Analysis of a positivity-preserving splitting scheme for some semilinear stochastic heat equations - Université de Pau et des Pays de l'Adour Access content directly
Journal Articles ESAIM: Mathematical Modelling and Numerical Analysis Year : 2024

Analysis of a positivity-preserving splitting scheme for some semilinear stochastic heat equations

Abstract

We construct a positivity-preserving Lie–Trotter splitting scheme with finite difference discretization in space for approximating the solutions to a class of semilinear stochastic heat equations with multiplicative space-time white noise. We prove that this explicit numerical scheme converges in the mean-square sense, with rate 1/4 in time and rate 1/2 in space, under appropriate CFL conditions. Numerical experiments illustrate the superiority of the proposed numerical scheme compared with standard numerical methods which do not preserve positivity.
Fichier principal
Vignette du fichier
m2an230062.pdf (755.02 Ko) Télécharger le fichier
Origin Publication funded by an institution

Dates and versions

hal-04665132 , version 1 (30-07-2024)

Identifiers

Cite

Charles-Edouard Bréhier, David Cohen, Johan Ulander. Analysis of a positivity-preserving splitting scheme for some semilinear stochastic heat equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2024, 58 (4), pp.1317-1346. ⟨10.1051/m2an/2024032⟩. ⟨hal-04665132⟩

Collections

UNIV-PAU
7 View
1 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More