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Abstract: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of
variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5)
is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER)
chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely
uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-
deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as
stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein
expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins
were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein
demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout
of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to
maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has
been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells.
However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3.
In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent
on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.

Keywords: NAFLD; liver; endoplasmic reticulum stress; TXNDC5; ATF6; EIF2AK3; PERK; ERN1;
IRE1a; HSPA5; tunicamycin; palmitic acid; thapsigargin; hepatocytes

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in the general popu-
lation [1] and is now the most common liver pathology in Western countries, posing a
significant public health concern [2]. NAFLD develops naturally without alcohol abuse, but
its precise pathophysiology is still unknown [3,4]. The pathogenic conditions associated
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with NAFLD range from simple steatosis to steatohepatitis (NASH) and cirrhosis, which
can ultimately result in hepatocellular cancer [5,6]. According to the ‘two hits’ hypothesis,
fat accumulation is the initial step. This accumulation makes the liver more susceptible
to the damaging effects of one or more additional factors, leading to the development of
steatohepatitis and fibrosis [7]. Multiple factors are believed to contribute to the patho-
genesis of NAFLD, including hepatic lipid buildup, insulin resistance, oxidative stress,
apoptotic pathways, and adipocytokine production [8].

The endoplasmic reticulum (ER) is the primary organelle for secretory pathways in
all eukaryotic cells [9,10]. The ER serves as the entry point into the secretory system and
plays a crucial role in maintaining cellular calcium homeostasis, lipid production, and
transmembrane protein folding. Therefore, preserving ER homeostasis is a crucial element
of cellular physiology [11]. ER processes can be impaired by various factors, leading to
the accumulation of unfolded proteins and activation of the unfolded protein response
(UPR). The UPR is responsible for restoring ER balance and promoting survival [12–14].
ER stress has been associated with various disorders, such as cardiovascular, endocrine,
and nervous system disorders [15,16]. Under sustained and severe ER stress, the UPR can
become cytotoxic, leading to apoptosis, instead of being cytoprotective. The UPR signaling
pathways involve three distinctive signaling transduction mechanisms: activating tran-
scription factor 6 (ATF6), eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3,
also known as protein kinase RNA-like ER kinase, PERK), and endoplasmic reticulum to
nucleus signaling 1 (ERN1) [15]. ATF6 is a type II transmembrane protein that serves as
an ER stress sensor. It activates chaperones and elements of the endoplasmic reticulum-
associated protein degradation (ERAD) pathway [17]. Furthermore, it can activate the
target genes DNA-damage inducible transcript 3 (DDIT3), glucose-regulated protein 94
(GRP94), and heat shock protein family A member 5 (HSPA5)/BIP [18]. EIF2AK3 reduces
the workload of misfolded proteins by inhibiting mRNA translation during ER stress and
limiting further synthesis [19]. To translate activating transcription factor 4 (ATF4), one of
the UPR-dependent signaling proteins, EIF2AK3, phosphorylates eukaryotic initiation fac-
tor 2 (EIF2α). This process also activates DDIT3, which leads to the production of reactive
oxygen species [20,21]. The transmembrane protein ERN1 regulates its own expression and
functions as an endoribonuclease and protein kinase. It produces a potent transcription
activator called X-box binding protein 1 (XBP1). ERN1 is related to different translocon
proteins such as signal sequence receptor, beta (SSR2) and SEC61 translocon subunit alpha
1 (SEC61A1) [22], which may improve the ER’s ability to fold proteins [23–25]. HSPA5
detects these proteins and plays a crucial role in managing accumulated proteins [26].

As mentioned, the ER is the site where nascent peptides are correctly folded. A
number of redox proteins, including members of the protein disulfide isomerase (PDI)
family, interact to coordinate this complex process. TXNDC5, an essential member of the
PDI family, participates in a series of disulfide bond exchange events that converge in
folding newly synthesized polypeptides into their mature form [27–29]. TXNDC5 protects
liver cells from stress-induced apoptosis and is essential for signal transduction and cancer
development [30,31]. The aim of this research was to investigate how the TXNDC5 protein
interacts in the context of ER stress. Specifically, we aim to examine its role through the
three key signaling pathways involved in ER stress: ATF6, EIF2AK3, and ERN1. To this
end, mouse hepatocytes with and without TXNDC5 will be exposed to known inducers of
ER stress, and the key molecular mechanisms will be investigated. This experimental setup
will provide a comprehensive understanding of the functional significance of TXNDC5 in
maintaining cellular homeostasis under ER stress conditions.

