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Abstract: Despite the increase in the efficiency of energy consumption in information and communica-
tion technology, software execution and its constraints are responsible for how energy is consumed in
hardware hosts. Consequently, researchers have promoted the development of sustainable software
with new development methods and tools to lessen its hardware demands. However, the approaches
developed so far lack cohesiveness along the stages of the software development life cycle (SDLC)
and exist outside of a holistic method for green software development (GSD). In addition, there is a
severe lack of approaches that target the analysis and design stages of the SDLC, leaving software
architects and designers unsupported. In this article, we introduce our behavior-based consumption
profile (BBCP) external Domain-Specific Language (DSL), aimed at assisting software architects
and designers in modeling the behavior of software. The models generated with our external DSL
contain multiple sets of properties that characterize features of the software’s behavior. In contrast to
other modeling languages, our BBCP emphasizes how time and probability are involved in software
execution and its evolution over time, helping its users to gather an expectation of software usage
and hardware consumption from the initial stages of software development. To illustrate the feasi-
bility and benefits of our proposal, we conclude with an analysis of the model of a software service
created using the BBCP, which is simulated using Insight Maker to obtain an estimation of hardware
consumption and later translated to energy consumption.

Keywords: SOA; green software; software profiling; software engineering; software behavior; behavior
with software

1. Introduction

The assessment of global economies in terms of gross economic growth has been
previously criticized as an unsustainable metric [1], as its reliance on the limited availability
of natural resources to manufacture, distribute, and maintain the goods and services we
consume has environmental consequences we incrementally see signs of. The consensus is
that a global reduction of both the amount and rhythm of natural resource consumption
is the best strategy against the environmental strain we impose. Contrary to the previous
notion, as millions of ICT (Information and Communication Technology) devices are
deployed into our global network with each passing year, ICT researchers are concerned
with reducing the energy consumption of software as a strategy for degrowth—the ability
to perform computation with scarce of resources or energy [2].

The efforts that address degrowth have resulted in a relatively new branch of studies
called green software development (GSD), also known, or misunderstood, as sustainable
software [3]. The democratization of green software methods and tools is a big issue, as
software engineers and developers are increasingly aware of the relevance of the energy
consumption of software [3–5], which includes the expense of its execution and construction.
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Still, they are powerless when trying to improve it themselves, as they are riddled by
technicalities [6].

We agree with the authors of previous studies that supporting software architects and
designers from the initial stages of the SDLC with a green software design methodology
will help them to create increasingly frugal software [3,7,8], promoting, in turn, the de-
mocratization of GSD. The objectives we have identified to prove our hypothesis are the
following: (1) the creation of a platform-agnostic software behavior modeling approach
that includes uncertainty as a factor in software design, (2) the creation of energy consump-
tion ratings per type of software using the software models, and (3) the assessment and
suggestion of changes in the behavior of the software models to improve the efficiency of
the final software.

In this article, we present our full-fledged proposal, called behavior-based consump-
tion profiles (BBCPs), which significantly extends and improves our previous preliminary
seminal paper [9]. The BBCP is an external DSL developed as a response to the severe
lack of support that green software development (SDLC) has received for the analysis
and design stages of the software development life cycle (SDLC), and the aforementioned
first objective. The novelty and main contribution of our proposal lie in our method of
modeling software behavior-based on time-based, stochastic, and changing descriptions of
architectural, business, and user constraints, which represents a significant step towards a
holistic description of software behavior focused on energy estimations. Some of the key
contributions include the following:

• The probabilistic nature of our software-behavior modeling approach enables software
designers to effectively manage the uncertainty of human–computer interactions
(HCIs), thereby anticipating prospective energy consumption before any code is
written and test-users are involved.

• We introduce the concept of diachronic software design, emphasizing the importance
of software design that is conscious of time restrictions and changes in user demand
over time.

• The BBCP simplifies the modeling of resource-intensive scenarios, which typically
require extensive data collection and user testing.

As opposed to existing works, our approach emphasizes the importance of time
constraints and the evolution of the user demand in time, and, therefore, it can represent
expected usage scenarios more closely. In addition, the insights gained by using our
approach can be used later on in the development process, as illustrated in Figure 1.

Figure 1. Target benefits of the BBCP along the SDLC.
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The rest of this article is structured as follows. In Section 2, we delve into the existing
research concerning software behavior description, setting the stage for the introduction
of each component of our behavior-based consumption profiles approach in Section 3.
Following this, in Section 4, we offer an illustrative example of a couple of software models
crafted using our approach. This example serves to showcase and briefly discuss the
results generated through our system model. Finally, we draw our article to a close with a
summary of our findings and directions for future research in Section 6.

2. Related Work

A central point to our research is the differentiation between the behavior of software
and the behavior with software, key to understanding the criteria for comparison of our
approach against pre-existing DSLs and software modeling approaches. We have found
that the term “software behavior” is frequently and loosely used, and it is broadly defined
in sources such as the SWEBOK [10] and the Dictionary of Computer Science [11]. In conse-
quence, we created a hybrid definition using a pair of loose pre-existing definitions [12,13]
and our considerations, which will be used throughout the article.

To us, the behavior of software is “the collection of functions/methods, variables
involved in the functions/methods, and the involvement of external entities required
to produce a predictable outcome, all limited to a single unit of software”. As we have
previously mentioned, our research also involves “behavior with software”. We define the
behavior with software as “the interactions of a software agent or non-digital agent with its
environment, ignoring the inner workings of the agent itself”, where a software agent is an
autonomous software entity that can summon itself proactively or reactively, and operate
in its environment without a user’s intervention. Finally, non-digital agents conserve the
attributes of a software agent but they can be partially controlled or influenced by software
and can act upon a tangible environment. Some examples of non-digital agents include
human users and autonomous machines in cyber-physical systems. We designate human
users as non-digital agents because, although they do not host software themselves, they
can form relationships with software and software agents. These relationships have the
potential to impact the physical world. In the analysis phase of the SDLC, the behavior
with software is useful to comprehend how the human–computer interaction (HCI) will
affect software behavior and vice versa, denoting how energy relationships can be created
between the user and the software.

With the previous considerations in mind, we performed a literature review to find
pre-existing DSLs and modeling languages that could support the diachronic software
design that we propose, to decide if the development of the BBCP, an interpreter, and a tool
to support it were worthy. The methodology we followed for the review, briefly put, was
the following:

1. A search using Harzing’s Publish or Perish software [14] in Google Scholar’s repository
with the following query: SOA AND (green software profiling OR sustainability OR
green OR software behavior OR profiling).

2. As exclusion criteria, we discarded the papers unrelated to computer science, software
engineering, or human–computer interaction, with only 39 papers remaining out of
the original 500.

3. We read the abstracts of the remaining papers and articles, and discarded the ones
with no relevance to the topic, concluding with 11 final papers.

4. We read the 11 remaining papers and matched them against 11 criteria. The criteria
used for the comparison are available in Table 1, and the results of the process are
available in Table 2.
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Table 1. Criteria used to compare the existing approaches to useful features.

Criteria Description

C1 The approach allows its users to model the behavior of software and the
behavior with software.

C2 The approach allows its users to include a shift in the behavior of the
model and its inner components at different points in time.

C3 The approach allows its users to define and sequence the execution of
methods/functions with support for parallel computing. Method/func-
tion dependency management and data I/O per function should also be
included.

