. Abadie et al. (2020) and Paris et al. (2021) simulated this
xperiment respectively with THETIS and the multiphase solver of
penFOAM (i.e., the multiphaseInterFoam), considering a New-

onian slide with a calibrated viscosity. Similarly, Battershill et al.
(2021) simulated the experiment described in Bougouin et al. (2020-
05) involving a granular pyroclastic density current with the model
Basilisk also considering a Newtonian flow. Romano et al. (2023) used
 Coulomb viscoplastic rheology implemented in the standard solver
ultiphaseInterFoam to simulate the experiments of Viroulet
t al. (2013) and Mohammed and Fritz (2012) without the need of any

parameter calibration.
All the previous studies considered the slide as a continuous phase,

either Newtonian or non Newtonian, but with no possibility for the wa-
ter flow to penetrate within the granular phase, whereas this obviously
occurs in the natural phenomenon as well as in most of the experiments.
Notable efforts have been made to overcome this limitation in the
recent years. A two phase model for the granular mixture coupled
with a VOF approach for the other fluid phases has been employed
successfully for instance in Si et al. (2018) and in Rauter et al. (2022).
The coupling of DEM (Discrete Element Method), for the slide phase,
nd other approaches, for water and air phases, appears in this respect,

also as an interesting alternative. The DEM method can be, for instance,
coupled with mesh-based algorithms as in Mao et al. (2020) and Bilal
t al. (2021). Other authors choose to employ a complete Lagrangian

strategy by coupling the DEM method with the SPH particle-based
method (Tan and Chen, 2017; Xu et al., 2020; Zhou et al., 2022).
Other possible research strategies include the two-phase material point
method as in Zhao et al. (2022, 2023) which is one of the latest
developments in particle-in-cell (PIC) methods (Harlow, 1964). Note
that this type of methods can also be coupled with the DEM approach
as in Chen et al. (2019).

The validations proposed in these papers are based on the param-
eters measured in the experimental studies. They include the velocity
nd thickness of the slide at the moment of impact (Clous, 2018), the

final position and shape of the landslide (Wang et al., 2017), snapshots
f slide-water impact completed with the velocity field in the case of
vailable PIV measurements (Basu et al., 2010; Abadie et al., 2010),

free surface time signal obtained with wave gauges (most of the studies)
nd wave run-up over the shore ending the domain Kim et al. (2020).

From the previous literature review, it appears that most of the stud-
ies focused on the granular slide interaction with water, which indeed
involves physical processes challenging the current numerical models.
 notable exception is the experimental work described in Bullard et al.

(2019) which featured a water slide, a limit case representative of
the highest landslide mobility. Nevertheless, the obvious advantage of
uch case is that it can be reproduced by classical numerical models
elatively easily without any need for artificial calibration. The mea-
urements of Bullard et al. (2019) were later simulated in Rauter et al.

(2021) with multiphaseInterFoam. The model showed difficulties
in reproducing the water slide shape while the slide velocity and the
wave field were correctly simulated.

Most of the numerical studies also focused on the maximum wave
mplitude observed in the near field. It has the advantage to reduce
he computational domain to the generation zone and therefore lim-
ts the computational cost to reasonable bound. Nevertheless, after
eaching this maximum amplitude, the impulse wave is frequently
reaking. Battershill et al. (2021) report a wide range of wave breaking
ehaviors which, each, should lead to different energy dissipation
ates. Fritz et al. (2004) observed several types of waves in their

experiment involving: weakly nonlinear oscillatory waves, nonlinear
ransition waves, solitary-like waves and dissipative transient bores.
reaking was reported for the majority of the cases tested. Wave
ispersion effect on the leading wave was also clearly observed.
2 
The impulse wave transformation after generation is rarely ad-
dressed in the numerical studies. This implies a very long computa-
tional domain and a validation of the model with respect to complex
processes including breaking. Rauter et al. (2021) compared the wave
simulated at different gauge positions including the post breaking area
with the measurements of Bullard et al. (2019). The results obtained
with multiphaseInterFoam appeared quite satisfactory regarding
the wave amplitude decay.

In particular, the leading wave energy evolution with time seems
crucial to properly simulate for a relevant hazard assessment. Energy
transfers have been already studied numerically in Clous and Abadie
(2019) or Battershill et al. (2021), for instance. Nevertheless, to the
best knowledge of the authors, the energetic aspect is never considered
at the validation stage.

The numerical simulation of such a complex phenomenon requires
the use of a multi-purpose calculation code which integrates models
to account for the three-phase nature of the flow, the non-Newtonian
rheology of the slide and turbulence. Furthermore, it must allow the
testing of different models, possess a degree of flexibility with regard
to the mesh and the capacity to perform sufficiently advanced post-
processing for the calculation of energy exchanges. For these reasons,
we opted for OpenFOAM and more specifically its multiphase solvers:
interFoam and multiphaseInterFoam.

In this article, we present a thorough validation of these two solvers
in 2D, with respect to the physical processes involved in subaerial
landslide wave generation and transformation, accounting for the en-
ergetic aspects. In the path of Bullard et al. (2019) and Rauter et al.
(2021), the slide is simplified compared to the usual granular rheology
and only Newtonian and non-Newtonian slides are considered. The
processes considered are: slide propagation, impulse wave generation,
ropagation, dispersion and breaking. They should be, each, properly

resolved by the model to ensure the simulation accuracy as they act
equentially, and therefore, influence the final result (i.e. the amount
f energy transported by the wave). Consequently, and conversely to
revious works presented in this introduction, the approach chosen
n the paper, is to propose a validation for each process, considered
ndividually. The other original aspect of this study is the consideration
f the energy conservation and dissipation calculation in the validation
rocess. The final objective is to provide useful recommendations,
ssentially in terms of minimum mesh resolution and model choices,
o ensure the liability of the results for future studies, including energy
ransfer assessments.

The paper is structured as follows. Section 2 presents the numerical
model and the computation of the energy components. The turbulence
models tested in this work are presented in detail, as this aspect is of
key importance with regard to the energy transfers. Section 3 presents
he validation cases studied and the results obtained for the following

flow configurations:

• non-Newtonian slide flowing over a slope,
• impulse wave generation and breaking,
• wave dispersion (case of the undular bore),
• energy conservation in a propagating solitary wave,
• energy conservation in a breaking solitary wave,
• dissipation computation in a turbulent bore.

Finally, Section 4 discusses the different results obtained and
Section 5 gives the conclusions of the work.

2. Methods

2.1. Numerical method

In this work, depending on the problem case (i.e., water and air,
slide and air, or slide, water and air), the two-phase (interFoam) or
the multi-phase (multiphaseInterFoam) OpenFOAM VOF solver is
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used. These models solve the Navier–Stokes equations for multiphase
low of incompressible immiscible fluids.

The phase-fraction for phase 𝑖 is first defined as follows:

𝛼𝑖(𝑥, 𝑡) =
{

1 if phase 𝑖 is present at 𝑥, 𝑡
0 𝑒𝑙 𝑠𝑒. (1)

The continuity and momentum equations respectively read:

∇ ⋅ 𝐮 = 0 (2)

𝜕 𝜌𝐮
𝜕 𝑡 + ∇ ⋅ (𝜌𝐮𝐮) = −∇𝑝 + ∇ ⋅ (2(𝜇 + 𝜇𝑡)𝐃) + 𝜌𝐠 + 𝑓𝜎 𝑖, (3)

with 𝐮 the fluid local velocity, g the gravitational acceleration, 𝑝(𝑥, 𝑡)
he pressure field, 𝜌(𝑥, 𝑡), 𝜇(𝑥, 𝑡) and 𝜇𝑡 the local fluid density, molecular
ynamic viscosity and turbulent (eddy) viscosity (see Section 2.2),

respectively. 𝐃 = 1
2 (∇𝐮 + (∇𝐮)𝑇 ) is the strain rate tensor, while 𝑓𝜎 𝑖 =

𝜎 𝜅 ∇𝛼𝑖 is the surface tension force, modeled as a continuum surface
orce (Brackbill et al., 1992), in which 𝜎 is the surface tension at the

interface and 𝜅 the local curvature of the interface.
The local fluid properties are averaged among the existing phases

n a computational cell following:

𝜌(𝑥, 𝑡) =
𝑁
∑

𝑖=1
𝛼𝑖(𝑥, 𝑡) 𝜌𝑖, 𝜇(𝑥, 𝑡) =

𝑁
∑

𝑖=1
𝛼𝑖(𝑥, 𝑡) 𝜇𝑖, (4)

with 𝑁 number of phases and 𝜌𝑖 and 𝜇𝑖 density and molecular dynamic
viscosity of an existing phase in a cell.

The phase fraction value is updated at each time step thanks to the
hase fraction advection equation given by:
𝜕 𝛼𝑖
𝜕 𝑡 + ∇.(𝛼𝑖𝐮) +

𝑎𝑑 𝑗 𝑎𝑐 𝑒𝑛𝑡 𝑐 𝑒𝑙 𝑙 𝑠
∑

𝑗
∇ ⋅ (𝛼𝑖𝛼𝑗𝑢𝑟,𝑖𝑗 ) = 0. (5)

Here 𝑢𝑟,𝑖𝑗 is the relative velocity between phases. The last term is
employed as a numerical technique to ensure a sharp and non-diffusive
nterface.

The time and space computational domains are discretized into a
inite number of time steps and cells to solve the governing equations.

Spatial discretization is the standard Gaussian finite-volume integra-
tion method based on summing values on cell faces, which must be
interpolated from cell centers (Greenshields, 2018).

Eqs. (2) and (3) are solved with the PIMPLE algorithm which takes
care of the pressure–velocity coupling.

The CFL condition ensures the stability of the solution by limiting
he time step 𝛥𝑡 following:

𝐶 𝐹 𝐿 =
|𝐮|𝛥𝑡
𝛥𝑥

< 1, (6)

The phase volume fractions equation (5) is solved with the MULES
Multidimensional Universal Limited Explicit Solver) algorithm to en-
ure the conservation of sharp interfaces between a pair of phases.

2.2. Turbulence models

2.2.1. Reynolds averaged Navier–Stokes equations
As formerly mentioned, energy processes is an important aspect

of this work. Therefore, turbulence should be properly resolved as it
plays a critical role in the energy distribution in the flow as well as in
the dissipation processes. The following section describes the different
turbulent models which have been tested.

In the Reynolds averaged Navier–Stokes (RANS) equations, the flow
ariables are decomposed in averaged and fluctuating components.
qs. (2) and (3) involve averaged flow components (velocity and pres-

sure). When deriving the RANS equations, a new tensor made up of
fluctuating velocities products appears in the equations, which under
the Boussinesq hypothesis (Boussinesq, 1877), can be expressed in
function of a turbulent viscosity 𝜇𝑡 as written in Eq. (3). The turbulent
inetic energy (TKE) of the flow is given by 𝑘 = 1 𝐮′ ⋅ 𝐮′ with 𝐮′ the
2

3 
fluctuating velocity and the () symbol, the time averaging operator.
The rate of dissipation of the turbulent kinetic energy per unit mass is
𝜖 = 1

2
𝜇
𝜌

[

∇𝐮′ + (∇𝐮′)𝑇 ] ∶ [

∇𝐮′ + (∇𝐮′)𝑇 ]. The different models detailed
ereafter differs on their expression of the three variables 𝜇𝑡, 𝑘 and 𝜖.