2. Results
2.1. TXNDC5 Deletion Alters ER Stress-Related Expressions

TXNDC5 was completely knocked out in AML12 cells (KO), as evidenced by signifi-
cantly decreased mRNA and protein expression levels compared to wild-type AML12 cells
(WT) (Supplementary Figure S1). To investigate the role of TXNDC5 in regulating ER stress
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markers in AML12 cells, RT-qPCR was performed to assess the mRNA expression of Atf6,
Ern1, Xbp1, Eif2ak3, Atf4, and Ddit3; as primary genes involved in the three different ER
stress cascades, Ssr2 and Sec61a1; as translocon genes and Hspa5; as an ER protein recogni-
tion chaperon in WT and TXNDC5-KO AML12 cells. Table 1 shows that the knockout of
TXNDC5 in AML12 cells resulted in downregulation of ER genes Ern1, Eif2ak3, Xbp1, and
Sec61α1 compared to WT cells. Additionally, TXNDC5 inactivation significantly increased
the mRNA levels of Hspa5, Atf4, and Ddit3. However, the absence of TXNDC5 did not
cause any significant change in the mRNA levels of Atf6 and Ssr2. To confirm these results
at the protein level, the most prominent ER stress markers were selected for Western blot
analysis. The results indicated that the ERN1 and EIF2AK3 proteins were downregulated,
while the HSPA5 protein was upregulated. However, the ATF6 protein did not exhibit any
significant changes in the absence of TXNDC5 at the protein level. These results are fully
compatible with the mRNA expression outcomes and suggest that TXNDC5 plays a critical
role in maintaining the stability of ER genes in mouse hepatocytes.

Table 1. The mRNA and protein expression of ER indicators in the absence of TXNDC5 in
basal conditions.

Gene or
Protein Symbol

mRNA Expression
(Fold Change)

Protein Expression
(Arbitrary Units) Changes

Wild-Type TXNDC5-KO Wild-Type TXNDC5-KO KO/WT

ATF6 1.0 ± 0.1 1.1 ± 0.2 105 ± 17 87 ± 36 No change
ERN1 1.0 ± 0.1 0.7 ± 0.1 100 ± 11 41 ± 20 Downregulation *

EIF2AK3 1.0 ± 0.1 0.8 ± 0.1 100 ± 9 18 ± 11 Downregulation *
HSPA5 1.0 ± 0.1 1.3 ± 0.2 100 ± 7 131 ± 34 Upregulation *
Xbp1 1.0 ± 0.2 0.4 ± 0.2 NA NA Downregulation **

Sec61α1 1.0 ± 0.1 0.7 ± 0.1 NA NA Downregulation **
Atf4 1.0 ± 0.2 1.4 ± 0.3 NA NA Upregulation **

Ddit3 1.0 ± 0.2 2.4 ± 0.5 NA NA Upregulation **
Ssr2 1.0 ± 0.1 0.9 ± 0.1 NA NA No change

Data are means and standard deviations. The Mann–Whitney’s U-tests were used in the data analyses. * p < 0.05,
** p < 0.01.

2.2. Effect of ER Stressors (Tunicamycin, Palmitic Acid, or Thapsigargin) on the Survival Rate of
AML12 Cell Lines

Both WT and TXNDC5-KO cells were incubated in the presence of pharmacological
inducers of the UPR and ER stress: thapsigargin, an inhibitor of the ER calcium pump,
tunicamycin, an inhibitor of N-linked glycosylation, and palmitic acid, an inhibitor of
thapsigargin-sensitive calcium stores and a representative saturated fatty acid [22,32].
Figure 1 shows the cell viability of WT and TXNDC5-KO cells. After 24 h of exposure to
different stressor concentrations, the cell viability of TXNDC5-KO cells was found to be
the same as that of WT cells. Based on these results, we selected 12.5 nM of thapsigargin
as an inducer of severe stress, with a viability rate of approximately 40% (Figure 1A). We
also selected 1 and 20 µg/mL of tunicamycin as conditions of slight and moderate stress,
respectively, with viability rates of 90% and 75%, respectively (Figure 1B). Additionally,
600 µM palmitic acid was selected as a representative of substantial stress, with a viability
rate of 55% (Figure 1C), to assess the expression patterns of ER stress genes.
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produce a substantial difference in cell viability of WT compared to KO cells. Viability rates were 
indicated in the exposure of (A) thapsigargin, (B) tunicamycin, and (C) palmitic acid. WT: normal 
mouse hepatocyte AML12 cells, KO: TXNDC5-deficient AML12 cells. 

2.3. The Knockout of TXNDC5 Increases Reactive Oxygen Species in Hepatic Cells 
The intracellular ROS levels were determined by measuring the dichlorodihydro-
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shown in Figure 2, indicate that TXNDC5-KO cells exhibited a significant increase in ROS 
production compared to WT cells. This suggests that TXNDC5 regulates ROS production 
in AML12 cells and its absence leads to an increase in ROS levels. Furthermore, to de-
termine whether ER stressors can induce oxidative stress, WT and TXNDC5-KO cells 
were incubated with different concentrations of thapsigargin, palmitic acid, and tuni-
camycin for 24 h. However, no significant increase in intracellular ROS was detected in 
either group (Figure S2). These results suggest that the concentration used for inducing 
ER stress did not enhance further ROS production and indicate that these ER stressors 
may affect different pathways than oxidative stress. 

 
Figure 2. The impact of TXNDC5 deficiency on ROS production. WT: normal mouse hepatocyte 
AML12 cells, KO: TXNDC5-deficient AML12 cells. Statistical analyses were conducted according to 
Mann–Whitney’s U-test; * p < 0.05. 