C4 The approach should allow the user to define data paths, and how data
are generated, exchanged, and consumed.

C5 The approach should provide an alternative for a stochastic definition
of behavior with software, meaning that the behavior with software can be
statistically analyzed but not precisely predicted. This is of interest to us
so that consumer behaviors can be modeled with aftermarket data.

C6 The approach should support the aggregation of models to design full
software components or applications.

C7 The approach should allow the users to obtain a measurable output as a
result of the execution of the profile they model.

C8 The approach should allow the user to define a resource consumption of
any type, not only from the perspective of software but also hardware
and other physical resources, e.g.: fuel.

C9 The goal of the approach must be oriented towards generating useful
metrics for evaluating the energy consumption of the profiles.

C10 The approach must include means for profiling Human-Provided Ser-
vices (HPSs) and modeling user behavior.

C11 The approach should be platform- and framework-agnostic, and aimed
specifically at the initial phases of the software development life cycle.

Table 2. Comparison among the existing approaches and our behavior-based consumption profiles.

Source C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

[15] ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✕

[16] ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕

[17] ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕

[18] ✓ ✕ ✕ ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕

[19] ✕ ✓ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

[20] ✓ ✓ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕

[21] ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

[22] ✓ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕

[23] ✕ ✓ ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕

[24] ✕ ✓ ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓

[25] ✕ ✓ ✓ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕

[26] ✕ ✕ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✓ ✕

[27] ✕ ✕ ✓ ✕ ✓ ✓ ✓ ✕ ✓ ✓ ✕

BBCP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



Appl. Sci. 2024, 14, 7456 5 of 28

Our research revealed the following. On the one hand, approaches that deal with the
behavior with software include taking into account human personality profiles to generate
believable bot behaviors for a game tournament [21], prototyping intelligent systems that
adapt their behavior to match a profile of the user [28], and the simulation of real user
behavior on the Internet using machine learning techniques [20]. On the other hand, several
examples of software behavior include studying the behavior of embedded systems in
component-based software development according to different signal flows [19], modeling
an application and resource behavior with profiles in heterogeneous environments [22], and
the creation of behavioral profiles built in UML (Unified Modeling Language) to specify
the architectural behavioral rules of applications [18].

Most of the previous works make use of a common technique: profiling. Profiling
allows researchers to study the specific part of a subject by taking its descriptive elements
and characterizing a profile with them. For example, in [22], the behavioral profile of an
application takes place in the form of UML stereotypes that allow researchers to trace the
patterns of interactions among applications. Similar approaches include the one proposed
by Ponsard et al. [26], where the authors propose UML profiles to describe related energy
requirements and KPI metrics to application design and deployment elements. Similarly
to Ponsard et al., The Object Management Group, responsible for overseeing UML, has
created an extension adding support for Real-Time and Embedded Systems in UML, called
the UML profile for MARTE [29]. For instance, Shorin et al. [27] proposed an extension
of UML models that get transformed into a stochastic Petri net for their stochastic energy
consumption analysis, including MARTE.

Other approaches aim to model software’s and services’ behavior with their language,
specifically behavioral relationships among software units. For instance, in [16], the authors
propose a software behavior modeling language that differentiates itself by supporting
business analysts and software architects from the initial phases of the SDLC. To our
knowledge, most existing approaches do not describe diachronic behavior (how behavior
and even its changes, change over time) that includes elements of uncertainty such as
Human-Provided Services (HPSs) [30], where people are actors that affect and constrain
a system’s behavior [15,31], reaching into the field of HCI [32] to study how the factors
surrounding the user affect the consumption of a unit of software. This is a fundamental
issue for our research and contribution, as a secondary goal is to be able to provide energy
ratings based on these features.

To conclude, we found that (1) most of the existing works employ profiling, (2) some
of the approaches target software behavior modeling from the initial stages of the SDLC,
and (3) none of the existing approaches factor software’s or user’s behavioral change into
the profiles of software behavior they produce. Therefore, to tackle these shortcomings, our
proposal employs a holistic profiling approach that allows software designers and architects
to include the uncertainty of HCI, the constraints of the business, and the architectural
constraints of software in profiles of the software’s behavior. The resulting profiles can be
later analyzed by our custom interpreter, which creates a prospective, changing software
usage, which is turned into energy consumption, all from the analysis and design stages of
the SDLC.

3. Elements of the BBCP

As we previously mentioned, the behavior-based consumption profile is an external
DSL specialized in describing timed-based behavioral patterns and their change over
time. External DSLs are a sub-category of DSLs that are implemented via an independent
interpreter or compiler. The PlantUML DSL, for instance, is an open-source tool that
employs its own text-based language and own interpreter to create diagrams. In the case
of the BBCP, we chose JSON (JavaScript Object Notation) to create its base schema as it is
human-readable, object-oriented, it supports arrays, and it is popularly used. Furthermore,
we used JSON arrays and object-oriented notation to organize concepts into categories
that hold multiple objects. It is important to emphasize that we do not discard other text
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formats or markup languages to implement the BBCP schema if they support key–value
pairs, objects, and arrays. The BBCP schema could be easily implemented in XML, for
example. A website that contains the BBCP JSON schema and a directory to the subsequent
information used in this article is also available [33].

We have completed a prototype of the interpreter that translates the JSON schema
and the value of each property in it into a behavior. The interpreter, succinctly explained,
receives a BBCP profile as the reference for the initial values for each property, which
are later used in a simulation loop where the state of the profile is defined through a
randomized process defined by the properties in this section. In addition, to generate
a simulation, the pre-requirements of the interpreter are (1) the total simulated time to
interpret the profiles for, and (2) one or more profiles. Furthermore, we refer to a dynamic
representation of a static BBCP within the interpreter as an instance. The dynamic BBCP (an
instance) is an interpreter-generated BBCP whose values and behavior change according to
the values defined in the static (or original) BBCP fed to the interpreter. For the remainder
of this section, we will explain the properties available in the BBCP, their possible values,
and their desired outcome for how the interpreter uses them to generate a behavior within
a simulation.

In this text, we include multiple resources to better understand the BBCP. The first
resource is a glossary (see Table 3), which explains the concept of each category in the BBCP
and how they agglomerate to the definition of behavior in the context of this work. An
illustration of a workflow that includes the BBCP in an iterative methodology for software
development is available in Figure 2. The illustrated workflow is not limited to iterative
methodologies, as the BBCP could be a prototype of behavior and not necessarily a fragment
of documentation, which fosters its adoption in evolutive development methodologies
such as Agile. The inclusion of the BBCP in diverse development methodologies will be
further discussed in Section 5. A conceptual class diagram that describes the dependencies,
multiplicity, and life cycle of each element of the BBCP is available in Figure 3. The class
diagram must be taken into account to build correct BBCPs, as the general behavior is
the product of every element respecting its corresponding rules; more information on
constructing correct BBCPs can be found in Appendix B. Finally, we include a table with
relational graphs in Figure 4, whose contents extend the information of Figure 3 with
the properties within each category and how they are nested. Figure 3 can be thought
as a component view of the BBCP, while Figure 4 concentrates on a granular view of the
properties in each category.

Table 3. Core concepts of the BBCP approach.