2.2.2. Standard k-𝜖 model
In this model, the eddy viscosity is 𝜇𝑡 = 𝜌 𝐶𝜇

𝑘2

𝜖 . The governing
equations for 𝑘 and 𝜖 are:
𝜕 𝜌 𝑘
𝜕 𝑡 + ∇ ⋅ (𝜌 𝑘𝐮) = ∇ ⋅

((

𝜇𝑡
𝜎𝑘

+ 𝜇
)

∇𝑘
)

+ 𝑃𝑘 − 𝜌𝜖 , (7)

𝜕 𝜌 𝜖
𝜕 𝑡 + ∇ ⋅ (𝜌 𝜖 𝐮) = ∇ ⋅

((

𝜇𝑡
𝜎𝜖

+ 𝜇
)

∇𝜖
)

+
𝐶1𝜖 𝜖
𝑘

𝑃𝑘 −
𝜌 𝐶2𝜖 𝜖2

𝑘
, (8)

where 𝑃𝑘 = 2𝜇𝑡𝐷𝑖𝑗𝐷𝑖𝑗 is the production of turbulent energy. Recom-
ended values for the constants of the model 𝐶𝜇 , 𝜎𝑘, 𝜎𝜖 , 𝐶2𝜖 are 0.09,
.0, 1.3, 1.44, 1.92, respectively (Rodi, 1980). In the derivation of the
tandard k-𝜖 model, the flow is assumed to be fully turbulent and the
ffects of molecular viscosity, negligible. Therefore, in theory, it cannot

be integrated all the way to the wall (Moukalled et al., 2016).

2.2.3. RNG k-𝜖 model
The renormalized group (RNG) k-𝜖 model was developed in order

o improve the behavior of the standard k-𝜖 model in the case of high
treamline curvature flows such as, flows over a backward-facing step
or instance. It consists basically on a modification of a coefficient in
he 𝜖 equation, to account for the interaction between the turbulent
issipation and the mean shear (Yakhot et al., 1992).

In the RNG k-𝜖 model, the k and 𝜖 equations are similar to Eqs. (7)
and (8). The only change is on the coefficient 𝐶1𝜖 replaced by:

𝐶∗
1𝜖 = 𝐶1𝜖 −

𝜂 (1 − 𝜂∕𝜂0)
1 + 𝛽 𝜂3 . (9)

In (9), 𝜂 is the additional expansion parameter used in the derivation
by Yakhot et al. (1992), defined as the time scale ratio of the turbulent
to the mean strain rate, (𝜂 = �̇� 𝑘∕𝜖).

𝐶𝜇 , 𝜎𝑘, 𝜎𝜖 , 𝐶𝜖1, 𝐶𝜖2, 𝜂0 and 𝛽 are equal to 0.0845, 0.71942, 0.71942,
1.42, 1.68, 4.38 and 0.012, respectively (Openfoam-code, 2023).

2.2.4. Nonlinear k-𝜖 model
The nonlinear k-𝜖 model (NL) is a wall-bounded model proposed

y Shih (1993) and Shih et al. (1996). Unlike the standard k–𝜖 model,
his model does not produce negative normal stresses in particular

situations of complex turbulent flows. The NL model connects the mean
strain rate of the flow to the Reynolds stress tensor using the quadratic
algebraic nonlinear Reynolds stress model. In this model, the Reynolds
stress tensor reads:

𝝉𝑹𝒏𝒍 =
2
3
𝜌 𝑘 𝐈 − 𝜇𝑡 2𝐃 + 𝝉𝒏𝒍 (10)

with the following expression for the additional nonlinear stress term:

𝝉𝒏𝒍 =
1
2
(𝝌 + 𝝌𝑇 ) (11)

where:

𝝌 = 𝑘3

(𝐴2 + 𝜂3) 𝜖2
(

𝐶𝜏1
[

∇𝐮 ⋅ ∇𝐮 + (∇𝐮 ⋅ ∇𝐮)𝑇
]

+ 𝐶𝜏2
[

∇𝐮 ⋅ (∇𝐮)𝑇
]

+ 𝐶𝜏3
[

(∇𝐮)𝑇 ⋅ ∇𝐮
])

. (12)

The definition of the parameter 𝜂 is the same as in the RNG k-𝜖
model. k and 𝜖 equations are identical to the RNG k-𝜖 model. The eddy
viscosity is obtained through the general relationship of the standard
k-𝜖 model, except that the value of 𝐶𝜇 depends upon the values of 𝜉
and 𝜂 by:

𝐶𝜇 = 2 , (13)

3 (𝐴1 + 𝜂 + 𝛼𝜉 𝜉)
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where 𝛼𝜉 and 𝐴1 are constants and 𝜉 = 𝛺 𝑘
𝜖 is an additional scalar

parameter defined in terms of the mean rate of rotation, 𝛺 =
√

2𝜴 ∶ 𝜴,
ith the rotation tensor 𝜴 equal to 1

2 (∇𝐮 − (∇𝐮)𝑇 ). Default values for
the constants used in the nonlinear k-𝜖 model are 1.44, 1.92, 1, 1.3, 3,
15, −19, 1.25, 0.9 and 1000 for 𝐶∗

𝜖1, 𝐶
∗
𝜖2, 𝜎𝜖 , 𝜎𝑘, 𝐶𝜏1, 𝐶𝜏2, 𝐶𝜏3, 𝐴1, 𝛼𝜉

and 𝐴2, respectively.

2.2.5. k-𝜔 and k-𝜔 SST models
The k-𝜔 turbulence model was originally developed by Wilcox

(1988) to address the limitations of k-𝜖 family models in resolving
flows with adverse pressure gradients and near-wall flows. A new
ariable is introduced, 𝜔, which is the specific rate of turbulent dissi-
ation, namely the rate at which turbulent kinetic energy is dissipated.
his type of model also solves two transport equations to predict the
urbulent flow properties.

The k-𝜔 Shear-Stress Transport (SST) model introduced first by
Menter (1994) is a variant of the k-𝜔 model. It is an extension of the
standard k-𝜔 model which combines elements of both k-𝜔 and 𝑘 − 𝜖
models by using blending factors. This way, the k-𝜔 SST model tends
to the k-𝜔 model in the near-wall region and to the 𝑘 − 𝜖 model away
from the wall. This makes it versatile and suitable for a wider range of
flows, including both wall-bounded and free-stream flows. The current
build-in k-𝜔 SST models of OpenFOAM use the formulation of Menter
et al. (2003). The governing equations read:
𝜕 𝜌 𝑘
𝜕 𝑡 + ∇ ⋅ (𝜌 𝑘𝐮) = ∇ ⋅

((

𝜇 + 𝜎𝑘 𝜇𝑡
)

∇𝑘
)

+ 𝑃𝑘 − 𝜌 𝛽∗𝜔𝑘, (14)

𝜕 𝜌 𝜔
𝜕 𝑡 + ∇⋅(𝜌 𝜔𝐮) = ∇⋅((𝜇 + 𝜎𝜔 𝜇𝑡

)

∇𝜔
)

+
𝛾
𝜈𝑡
⋅𝐺−𝜌𝛽 𝜔2+ 2𝜌(1 −𝐹1)⋅

𝜎𝜔2
𝜔

⋅∇𝑘⋅∇𝜔.

(15)

where:

𝐺 = 𝜌𝜈𝑡|�̇�|
2, 𝑃𝑘 = 𝑚𝑖𝑛(𝐺 , 10𝜌𝛽∗ 𝑘𝜔), 𝜈𝑡 =

𝑎1𝑘

𝑚𝑎𝑥(𝑎1 𝜔,
√

2 �̇� 𝐹2)
,

(16)

𝜙 = 𝐹1𝜙1 + (1 − 𝐹1)𝜙2, (17)

𝛽∗ and 𝑎1 values are 0.09 and 0.31, respectively. 𝐹1 and 𝐹2 are
blending functions. 𝐹1 is equal to 1 in the near wall region (activating
k-𝜔) and 0 away from the nearest wall (activating k-𝜖). Coefficients 𝜎𝑘,
𝜎𝜔, 𝛽 and 𝛾 are calculated through the generic equation (17). Hence,
ach constant is a blend of an inner constant (subscript 1) and an outer

constant (subscript 2) (Brown et al., 2016).

2.2.6. Modified turbulent models for multi-phases simulations
Turbulence models in their original form do not take into account

the density or viscosity gradient present around the air–water inter-
face. Implemented in a classical VOF model, they produce excessive
turbulent kinetic energy near the interface due to this gradient. Some
uthors addressed this issue by introducing a buoyancy term 𝐺𝑏 in

the TKE equation, suppressing this artificial turbulence near the water
surface (Devolder et al., 2017), as:

𝐺𝑏 = − 𝜈𝑡
𝜎𝑡

⋅ ∇ ⋅ 𝜌 𝐠 (18)

The constant scalar 𝜎𝑡 = 0.85 determines how much buoyancy is
ntroduced. This method switches to a laminar regime near the surface,
reventing excessive surface wave damping, while restoring the origi-
al model in zones with a horizontal density gradient (as 𝐺𝑏 = 0 in this
ase). In addition to the buoyancy term, Larsen and Fuhrman (2018)
lso implemented a limiter factor in order to decay the non-physical
KE dissipation rate that occurs in the simulation due to the presence
f an identified instability in the turbulence model.
 p
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2.3. Herschel–Bulkley viscoplastic model

In this work, we considered a viscoplastic slide governed by the
erschel–Bulkley law. The latter is a generalization of the Bingham
lastic model to include the nonlinear behavior of the flow when the
ield stress (𝜏0) is exceeded. In a one-dimensional steady shearing
otion, the Herschel–Bulkley constitutive law is written as:
𝜏𝑦𝑥 = 𝜏0 +𝐾( ̇𝛾𝑦𝑥)𝑛 for |𝜏𝑦𝑥| > |𝜏0|
̇𝛾𝑦𝑥 = 0 for |𝜏𝑦𝑥| < |𝜏0|,

(19)

where 𝐾 and 𝑛 are the consistency index and power-law index
parameters, respectively (Chhabra and Richardson, 1999). Note that
the dimensions of 𝐾 depend upon the value of n.

Modeling an actual discontinuous rheological behavior (i.e., a solid
ehavior when the shear stress is below the yield stress and a fluid
ehavior otherwise) is difficult. Usually, a regularized model is applied
o overcome this issue (Beverly and Tanner, 1992). For low strain rates,

the material is modeled as a highly viscous fluid with viscosity 𝜈0.
Beyond a threshold, the kinematic viscosity follows the intended rheo-
logical law in correspondence with the strain rate value (Greenshields,
2018). For the Herschel–Bulkley model, the apparent viscosity is given
by the following relation:

𝜈 = 𝑚𝑖𝑛 (𝜈0,
𝜏0
�̇�

+𝐾 �̇�𝑛−1), (20)

Eq. (20) is the law used in OpenFOAM and in the present work.

2.4. Computation of energy and dissipation in each phases at time 𝑡

At each time step, the mechanical energy 𝐸𝑚 of each phase 𝑚 is the
sum of the potential and kinetic energy. Both terms can be calculated
thanks to the simulation variables.

The global kinetic energy of phase 𝑚 is the sum of the mean flow
inetic energy and the turbulent kinetic energy within this phase. It is
herefore obtained through the following relation:

𝐸𝑘,𝑚(𝑡) = ∬𝐴
𝛼𝑚(𝑡) ( 12 |𝐮(𝐭)|2 + 𝑘(𝑡) ) 𝜌𝑚 𝑑 𝑥 𝑑 𝑦 (21)

The two kinetic components should be accounted for as there are con-
tinual exchanges between the mean and the turbulent flows. Without
𝑘, the global energy balance would not be complete. In Eq. (21), 𝐴
denotes the computational area.

The potential energy of phase 𝑚 is:

𝐸𝑝,𝑚(𝑡) = ∬𝐴
𝛼𝑚(𝑡) 𝑔 𝑦(𝑡) 𝜌𝑚 𝑑 𝑥 𝑑 𝑦 (22)

with 𝑦, the vertical coordinates of the point in a given reference system.
ere, the reference is at the water surface at rest.

Note that, in the particular case of water, the potential energy of the
ave field is obtained by removing the initial water potential energy
s:

𝐸𝑝,𝑤𝑎𝑣𝑒(𝑡) = ∬𝑥
𝛼𝑤(𝑡) 𝜌𝑤 𝑔 𝑦(𝑡) 𝑑 𝑥 𝑑 𝑦 − ∫

ℎ0

0 ∫𝑥
𝜌𝑤 𝑔 𝑦(𝑡) 𝑑 𝑥 𝑑 𝑦, (23)

where ℎ0 is the initial water depth. For the cases of waves generated by
a landslide, the integration in the horizontal direction starts from the
slide tip as described in Clous and Abadie (2019).