Figure 1. The cell viability evaluation of mouse hepatocytes upon ER stress. After 24 h, treated with
different concentrations of thapsigargin, tunicamycin, and palmitic acid, TXNDC5 absence did not
produce a substantial difference in cell viability of WT compared to KO cells. Viability rates were
indicated in the exposure of (A) thapsigargin, (B) tunicamycin, and (C) palmitic acid. WT: normal
mouse hepatocyte AML12 cells, KO: TXNDC5-deficient AML12 cells.

2.3. The Knockout of TXNDC5 Increases Reactive Oxygen Species in Hepatic Cells

The intracellular ROS levels were determined by measuring the dichlorodihydrofluo-
rescein (DCF) production in WT and TXNDC5-KO-AML12 cells. The results, as shown in
Figure 2, indicate that TXNDC5-KO cells exhibited a significant increase in ROS production
compared to WT cells. This suggests that TXNDC5 regulates ROS production in AML12
cells and its absence leads to an increase in ROS levels. Furthermore, to determine whether
ER stressors can induce oxidative stress, WT and TXNDC5-KO cells were incubated with
different concentrations of thapsigargin, palmitic acid, and tunicamycin for 24 h. However,
no significant increase in intracellular ROS was detected in either group (Figure S2). These
results suggest that the concentration used for inducing ER stress did not enhance further
ROS production and indicate that these ER stressors may affect different pathways than
oxidative stress.

Int. J. Mol. Sci. 2024, 25, 7128 4 of 26 
 

 

 
Figure 1. The cell viability evaluation of mouse hepatocytes upon ER stress. After 24 h, treated with 
different concentrations of thapsigargin, tunicamycin, and palmitic acid, TXNDC5 absence did not 
produce a substantial difference in cell viability of WT compared to KO cells. Viability rates were 
indicated in the exposure of (A) thapsigargin, (B) tunicamycin, and (C) palmitic acid. WT: normal 
mouse hepatocyte AML12 cells, KO: TXNDC5-deficient AML12 cells. 

2.3. The Knockout of TXNDC5 Increases Reactive Oxygen Species in Hepatic Cells 
The intracellular ROS levels were determined by measuring the dichlorodihydro-

fluorescein (DCF) production in WT and TXNDC5-KO-AML12 cells. The results, as 
shown in Figure 2, indicate that TXNDC5-KO cells exhibited a significant increase in ROS 
production compared to WT cells. This suggests that TXNDC5 regulates ROS production 
in AML12 cells and its absence leads to an increase in ROS levels. Furthermore, to de-
termine whether ER stressors can induce oxidative stress, WT and TXNDC5-KO cells 
were incubated with different concentrations of thapsigargin, palmitic acid, and tuni-
camycin for 24 h. However, no significant increase in intracellular ROS was detected in 
either group (Figure S2). These results suggest that the concentration used for inducing 
ER stress did not enhance further ROS production and indicate that these ER stressors 
may affect different pathways than oxidative stress. 

 
Figure 2. The impact of TXNDC5 deficiency on ROS production. WT: normal mouse hepatocyte 
AML12 cells, KO: TXNDC5-deficient AML12 cells. Statistical analyses were conducted according to 
Mann–Whitney’s U-test; * p < 0.05. 

Figure 2. The impact of TXNDC5 deficiency on ROS production. WT: normal mouse hepatocyte
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2.4. TXNDC5 Activity Is Required to Maintain Normal Mitochondrial Function during
Tunicamycin-Induced ER Stress