Concept Definition

Expectations Collections of time frames

Time frame A period of time when a behavior is constrained

Cycles A cyclic time frame

Events A unique (non-cyclic) time frame

Timed expectations A re-definition of cycles and events tied to time

Elasticity A dynamic change in the values of a specific set of properties during
timed expectations

Behavior (in the BBCP) The agglomeration of all the previous concepts
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Figure 2. The involvement of the SDLC actors with the BBCP and its results.

Figure 3. Conceptual meta-model class diagram explaining the relationships among the core concepts
of the BBCP approach.

3.1. Usage Constraints

This category groups the properties responsible for switching between the binary state
of an instance, run and stop. The properties are located in row 1 of Figure 4. The run state
represents an instance actively consuming resources and exhibiting a behavior, whereas
stop represents the opposite. To specify the frequency at which the interpreter samples
instances, we utilize the Profile Evaluation Rate property, with Hz as its metric. Conceptually
speaking, the value of this property creates periodical points in time when an instance is
sampled to learn its state and trigger its changes in behavior and consumption of resources;
we call it evaluation.

We created the property Default Run Probability to support the modeling of a higher
uncertainty in the behavior of an instance as a representation of unknown external factors,
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such as the user behavior. This property controls the chance of an instance entering a
run state when it is evaluated during a stop state. The Default Stop Probability represents a
specific probability for an instance to switch to a stop state when it is evaluated under a run
state. When the two preceding properties’ values are set to 0, the only possible way for an
instance to enter a run state is if it is triggered by one of its operations due to a dependency
relationship with another instance. This will be further discussed in Section 4. If we wanted
to describe a coin flip, we could use a Profile Evaluation Rate of 1 Hz, a Default Run
Probability of 0.5, and a Default Stop Probability of 0.5. The result is a behavior where a
coin toss is performed every second and either state of an instance can be considered heads
or tails.

Figure 4. The BBCP properties and their order.
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3.2. Run Constraints

The objective of the properties in this category is to constrain the time an instance
spends active (in a run state). The interpreter measures the time that the instance spends in
an active state using two metrics: instant run time and accumulated run time. The instant
run time is the duration of the last occurrence of an instance in a run state, in seconds.
The accumulated run time is the sum of all the time that an instance spent in a run state
in seconds.

The property Minimum Run Time prevents an instance from switching back to a stop
state during an evaluation unless the instant run time is greater than this property’s value,
in seconds. The property Maximum Run Time, as opposed to Minimum Run Time, limits
the instant run time to a maximum duration in seconds. If a run exceeds this limit, the
instance is immediately switched to a stop state. The last couple of properties are important
to prevent edge cases where an instance can spend either too little or too much time in a
run state.

The property Quota is similar to Maximum Run Time but it limits the accumulated run
time. The Quota decreases with each second that an instance spends in a run state, hence the
name. Once it is depleted, the instance is switched to a stop state and ceases to be evaluated.
It will not be evaluated and be able to switch to a run state again unless its Quota is reset.
Going forward, we will refer to this specific pattern of behavior as a Depleted Quota.

The Cooldown property defines how long an instance spends with a Depleted Quota
before its Quota is replenished and the instance can be re-evaluated. Even though we
have constrained the instant run time and the accumulated run time, there could be a
need for constraining the instant run time of an instance to a specific duration, which is
achieved with Countdown. When the instant run time equals the value of the Countdown,
the instance is immediately switched to a stop state.

To summarize how usage constraints and run constraints are utilized, let us think of an
example of a surveillance system, more specifically, the software responsible for recording
suspicious activity. As per a hypothetical surveillance policy, the software must record at
least 10 min of footage with 5 min between recordings. However, if the system sees it fit to
do so due to uncontrolled variables, such as a motion sensor, the footage could keep rolling
up to 20 min with a maximum daily footage duration of 1200 min (20 h). To replicate this
behavior, we can use a Profile Evaluation Rate equal to 0.00333 Hz, as we have to record
every 5 min. A Default Run Probability of 1 and a Default Stop Probability of 0.7 can control
an irregular switch between states every 5 min. However, to enforce a minimum of 10 min
of footage and a maximum of 20, we set the Minimum Run Time to 600 s (10 min) and the
Maximum Run Time to 1200 s (20 min). To enforce the maximum daily footage, the Quota
is set to 72,000 s (1200 min), and the Cooldown is dynamically set (set by the interpreter) to
the time left until the next day. The final result is a behavior that complies with the deliberate
requirements of the software in addition to the variability of uncontrolled circumstances that
could affect the results. The plot in Figure 5 describes the change in the recording state of the
camera according to its usage and run constraints over 3 h.
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Figure 5. A plot of the change of the recording state of the camera throughout a simulation.

3.3. Expectations Constraints

Expectations is a category dedicated to bounding the behavior during specific hours
and days when changes in the behavior of the software are applied. In adherence to the
concepts in Table 3 as well as Figure 3, we placed two sub-categories within expectations:
cycles and events, as multiple instances of both can exist per profile. The properties in this
category relate to the goals specified in criteria C2, C6, C7, and C10 of Table 1.

3.3.1. Cycles

Cycles contain constraints that repeat during specific days of a week, month, or a
deliberate set of days. There are two main properties inside cycles: scale and days. The
scale property defines a static amount of days when a cycle could apply. The days property
defines a selection of days in a scale when the constraints of the cycle apply. For instance,
a scale value of 7 represents a week, and a days value of [6, 7] selects the weekends.
Therefore, the same constraints will apply during the weekend for every week, a recurring
pattern of behavior. The scale can never be greater than the total duration of the simulation.
Following the example of a scale equal to 7, the duration of the simulation to generate with
the interpreter would have to be at least equal to 7 days. An example of how cycles are
useful can be found in enterprise applications. Let us think of a communication enterprise
application running in the company’s server, which is used much more during the week
than the weekends. A cycle could be defined for each segment of the week: [1–5] for the
weekdays and [6, 7] for the weekends.

3.3.2. Events

In contrast to cycles, events have a single occurrence in time. The Initial Day property
defines a day selection in which the time frame for the event is started. Its ending day selects
the day after which the constraints of an event will not be effective. If a simulation inside
the interpreter were to last 14 days, an event’s Initial Day’s value would be constrained to
1 ≤ Initial Day ≤ 14 and its End Day’s value to Initial Day ≤ End Day ≤ 14. In the same
way that the interpreter validates the length of cycles, the length of events must always be
within a valid duration of a simulation in the interpreter. Coming back to the enterprise
application example, perhaps the first Monday of the month is when the application is
used the most; therefore, it could be isolated by creating an event with the Initial Day set to
1 and the End Day set to 1, overriding the definition of the first cycle for the Day 1 with a
scale of 28 days.

To date, we have explained how cycles and events are a part of expectations, which
create bounds in time. To complete these bounds, the properties in the timed expectations
sub-category constrain the changes in the behavior of an instance during applicable hours.
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3.4. Timed Expectations Constraints

This sub-category contains the properties responsible for altering the behavior of an
instance during specific bounds of hours, as per C2, and during applicable cycles and
events. There are three properties inside timed expectations: Run Probability Override,
Stop Probability Override, and Time Range. The value of the Run Probability Override
property, as the name implies, overrides the Default Run Probability of the usage category.
The Stop Probability Override property does the same but for the Default Stop Probability.
The property Time Range creates a selection of hours within a day when the aforementioned
properties of this category affect the profile, e.g.: a range of hours for the evening [17–20]. In
the same way that timed expectations can override the run and stop probabilities, they can
override the values of the run constraints in the usage category when the timed expectation
is applicable (see cell 2 of column 2 in Figure 4).