Physical dissipation is acting in each phase to dissipate the energy
nto heat. The amount of energy dissipated at time 𝑡1 is the integration
n time of the energy dissipation rate 𝛷(𝑡). Hence:

𝐸𝑑 𝑖𝑠𝑠,𝑚(𝑡1) = ∫

𝑡1

0
𝛷(𝑡)𝑑 𝑡

= ∫

𝑡1

0 ∬𝐴
(𝛼𝑚(𝑡) 𝜇𝑚 �̇�(𝑡)�̇�(𝑡) 𝑑 𝑥 𝑑 𝑦 + 𝛼𝑚(𝑡) 𝜖(𝑡) 𝜌𝑚 𝑑 𝑥 𝑑 𝑦) 𝑑 𝑡,

(24)

where �̇�(𝑡) denotes the scalar shear rate value in the cell. This dissi-
ation is the sum of two components. The first one is the dissipation
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Fig. 1. Top Panel: Schematic view of the experimental setup simulated. Bottom Panel: Example of mesh corresponding to the simulation of case (a) in Huang and García (1998).
In this example, the finest mesh cell is 2.5 mm. The initial slide phase is also provided in red (left part of the domain).
at the molecular scale, the second one, the dissipation of turbulence
into heat. For a global energy balance, both contributions should be
accounted for.

At each time step, the total energy 𝐸𝑇 in the system including all
the phases, can be computed as:

𝐸𝑇 (𝑡) =
𝑁
∑

𝑚=1
𝐸𝑚(𝑡) (25)

with 𝑁 the number of phases.
Theoretically, in a closed system, 𝐸𝑇 should only decrease with time

and the decrease should corresponds perfectly to the amount of physical
dissipation over the duration considered. Therefore, we may write:

− (𝐸𝑇 (𝑡2) − 𝐸𝑇 (𝑡1)) = ∫

𝑡2

𝑡1
𝛷(𝑡)𝑑 𝑡 (𝑡2 > 𝑡1) (26)

Nevertheless, inherently, due to discretization approximations (nu-
merical dissipation) or inconsistencies in the turbulence model, globally
speaking, there is always some differences between the two quantities.
Therefore, Eq. (26) should be rewritten as:

− 𝛥𝐸𝑇 (𝑡1, 𝑡2) = −(𝐸𝑇 (𝑡2) − 𝐸𝑇 (𝑡1)) = ∫

𝑡2

𝑡1
𝛷(𝑡)𝑑 𝑡 + 𝛥𝐸𝑒𝑟𝑟𝑜𝑟(𝑡1, 𝑡2) (27)

And finally, the energy conservation error of the model between
times 𝑡1 and 𝑡2 can be expressed as:

𝛥𝐸𝑒𝑟𝑟𝑜𝑟(𝑡1, 𝑡2) = −𝛥𝐸𝑇 (𝑡1, 𝑡2) − ∫

𝑡2

𝑡1
𝛷(𝑡)𝑑 𝑡 (28)

The problem of energy conservation is rarely, if not never, addressed
in most papers based on CFD simulations. It is however a critical point
when studying energy exchanges as in the present work.

3. Validation cases and results

Table 1 provides an overview of the various validation cases studied
in this paper and presents the different model configurations employed
for each. The mesh features are indicated in column 3 and 4. The cell
size is uniform for all the cases (resolution, which may vary depending
on the simulation, indicated in column 3), except for cases (1), (2) and
(5), for which a special cell arrangement was required. For these cases,
a representation of the mesh is provided. Additionally, for all the cases,
the kinematic viscosity and density of water and air are 10−6 (m2 s−1),
1000 (k g m−3), 1.48 × 10−5 (m2 s−1) and 1 (k g m−3), respectively. The
scheme used to discretize the convective terms of Eqs. (3) is the most
important factor controlling the value of the numerical dissipation
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(Eq. (28)). In OpenFOAM, there are various schemes available, like the
classical Upwind or QUICK schemes for instance, each having strong
and weak points. Hence, Upwind is unconditionally stable but far too
diffusive. Whereas QUICK is accurate but tends to create artificial
oscillations. Among these, during the numerous tests conducted in this
study, the second order accurate Linear Upwind scheme appeared to be
a good compromise between accuracy and stability. Therefore, it is the
scheme finally used in the simulations presented hereafter.

3.1. CASE 1: Slide flow — validation of the non-Newtonian rheological
model

This section presents a validation case based on the experimental
and analytical results of Huang and García (1998). The setup consisted
of an adjustable tilted Plexiglas tank 100 cm long and 30 cm wide. In
the upstream section, a 10 cm long reservoir, with an area of A, released
a kaolin–water mixture with varying volumetric concentrations (𝐶𝑣 =
𝑉𝑠𝑜𝑙 𝑖𝑑∕(𝑉𝑠𝑜𝑙 𝑖𝑑 +𝑉𝑤𝑎𝑡𝑒𝑟)) over a slope of an angle 𝜃 through a sliding gate.
Table 2 provides the parameters of the three experiments conducted.

The objective is here to validate the Herschel–Bulkley rheology
model implemented in OpenFOAM in a configuration close to a slide
flow. Fig. 1 shows an example of a mesh used for case (a). The domain
is split in different zones, each featuring an adapted resolution. In
particular, in the zone in which the fluid moves, the cell size is the
finest. Indeed, the shear rate generated in the boundary layer adjacent
to the bottom plays a key role in determining the non-Newtonian fluid
viscosity and should be properly resolved. Moreover, the experimental
results show that the slide thickness drops very quickly to very small
values (< 1 cm), therefore, the mesh had to adapt to this feature.

In the example presented in Fig. 1, the cell size in this zone is
1.25 mm. Note that in the computational domain, the gravity vector is
tilted to reproduce the effect of the slope angle. In the present study, we
tested different meshes, with the following (finest) cell sizes: 0.625 mm,
0.833 mm, 1.25 mm, and 2.5 mm, to conduct a sensitivity study.

Figs. 2 and 3 show a comparison between the simulations for
different meshes, the experimental data and the analytical solution
presented in Huang and García (1998). The first figure (Fig. 2) shows
the snapshots of the mixture air interface. Since the time correspond-
ing to these snapshots is not provided in Huang and García (1998),
simulated snapshots are taken when the computed front are the closest
to the corresponding measurements. The front evolution with time is
compared in the next figure. Huang and García (1998) shows that the
average slide thickness is well predicted by the model. On case (a),
with the lowest resolution, the accuracy of the numerical simulation
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Table 1
Model setup for each validation case considered in this study. The work of the following references was used for the comparisons: Huang and García (1998), Jánosi et al. (2004),
Soares Frazao and Zech (2002), Wroniszewski et al. (2014), Li and Raichlen (2003), Yeh et al. (1989) and Mauriet (2009).

General purpose (#) Case Cell dimension
(mm) 𝛥𝑥 × 𝛥𝑦

# cells within
reference
parametera

Bottom BC Solver Turbulence 𝐶 𝐹 𝐿

slide flow (1) Rheology 2.5 × 2.5
1.25 × 1.25
0.83 × 0.83
0.625 × 0.625

4–12 no-slip interFoam laminar 0.5

wave generation
and breaking

(2) Jánosi
moving gate

5 × 5 (2 × 2)b 12 No BC overInterDyMFoam 𝑘 − 𝜔 SST
(Devolder et al., 2017)

1

(2) Jánosi
2-3phases

5 × 5 12 no-slip interFoam
multiphaseInterFoam

𝑘 − 𝜔 SST
(Devolder et al., 2017)

0.1

wave dispersion (3) Undular bore 20 × 2
20 × 5
40 × 5
100 × 5

7–15 no-slip interFoam 𝑘 − 𝜔 SST
(Devolder et al., 2017)

0.1

energy processes

(4) Propagating
solitary

68.8 × 68.8
34.4 × 34.4
17.2 × 17.2

4–15 free-slip interFoam laminar 0.2

(5) Breaking
solitary

5 × varies
2.5 × varies

40–80 no-slip interFoam varies (Table 5) 0.5

(6) Turbulent
bore

10 × 10
5 × 5
2 × 2

10–40 free-slip interFoam 𝑘 − 𝜔 SST
(Devolder et al. (2017))

0.1

a The ‘‘reference parameter’’ is different in each case. For the slide case, it is the slide thickness, it is wave height for the propagating wave, and the breaking wave height at the
moment of breaking for all the cases involving a breaking wave.
b Represents the dynamic mesh zone resolution.
Table 2
Rheological parameters (equation (20)) measured for the different kaolin–water sus-
pensions used in the three experiments of Huang and García (1998).

Cases 𝐶𝑣 Bulk density, 𝜌 𝜏0 𝐾 𝑛 A 𝜃
– % (gr cm−3) (N m−2) (N m−2 sn) – (cm2) degree

a 21.07 1.348 14.10 10.20 0.34 29.2 18.5
b 19.59 1.323 9.96 7.10 0.38 32.4 24.5
c 13.05 1.215 2.21 0.22 0.75 24.7 11

Fig. 2. Snapshots of the simulated kaolin-water mixture free surface for different
meshes in cases (a) and (b), (see Table 2) and comparison with the experimental and
analytical results of Huang and García (1998).

is very satisfactory. Nevertheless, as the resolution increases, larger
discrepancies with the measured reference are observed. In particular, a
few oscillations are visible in the slide shape simulated in a zone where
a strong shear flow is expected and the slide thickness in this area
is also exaggerated. For the lower viscosity of case (b), this behavior
is less pronounced but the oscillations remain. Fig. 3 shows the slide
front displacement and the hydrograph for the less dense and viscous
case (i.e., case (c)). Physically, in the initial stages of motion, the
slide encounters resistance to movement. Once the motion initiated, the
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slide accelerates until, again due to resistance forces, it decelerates and
eventually comes to a stop. This figure (left panel) shows that there
is a time lag in the initial motion of the slide between the simulation
and the experiment. The initiation of the motion is delayed in the
simulation compared to the experiment. This delay decreases with the
resolution though. If we omit this lag, and compare only the slope of the
curves, then the prediction of the front displacement is approximately
equivalent to the experimental data.

The hydrograph presented in Fig. 3 (right plot) also shows dif-
ferences with the measurements while corresponding better to the
theoretical model. The tendency is also to better match the data at
higher resolution.

3.2. CASE 2: Wave generation and breaking

To evaluate the capacity of the model to generate a violent impulse
wave, we considered the Jánosi et al. (2004) experimental test case.
The experimental set-up is a wet dam break configuration (Fig. 4)
resulting in a wave that breaks immediately as a plunging breaker.
This case involves the interaction of two water masses with energy
transfers from one mass to the other, followed by a complex free surface
evolution during the breaking. As such, it involves similar processes as
the ones usually acting during the generation of a wave by a sliding
mass except that, here, there is no slope and the slide has the same
physical properties as the water reservoir.

The experiment was carried out with three different downstream
water levels (with the upstream water height 𝑑0 = 150 mm): a dry
case (𝑑 = 0), a rather shallow water case (𝑑 = 18 mm), and a deeper
case (𝑑 = 38 mm). For validation purposes, we focused only on the
deeper case. In order to reproduce the observed interface evolution,
the motion of the gate had to be simulated as in Dumergue and Abadie
(2022). Note that this gate motion has to be inferred as no law is
given in the reference paper. In our study, the most precise results were
obtained with a gate upward velocity set to 1 m/s. To simulate the gate
motion, we implemented the overInterDyMFoam solver, a version of
interFoam compatible with the over-set method (open source CFD
toolbox, 2024). Note that with this code version, only two phases can
be simulated. The mesh is uniform with a 5 mm square cell size for
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Fig. 3. Comparison of the simulation results with the experimental data and analytical solution of Huang and García (1998). Left: time evolution of the slide front position, Right:
hydrograph at 𝑥 = 0.689 m for the case (c) (Table 2).
the fixed domain and 2 mm cells in the dynamic mesh zone. In our
simulation, we presumed the gate thickness to be equal to 5 mm. To
ensure the gate is fully closed at the beginning, we defined a layer of
impermeable porous medium at the bottom. This was necessary since
usual wall boundary conditions cannot overlap with the gate contour
at the beginning. We verified that this procedure does not influence
the free surface evolution compared to a no-slip boundary condition.
Finally, a turbulence model has been utilized with the same setup as
the validation case described in Section 3.4.3.