As the canonical function of TXNDC5 is to assist protein folding in the ER, we investi-
gated whether depletion of TXNDC5 or induction of ER stress could potentially damage
mitochondria. Therefore, we used the loss of mitochondrial membrane potential (MMP) as
a biomarker of effect. The tetramethylrhodamine, methyl ester (TMRM) assay was utilized
to evaluate the loss of MMP in hepatic cells either by fluorimetric or microscopic procedures.
The knockout of TXNDC5 did not significantly affect the mitochondrial function of the cells,
as evidenced by the lack of decrease in MMP values (Figure 3A). Additionally, the results
indicate a different response to ER stressors. Whereas 6.25 nM thapsigargin (Figure 3B) or
300 µM palmitic acid (Figure 3C) caused a decrease in MMP values, this was not the case
for tunicamycin at the tested concentrations of 1 and 20 µg/mL (Figure 3D)) in AML12
WT cells after 24 h. In contrast, TXNDC5-KO cells exhibited altered MMP levels when
exposed to tunicamycin at those concentrations, like the other ER stressors, after 24 h of
exposure. The results of both procedures in WT cells indicate that tunicamycin did not
decrease MMP levels (Figure 3E,F). However, in the absence of TXNDC5, tunicamycin
at 20 µg/mL significantly reduced MMP levels. The lack of effect in WT cells may be
due to tunicamycin’s non-interaction with the mitochondria of AML12 cells. However,
in TXNDC5-KO cells, the absence of TXNDC5 may cause damage to the mitochondrial
membrane when exposed to tunicamycin. These results suggest that TXNDC5 activity is
necessary to maintain normal mitochondrial function during tunicamycin–ER stress.
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data indicate that the upregulation of TXNDC5 in hepatic cells is dependent on increased 
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Figure 3. The mitochondrial membrane potential was evaluated using the TMRM assay in
the following conditions: (A) Control negative (C−) refers to cells that were not subjected to
any treatment. Control positive (C+) refers to cells that were treated with carbonylcyanide
4-(trifluoromethoxy)phenylhydrazone (FCCP), an uncoupler that will reduce the mitochondrial
membrane potential and prevent staining by TMRM. TMRM negative (TMRM−) refers to cells
that were not stained by TMRM. (B) (C− DMSO) refers to the cells that were treated with DMSO
as a control negative and (Thap) refers to the cells that were treated with 6.25 nM thapsigargin.
(C) (C− Ethanol) refers to the cells that were treated with ethanol as a control negative and (Pal)
refers to the cells that were treated with 300 µM palmitic acid. (D) (C− DMSO) refers to the cells
that were treated with DMSO as a control negative, (Tun 1 µg) refers to the cells that were treated
with 1 µg/mL tunicamycin, and (Tun 20 µg) refers to the cells that were treated with 20 µg/mL
tunicamycin. (A–D) The red-fluorescent probe (TMRM) localizes in mitochondria and detects mi-
tochondrial membrane depolarization. The blue-fluorescent probe (NucBlue) detects the cellular
nucleus. (E) The fluorescent integrated density of the red probe in the aforementioned conditions
was evaluated through fluorescent microscopy, with the resulting data subsequently analyzed using
the ImageJ (Fiji) software version windows 64-bit Java 8. (F) The fluorescent intensity of TMRM was
assessed using a microplate fluorimeter at excitation/emission of 548/575 nm to corroborate the
microscopic visualization results. WT: normal mouse hepatocyte AML12 cells, KO: TXNDC5-deficient
AML12 cells. The statistical analyses were conducted in accordance with the Mann–Whitney U-test,
with the following significance levels: * p < 0.05, ** p < 0.01.

2.5. The Upregulation of TXNDC5 in Hepatic Cells Is Dependent on Increased ER Stress Induced
by Thapsigargin, Palmitic Acid, and Tunicamycin

To investigate whether ER stressors regulate the TXNDC5 promoter through distinct
cascades, we transfected mouse TXNDC5 promoter–luciferase constructs into AML12 hep-
atic cells. AML12 WT cells were treated with thapsigargin, palmitic acid, and tunicamycin,
and TXNDC5 promoter–luciferase ratios were quantified. The experiments demonstrated
that the TXNDC5 promoter was induced by all stressors (Figure 4A). These data indicate
that the upregulation of TXNDC5 in hepatic cells is dependent on increased ER stress in-
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duced by thapsigargin, palmitic acid, or tunicamycin. To confirm the results of the TXNDC5
promoter, assays were conducted to quantify Txndc5 mRNA expression and protein level
under different stressors. In accordance with the profibrotic effects of TXNDC5 signaling
previously described [27], tested stressors were observed to increase the expression and
protein level of TXNDC5 in WT cells (Figure 4B,C).
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Figure 4. Transcriptional, mRNA, and protein responses of TXNDC5 to different stressors. (A) The
influence of tunicamycin, palmitic acid, or thapsigargin stressors on the TXNDC5 promoter. The
TXNDC5 C− and C− labels represent cells that have been transfected or cells that have not been
transfected with the TXNDC5 promoter, respectively, in the absence of stressors. (B) mRNA levels of
Txndc5 and (C) protein level of TXNDC5 in WT and TXNDC5-KO cells exposed to 1 µg/mL (first
column), or 20 µg/mL of tunicamycin (second column), 600 µM palmitic acid (third column), and
12.5 nM thapsigargin (fourth column). Significant augments were observed in TXNDC5 protein
and mRNA expression for all stressors. WT: normal mouse hepatocyte AML12 cells, KO: TXNDC5-
deficient AML12 cells. The statistical tests were conducted using the Mann–Whitney U-test. The
significance levels were: * p < 0.05, ** p < 0.01.