Despite the flexibility that expectations give us to model time-related business con-
straints, the change in human interactions, and the change in time-related software con-
straints, we wanted to give architects and designers the possibility to refine the changes
during timed expectations even more. This is rooted in the need to profile HPSs, as de-
scribed in Criteria 10, where the satisfaction of the user can impact on the behavior with
software. To solve this we created our next category: elasticity.

3.5. Elasticity Constraints

The properties inside this category go hand-in-hand with timed expectations; therefore,
instances of timed expectations have a unique set of elasticity within them, as seen in
Figure 3, the same reason why elasticity only works as long as its corresponding timed
expectations apply. When the property elasticity is set to true, the values of the properties
responsible for probabilities will be modified with slight increases and decreases in value
with each evaluation. This constant increase and decrease is where this feature takes its
name from.

The first properties that increase the values of the run and stop probabilities are the
Positive Run Probability Modifier and the Positive Stop Probability Modifier. The Positive Run
Probability Modifier increases, when applicable, either the Default Run Probability or the
Run Probability Override with each evaluation for as long as an instance remains in a stop
state. The Positive Stop Probability Modifier does the same but for the stop probability as
long as the instance remains in a run state.

The properties responsible for the decrease in the values of the run and stop probabili-
ties are the Negative Run Probability Modifier and the Negative Stop Probability Modifier. This
pair of properties is similar to the aforementioned ones, but it affects the ongoing state. For
example, if an instance is in a run state, the Negative Run Probability Modifier affects the
run probability’s value (either the override or the default value) during evaluations, for as
long as the instance remains in a run state.

We then added four properties that control a ceiling and the floor for the total run
or stop probability, so that edge cases and rebound effects can be taken into account. The
two properties that control the ceiling for each value are the Maximum Run Probability and
the Maximum Stop Probability. The two properties that control the floor for each value are
the Minimum Run Probability and the Minimum Stop Probability. Once a probability has
reached either its lowest or highest value, it will stay there unless it is affected in the inverse
direction of the limit. It is really important to think about elasticity as a bundle where
interest in either of the states must be controlled, hence the name.

The plot in Figure 6, describes the run probability of the surveillance camera as an
example of limiting the probability. The objective of this sample is to promote more camera
recording for one hour, and then demotivate camera recording in the following hour. This
could resemble a scenario where a motion sensor is frequently tripped by people walking
by an entrance on their way to work, and the inflow of people getting reduced, tripping
the sensor less in the following hour. To achieve this, we defined two different timed
expectations that employ elasticity to modify the run probability of the camera. During the
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first timed expectation, we favor the run probability with a low Negative Modifier, and
we handicap it during the second timed expectation with a Maximum Run Probability.
In addition, we increase the Profile Evaluation Rate and remove the Minimum Run Time
to increase the volatility of the sample, making elasticity more evident. The result is an
increased interest in recording footage during the first hour without making it a complete
certainty at every moment, while making it an option during the second hour. Maximum
bounds prevent modifiers from creating “sticky” behaviors: scenarios where either of
the states prevent the other from taking place. For instance, an elevated Positive Run
Probability Modifier in addition to a low Negative Run Probability Modifier can trigger the
run state of a profile for an excessive amount of time. The accuracy of profiles representing
a satisfaction curve greatly depends on the profile having a balanced elasticity and its
similarity to the intended behavior. A sticky behavior could be actively sought by the user
in special scenarios. In the case of Figure 6, a sticky behavior was prevented by limiting the
probabilities and assigning the same value the same to negative and positive modifiers.

Figure 6. A plot of the change in run probability of the surveillance camera using elasticity.

Now that all the concepts, categories, and properties that deal with time-related
behavior and constraints are explained, the categories that contain basic architectural
definitions of software are presented in the following sections.

3.6. Parameters

This category contains properties that describe the data I/O involved in the behavior
of the profile; they help us to anticipate the load of data among operations and instances.
The ID property assigns the parameter an individual and unique identifier number. The
description provides a textual description of what the parameter represents. The direction
allows us to define whether the parameter is external or internal. External parameters
are parameters that can come from and go to other instances, while internal parameters
are parameters used or created by the operations within an instance. The final property
available to describe parameters is size. It defines a quantitative amount for the size of the
parameter in any desired unit.

3.7. Operations

The operations category contains properties responsible for describing what hardware
resources an instance consumes, in compliance with criteria C8. The ID property gives
each operation a unique numeric identifier while the description property exists to provide
a textual description of what the operation represents.

3.7.1. Operation Resource Usage

The resource usage category defines quantitative amounts of consumption per hard-
ware resource per operation. It allows us to satisfy C9, as resource usage is tightly related to



Appl. Sci. 2024, 14, 7456 13 of 28

energy consumption. Since software and hardware energy consumption metrics can vary
from one method to another, there is no specific metric that we apply to resource usage.
However, as previous authors have noted [34], a multitude of relevant metrics can be used
to describe hardware and software performance or hardware consumption.

3.7.2. Operational Time Constraints

Operational time constraints consist of the same properties and mechanics as run
constraints. The main difference is what run time means to the operation. Run time, from
the point of view of the operation, is operational time, which means that the maximum and
minimum limits of the operational time are bounded within the instance’s run time. The
Quota property bounds the maximum operational time per instant run and the Cooldown
property declares the time to wait before the operation is available again within the same
instant run time of an instance.

3.7.3. Operational Dependencies

The pair of properties in this category describes the relationships among operations.
The first property is the Target ID, whose value defines the unique identifier number of the
target operation to establish a relationship with. The dependency type property offers two
types of relationships to choose from: dependee and dependent. If dependee is chosen, the
target would depend on the operation being defined. The inverse occurs when dependent
is selected as the type of relationship. It is important to keep in mind that an instance
with both of its states’ probabilities set to 0 will only run if an operational dependency
is triggered.

3.7.4. Results

The properties in this category create a relationship among operations through pa-
rameters, complying with C3 and C4. The first property, parameter ID, corresponds to the
identifier number of a parameter. Its purpose is to identify the parameter the operation
will output when executed. The next property is the Operation ID, which defines to which
operation the result will be “sent”. In this way, we can chain operations together.

Now that we have defined two levels of dependency management for operations,
there is a final level that lets us clarify exactly what activates them: the triggers set.

3.7.5. Triggers

As the name implies, triggers are responsible for the initiation of an operation in
compliance with C3. The type property defines if the trigger for the operation will be a
parameter or a state change. To define exactly which parameter or state will trigger the
operation, the trigger’s parameter ID (row 25 of Table A2) is considered. If the type is set
to a state, the possible values for the ID become either run or stop. If the type is set to a
parameter, the ID of the corresponding parameter must be entered.