Fig. 5 shows a comparison of the simulated and measured free
surface location at different times. The correspondence is globally good
at every stage of the wave generation process. The main wave breaking
is, in particular, very well captured in the simulation. A notable discrep-
ancy is nevertheless observed close to the gate at the very beginning of
the simulation (first panel of Fig. 5). At this time, the first breaking
caused by the returning wave is not particularly well captured by the
model. This is likely due to the assumption made on the gate thickness
and maybe also on the gate motion law which, both, affect directly
this zone of the flow. In particular, a thinner gate may have produced
a better result here, but this assumption has not been verified. There
is also a slight discrepancy at 𝑡 = 0.406 s, when the small breaking of
a secondary wave, which occurs on the back of the main wave in the
experiment, is not well reproduced by the model. In the simulation, a
wave is formed (𝑡 = 0.470 s) but it is not energetic enough to break.
This area of the flow corresponds to the back of the wave which was
initially not well resolved by the model in the first panel. So again, the
uncertainty on the gate thickness should explain this slight error.

We can infer from the preceding section that the breaking wave
interface is accurately predicted by the two-phase model inter-
Foam. However, usually, to simulate wave generated by landslide, a
three-phase model is required (slide, water and air) such as multi-
phaseInterFoam. It is therefore important to also check the validity
of the latter model. To do so, we repeated the Jánosi et al. (2004) case
but without gate motion, as multiphaseInterFoam is not currently
able to manage a dynamic mesh. The obtained results are compared to
results obtained with the interFoam solver also without gate motion.
Note that in the three-phase simulation, two phases are water and the
third phase is air. Fig. 6 shows the comparison of the two model results.
Obviously, they are very close to each other. Nevertheless, even though
the problem solved is theoretically the same, a few slight discrepancies
can be observed between the two model outputs, like the size of the
air bubble entrapped for instance, or the rear part of the wave which
is sharper in the three-phase case.
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Table 3
Characteristics of the undular bores computed in this study.

Froude number Upstream
water level

Downstream
water level

1.0104 0.3230 m 0.2510 m
1.1702 0.3685 m 0.2477 m

3.3. CASE 3: Wave dispersion — case of the undular bore

A wave generated by a subaerial landslide is generally nonlinear and
dispersive. Moreover, in most of the cases, the leading wave exhibits
dissipation by breaking. The last point will be investigated in more
details in the next section. Here, we focus on the ability of the model
to reproduce a non linear dispersive wave train. For that purpose, we
simulated the generation of an undular bore with a wet dam break
(Fig. 7) similar to the experiment described in Soares Frazao and Zech
(2002). In this section, we considered two Froude numbers as indicated
in Table 3.

We numerically re-constructed the two model setups and compared
the water surface signals computed and measured at different gauge
positions. The simulations were performed with the turbulence model
of Devolder et al. (2017) to be consistent with the other test cases, but
the influence of the latter is weak in this particular case (see Fig. 8 right
panel). This is not surprising owing to the good results obtained in the
same case with a fully nonlinear Boussinesq model without turbulence
model (Tissier et al., 2011). Indeed, in this case, the capacity of the
model to address the wave non linearity seems much more important
than resolving the turbulent field.

A mesh sensitivity study is presented in Fig. 8 left panel for a partic-
ular Froude number with cells stretched in the horizontal direction. As
can be observed, the model seems to converge but not to the measured
data.

The finest mesh approximately covers the maximum wave height
with ten cells and the horizontal cell dimension is stretched 10 times.
Fig. 9 shows the comparison of the numerical results with the mea-
surements obtained with this mesh. The model predicts the develop-
ment of undulations at frequencies consistent with the measurements.
Nevertheless, it also tends to underestimate the amplitude of these
oscillations, especially for the larger Froude number.

Table 4 illustrates the relative errors of the simulated wave param-
eters. The comparison further highlights a higher relative error in the
modeled wave height compared to the wave period. Finally, note that
a comparison between the plots of Fig. 9 at x = 33.06 and x = 42.56 m,
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Fig. 4. Top: Schematic of the wet dam break setup (Jánosi et al., 2004) used for the model validation (dimensions are not in scale). Bottom: The computational domain and
water condition at t = 0.07 s.
Fig. 5. Wave generated in a wet dam break. Left panel: sequences of experimental snapshots after releasing water, from Jánosi et al. (2004), right panel: free surface comparison
between experimental and numerical results.
shows that the error on the first wave amplitude decreases with time
as also shown in the table.

3.4. CASES 4 to 6: Validation of the energetic processes

Accurately simulating energy transfers in a wave generated by a
subaerial landslide is a challenging task that requires the consideration
of several complex processes. Theoretically, the initial slide potential
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energy progressively transforms into kinetic energy and, after the im-
pact with the water surface, into wave kinetic and potential energy.
During these processes, a fraction of this energy is dissipated, both
from viscous (mainly associated with bottom friction and velocity gra-
dients at the interfaces) and turbulent dissipation. The latter is mostly
generated near the wave crest in wave breaking, either very violently
(plunging breaking) or more gradually (in the turbulent bore case).
During this process, some part of the mean flow kinetic energy is trans-
ferred to TKE. This process is the most important contribution to the
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Table 4
Error assessment on 𝐻 , wave height and 𝑇 , period for the first two waves in the case Fr = 1.0104 at the different gauge positions for the most
resolved case.

– Exp Sim Difference Exp Sim Difference Exp Sim Difference

gauges x = 33.06 m x = 40.06 m x = 42.56 m
𝐻1 0.035 m 0.028 m −20% 0.043 m 0.035 m −17% 0.042 m 0.038 m −9.5%
𝐻2 0.018 m 0.0168 m −6% 0.025 m 0.021 m −18% 0.0272 m 0.022 m 19%

𝑇1 1.19 s 1 s −15.9% 1.108 s 1.178 s +6.3% 1.19 s 1.23 s 2.7%
𝑇2 0.802 s 0.826 s +3% 1.056 s 1.022 s +3.25% 1 s 1.08 s 7.5%
ki
Fig. 6. Free surface comparison between two-phase interFoam and three-phase
simulations multiphaseInterFoam for the same case as Fig. 5 but without gate
motion simulation. Note that we applied a vertical offset of 5 cm to interFoam
results in order to ease the comparison. Horizontal and vertical legend dimensions are
in meters.

global dissipation (Eq. (24)). In this respect, finding the best turbulence
model and the most suitable model configurations is imperative. This
is one of the objective of this section. Another objective is to quantify
the numerical dissipation of the model. Indeed, when investigating the
energy processes, it is of great importance to ensure that the energy
dissipation is due to actual physical processes and not to a numerical
artifact. CFD models inherently suffer from numerical errors usually
inducing significant diffusion. The objective of this part is at least to
quantify and if possible minimize this numerical diffusion. The follow-
ing sections present several validation test cases which address this
general question of energy conservation and dissipation computation.

3.4.1. CASE 4: Energy conservation in a propagating solitary wave
The solitary wave is a common wave type appearing in the process

of wave generated by a subaerial landslide (Fritz et al., 2004). It occurs
generally after different wave transformation processes (i.e. dispersion
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and dissipation). In this case, the wave should be able to properly
propagate without being artificially damped by numerical diffusion.
The purpose of this section is therefore to control the conservation of
energy for a propagating solitary wave over a flat bottom.

The computational domain, similar to the case studied in Wroniszews
et al. (2014), exhibits a length of 72.6 m, a height of 2.2 m and is
discretized with square-shaped cells. The solitary wave is generated
at the left boundary based on the formulation of Grimshaw (1970)
(Fig. 10). The ratio of wave height to water depth 𝐻∕ℎ0 is equal to
0.3 and the water depth (ℎ0) is 1 m. The bottom boundary condition
is set to a free-slip condition to eliminate the viscous dissipation at the
bottom.

The wave energy is the sum of the kinetic and potential components
(𝐸𝑤 = 𝐸𝑘 + 𝐸𝑝) described by Eqs. (21) and (23) with the 𝑦 reference
set at the initial water surface. The wave potential energy alternatively
can be calculated by the water surface variation (𝜂(𝑥)) integration, as:

𝐸𝑝,𝑤 = 1
2
𝜌 𝑔 ∫ 𝜂(𝑥)2 𝑑 𝑥 (29)

There are several sources of errors in this problem. We mention two
of them here. The first one is the initialization of the water volume frac-
tion. For instance, for three different resolutions (1056 × 32, 2112 × 64
and 4224 × 128, corresponding respectively to cell sizes of 68.8, 34.4
and 17.2 mm, with 𝛥𝑥 = 𝛥𝑦), the error compared to the theoretical
value of the water mass at𝑡 = 0 is 3.54, 0.31 and 0.30% respectively.
The second error source comes from the progressive diffusion of the
water volume fraction at the interface. Fig. 11 illustrates the effect
of this artificial diffusion on the potential energy variation over time
considering only the interface zone cells (0.05 < 𝛼𝑤 < 0.95) for
the three previous tested resolutions on the same solitary wave case.
The potential energy increases with an unacceptable rate in the case
of the coarsest mesh resolution, while the finest resolution allows
to keep a reasonable accuracy over time. Finally, the evolution of
the wave energy components is presented on Fig. 12 for the finest
mesh. Kinetic and potential energies are obviously stable over the 20 s
computation (difference about 1%), which approximately corresponds
to a propagation over about 10 equivalent wavelengths (Fig. 10).

In brief, the results demonstrate that, for a propagating wave,
energy conservation can be ensured providing that sufficiently fine cells
are used. In the case of the solitary wave, it was necessary to discretize
the wave height with almost 20 cells to reach a satisfactory accuracy.

3.4.2. CASE 5: Energy conservation in a breaking solitary wave case
Most of the time, a subaerial landslide produces a large wave

submitted to breaking. The dissipation is then either gradual, as in
the turbulent bore or heterogeneous as in a violent plunging breaker.
The present section focus on the last case by studying a solitary wave
breaking over a slope. To the best of the authors knowledge, there
are no theoretical values or measurements giving the amount of en-
ergy dissipated in this case. Therefore, the objective here is simply to
quantify the error in the energy conservation equation (Eq. (28)) and
try to minimize this quantity. The model setup, presented on Fig. 13,
is similar to the experiment described in Li and Raichlen (2003). In
this study, a solitary wave propagates over a 10 m flat bottom with a
water depth (ℎ ) of 0.3 m. The initial wave height-to-water-depth ratio
0
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Fig. 7. Sketch of the undular bore generation set-up (Soares Frazao and Zech, 2002).
Fig. 8. Undular bore case (Fr = 1.0104). Left panel: comparison between the simulated free surface obtained with various mesh resolutions and the measurements of Soares Frazao
and Zech (2002) (dotted line) at gauge position x = 33.06 m. Right panel: comparison between laminar and turbulent simulations — the two curves are perfectly superimposed.
Fig. 9. Undular bore free surfaces for Fr = 1.104 (left panel) and Fr = 1.1702 (right panel) at different gauges positions.
is 𝐻∕ℎ0 = 0.3. After the flat portion, the wave meets a 1:15 slope which
induces the breaking and then the run-up of the wave.

The computational domain is made up of two adjacent blocks with
the same number of rows and columns for the entire domain. The cell
size is constant in the 𝑥-direction but gradually skews in the 𝑦-direction
over the slope. Two meshes are considered here (i.e., 𝛥𝑥 = 2.5 or 5 mm).
The bottom boundary condition is a no-slip condition.