2.6. Absence of TXNDC5 Abolishes the Induction of ATF6 and HSPA5 Expressions following
Palmitic Acid Incubation

As illustrated in Figure 5A, the mRNA expression of Atf6 was elevated in a variety
of ER stress conditions in WT cells. The elimination of TXNDC5 in cells resulted in the
abolition of the induction of Atf6 by palmitic acid, while the changes observed in the
presence of tunicamycin or thapsigargin remained unaffected. These results were corrobo-
rated at the protein level, although no significant difference was observed in ATF6 protein
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expression in WT and TXNDC5-KO cells following tunicamycin exposure. These results
demonstrate that tunicamycin can alter the expression of ATF6 at the mRNA level, but
not at the protein level. A similar pattern was observed in the case of Hspa5 mRNA levels
(Figure 5B). The deletion of TXNDC5 in cells resulted in the disruption of the induction
of Hspa5 by palmitic acid, while the changes observed in the presence of tunicamycin or
thapsigargin remained unaffected. However, the HSPA5 protein level revealed that the
absence of TXNDC5 abolished the HSPA5 expression induced by tunicamycin and palmitic
acid. Consequently, TXNDC5 plays a pivotal role in the regulation of ATF6 and HSPA5
expression in response to palmitic acid-induced ER stress.
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Figure 5. The mRNA and protein levels of (A) ATF6 and (B) HSPA5 in WT and TXNDC5-KO cells
exposed to 1 (first column) or 20 µg/mL (second column) tunicamycin, 600 µM palmitic acid (third
column), and 12.5 nM thapsigargin (fourth column). A notable induction was observed for ATF6 and
HSPA5 mRNA and protein levels in WT cells under ER stress conditions. In the presence of palmitic
acid, ATF6 levels remained unaltered in TXNDC5-KO cells. TXNDC5-KO cells demonstrated no
alterations in HSPA5 expression in the presence of palmitic acid and tunicamycin. WT: normal mouse
hepatocyte AML12 cells, KO: TXNDC5-deficient AML12 cells. Statistical analyses were conducted
according to Mann–Whitney’s U-test; * p < 0.05, ** p < 0.01.
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2.7. EIF2AK3 Cascade Is Disrupted in TXNDC5 Knockout Cells Exposed to Tunicamycin and
Palmitic Acid

To ascertain the impact of TXNDC5 depletion on the EIF2AK3 cascade, previously
designated as PERK, the mRNA and protein expression levels of EIF2AK3 were quantified.
Following incubation with the three stressors, elevated Eif2ak3 expressions were observed
in WT cells (Figure 6A). However, the protein levels of EIF2AK3 showed a different pattern
and displayed decreases following tunicamycin and palmitic acid, respectively. Conversely,
the absence of TXNDC5 abolished the observed changes. Of note, thapsigargin induced
the EIF2AK3 in both WT and TXNDC5-KO cells despite the profound decrease in EIF2AK3
expression in TXNDC5-KO cells (Figure 6A).
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Figure 6. Expression level of (A) EIF2AK3, (B) Atf4, and (C) Ddit3 in WT and TXNDC5-KO cells
subjected to the 1 µg/mL tunicamycin (first column), 20 µg/mL tunicamycin (second column),
palmitic acid (600 µM) (third column), and thapsigargin (12.5 nM) (fourth column). All WT cells
exhibited Eif2ak3 expression changes, whereas TXNDC5-KO cells demonstrated no alterations in
ER stress, with the exception of thapsigargin. The EIF2AK3 protein levels were downregulated
in WT cells in the presence of tunicamycin and palmitic acid. However, this downregulation was
not observed in TXNDC5-KO cells. The mRNA levels of Atf4 and Ddit3 in WT and TXNDC5-KO
cells exhibited a significant induction under conditions of ER stress. WT: normal mouse hepatocyte
AML12 cells, KO: TXNDC5-deficient AML12 cells. Mann–Whitney’s U-test was used for statistical
analysis; * p < 0.05, ** p < 0.01.
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To evaluate the effect of EIF2AK3 disruption, the mRNA expression of other mem-
bers of the EIF2AK3 cascade, including Atf4 (Figure 6B) and Ddit3 (Figure 6C), was as-
sessed. There were significant increases in the mRNA levels of these genes in both WT and
TXNDC5-KO cells exposed to ER stressors. Furthermore, the absence of TXNDC5 did not
result in a decrement in mRNA levels of Atf4 and Ddit3 in TXNDC5-KO cells compared to
WT cells. Consequently, TXNDC5 plays a prominent role in the stability of the EIF2AK3
cascade in tunicamycin and palmitic acid conditions, although it did not affect the Atf4 and
Ddit3 mRNA expressions in hepatic cells.

2.8. TXNDC5 Deficiency Alters the ERN1 Pathway in Tunicamycin ER Stress

To evaluate the effects of TXNDC5 on the ERN1 cascade, previously known as IRE1,
the mRNA levels of key members of this ER pathway were examined. In fact, Ern1 exhibited
elevated mRNA levels in WT and TXNDC5-KO hepatic cells following treatment with
various ER stress inducers (Figure 7A). Nevertheless, this increase was not observed in WT
cells in the tunicamycin condition at the protein level. The data indicated that TXNDC5
deficiency resulted in changes in ERN1 protein levels in tunicamycin stress and the ERN1
protein expression was not affected by the absence of TXNDC5 in the context of palmitic
and thapsigargin stress. To elucidate the role of XBP1 in this pathway in AML12 cells, as
shown in Figure 7B, Xbp1 expression was significantly induced in tunicamycin ER stress
circumstances in both WT and TXNDC5-KO cells. However, there was not a significant
induction in thapsigargin and palmitic conditions. These findings demonstrate that the
absence of TXNDC5 does not alter the expression of Xbp1, and that palmitic acid and
thapsigargin are unable to induce the mRNA expression of Xbp1. To directly observe the
activation of the ERN1–XBP1 pathway in mouse hepatic cells, estimation of Xbp1 mRNA
splicing intensity was employed. This analysis revealed that Xbp1 mRNA splicing was
significantly elevated in the ER stress induced by thapsigargin compared to the control
group (Figure 7C). In accordance with the level of Xbp1 mRNA splicing observed in the
thapsigargin condition, TXNDC5-KO cells exhibited a higher spliced form than WT cells
(Figure 7D). In conclusion, these findings indicate that the ERN1–XBP1 pathway is activated
under conditions of thapsigargin ER stress in this hepatic cell line, and that the absence of
TXNDC5 can induce the Xbp1 spliced form. Moreover, the upregulation of ERN1 may alter
the splicing pattern of Xbp1, rather than merely influencing its mRNA expression.