4. Integrative Example

To provide an example that demonstrates a realistic use case for our BBCP, we analyzed
an existing application from the perspective of a black-box service-oriented architecture
(SOA), and created a couple of BBCPs to simulate its behavior. The application in question,
GeForce Now, is a cloud gaming service developed by NVIDIA [35], which we chose
due to the popularity of streaming platforms and, more specifically, the human–computer
interaction involved in cloud gaming. In cloud gaming, the hardware responsible for
running the game and managing inputs and outputs from and to the consumer is in the
cloud (a computer cluster in the network), making use of the software-as-a-service delivery
model (SaaS) based on subscriptions.

In contrast to other streaming services such as video streaming, the user provides
intermittent hardware peripheral input such as mouse movement and keyboard strokes to
the cloud over the internet. The user’s input is then processed and reacted upon by the
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game in the cloud, resulting in subsequent video and audio sent over the internet to the
user. From a SOA perspective, there are two self-contained functions (services) that we
have profiles: the Catalog Service and the Game Stream Service.

The Catalog Service is responsible for offering the user a menu of the games available
to play, usually by employing recommendation algorithms that cater the content to the
preferences of the user. Once a game is selected from the menu, the Game Stream Service is
responsible for the rest of the I/O operations between the cloud and the user, until the user
decides to stop playing the game. The objective of this example is to obtain an estimation
of the energy consumption of the Game Stream Service using BBCP in combination with
the time constraints that the subscription service employs to limit the play time of a user
demoing it.

4.1. The Catalog Service

For our game stream profile to work, we characterized a BBCP with the information
from the Catalog Service. We gave the profile a deliberate Profile Evaluation Rate (PER)
equal to 1/600 Hz (an evaluation every 10 min). The run and stop probabilities were set
equally to 0.5 to establish an unbiased baseline. We set the scale to 7 to simulate a week,
and created two cycles. The first cycle takes place during the weekdays (Monday through
Friday) when the service’s customers’ spare time is reduced, while the second cycle takes
place during the weekends when game streaming services are used the most due to the
increase in the available time of its customers.

To complement the cycles, we created three timed expectations for each of them,
available in Table 4, which are meant to divide the day in three different time segments:
work time, spare time, and nighttime. The behavior was further constrained using elasticity
for each timed expectation.

Table 4. Catalog Service: timed expectations per cycle.

Cycle Timed Expectations Time Range Interpretation

1 1 [1–8] Early in the morning

1 2 [9–16] Work schedule

1 3 [17–23] After work

2 1 [1–9] Early in the morning

2 2 [10–12] Morning to mid-day

2 3 [13–23] Evening to late-night

The values used for the elasticity of each timed expectation are available in Table 5.
We concluded the characterization of the Catalog Service expectations by adding run
constraints to each timed expectation (see Table 6) to simulate the deliberate time restrictions
that the users demoing the product would encounter. A Minimum Run Time equal to 0
stands for no minimum threshold of time running. Such limitations are usually set in place
by subscription business models to entice the user to become a member, removing these
restrictions. As seen in the timed expectations for both cycles, the execution probability
tends to increase into the latter part of the day, as well as the minimum and maximum time
of consumption. This is due to the amount of spare time a user tends to have for this type
of application, common across leisure activities.

For this profile, we decided to add a single operation with no actual resource consump-
tion or operational time constraints, available in Table 7. The goal of this operation was
to define an operational trace between the Catalog Service and the Game Stream Service,
where the catalog selection functions as a trigger for the Game Stream Service each time
it runs. This relationship will become more evident further on with the definition of the
Game Stream Service in Section 4.2.
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Table 5. Catalog Service: elasticity constraints per timed expectation.

Cycle Timed Exp. Run Prob.
Override

Stop Prob.
Override Elasticity Min. Run

Prob.
Max Run
Prob.

Min. Stop
Prob.

Max. Stop
Prob.

Neg. Run
Prob. Mod.

Pos. Run
Prob. Mod.

Neg. Stop
Prob. Mod.

Pos. Stop
Prob. Mod.

1 1 0.1 0.9 True 0 0 0 0 0.001 0 0 0

1 2 0 1 False 0 0 0 0 0 0 0 0

1 3 0.7 0.4 True 0.3 0.8 0 1 0.05 0.05 0.05 0.05

2 1 0.3 0.2 False 0 0 0 0 0 0 0 0

2 2 0.7 0.4 True 0.3 0.8 0 1 0.05 0.05 0.05 0.05

2 3 0.8 0.1 True 0.3 0.8 0 1 0.05 0.005 0.05 0.05

Table 6. Catalog Service: run constraints per timed expectation per cycle.

Cycle Timed Exp. Min. Run Time (s) Max. Run Time (s)

1 1 1800 3600

1 2 0 3600

1 3 1800 3600

2 1 1800 3600

2 2 1800 3600

2 3 3600 3600

Table 7. Catalog Service: the description, triggers, and results of operation 1.

(a) Descriptions

Operation ID Description

1 Selected game initialization

(b) Triggers

Value (ID) Type

Run State

(c) Results

Parameter ID Operation ID

1 2

4.2. The Game Stream Service

The PER of this profile was set to 60, as video games usually maintain a frame rate
of around 30 to 60 FPS (images or frames per second) to reflect the quality of service (the
perceived quality by the user) that these types of applications strive for [36]. Our Default
Run Probability was set to 0 and our stop probability to 0 because the instance of this profile
is always triggered by one of its operations. The parameters, available in Table 8, have a
size relative to the network requirement of the application: 25 Mbits/second or 0.00468 MB
per millisecond. When the parameters’ direction is set to “external”, they can be accounted
for as network consumption, reducing the need for creating more profiles.

Table 8. Catalog and Game Stream Services: parameters to use.

Parameter ID Description Direction Size (in KB/s)

1 Chosen game Internal ∼4.79

2 Frames and audio External ∼4.79

3 Peripheral data External ∼4.79



Appl. Sci. 2024, 14, 7456 16 of 28

The operations in this profile, as defined in Table 9, hold a circular relationship among
them. This results in the operational loop illustrated in the diagram of Figure 7, where the
parameters, triggers, and results match the definitions above. In addition to this, we set a
maximum and minimum amount of time the operations can be sustained (in seconds) in
compliance with the time constraints of the business model.

To conclude the modeling of the Game Stream Service, we populated the operations
with hardware consumption values, a fundamental part of the BBCP. The values were
taken from the official system requirements found on the application’s webpage (https:
//www.nvidia.com/en-eu/geforce-now/system-reqs/, accessed on 2 August 2024),
considering 60 frames per second at a 1080 p image resolution as our target performance
and a computer with Windows as the consumer platform. The storage consumption was
excluded, as it does not appear to have a minimal requirement during run time.

Table 9. Game Stream Service: its operations (a), the relationships across its operations (b), the
triggers per operation (c), the results of each operation (d), and, finally, the time constraints per
operation (e).

(a) Defining operations 2 and 3

Operation ID Description

2 Recollection of peripheral data

3 Frame and audio processing

(b) Establishing relationships among inner operations and external operations

Operation 2 Operation 3

Operation ID Type Operation’s ID Type

1 Dependent 2 Dependent

3 Dependee 2 Dependee

3 Dependent

(c) Triggers per operation

Operation 2 Operation 3

ID Type ID Type

1 Parameter 3 Parameter

2 Parameter

The results of each operation

Origin
Operation ID Parameter ID Destination

Operation ID

2 3 3

3 2 2

(e) Operational time constraints for operations 2 and 3

Operations 2 and 3

Max. run time Min. run time

3600 600

3600 600

https://www.nvidia.com/en-eu/geforce-now/system-reqs/
https://www.nvidia.com/en-eu/geforce-now/system-reqs/
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Figure 7. Sequence diagram showing the interactions between the Catalog Service and the Game
Stream Service.