For this test case, the turbulence model plays a critical role in
the energy balance through TKE and the TKE dissipation rate 𝜖. All
the turbulence models presented in Section 2.2 have been considered
in the present study. Note that in this test case, the values of the
initial turbulent parameters are not critical. Indeed, the time of wave
propagation being long before the breaking, these parameters have
sufficient time to converge to their physical values.
10 
We first verified that the breaking is well reproduced by the model
(Fig. 14). Fig. 15 next shows the time evolution of the different energy
components. The wave energy dissipation starts to be non negligible
above the slope and increases during the breaking and run-up. This
dissipation is mainly due to turbulent processes. Note that during
breaking, potential energy is transformed into kinetic energy while
during run-up, the reversed process is observed.

Fig. 16 shows the comparison of the physical dissipation and the
opposite of the total energy decrease for two different mesh resolutions
5 mm and 2.5 mm cell size.

The plot starts at 𝑡 = 5 s when the wave is still propagating in the
flat-bottom section and ends when the potential energy of the wave
starts to decrease, at the end of the run-up. The difference between the
two curves increases drastically during the mixing due to the violent
breaking on the slope, in this case, the difference between the two
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Fig. 10. Water surface at different times for a solitary wave initial profile with 𝐻∕ℎ0 = 0.3. The mesh features 4224 × 128 cells. t = 0.1 s, 2.1 s, 4.1 s, 6.1 s, 8.1 s, 10.1 s, 12.1
s, 14.1 s, 16.1 s, 18.1 s from left to right.
Fig. 11. Time variation of the water potential energy restricted to the interface cells
(0.05 < 𝛼𝑤 < 0.95) for different mesh resolution.

curves, for 5 mm cell size model (Fig. 15), is 36% as detailed later in
Table 5. During the run-up, energy is better conserved, as shown by a
stable difference between the two curves. The comparison between the
two plots (Fig. 16) indicates the significant influence of the cell size in
achieving a better accuracy in the energy dissipation computation.

Table 5 provides a summary of the results regarding the conser-
vation of energy for the different RANS turbulent models tested. The
results show that only the modified 𝑘−𝜔 SST and the 𝑘−𝜖 RNG models
are able to bound error in the energy balance equation (expressed in
percentage of the initial wave energy) to reasonable values. For the
first model (Devolder et al., 2017), the physical dissipation introduced
in the turbulence model is lower than the decrease observed in the
total wave energy. The decrease in the mesh size allows to reduce the
error, as illustrated in Table 5, but it is obviously at the price of a
heavier computation. The 𝑘 − 𝜖 RNG also gives good results in this
case, nevertheless, this performance was not reiterated in the other
tests conducted (especially in the next section), conversely to the model
of Devolder et al. (2017), and therefore, it was not retained. Finally,
note that the model of Larsen and Fuhrman (2018) also gave good
results for the present case (not shown in the table) but again less
convincing than Devolder et al. (2017) in the next case.

3.4.3. CASE 6: Dissipation in a turbulent bore
In this section, we study the case of the dissipation of a turbulent

bore, a frequent case appearing after a violent breaking of an impulse
wave (Fritz et al., 2004). The bore is generated in a wet dam break
process with the same set-up as in Yeh et al. (1989) and Mauriet (2009).
The upstream reservoir height is 0.225 m and the downstream height
is 0.0975 m (Fig. 17). The upstream reservoir is sufficiently large to
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ensure a steady propagation of the turbulent bore wave until the end
of the downstream reservoir.

The turbulence model used here is the 𝑘−𝜔 SST Buoyancy modified
by Devolder et al. (2017). According to Mauriet (2009), the choice
of the initial value of the turbulence model variables is important to
represent properly the dissipation (especially if the propagation domain
is short). We have conducted several tests to guess the optimal initial
values for the model presently used. With 𝑘 = 1e-4 [m2 s−2], 𝜔 = 1
[m2 s−1], and 𝜈𝑡 = 0 [m2 s−1], the model is found to provide reliable
results. Note that these initial values mostly influences the beginning
of the simulation and after a while the trend is the same whatever the
initial values. The bottom boundary condition is a free-slip condition
so that to restrain the dissipation to the breaking processes at the
surface and therefore, be able to compare to the hydraulic jump theory.
Finally, different uniform meshes are tested to study the influence of
the resolution in the computation of the dissipation.

The theory of the turbulent bore generated in a wet dam break is
described in Stoker (1992) (§10.6 and §10.8). The shock conditions
written around the discontinuity, allows to compute the bore height
ℎ𝑚 (Fig. 17) with:
√

ℎ1 =
√

ℎ𝑚 + (ℎ𝑚 + ℎ0)

√

ℎ𝑚 + ℎ0
8ℎ𝑚 ⋅ ℎ0

(30)

In a coordinate system moving at the bore celerity, the flow is sta-
tionary. Several balance equations can be written. First, the mass
conservation gives: ℎ0𝑈 = ℎ𝑚(𝑈 − 𝑢), hence: 𝑢 = 𝑈 (ℎ𝑚−ℎ0)

ℎ𝑚
. The

momentum conservation reads: 𝜌𝑈2ℎ0+𝜌𝑔 ℎ02

2 −𝜌(𝑈−𝑢)2ℎ𝑚−𝜌𝑔 ℎ𝑚2

2 = 0,
which gives: 𝑈2 = 𝑔 ℎ𝑚(ℎ𝑚+ℎ0)

2ℎ0
. And finally, the variation of the flow

energy through the discontinuity is: 𝛥𝐸 = {𝜌𝑔 ℎ0 + 𝜌𝑈2

2 } − {𝜌𝑔 ℎ𝑚 +

𝜌 (𝑈−𝑢)2
2 } = 𝜌𝑔 (ℎ𝑚−ℎ0)3

4ℎ0ℎ𝑚
(J∕m3) by using the two previous results. Finally,

multiplying by the flow discharge 𝑈 ℎ0 gives the dissipation rate: 𝛷 =
𝜌𝑔 𝑈 (ℎ𝑚−ℎ0)3

4ℎ𝑚
(J∕s). With the current set-up, this yields to ℎ𝑚 = 0.154 (m),

𝑈 = 1.4 (m/s), 𝛷 = 4 (J/s). Therefore, in this case, conversely to the
previous case, the physical dissipation is known theoretically.

Fig. 18 shows the results obtained with the model for the turbulent
bore test case. In the inner subplot, we show that the simulated bore
height matches the theoretical value, demonstrating that the macro-
scopic features of the flow are realistic. The bottom panel displays the
dissipation computed by the model and the opposite of the energy
decrease for different mesh resolutions. The difference between the
continuous and the associated dotted lines gives 𝛥𝐸𝑒𝑟𝑟𝑜𝑟 for the given
resolution. This plot shows that the error keeps reasonably bounded for
all the simulations but especially for the finer mesh. Moreover, after
a transitional regime in the beginning of the simulation (i.e., the first
1.5 s), the dissipation rate calculated by the model (i.e., the slope of
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Fig. 12. Time evolution of the energy components for the propagating solitary wave case of Fig. 10 and the finest mesh resolution. Solid black line: wave total energy (𝐸𝑝 +𝐸𝑘);
grey line with □ mark: wave kinetic energy (𝐸𝑘) (Eq. (21)); grey line with ◦ marks: wave potential energy 𝐸𝑝 calculated with Eq. (23); dash-dotted line: wave potential energy
calculated from the extracted water interface 𝜂(𝑥) (Eq. (29)); ‘+’: Energy dissipation (negligible in this case).
Fig. 13. Top: Schematic view of the breaking solitary wave test case (the sketch dimensions are not in scale). Bottom: Sketch of the cells arrangement. The meshes used are:
3890 × 140 and 7780 × 280, respectively corresponding to a cell size of 5 mm and 2.5 mm.
Fig. 14. Comparison of the breaking wave shape between the experimental data of Li and Raichlen (2003) (left) and the simulation (right). The simulation is carried out with
the 𝑘 − 𝜔 SST turbulence model of Devolder et al. (2017).
Fig. 15. Time evolution of the wave energy components in the breaking solitary wave case. The simulation is performed with the 𝑘−𝜔 SST buoyancy modified turbulence model
of Devolder et al. (2017). The cell size = 5 mm. solid line: 𝐸𝑘 + 𝐸𝑝, grey line with ◦: 𝐸𝑘, grey line with □: 𝐸𝑝, and grey line with ‘‘+’’: integrated dissipated energy.
the curve) correspond to the theoretical value; the resolution gradually
improving this assertion.

Finally, Table 6 gives the values of the dissipation and the opposite
of the energy decrease for different other turbulence models tested in
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this case for comparison with the model of Devolder et al. (2017) at
time 𝑡 = 4 s. This table clearly shows the better performance of the
latter model compared to the others in terms of energy conservation as
well as for an accurate estimation of the actual dissipation.
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Fig. 16. Comparison between the direct computation of the physical energy dissipation (grey line with ◦) and the decrease in total wave energy (black dash line) for the case of
Fig. 15. Note that the last curve has been artificially multiplied by −1 to allow a direct comparison. Left panel: for the 5 mm cell size test case, Right panel: same graph for the
2.5 mm cell size test case.
Table 5
Solitary breaking wave test case — Energy conservation error for the different RANS models tested.

Turbulence model Cells size 𝐸𝑠𝑡𝑎𝑟𝑡 − 𝐸𝑒𝑛𝑑 ∫ 𝑡𝑚𝑎𝑥−𝑟𝑢𝑛𝑢𝑝
𝑡=5𝑠 𝜙 𝑑 𝑡 Energy conservation

error (𝛥𝐸𝑒𝑟𝑟𝑜𝑟) (%)

𝑘 − 𝜔 SST (Devolder et al., 2017) 2.5 mm 18.6 15.1 19
𝑘 − 𝜔 SST (Devolder et al., 2017) 5 mm 21.01 13.4 36
𝑘 − 𝜔 SST 5 mm 11.13 37.57 −238
𝑘 − 𝜖 RNG 5 mm 21.47 15.68 27
𝑘 − 𝜖 Non-linear 5 mm 5.6 60 −971
standard 𝑘 − 𝜖 5 mm 8.8 55.35 −529
Fig. 17. Initial condition and physical parameters in the progressive turbulent bore case (dimensions are not in scale).
Table 6
Opposite of total energy decrease and energy dissipation at t = 4 s for the different RANS models tested in the turbulent
bore case. At this time the theoretical energy dissipation is 16 [J/m].

Turbulence model Cells size 𝐸0 − 𝐸𝑡=4𝑠 ∫ 𝑡=4𝑠
𝑡=0𝑠 𝜙 𝑑 𝑡 𝛥𝐸𝑒𝑟𝑟𝑜𝑟 (%)

𝑘 − 𝜔 SST (Devolder et al., 2017) 2 mm 14.89 13.93 −6.4%
𝑘 − 𝜔 SST (Devolder et al., 2017) 5 mm 13.62 11.89 −12.7%
𝑘 − 𝜔 SST(Larsen and Fuhrman (2018)) 5 mm 13.87 8.55 −38.35%
𝑘 − 𝜖 RNG 5 mm 12.33 23.07 87%
𝑘 − 𝜔 SST 5 mm 7.78 36.76 372%
standard 𝑘 − 𝜖 5 mm 9.41 32.71 247%
4. Discussion

4.1. Significance of the results

In this paper, we have simulated several test cases to assess the
capacity of the interFoam and multiphaseInterFoam solvers to
reproduce the important physical processes involved in the generation
of wave by subaerial landslides. Our approach was to decompose
the work in elementary processes occurring sequentially in the global
phenomenon. Additionally, we focused particularly our effort on the
energy transfers which, to the best of the authors knowledge, are rarely
addressed in the literature at the stage of the model validation.