2.9. Expression of Ssr2 and Sec61α1 ER Protein-Translocon Channels Are Selectively Influenced by
the Absence of TXNDC5

A significant proportion of the most robust and selective ERN1 transcriptional targets
identified in the UPR experiments were ER protein-translocon channels or their associated
proteins [22]. As illustrated in Figure 8A, all stressors tested failed to induce the Ssr2
gene in WT and TXNDC5-KO cells, with the exception of palmitic acid, which induced
Ssr2 mRNA expression in WT cells. This result indicates that the absence of TXNDC5
can impede the activation of Ssr2 in response to palmitic acid exposure. However, when
Sec61α1 mRNA expression was assayed, it was observed that the different ER stressors
induced its expression in WT and TXNDC5-KO cells, with the exception of the tunicamycin
condition. In the presence of tunicamycin (Figure 8B), the induction of this gene was
particularly dependent on TXNDC5, such that Sec61α1 mRNA levels could not be induced
in TXNDC5-KO hepatic cells. The outcomes demonstrated that the expression of Ssr2 and
Sec61α1 ER protein-translocon channels is selectively influenced by the absence of TXNDC5
depending on the used stressor.
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Figure 7. (A) Protein and mRNA levels of ERN1 and (B) Xbp1 transcripts in WT and TXNDC5-KO
cells exposed to the 1 µg/mL tunicamycin (first column), 20 µg/mL tunicamycin (second column),
palmitic acid (600 µM) (third column), and thapsigargin (12.5 nM) (fourth column). A notable
elevation in the level of Ern1 mRNA was observed in both TXNDC5-KO and WT cells in response
to all stressors. However, WT cells exhibited no discernible increase in the level of ERN1 protein
compared to TXNDC5-KO cells in the presence of tunicamycin. In both WT and TXNDC5-KO cells,
there were no changes in Xbp1 mRNA levels in response to palmitic acid or thapsigargin. (C) Cells
revealed a substantial spliced form of Xbp1 mRNA in stress induced by thapsigargin. (D) The
band intensity ratio of TXNDC5-KO cells showed significant induction of spliced form of Xbp1
under ER stress conditions compared to the WT cells. WT: normal mouse hepatocyte AML12 cells,
KO: TXNDC5-deficient AML12 cells. Statistical analysis was carried out by Mann–Whitney U-test;
* p < 0.05, ** p < 0.01.
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Figure 8. The mRNA levels of the (A) Ssr2 and (B) Sec61α1 genes were quantified in WT and TXNDC5-
KO cells exposed to the following treatments: 1 µg/mL tunicamycin, 20 µg/mL tunicamycin, 600 µM
palmitic acid, and 12.5 nM thapsigargin. The expression level of Ssr2 was found to be increased only
in WT cells exposed to palmitic acid. The expression of Sec61α1 was elevated in WT and TXNDC5-KO
cells subjected to palmitic acid and thapsigargin stress, and there was a disruption in TXNDC5-KO
cells relative to WT cells in the presence of tunicamycin. WT: normal mouse hepatocyte AML12
cells, KO: TXNDC5-deficient AML12 cells. Mann–Whitney U-test was used for statistical analysis;
* p < 0.05, ** p < 0.01 were considered significant.

3. Discussion

The objective of this work was to investigate the influence of TXNDC5 on gene
and protein expressions associated with ER stress pathways. To this end, a hepatic cell
line lacking TXNDC5 was generated. The results demonstrated that TXNDC5 deficiency
resulted in reduced Ern1, Xbp1, Eif2ak3, and Sec61a1 expression, increased Hspa5, Atf4, and
Ddit3 expression, and did not change Atf6 and Ssr2 expressions. At the protein level, the
absence of TXNDC5 was associated with a reduction in ERN1 and EIF2AK3 expression,
while the HSPA5 protein was upregulated. Nevertheless, the ATF6 protein did not exhibit
any change. The absence of TXNDC5 did not alter the pattern of mortality induced by
the three known ER stressors, tunicamycin, palmitic acid, and thapsigargin, in the AML12
cell line, despite the observed enhancement of cellular ROS levels in TXNDC5-deficient
cells. Nevertheless, it is evident that TXNDC5 is solely responsible for the maintenance of
mitochondrial ROS levels during tunicamycin-induced ER stress. The use of these three
agents resulted in elevated Atf6, Hspa5, Atf4, Ddit3, Ern1, and Sec61a1 expressions in WT
AML12 cells, with the exception of a lack of induction of Eif2ak3, Xbp1, and Ssr2 in the
presence of palmitic acid, thapsigargin, and tunicamycin, respectively.