To assign the consumption values to each one of the operations, we decided to dis-
tribute one-third of the consumption to the peripheral data recollection operation. The
remaining two-thirds are assigned to the frame and audio rendering operation. This was
decided due to the high importance of the latter, as video processing is usually a taxing
process. The values used for each operation are available in Table 10.

Table 10. Game Stream Service: resource usage per operation.

Resource usage Operation 2 Operation 3

CPU (GHz) ∼0.66 ∼1.33

RAM (GB) ∼0.021 ∼0.042

Storage N/A N/A

Network (Mbit) ∼8.33 ∼16.66

4.3. Methodology of Testing and Results

To validate our approach, we created a system design of the interpreter, constituted
by the properties and the values in the example as well as their pertaining logic. The
simulator we chose to model our system is Insight Maker, a “general-purpose web-based
simulation and modeling tool” [37]. We chose Insight Maker due to its low learning curve,
high flexibility, collaborative features, support of system dynamics as well as agent-based
modeling and, last but not least, free and open-source nature. With it, we portrayed each
of the elements of the BBCP as variables, and the underlying logic to interpret them as
separate state machines.

The Catalog Service and Game Stream Service models created with Insight Maker
are accessible through our website [33]. For clarity, we decided to create a separate model
for each service. As the Game Stream Service maintains an operational loop, a simulation
that uses the accumulated run time of the Catalog Service as a direct input for the Game
Stream Service to use as the operational time was enough. The equations and hardware
specifications to obtain the energy consumption of the service were taken from various
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sources, such as Intel datasheets and official network device standards. The equations
employed per hardware resource are available in Table 11, and the variables and values we
used are available in Table 12.

Table 11. Equations used to estimate the energy consumption of the hypothetical hardware usage of
the BBCP.

Hardware Device Equations

CPU CV2FT [38]

RAM CT

Storage N/A

Network (Wu
L

Lmax + Wd
Lmax−L

Lmax )T [39]

Table 12. Hypothetical hardware values used to estimate energy consumption.

Resource Variables

CPU

Capacitance (C): 1 pF (hypothetical)
Voltage (V): 1.2 V (hypothetical)

Frequency (F): operation’s frequency in GHz
Time (T): accumulated run time of the sample in seconds

RAM
Consumption (C): 3 Watts depending on the RAM model
Time (T): accumulated run time of the sample in seconds

Storage N/A

Network

Idle consumption (Wu): 0.4944 W [40]
Active consumption (Wi): 1.1349 W [40]

Max. transfer rate (Lmax): 867 Mbps over the 5 GHz band according to
the 802.11 ac standard

Time (T): accumulated run time
of the sample in seconds

Load (L): sample’s network usage in Mbps

We performed three experiments: one that sampled the energy consumption of the
first cycle of the game stream profile for a day and a second one that sampled the energy
consumption of its second cycle for a day. In the third experiment, we sampled an hour
of the second experiment during its third definition of timed expectations, using an agent
simulation of 50 agents. In the context of Insight Maker and our interpreter, an agent is a
dynamic representation of a BBCP; in other words, 50 instances of a BBCP were used. The
steps we followed in executing our first two experiments were the following:

1. We executed a simulation of the first cycle of the Catalog Service with a duration of
a day.

2. We executed a simulation of the first cycle of the Game Stream Service using the
accumulated run time of our first experiment as an input, sampling the behavior over
a single day.

3. We repeated the previous steps using the data of the second cycle for each profile.

Our two criteria for experimental success were the following:

1. A quantitative approximation of the energy consumption should be obtained to demon-
strate that energy consumption can be drawn from the simulation of behavioral profiles.

2. Both of the cycles defined above should be simulated and contrasted to understand
how the re-definition of behavior affects the consumption of hardware and, in the
end, energy consumption.

By using our BBCP and the test engine in Insight Maker, we estimated an energy
consumption of 127,700.10 Joules over 14,403 s generated by the Game Stream Service
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during the first experiment (the first cycle). With this result, we satisfy the first requisite
for validating our approach, demonstrating that a quantitative approximation of energy
consumption can be obtained by instancing our profiles.

In the second experiment, a total energy consumption of 271,296.22 Joules over an
operational time of 28,801 s were obtained using the BBCP approach. To conclude our first
two experiments, we contrasted the results of the first cycle against those of the second
cycle. The data are available in Table 13. The energy expenditure during the second cycle of
the Game Stream Service BBCP results in an increment of 143,596.12 Joules and an increase
of operational time equal of 14,403 s.

Table 13. Game Stream Service: the difference in energy consumption between the first and the
second cycles.

Cycle Consumption (Joules) Effective Operational Time (s)

1 127,700.10 14,403

2 271,296.22 28,801

Change 143,596.12 14,403

To provide a comparison of our approach against the real energy consumption of the
GeForce Now client’s side, we set up a test bed and recorded the hardware consumption
of GeForce Now for the same duration as the first and then the second experiments,
using PowerJoular to obtain the power draw [41] of the CPU for each one. The hardware
specifications used to calculate the RAM and network card energy consumption in the test
bed can be found in Table 14, and a comparative table of the results of the test bed against
the ones of the BBCP simulation is available in Table 15.

Table 14. Hardware specifications of the test bed used to obtain the actual power draw of Geforce
Now.

Resource Model

CPU Intel I7-7700HQ (1.2 V single core Voltage Identification)

RAM 2 sticks of 16 GB DDR4 (3 W each)

Storage 256 GB M.2 SSD

Network Killer Wireless-n/a/ac 1535 Wireless network adapter

Table 15. The difference in the estimated energy consumption of the experiments against the energy
measurements obtained from our test bed.

Experiment BBCP
(Joules)

Test bed
(Joules)

Change
(Joules)

1st Cycle 127,700.10 151,818.16 24,118.06

2nd Cycle 271,296.22 322,534.54 51,238.32

The steps of the third experiment diverged from the previous ones in the follow-
ing ways:

1. We cloned the Insight Maker model and the values used in the second experiment
and re-configured it to an agent simulation.

2. We set the beginning of the experiment to the third timed expectation (row 3 of Table 4),
and a total duration of 3600 s for the simulation. The duration was decided after
the previously observed performance issues of Insight Maker in longer simulations
caused the simulator to encounter a memory error.



Appl. Sci. 2024, 14, 7456 20 of 28

3. We reduced the Minimum Run Time to 300 s (5 min) so that agents would not spend
most of the brief simulation in a run state.

The evolution in the number of agents running throughout the third experiment can be
seen in Figure 8. In addition, the sum of the run time and the projected energy expenditure
of its agents are available in Table 16.

Figure 8. Amount of agents running throughout the third experiment.

Table 16. The overall projected energy expenditure and run time of the agent simulation.

Agents Consumption (Joules) Effective Operational Time (s)

50 494,846.02 72,000

5. Lessons Learnt

We drew the following conclusions out of our experiments:

1. It is possible to approximate the behavior and consumption of pre-existing software
with the BBCP. In addition, behavior can be easily modified.