We first simulated a non-Newtonian slide flow. With the same
model, Rauter et al. (2021) found a large discrepancy on the slide
thickness between the model and the experiment (Bullard et al., 2019)
for a water slide while the velocity was better reproduced. Our results
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show a better match for the slide shape even though some differences
are observed especially in the immediate rear part of the slide front.
As in Rauter et al. (2021), the slide velocity is correctly captured by
the model. Note that in Rauter et al. (2021), the cell size is 1 cm and
the slide thickness ranges from 3 to 7 cm, which gives between 3 to 7
cells in the slide thickness. The same kind of resolution or a little finer
is used in our study (see first line column 4 of Table 1). We can guess
that the case simulated in Rauter et al. (2021) is harder to reproduce
due to the long distance of slide flow before water impact and thus
the higher velocity acquired by the slide (i.e., around 6 m/s against
1.5 m/s in our case). Interestingly, this case does not require many
cells in the slide thickness to obtain acceptable results. Nevertheless, as
often with this type of model, a higher resolution does not necessarily
means better results. This is often due to the gradual appearance of
low-scale physical processes when increasing resolution, which would
need even higher resolution to be correctly accounted for (such as here
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Fig. 18. Comparison between the simulated dissipation –dotted lines– and the opposite
of the energy decrease –solid lines– with the expected theoretical value –dashed line–
for different cell resolutions. Inner subplot: Comparison of the simulated (2 mm) bore
height (taken 60 cm behind the bore front) –solid black line– with the expected
theoretical value — blue dashed line.

Kelvin–Helmholtz instabilities for instance) or additional physics to be
included in the model.

The generation of the impulse wave in a wet dam break configura-
tion (Jánosi et al., 2004) showed the sensitivity of the breaking wave
shape to the interaction between the two fluid masses. Indeed, in this
case, the simulation of the lift gate velocity was required to reproduce
the experimental wave shape. This emphasizes the importance of an
accurate modeling of the slide shape and velocity when the latter
impacts water in a subaerial landslide wave simulation. Indeed, the
slightest errors in these parameters are immediately transferred to the
subsequent wave breaking motion and thus, to the energy dissipation.

For the undular bore case, if correct results were obtained for the
oscillations periods, the amplitudes of the oscillations were underesti-
mated. In this case, the model results seem to converge when increasing
the resolution but not to the experimental measurements. Our interpre-
tation of this result is that the VOF algorithm may have difficulties to
solve the initial instant of the dam break especially due to the presence
of a corner in the water phase (Aulisa et al., 2003). This is actually a
difficult case for this type of method and this difficulty may explain the
loss of amplitude observed in our results. Due to that, this case may not
be the most relevant to test wave dispersion. Additionally, the following
case (Section 3.4.1) involving the propagation of a solitary wave over
long distance shows very satisfactory results in terms of amplitude and
energy conservation. This is an encouraging results for the use of this
type of model for long distance wave propagation (as needed in our
case). A solitary wave being stable under the balanced effects of non-
linearities and dispersion, this also shows that these affects are correctly
reproduced in the model, modulating a bit the negative results of the
preceding case.

The case of the solitary wave breaking shows first the importance
of the mesh size on the global energy conservation (Fig. 16). This is
expected as the numerical dissipation associated to the discretization
of the convective terms is a function of the cell size. For instance,
the use of the UPWIND scheme deteriorate totally the solution and,
with this scheme, the difference between the dissipation and the energy
decrease is unacceptable. Nevertheless, Table 5 shows an even greater
influence of the turbulence model on the energy conservation error.
This is also expected as both, the kinetic turbulent energy 𝑘 and the
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turbulent dissipation 𝜖 appear on each side of Eq. (27). Therefore, any
inconsistencies in the turbulent model should appear in the energy
conservation error. Research on wave breaking simulation has already
shown the importance of the turbulence model (Devolder et al., 2018;
Li et al., 2022). For instance, studying wave breaking with a RANS
model and a 𝑘− 𝜖 model, Lin and Liu (1998) found that the turbulence
levels near the breaking point were significantly overestimated com-
pared to the experimental data. As a consequence, energy dissipation
was responsible for under prediction of the breaking wave height. Since
then, this observation has been consistently reported (Christensen,
2006; Fernandez-Mora et al., 2017; Xie, 2013) and it was the main
reason for the introduction of the buoyancy term in the model proposed
by Devolder et al. (2017). Table 5 shows that this additional term
allows globally a better energy conservation. Additionally, the last case
featuring the turbulent bore shows that, with this turbulence model, the
level of the turbulent dissipation is approximately the one theoretically
expected. Note that Reynolds stress turbulence modeling also appears
as a very promising model for this type of flow, as shown in the recent
work of Li et al. (2022). Owing to the performance of this model, testing
it with respect to energy conservation, as done for other models in the
present work, would be very interesting.

4.2. Waves generated by subaerial landslides: Examples of simulation

The aim of this section is to show how the energy conservation
problem pointed out in the result section, manifests itself in actual
simulations of waves generated by a subaerial landslide. We propose
here two simulation cases. In the first one, the slide initially starts at the
free surface (Viroulet et al., 2014), therefore the initial potential energy
is moderate. The second slide case stands initially at a much higher
elevation, leading to significant transfers of energy and dissipation. For
the two cases considered, two turbulence models are used, namely,
the standard 𝑘 − 𝜔 SST model and the 𝑘 − 𝜔 SST buoyancy modified
by Devolder et al. (2017).

4.2.1. Moderately energetic case
The first case considered is the subaerial granular landslide studied

in the experiment of Viroulet et al. (2014). The landslide is composed
of 0.0015 m diameter glass beads, contained in a 0.11 m high isosceles
right-angled triangle by a vertical plate. The granular material, initially
just above the free surface, flows over a 45◦ slope when the gate is
released. The depth ℎ0 is equal to 15 cm. The evolution of the collapse
was recorded by a high speed camera and the wave train was followed
thanks to four resistive gauges located at 0.45, 0.75, 1.05 and 1.35 m
from the plate.

The numerical model set-up corresponding to the experiment is
presented in Fig. 19. The mesh is uniform with 𝛥𝑥 = 𝛥𝑦 = 2.5 mm
(i.e., 127920 cells). This gives about 12 cells in the maximum wave
amplitude (i.e., about 3 cm) according to the data of Viroulet et al.
(2014) (see Fig. 20) and about 20 cells in the slide thickness. We shall
show later that this resolution is sufficient to achieve a correct accuracy
owing to the low energy dissipation involved in this case.

The equivalent density of the slide was evaluated to approximately
1900 k gm−3, assuming that the voids between the grains are filled
completely with water. The simulation is performed with a Newtonian
slide. The equivalent viscosity of 10 Pa s corresponds to the average
value, a 𝜇(𝐼)-rheology granular model (Jop et al., 2006) would give
for this specific slide (Clous and Abadie, 2019). Note that, obviously,
the Newtonian rheology does not reproduce perfectly the phenomenon
and especially, here, the penetration of water within the grain during
the slide interaction with water. This leads to a slower simulated slide
compared to the experiment (Clous and Abadie, 2019; Paris et al.,
2021), with a discrepancy increasing with time. Nevertheless, Clous
and Abadie (2019) showed that, as the energy transfers are very quick
in this case, this discrepancy in the slide motion does not really has
time to affect the waves generated (Fig. 20).
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Fig. 19. Schematic view of the numerical model setup at𝑡 = 0 based on the experiment of Viroulet et al. (2014).
Fig. 20. Comparison between the free surfaces computed and measured at the four gauge positions in the case of Viroulet et al. (2014). Here the simulation has been performed
with the 𝑘 − 𝜔 SST buoyancy modified (Devolder et al., 2017).
Fig. 21 shows the snapshots of the computed slide and water inter-
faces and the streamlines at different instants of the wave generation
process. Here, as in the experiment, the wave generated does not really
break, or only for a very brief instant.

Fig. 22 shows the behavior of the model in terms of energy conser-
vation. In this case, both turbulence models give satisfactory results.
The dissipation occurs essentially in the slide but even there it is
relatively limited. In water, the dissipation is negligible as there is no
wave breaking. So we can conclude that when dissipation is limited, the
mesh resolution and the choice of the turbulence model are not really
critical.
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4.2.2. Strongly dissipative case
In this case, the slide surface (same shape as previously) is much

larger than in the previous case (ℎ𝑠 = 2ℎ0 against ℎ𝑠 = 0.73ℎ0 in the
previous case, with ℎ𝑠 slide side length). Additionally, the slide initial
elevation (i.e., the distance from the slide bottom to the water level)
is now 2.5ℎ0 with ℎ0 equal to 0.2 m (against 0 previously). This, along
with the larger surface, lead to a much stronger interaction with the
water free surface and a significant dissipation, globally speaking. Note
also that, conversely to the previous case, there is no data to validate
this simulation.

The slide considered is a non-Newtonian fluid following the
Herschel–Bulkley law (rheological parameters: 𝜏 = 9.96 [Pa], 𝑛 = 0.38,
0
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Fig. 21. Fluid interfaces, streamlines and velocity magnitude (surface field) at different times in the case of Viroulet et al. (2014). a: t = 0.01 s, b: t = 0.2 s, c: t = 0.4 s, d:
t = 0.6 s. The turbulence model is the 𝑘 − 𝜔 SST buoyancy modified (Devolder et al., 2017).
Fig. 22. Energy conservation in the system in the case of Viroulet et al. (2014) with the standard 𝑘 − 𝜔 SST model (left) and the 𝑘 − 𝜔 SST buoyancy modified (Devolder et al.,
2017) (right). Solid black line: Total energy line drop, Dashed blue line: energy dissipated in water and slide (values correspond with the left axis). Dotted blue and dash-dotted
red lines: dissipation rate in water and slide phases respectively (values corresponds with the right y-axis).
𝐾 = 7.1 [Pa 𝑠𝑛]). This makes the link with the first validation case
considered in this paper. With the present parameters, the slide is
highly mobile.

The channel is 20 m long and the slope 45◦. The mesh has 834800
cells with 𝛥𝑥 = 𝛥𝑦 = 5 mm. With this cell size, the maximum slide
thickness (Fig. 23, first row) is discretized with 15 cells, the breaking
wave amplitude (Fig. 23, row panel) with 48 cells and the bore wave
amplitude (Fig. 23, fourth row) with 27 cells.

Fig. 23 shows the sequences of the flow simulated with the two
turbulence models. This figure illustrates all the individual processes
considered earlier in the paper. For instance, in the top row, the slide
is flowing over the slope (validation case of Section 3.1). On the row
just under, there is a strong interaction between the slide and the water
interfaces (validation case of Section 3.2), leading to a breaking wave
in the third panel. Finally, the two bottom rows show the complex
dynamic affecting the wave, with breaking (first plunging (validation
case of Section 3.4.2) then spilling (validation case of Section 3.4.3)),
dispersion (validation case of Section 3.3) and non linear effects acting
during the propagation over relatively long distance (validation case
of Section 3.4.1). We note that the results obtained with the two
turbulence models are not very different if we consider the water and
slide interfaces. The shape of the leading wave is just slightly different
at t = 5 s.

The preceding remark is no longer valid when considering energy
conservation (Fig. 24). This time, the results obtained with the two
turbulence models are critically different. With the standard 𝑘−𝜔 SST
model, energy is not conserved. The physical dissipation is much larger
than the corresponding decrease in the total energy of the system.
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Whereas the energy decrease is approximately the one obtained with
the other turbulence model in accordance with the similarity of the
results noted in Fig. 23. This likely means that the turbulent dissipation
𝜖 is too large in the standard 𝑘 − 𝜔 SST model. Indeed if we compare
the dissipation peaks reached in the slide and water, the relative
difference between the two models is 166% for the first one, and 600%
for the second one. This difference is obviously not acceptable when
addressing the problem of energy transfer from slide to waves.