A more complex outcome was observed in TXNDC5-deficient cells. In this context,
while ATF6, HSPA5, and EIF2AK3 demonstrated no induction of expression in the presence
of palmitic acid and tunicamycin, induction was observed in ERN1. Xbp1 and Ssr2 exhibited
similar expression patterns to those observed in WT cells. However, in the presence of
thapsigargin, the absence of TXNDC5 facilitated the splicing of Xbp1. Nevertheless, the
expression of Sec61a1 was disrupted by the lack of TXNDC5 in the presence of tunicamycin.
Overall, TXNDC5 may regulate ER activity and is particularly involved in the palmitic
acid-induced response of ATF6 and HSPA5 genes, as well as an attenuated response of
EIF2AK3 signaling.

TXNDC5 has been linked to a multitude of cellular processes as an ER molecular
chaperone, as evidenced by previous research [29]. As illustrated in Table 1, TXNDC5
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deficiency was associated with reduced expression of ERN1, EIF2AK3, Xbp1, and Sec61a1,
while expressions of HSPA5, Atf4, and Ddit3 were elevated. Other studies have also
demonstrated a correlation between TXNDC5 and these proteins. In this context, the
fragmentation of the ER and the altered expression of numerous ER proteins, including
ATF6, HSPA5, ATF4, and CCAAT/enhancer-binding protein homologous protein, are
caused by the downregulation of TXNDC5 in pancreatic β-cells [33–35]. In addition, low
TXNDC5 levels have been observed to result in increased expression levels of HSPA5, Ddit3,
and eIF2a, which collectively lead to ER stress and an increase in misfolded proteins in
pancreatic β-cells [34]. In summary, TXNDC5 can activate ER stress cascades via HSPA5,
either directly or indirectly.

In this report, three stressors have been utilized: tunicamycin, an inhibitor of GlcNAc
phosphotransferase, causes a significant accumulation of unfolded proteins, activates the
UPR, increases Txndc5, and ultimately results in cell death by apoptosis in human head-
and-neck carcinoma cells [36]. Palmitic acid is a saturated fatty acid that causes ER stress
and increases the UPR in well-differentiated hepatocyte cell lines [37,38]. Thapsigargin,
an inhibitor of Ca2+ ATPase, alters the concentration of Ca2+ within the ER lumen of
mouse hepatocytes [39]. In the current study, all of the agents induced dose-dependent
mortality in AML12 cells (Figure 1) and promoted TXNDC5 expression (Figure 4). It has
been demonstrated in various studies that Txndc5 is overexpressed in laryngeal squamous
carcinoma cells, colorectal cancer cells, and liver and kidney cells under circumstances
of ER stress [40–42]. In light of these observations, it can be postulated that TXNDC5
plays a role in the ER stress response induced by these agents and may act as a protective
factor. However, the absence of TXNDC5 did not result in any alterations to the survival
patterns, in stark contrast with other agents such as H2O2 [28]. Consequently, the absence
of TXNDC5 is insufficient to alter cell survival in response to these ER stressors.

Our findings indicate that the deficiency of TXNDC5 can markedly induce cellular
ROS in hepatocytes (Figure 2). These data corroborate the previous results demonstrating
the enhancement of ROS in the absence of TXNDC5 in endometrial, ovarian, and colorectal
tissues. In endometrial cancer cells where NR4A1 is silenced, the major source of ROS is as-
sociated with the downregulation of TXNDC5 and IDH1. This is supported by a significant
increase in ROS and oxidative/ER stress after the silencing of TXNDC5 [43]. The ER has
dynamic membrane contact with mitochondria, which are referred to as mitochondria–ER
contacts. This contact plays an important role in regulating mitochondrial function. For
instance, calcium transfer at these sites could cause calcium overload in mitochondria
and initiate apoptosis. The malfunction of mitochondria and the disruption of protein
translocation, translation, and folding within this organelle may result in the phenomenon
of “mitochondrial stress”. ER stress and mitochondrial stress initiate a shared downstream
signaling pathway that represses global translation through phosphorylation of eIF2a [44].
The results demonstrated that the absence of TXNDC5 was unable to induce mitochondrial
ROS in hepatocytes. Notwithstanding, these results diverge in the context of ER stress. All
ER stressors reduced mitochondrial membrane potential in TXNDC5-KO cells. In WT cells,
the presence of tunicamycin resulted in TXNDC5 maintaining mitochondrial stability, with
no reduction in mitochondrial membrane potential observed (Figure 3). In this context,
our previous findings indicate that TXNDC5 directly interacts with HSPA9 as a mitochon-
drial chaperone protein involved in protein folding and transport. The downregulation
of HSPA9 in hepatocytes following the knockdown of TXNDC5 suggests that this protein
may play a significant role in protecting mitochondria against tunicamycin [45].