2. Elasticity ensures that user satisfaction can be accounted for and that business con-
straints related to time, such as usage time constraints, can also be easily adjusted and
enforced throughout different time periods.

3. Refining and constraining profiles with a deeper analysis of their prospective user
base allows for a more accurate simulation of the potential hardware load.

4. The differences between the results of the BBCP models and the test bed in Table 15
were due to hardware specifications that can be easily replicated in the BBCP, such as
the double ram consumption or the variability in CPU consumption. However, the
culprit of the variability in CPU consumption seems to be Google Chrome, which was
used as the host program for GeForce Now.

5. The BBCP approach allows us to estimate energy consumption in scenarios that could
be difficult to replicate. For example, the multi-agent simulation allows software
architects to obtain stress test data that accounts for user behavior and business rules
without setting up a hardware cluster, requiring the actual software, or conducting a
massive user testing effort.

The previous examples demonstrate that developing a BBCP just requires a reduced
amount of knowledge of software architecture, an approximation or, at least, an example of
the resources that each operation will consume, and a general idea of the user behavior over
time. We envision the BBCP as an approach that could be incorporated (initially) during
the analysis and conception phases of the software development life cycle. For instance, in
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sequential and parallel methodologies, such as the Waterfall and V-model, the integration
of the BBCP into the modeling (analysis and design) stages can be a part of the requirement
process. Since UML is often used during these stages, the relevant BBCP profiles can be
developed using the same project knowledge base, adding minimal overhead.

During the development (or construction) phase, the BBCP aspects like expected
hardware consumption, timing expectations, and volatile behaviors (e.g., sensor-related
triggers) can help developers prioritize code efficiency, particularly in operations that are
the most resource-intensive. This prioritization can lead to reduced hardware consumption
in the final product. In the deployment stage, the BBCP can contribute to more efficient
deployments by using its insights into hardware load. This allows teams to prepare
deployments with appropriate scheduling algorithms, infrastructure, or other strategies,
especially beneficial in parallel methodologies, where deployment planning could begin
concurrently with analysis and design. Incremental and iterative methodologies would
also perceive the same benefits.

For evolutionary methodologies such as Agile, where quick results often take prece-
dence over detailed documentation, the BBCP can be leveraged as an early deliverable
rather than just being part of the documentation. The interpreter’s output can provide
developers with predictions on software behavior changes, enabling them to adapt more
swiftly and potentially reduce development time. Finally, the estimation of its energy
consumption could provide full-stack green software development methodologies, such
as the one proposed in [42], a continuous support where the BBCPs created during the
analysis and design phases are carried on and re-assessed at each step of the software
development, until obtaining a final classification of the software and the profile according
to its energy consumption. This, in turn, will transform our BBCP into an exchangeable
format of behavior and energy consumption that enables systems to adapt to frugal config-
urations preemptively. We elaborate further on how the BBCP can be adopted in a software
development methodology in Appendix A.

6. Conclusions and Future Work

In this article we proposed our behavior-based consumption profiles, a DSL specialized
in the description of the evolution of stochastic software behavior and behavior with
software, aimed at producing estimations of prospective energy consumption. Unlike
other approaches, the flexibility of our method makes it hardware- and software-platform-
agnostic. This allows software designers to focus on a behavior-first approach without
worrying about technical details. In addition, our proposal facilitates the description of
external constraints that affect software consumption, such as HCI, business constraints,
and even hypothetical hardware sensors. We also explained its elements, characteristics,
and mechanics, and provided an integrative example where we analyzed and profiled a real-
world video game streaming service. We believe that our approach is a key step towards
greener software and systems design and architecture that aid software designers and
developers in profiling software’s behavioral consumption without a lot of technicalities.
We are aware that the profiling process would benefit from a tool that guides its users
through each component of the BBCP, and improves over the performance of Insight
Maker during multi-agents simulations. As future work, we will develop and publish a
Computer-Assisted Software Engineering (CASE) tool that incorporates the proposed DSL
and the experimental interpreter used for the experiments in this article into the software
architecture process during the analysis and design stages of the SDLC.
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Appendix A. Integrating the BBCP as a Design Method

To ease the adoption of the BBCP, and give users a frame of reference for the devel-
opment of profiles, we prepared the BBCP Development Index. The BBCP Development
Index, available in Table A1, is a table that proposes three levels of development maturity,
where level 1 is the least mature and 3 is the most mature. We limited the index to three
levels to facilitate its comprehension. Each level consists of the following items:

• A description of the pre-requirements for each level.
• A description of the process to achieve the target level.
• The expected outcomes of the level.

Our proposal to incorporate our BBCP into the multiple stages of a GSD method is
the following:

1. Introduce the BBCP to software designers and architects in the design stages of the
project, resulting in the following:

(a) A description of behavior, expected hardware consumption, and functional
dependencies, at the individual function level.

(b) The dependencies management among components and an expectation of com-
ponent hardware consumption, at the component level.

These are later passed on to the DevOps (development and operations) team.
2. The DevOps team uses the results of the design stage to achieve the following:

(a) Identify and implement the best practices in the code and technology stack, in
addition to other tools for testing the prototype’s consumption.

(b) Swiftly re-adjust the BBCP to categorize the actual hardware consumption of the
prototype.

(c) Employ our custom interpreter to generate the estimated prospective usage data
based on the adjusted software models.

3. The DevOps team uses the prospective usage data of the profiles to achieve the following:

(a) Create proactive orchestration algorithms that account for the evolution of hard-
ware usage throughout time using re-deployment simulators like PISCO [43].

(b) Obtain information about the prospective consumption of their stack at the de-
ployment level with tools such as Cloud Carbon [44] or Green Cost Explorer [45].

(c) Re-adjust the configuration of the technology stack for the final deployment.

Any of the previous steps proposed can be revisited to accommodate new changes that
contribute to more frugal software. We envision the BBCP as a tool to model the first-order
and third-order effects of the usage stage of the GREENSOFT model [7] during the design
stage of the SDLC. The first-order and third-order effects proposed by the GREENSOFT
model include, but are not limited to the following:

• Rebound effects;
• Change of business processes or goals;
• Software-induced hardware consumption;
• Software-induced energy consumption;
• Hardware requirements.
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Table A1. The BBCP development maturity levels.

Level Pre-Requirements Description Expected Outcomes

1

1. A statement of the requirements
of the software to build.

2. An idea of the behavior of the
users/consumers of the software
to build; you can use the avail-
able data from similar software
on the internet.

3. A general idea of the architecture
and some of its primordial com-
ponents: operations and depen-
dencies.

4. An idea or expectation of the
hardware consumption that each
operation could create.

This is the initial level, where the
designers and/or architects of the
software analyze the requirements
stated by the stakeholders of the

project and create an initial
architecture with it. You can follow

the following steps:
1. Look at the functional require-

ments and abstract them into op-
erations.

2. For each operation, conceptual-
ize its dependencies, expected in-
puts, and expected outputs, and
give it a deliberate hardware con-
sumption.

3. Think of the users: When will
they use the software? How
long will the average usage ses-
sion last? How many sessions
throughout the day? Use the an-
swers to fill the usage category in
the profiles.

It is expected that your BBCPs have,
as a bare minimum, the following:

1. A basic description of usage cre-
ated with the information in the
requirements or the information
you found about similar soft-
ware.