4.3. Limitations of the study

In this paper, we have presented a validation of the OpenFOAM
multiphase solver with respect to elementary processes identified as
generally occurring in the problem of waves generated by subaerial
landslides. By splitting this problem in separated element, our ob-
jective was to put a stronger focus on each process, compared to
usual validation works proposed on the same subject and therefore,
better understand the model set-up requirement in each case. This
approach does not replace an actual validation of the code considering
the global problem (i.e., a wave generated by a landslide), but rather
complete such a validation. Indeed, in our work, the processes are
considered individually (which is also the interest of the study) while,
in the global problem, they interact non linearly. Additionally, all the
validation cases considered in this work, are simulated with the solver
multiphaseInterFoam except for one, the case of Jánosi et al.
(2004), which was resolved with InterFoam. The use of different
solvers can make a difference when dealing with the global problem.
Nevertheless, for this case, we provided a comparison of both solvers to
show that they behave very similarly. Other limitations are obviously
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Fig. 23. Fluid interfaces, streamlines and velocity magnitude (surface field) at different times (top to bottom: t = 0.3 s, 0.6 s, 1.4 s, 5 s) for a non-Newtonian slide case that
generates an impulse wave for two turbulence models. Left column: standard 𝑘 − 𝜔, right column: 𝑘 − 𝜔 SST buoyancy modified by Devolder et al. (2017).
Fig. 24. Energy conservation in the model over time for the case of Fig. 23 for two different turbulence models. Left panel: standard 𝑘 − 𝜔, right panel: 𝑘 − 𝜔 SST buoyancy
modified (Devolder et al., 2017). The legend description is similar to Fig. 22.
the simplification of the slide rheology, the absence of a slope in
the generation case and, more globally, the omission of the third
dimension in the simulations. Finally, note that for a validation of the
multiphaseInterFoam code for wave generated by high mobility
subaerial landslide (like in Fig. 23), the reader is referred to the work
of Rauter et al. (2021). The set-up of the model proposed in the example
of Fig. 23 is very similar to the one of Rauter et al. (2021) in terms of
mesh size and time step control (i.e., the requirement of a very low CFL
value). Therefore, we may expect comparable accuracy as achieved in
this work.
17 
5. Conclusions

Our study provided a comprehensive validation of the model Open-
FOAM (i.e. essentially multiphaseInterFoam), with respect to sev-
eral important processes involved in waves generated by subaerial land-
slides including: landslide flow, wave generation by liquid phases in-
teraction, wave breaking inception and wave dispersion. The following
conclusions can be drawn from this extensive work:

• The non-Newtonian slide flow shape and velocity are resolved
with an acceptable accuracy with a limited number of cells in
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the vertical direction (around 5). A slight discrepancy in the slide
front shape is nevertheless to be expected with this resolution.

• The generation of an impulse wave and the subsequent breaking
were correctly reproduced in a wet dam break case, with about
10 cells along the breaking wave height but required a fine tuning
of the model (i.e., the gate motion) to reproduce the wave shape.
This shows the sensitivity of this model to the conditions of the
interaction of the two masses.

• Dispersion processes were investigated through the case of the
undular bore generation. With comparable resolutions as in the
previous validation cases, the numerical results did not vary
significantly with the mesh size and the error was not negligible
especially for the wave height. The main frequency of the wave
train was more correctly reproduced.

Energy conservation and dissipation computation, two aspects largely
verlooked in the literature, were also investigated for the solitary wave
nd the turbulent bore cases. It was shown that:

• the use of a fine mesh (along with an appropriate scheme for
the discretization of the convective terms, like here the linear
UPWIND scheme) is mandatory to reduce numerical dissipation.
But with the CFL constraints, this increases substantially the CPU
time. Therefore a compromise had to be found. Accordingly, with
20 to 25 computational cells over the wave height, the conserva-
tion of energy is approximately satisfied and the computation of
the dissipation has an acceptable accuracy,

• for the solitary wave breaking case, the conservation of en-
ergy was shown to strongly depend on the turbulence model.
Only the use of the 𝑘 − 𝜔 SST buoyancy modified turbulence
model (Devolder et al., 2017) was able to ensure the energy
conservation. The other models such as the standard 𝑘 − 𝜖 lead
to unacceptable unbalance in the energy conservation. The initial
conditions for the turbulence model variables were also shown to
influence the energy computation. Hence, with the appropriate
values, the energy dissipation is shown to be accurately simulated
in the turbulent bore case.

• Finally, the model has been applied to two cases of waves gener-
ation by subaerial landslides. The case involving moderate initial
slide energy was found to be relatively insensitive to the choice
of the turbulence model (i.e., standard or buoyancy modified
𝑘 − 𝜔 SST) in terms of energy conservation. Nevertheless, the
conclusions were drastically different when significantly larger
slide energy was considered. In this case, the use of the buoyancy
modified 𝑘 − 𝜔 SST turbulence model was found mandatory to
ensure energy conservation and accurate dissipation computation.

CRediT authorship contribution statement

Amir H. Parvin: Writing – review & editing, Writing – origi-
al draft, Visualization, Validation, Software. Stéphane Abadie: Writ-
ng – review & editing, Writing – original draft, Validation, Supervi-
ion, Conceptualization. Kamal El Omari: Writing – review & editing,
alidation, Supervision. Yves Le Guer: Writing – review & editing,
upervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Amir H. Parvin reports financial support was provided by Nouvelle-
Aquitaine Regional Council. If there are other authors, they declare
that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported
in this paper.
18 
Acknowledgment

Amir Parvin’s PhD grant was funded by the Nouvelle Aquitaine
egion through the TerraNAmi project (Grant No. 2019-1R20131).

References

Abadie, S., Morichon, D., Grilli, S., Glockner, S., 2010. Numerical simulation of waves
generated by landslides using a multiple-fluid Navier–Stokes model. Coast. Eng. 57
(9), 779–794.

Abadie, S., Paris, A., Ata, R., Le Roy, S., Arnaud, G., Poupardin, A., Clous, L.,
Heinrich, P., Harris, J., Pedreros, R., Krien, Y., 2020. La Palma landslide tsunami:
calibrated wave source and assessment of impact on French territories. Nat. Hazards
Earth Syst. Sci. 20 (11), 3019–3038.

Aulisa, E., Manservisi, S., Scardovelli, R., 2003. A mixed markers and volume-of-
fluid method for the reconstruction and advection of interfaces in two-phase and
free-boundary flows. J. Comput. Phys. 188 (2), 611–639.

Basu, D., Das, K., Green, S., Janetzke, R., Stamatakos, J., 2010. Numerical simulation of
surface waves generated by a subaerial landslide at Lituya Bay Alaska. J. Offshore
Mech. Arct. Eng. 132 (041101).

Battershill, L., Whittaker, C.N., Lane, E.M., Popinet, S., White, J.D.L., Power, W.L.,
Nomikou, P., 2021. Numerical simulations of a fluidized granular flow entry into
water: Insights into modeling tsunami generation by pyroclastic density currents.
J. Geophys. Res.: Solid Earth 126 (11), e2021JB022855.

Beverly, C., Tanner, R., 1992. Numerical analysis of three-dimensional Bingham plastic
flow. J. Non-Newton. Fluid Mech. 42 (1), 85–115.

Bilal, M., Xing, A., Zhuang, Y., Zhang, Y., Jin, K., Zhu, Y., Leng, Y., 2021. Coupled 3D
numerical model for a landslide-induced impulse water wave: A case study of the
Fuquan landslide. Eng. Geol. 290, 106209.

Biscarini, C., 2010. Computational fluid dynamics modelling of landslide generated
water waves. Landslides 7 (2), 117–124.

Bougouin, A., Paris, R., Roche, O., 2020-05. Impact of fluidized granular flows into
water: Implications for tsunamis generated by pyroclastic flows. J. Geophys. Res.:
Solid Earth 125 (5).

Boussinesq, J., 1877. Essai sur la théorie des eaux courantes. In: Mémoires présentés
par divers savants à l’Académie des Sciences, vol. 23, (no. 1), Impr. nationale,
Google-Books-ID: QAuWqaSZqvEC.

Brackbill, J.U., Kothe, D.B., Zemach, C., 1992. A continuum method for modeling
surface tension. J. Comput. Phys. 100 (2), 335–354.

Brown, S.A., Greaves, D.M., Magar, V., Conley, D.C., 2016. Evaluation of turbulence
closure models under spilling and plunging breakers in the surf zone. Coast. Eng.
114, 177–193.

Bullard, G.K., Mulligan, R.P., Carreira, A., Take, W.A., 2019. Experimental analysis of
tsunamis generated by the impact of landslides with high mobility. Coast. Eng.
152, 103538.

Cecioni, C., Bellotti, G., 2010. Modeling tsunamis generated by submerged landslides
using depth integrated equations. Appl. Ocean Res. 32 (3), 343–350.

Chen, Q., Zhang, C., Zang, J., Ning, D., 2019. A coupled Particle-In-Cell (PIC)-Discrete
Element Method (DEM) solver for fluid–solid mixture flow simulations. J. Fluids
Struct. 91, 102772.

Chhabra, R.P., Richardson, J.F., 1999. Non-Newtonian Flow in the Process Indus-
tries: Fundamentals and Engineering Applications. Butterworth-Heinemann, Oxford;
Boston, MA, OCLC: 182747857.

Christensen, E.D., 2006. Large eddy simulation of spilling and plunging breakers. Coast.
Eng. 53 (5–6), 463–485.

Clous, L., 2018. Modelling of Waves Generated by Landslides. Discontinuous and
Continuous Approaches and Focus on Energy Transfers (Ph.D. thesis). Université
de Pau et des Pays de l’Adour.

Clous, L., Abadie, S., 2019. Simulation of energy transfers in waves generated by
granular slides. Landslides 16 (9), 1663–1679.

Devolder, B., Rauwoens, P., Troch, P., 2017. Application of a buoyancy-modified k-
omega SST turbulence model to simulate wave run-up around a monopile subjected
to regular waves using OpenFOAM®. Coast. Eng. 125, 81–94.

Devolder, B., Troch, P., Rauwoens, P., 2018. Performance of a buoyancy-modified k-
omega and k-omega SST turbulence model for simulating wave breaking under
regular waves using OpenFOAM®. Coast. Eng. 138, 49–65.

Dumergue, L.E., Abadie, S., 2022. Numerical study of the wave impacts generated in
a wet dam break. J. Fluids Struct. 114, 103716.

Fernandez-Mora, A., Ribberink, J.S., van der Zanden, J., van der Werf, J.J., Jacob-
sen, N.G., 2017. RANS-VOF modeling of hydrodynamics and sand transport under
full-scale non-breaking and breaking waves. In: 35th International Conference on
Coastal Engineering. ICCE 2016, Coastal Engineering Research Council, pp. 1–15.

Fritz, H.M., 2001. Lituya Bay case rockslide impact and wave run-up. Sci. Tsunami
Hazards 19, 3.

Fritz, H.M., Hager, W.H., Minor, H.-E., 2003. Landslide generated impulse waves. Exp.
Fluids 35, 505–519.

Fritz, H.M., Hager, W.H., Minor, H.-E., 2004. Near field characteristics of landslide
generated impulse waves. J. Waterw. Port Coast. Ocean Eng. 130 (6), 287–302.

http://refhub.elsevier.com/S0141-1187(24)00417-6/sb1
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb1
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb1
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb1
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb1
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb2
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb2
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb2
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb2
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb2
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb2
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb2
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb3
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb3
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb3
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb3
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb3
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb4
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb4
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb4
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb4
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb4
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb5
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb5
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb5
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb5
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb5
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb5
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb5
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb6
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb6
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb6
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb7
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb7
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb7
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb7
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb7
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb8
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb8
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb8
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb9
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb9
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb9
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb9
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb9
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb10
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb10
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb10
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb10
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb10
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb11
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb11
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb11
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb12
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb12
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb12
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb12
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb12
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb13
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb13
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb13
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb13
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb13
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb14
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb14
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb14
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb15
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb15
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb15
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb15
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb15
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb16
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb16
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb16
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb16
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb16
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb17
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb17
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb17
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb18
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb18
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb18
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb18
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb18
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb19
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb19
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb19
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb20
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb20
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb20
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb20
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb20
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb21
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb21
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb21
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb21
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb21
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb22
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb22
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb22
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb23
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb23
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb23
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb23
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb23
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb23
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb23
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb24
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb24
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb24
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb25
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb25
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb25
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb26
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb26
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb26


A.H. Parvin et al. Applied Ocean Research 153 (2024) 104296 
Greenshields, C., 2018. OpenFOAM v6 User Guide: 7.3 Transport/rheology models.
OpenCFD Ltd.