2. Defined run constraints.
3. Defined operations.

2

Everything in level 1, plus the
following:

1. A clear idea of the sequence of
the calls among operations.

2. A clear idea of the evolution
of software usage throughout
hours.

At this level, the core features of the
BBCP are applied:

1. Apply your idea of how the be-
havior changes over time to your
BBCP by defining the cycles and
events you find necessary.

2. Use timed expectations to rede-
fine the probability of usage at
blocks of hours during cycles or
events.

3. Use triggers to define the se-
quence of calls among opera-
tions. They can be sequential or
parallel or even both if they are
needed.

It is expected that your BBCPs have,
as a bare minimum, the following:

1. Cycles or events as needed.
2. Timed expectations.
3. Triggers.

3

Everything in level 2, plus the
following:

1. A clear idea of how multiple
BBCPs will interact using trig-
gers. You can think of this as
building BBCP components.

2. A clear idea of how usage
changes with recurring usage
throughout blocks of hours dur-
ing cycles and events.

At this level, the advanced features of
the BBCP are applied:

1. Split operations among several
BBCPs to facilitate their future
re-use.

2. Adapt the triggers of the previ-
ous level to work among BBCPs.

3. Use elasticity in the timed ex-
pectations you defined to tailor
the behavior of your profiles to
fit your needs exactly at specific
points in time.

4. Using similar software as a
frame of reference, re-assess
the hardware consumption of
each operation and change it
if needed.

It is expected that your BBCPs have,
as a bare minimum, the following:

1. Elasticity where needed.
2. A collection of BBCPs connected

by triggers.

Appendix B. Building Correct BBCPs

It is crucial to ensure that the schema provided with the BBCP [33] is correctly utilized.
This means that, when creating objects within a category, they should be placed within the
appropriate array. For instance, if the user were to declare two operations in the “Opera-
tions" category, they would need to create two new JSON object literals, each containing
a copy of their respective properties and sub-categories, as demonstrated in Algorithm 1.
In addition to the correct creation of objects, it is important to be wary of the constraints
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involved in the logical nesting of certain categories, such as expectations. Expectations
contain cycles and events, which, at the same time, contain timed expectations. It is crucial
for timed expectations to always be within a cycle or an event. Furthermore, it is mandatory
to provide each object literal with a copy of all the properties that correspond to it, even if
none of them will be used. An example of timed expectations can be found in Algorithm 2.
Finally, we have prepared Table A2 to guarantee that the values per property available in
the BBCP are correct by providing a possible value, type, and format for each one.

Algorithm 1: Creating multiple operations in the corresponding category
1: Operations:
2: {
3: Operation_ID: "1",
4: Resource_Usage:
5: {
6: CPU_Usage: "0.3",
7: RAM_Usage: "100",
8: Storage_Usage: "200",
9: Network_Usage: "0.5",

10: Run_Constraints:
11: {
12: Minimum_Run_Time: "30",
13: Maximum_Run_Time: "300",
14: Quota: "3600",
15: Cooldown: "1200",
16: Countdown: "0"
17: }
18: }
19: }
20: {
21: Operation_ID: "2",
22: Resource_Usage:
23: {
24: CPU_Usage: "0.3",
25: RAM_Usage: "100",
26: Storage_Usage: "200",
27: Network_Usage: "0.5",
28: Run_Constraints:
29: {
30: Minimum_Run_Time: "30",
31: Maximum_Run_Time: "300",
32: Quota: "3600",
33: Cooldown: "1200",
34: Countdown: "0"
35: }
36: }
37: }
38: }
39: }
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Algorithm 2: Creating timed expectations within its parent object
1: Expectations:
2: {
3: Cycles: [
4: {
5: Days: "[5–7]",
6: Scale: "7",
7: Timed_Expectations: [
8: {
9: Time_Range: "[9–12,20,23]",

10: Run_Probability_Override: "0.3",
11: Stop_Probability_Override: "0.7",
12: Elasticity:
13: {
14: Elasticity: "true",
15: Minimum_Run_Probability: "0.1",
16: Maximum_Run_Probability: "0.7",
17: Minimum_Stop_Probability: "0.0",
18: Maximum_Stop_Probability: "0.3",
19: Positive_Run_Probability_Modifier: "0.001",
20: Negative_Run_Probability_Modifier: "0.001",
21: Positive_Stop_Probability_Modifier: "0.001",
22: Negative_Stop_Probability_Modifier: "0.001"
23: }
24: Run_Constraints:
25: {
26: Minimum_Run_Time: "30",
27: Maximum_Run_Time: "60",
28: Quota: "0",
29: Cooldown: "0",
30: Countdown: "0"
31: }
32: }
33: }
34: }
35: }

Table A2. Properties in the BBCP, their type, and possible values.

Row Name Numeric Text Bounds Boolean Possible Values

1 Profile Evaluation Rate x 0 ≤ X ≤ 1 Hz

2 Default Run Probability x 0 ≤ X ≤ 1

3 Default Stop Probability x 0 ≤ X ≤ 1

4 Minimum Run Time x x ≥ 0; if x = 0 the property will be ignored.

5 Maximum Run Time x x ≥ 0; if x = 0 the property will be ignored.

6 Quota x x ≥ 0; if x = 0 the property will be ignored.

7 Cooldown x x ≥ 0; if x = 0 the property will be ignored.

8 Countdown x x ≥ 0; if x = 0 the property will be ignored.

9 Days x Ranges: [1–7], selections: [1, 3, 6], selections and ranges:
[1–3, 6] (the values are just for demonstration)

10 Scale x 0 < x ≥ the interpreter’s duration

11 Initial Day x x ≥ 0; if x = 0 the property will be ignored.

12 End Day x x ≥ 0; if x = 0 the property will be ignored.

13 Time Range x Ranges: [1–12], selections:[3, 17], selections and ranges:
[1–12, 17]
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Table A2. Cont.

Row Name Numeric Text Bounds Boolean Possible Values

14 Run Probability Override x 0 ≤ X ≤ 1

15 Stop Probability Override x 0 ≤ X ≤ 1

16 Elasticity x True or False

17 Minimum Run Probability x 0 ≤ X ≤ 1; if x = 0 the property will be ignored.

18 Maximum Run Probability x 0 ≤ X ≤ 1; if x = 0 the property will be ignored.

19 Maximum Stop Probability x 0 ≤ X ≤ 1; if x = 0 the property will be ignored.

20 Minimum Stop Probability x 0 ≤ X ≤ 1; if x = 0 the property will be ignored.

21 Negative Run Probability Modifier x 0 ≤ X ≤ 1; if x = 0 the property will be ignored.

22 Negative Stop Probability Modifier x 0 ≤ X ≤ 1; if x = 0 the property will be ignored.

23 Positive Run Probability Modifier x 0 ≤ X ≤ 1 if x = 0 the property will be ignored.

24 Positive Stop Probability Modifier x 0 ≤ X ≤ 1 if x = 0 the property will be ignored.

25 Any ID x x x ≥ 0 for identifier numbers or the name of the state
for triggers.

26 Any description x Text

27 Any hardware usage x x ≥ 0

28 Dependency Type x Dependee or Dependent

29 Trigger Type x Parameter or State

30 Parameter Direction x Internal or External

31 Parameter Size x x ≥ 0
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