Grilli, S.T., Vogelmann, S., Watts, P., 2002. Development of a 3D numerical wave
tank for modeling tsunami generation by underwater landslides. Eng. Anal. Bound.
Elements 26 (4), 301–313.

Grimshaw, R., 1970. The solitary wave in water of variable depth. J. Fluid Mech. 42
(3), 639–656.

Harlow, F.H., 1964. The particle-in-cell computing method for fluid dynamics. Methods
Comput. Phys. 3, 319–343.

Huang, X., García, M.H., 1998. A Herschel–Bulkley model for mud flow down a slope.
J. Fluid Mech. 374, 305–333.

Jánosi, I., Jan, D., Szabó, K.G., Tél, T., 2004. Turbulent drag reduction in dam-break
flows. Exp. Fluids 37 (2), 219–229.

Jop, P., Forterre, Y., Pouliquen, O., 2006. A constitutive law for dense granular flows.
Nature 441 (7094), 727–730.

Kim, G.-B., Cheng, W., Sunny, R.C., Horrillo, J.J., McFall, B.C., Mohammed, F.,
Fritz, H.M., Beget, J., Kowalik, Z., 2020. Three dimensional landslide gener-
ated tsunamis: Numerical and physical model comparisons. Landslides 17 (5),
1145–1161.

Larsen, B.E., Fuhrman, D.R., 2018. On the over-production of turbulence beneath
surface waves in Reynolds-averaged Navier–Stokes models. J. Fluid Mech. 853,
419–460.

Li, Y., Larsen, B.E., Fuhrman, D.R., 2022. Reynolds stress turbulence modelling of surf
zone breaking waves. J. Fluid Mech. 937, A7.

Li, Y., Raichlen, F., 2003. Energy balance model for breaking solitary wave runup. J.
Waterw. Port Coast. Ocean Eng. 129 (2), 47–59.

Lin, P., Liu, P.L.-F., 1998. A numerical study of breaking waves in the surf zone. J.
Fluid Mech. 359, 239–264.

Ma, G., Kirby, J.T., Hsu, T.-J., Shi, F., 2015. A two-layer granular landslide model for
tsunami wave generation: Theory and computation. Ocean Model. 93, 40–55.

Mao, J., Zhao, L., Di, Y., Liu, X., Xu, W., 2020. A resolved CFD–DEM approach for the
simulation of landslides and impulse waves. Comput. Methods Appl. Mech. Engrg.
359, 112750.

Mauriet, S., 2009. Simulation D’un Écoulement De Jet De Rive Par Une Méthode VOF
(Ph.D. thesis). Université de Pau et des Pays de l’Adour.

Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA J. 32 (8), 1598–1605.

Menter, F.R., Kuntz, M., Langtry, R., et al., 2003. Ten years of industrial experience
with the SST turbulence model. Turbulence Heat Mass Transf. 4 (1), 625–632.

Mohammed, F., Fritz, H.M., 2012. Physical modeling of tsunamis generated by
three-dimensional deformable granular landslides. J. Geophys. Res.: Oceans 117
(C11).

Moukalled, F., Mangani, L., Darwish, M., 2016. The finite volume method in computa-
tional fluid dynamics: An advanced introduction with OpenFOAM® and Matlab. In:
Fluid Mechanics and Its Applications, vol. 113, Springer International Publishing,
Cham.

open source CFD toolbox, T., 2024. OpenFOAM: User Guide: Overset.
Openfoam-code, 2023. OpenFOAM ESI: User Guide v2112 - RNGkEpsilon.C source code.
Paris, A., Heinrich, P., Abadie, S., 2021. Landslide tsunamis: Comparison between

depth-averaged and Navier–Stokes models. Coast. Eng. 170, 104022.
Rauter, M., Hoße, L., Mulligan, R.P., Take, W.A., Løvholt, F., 2021. Numerical

simulation of impulse wave generation by idealized landslides with OpenFOAM.
Coast. Eng. 165, 103815.

Rauter, M., Viroulet, S., Gylfadóttir, S.S., Fellin, W., Lø vholt, F., 2022. Granular porous
landslide tsunami modelling–the 2014 Lake Askja flank collapse. Nat. Commun. 13
(1), 678.
19 
Rodi, W., 1980. Turbulence Models and Their Application in Hydraulics - A State of
the Art Review. NASA STI/Recon Technical Report A 81, p. 21395, ADS Bibcode:
1980STIA...8121395R.

Romano, A., Lara, J.L., Barajas, G., Losada, I.J., 2023. Numerical modeling of tsunamis
generated by granular landslides in OpenFOAM®: A Coulomb viscoplastic rheology.
Coast. Eng. 186, 104391.

Shih, T.-H., 1993. A Realizable Reynolds Stress Algebraic Equation Model, vol. 105993,
National Aeronautics and Space Administration.

Shih, T.-H., Zhu, J., Lumley, J.L., 1996. Calculation of wall-bounded complex flows and
free shear flows. Internat. J. Numer. Methods Fluids 23 (11), 1133–1144, Cited by:
53.

Si, P., Shi, H., Yu, X., 2018. A general numerical model for surface waves generated
by granular material intruding into a water body. Coast. Eng. 142, 42–51.

Soares Frazao, S., Zech, Y., 2002. Undular bores and secondary waves -Experiments
and hybrid finite-volume modelling. J. Hydraul. Res. 40 (1), 33–43.

Stoker, J.J., 1992. Water Waves: The Mathematical Theory with Applications. John
Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 305–308.

Tan, H., Chen, S., 2017. A hybrid DEM-SPH model for deformable landslide and its
generated surge waves. Adv. Water Resour. 108, 256–276.

Tarwidi, D., Pudjaprasetya, S.R., Adytia, D., 2022. A reduced two-layer non-hydrostatic
model for submarine landslide-generated tsunamis. Appl. Ocean Res. 127, 103306.

Tissier, M., Bonneton, P., Marche, F., Chazel, F., Lannes, D., 2011. Nearshore dynamics
of tsunami-like undular bores using a fully nonlinear Boussinesq model. J. Coast.
Res. 603–607.

Viroulet, S., Sauret, A., Kimmoun, O., 2014. Tsunami generated by a granular collapse
down a rough inclined plane. Europhys. Lett. 105 (3), 34004.

Viroulet, S., Sauret, A., Kimmoun, O., Kharif, C., 2013. Granular collapse into water:
toward tsunami landslides. J. Visual. 16, 189–191.

Wang, C., Wang, Y., Peng, C., Meng, X., 2017. Two-fluid smoothed particle hydrody-
namics simulation of submerged granular column collapse. Mech. Res. Commun.
79, 15–23.

Weiss, R., Fritz, H.M., Wünnemann, K., 2009. Hybrid modeling of the mega-tsunami
runup in Lituya Bay after half a century. Geophys. Res. Lett. 36 (9).

Wilcox, D.C., 1988. Reassessment of the scale-determining equation for advanced
turbulence models. AIAA J. 26 (11), 1299–1310.

Wroniszewski, P.A., Verschaeve, J.C.G., Pedersen, G.K., 2014. Benchmarking of Navier–
Stokes codes for free surface simulations by means of a solitary wave. Coast. Eng.
91, 1–17.

Xie, Z., 2013. Two-phase flow modelling of spilling and plunging breaking waves. Appl.
Math. Model. 37 (6), 3698–3713.

Xu, W.-J., Yao, Z.-G., Luo, Y.-T., Dong, X.-Y., 2020. Study on landslide-induced wave
disasters using a 3D coupled SPH-DEM method. Bull. Eng. Geol. Environ. 79 (1),
467–483.

Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G., 1992. Development
of turbulence models for shear flows by a double expansion technique. Phys. Fluids
A 4 (7), 1510–1520.

Yeh, H.H., Ghazali, A., Marton, I., 1989. Experimental study of bore run-up. J. Fluid
Mech. 206, 563–578.

Zhao, K.-L., Qiu, L.-C., Liu, Y., 2022. Two-layer two-phase material point method
simulation of granular landslides and generated tsunami waves. Phys. Fluids 34
(12).

Zhao, K.-L., Qiu, L.-c., Liu, Y., 2023. Numerical study of water wave generation by
granular-liquid mixture collapse using two-phase material point method. Appl.
Ocean Res. 137, 103608.

Zhou, Q., Xu, W.-J., Dong, X.-Y., 2022. SPH-dem coupling method based on GPU and its
application to the landslide tsunami. Part I: method and validation. Acta Geotech.
1–19.

http://refhub.elsevier.com/S0141-1187(24)00417-6/sb27
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb27
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb27
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb28
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb28
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb28
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb28
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb28
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb29
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb29
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb29
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb30
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb30
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb30
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb31
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb31
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb31
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb32
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb32
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb32
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb33
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb33
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb33
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb34
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb34
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb34
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb34
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb34
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb34
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb34
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb35
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb35
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb35
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb35
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb35
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb36
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb36
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb36
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb37
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb37
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb37
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb38
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb38
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb38
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb39
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb39
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb39
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb40
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb40
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb40
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb40
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb40
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb41
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb41
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb41
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb42
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb42
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb42
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb43
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb43
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb43
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb44
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb44
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb44
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb44
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb44
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb45
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb45
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb45
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb45
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb45
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb45
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb45
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb46
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb47
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb48
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb48
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb48
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb49
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb49
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb49
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb49
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb49
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb50
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb50
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb50
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb50
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb50
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb51
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb51
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb51
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb51
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb51
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb52
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb52
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb52
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb52
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb52
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb53
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb53
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb53
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb54
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb54
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb54
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb54
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb54
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb55
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb55
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb55
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb56
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb56
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb56
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb57
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb57
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb57
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb58
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb58
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb58
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb59
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb59
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb59
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb60
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb60
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb60
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb60
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb60
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb61
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb61
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb61
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb62
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb62
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb62
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb63
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb63
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb63
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb63
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb63
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb64
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb64
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb64
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb65
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb65
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb65
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb66
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb66
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb66
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb66
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb66
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb67
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb67
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb67
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb68
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb68
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb68
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb68
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb68
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb69
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb69
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb69
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb69
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb69
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb70
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb70
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb70
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb71
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb71
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb71
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb71
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb71
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb72
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb72
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb72
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb72
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb72
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb73
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb73
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb73
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb73
http://refhub.elsevier.com/S0141-1187(24)00417-6/sb73

	Validation of OpenFOAM with respect to the elementary processes involved in the generation of waves by subaerial landslides
	Introduction
	Methods
	Numerical method
	Turbulence models
	Reynolds Averaged Navier–Stokes equations
	Standard k-ε model
	RNG k-ε model
	Nonlinear k-ε model
	k-ω and k-ω SST models
	Modified turbulent models for multi-phases simulations

	Herschel–Bulkley viscoplastic model
	Computation of energy and dissipation in each phases at time t

	Validation cases and results
	CASE 1: Slide flow — validation of the non-Newtonian rheological model
	CASE 2: Wave generation and breaking
	CASE 3: Wave dispersion — case of the undular bore
	CASES 4 to 6: Validation of the energetic processes
	CASE 4: Energy conservation in a propagating solitary wave
	CASE 5: Energy conservation in a breaking solitary wave case
	CASE 6: Dissipation in a turbulent bore


	Discussion
	Significance of the results
	Waves generated by subaerial landslides: Examples of simulation
	Moderately energetic case
	Strongly dissipative case

	Limitations of the study

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