The absence of TXNDC5 did not influence the expression of ATF6 in the presence
of tunicamycin and thapsigargin (Figure 5A), but did suppress the induction raised by
palmitic acid. Prior research has identified a unique positive feedback loop of the TGF1–
ATF6–TXNDC5–TGFBR1 signaling axis in kidney, heart, and lung fibroblasts. This loop
begins with TGF1, which causes the induction of TXNDC5 through ER stress and ATF6-
mediated transcriptional control [46–50]. Our findings indicate that TXNDC5 may play
a role in certain circumstances. Two ER stressors (tunicamycin and thapsigargin) do not
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appear to influence ATF6 levels, whereas palmitic acid appears to require TXNDC5 to
induce this ATF6 effect (Figure 9).
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stress cascades.

The detachment of the chaperone HSPA5 from the luminal portion of the ER integral
membrane proteins EIF2AK3, ERN1, and ATF6 is a crucial process in the activation of ER
stress in human leukemia and bladder carcinoma cell lines [51]. Lee et al. demonstrated that
the orphan nuclear receptor 4A1 (NR4A1) is tightly linked to Txndc5-induced transcriptional
activity, and that defragmentation of the ER and altered expression of Hspa5 are outcomes
of Txndc5 downregulation in pancreatic malignant cells [35]. The results obtained from the
hepatic AML12 cell line indicate that the expression of HSPA5 is altered by the absence of
TXNDC5 (Table 1). Furthermore, our results demonstrate that, in the absence of TXNDC5,
ER stressors modify the protein level of HSPA5, with the exception of palmitic acid as a
saturated fatty acid (Figure 5B). This observation provides evidence that HSPA5 may be
involved in lipid metabolism, in addition to TXNDC5 [52]. In this context, HSPA5 exhibited
elevated protein and mRNA levels in the group of rats fed a high-fat diet [53]. Furthermore,
obese mice exhibited elevated hepatic levels of Hspa5 mRNA in response to ATF6 and
EIF2AK3 activation. In addition, Hspa5 overexpression in hepatocytes reduces ER stress
indicators, inhibits SREBP1c cleavage, and suppresses the transcription of SREBP1c and
SREBP2 target genes, resulting in a significant reduction in hepatic cholesterol levels [54].
Furthermore, the activation of JNK as a central mediator of palmitic acid-induced hepatic
lipoapoptosis causes the suppression of Hspa5 in this cell line [55,56]. This saturated fatty
acid has been demonstrated to induce lipotoxicity and insulin resistance in both mouse and
human hepatocytes [32]. On the other side, our previous findings indicate that TXNDC5 is
directly involved in the regulation of PRDX6 and the absence of TXNDC5 results in the
downregulation of PRDX6 [45]. Therefore, the results of this study provide further evidence
to support the link between TXNDC5 and the HSPA5 response to palmitic acid and it is
possible that PRDX6 is involved in this pathway through a protein depalmitoylation [57].

The impact of TXNDC5 depletion on the EIF2AK3 cascade, previously designated as
PERK, was also investigated. In the wild-type cell line, the mRNA expression levels of
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ER stress-related markers, including Eif2ak3, Atf4, and Ddit3, were found to be elevated
in response to various ER stressors. The protein expression of EIF2AK3 exhibited a dis-
parate pattern in tunicamycin and palmitic acid exposure, indicating that these stressors
are involved in post-transcriptional regulation. However, TXNDC5-deficient AML12 hep-
atocytes exhibited a disruption in EIF2AK3 expression in the presence of tunicamycin
and palmitic acid (Figure 6A). Negative feedback loops within the UPR result in a rapid
downregulation of EIF2AK3-EIF2α signaling in CHO cells, due to the upregulation of
Ddit3 and its targets [58]. Furthermore, the reduction of EIF2AK3-EIF2α signaling has been
observed to result in the development of diabetes phenotypes in mouse models of EIF2AK3
deficiency [59]. Conversely, the disruption of the EIF2AK3 pathway has been observed to
result in the enhanced production of ROS [3] during ER stress in mouse fibroblasts [60]. The
expression levels of Eif2ak3 and Txndc5 in NIH-3T3 fibroblasts exhibited a gradual increase
over time under stressful conditions [48], suggesting a coordinated regulatory mechanism.
On the other side, thapsigargin was found to promote the phosphorylation of EIF2AK3,
which was markedly reduced by overexpression of Hspa5 in hepatic steatosis in mice [39].
Thapsigargin was an exception in our experimental setting. In fact, the expression of
EIF2AK3 in the presence of thapsigargin could be effectively stimulated in the absence of
TXNDC5. Consequently, our findings indicate that TXNDC5 is essential for the induction
of EIF2AK3 expression under specific stressful conditions in hepatocytes (Figure 10).

The absence of TXNDC5 had no effect on the expression of Atf4 and Ddit3 in AML12
cells under ER stress, as demonstrated in Figure 6B,C. Recent studies have demonstrated
that the expression of Atf4, Ddit3, and apoptosis induced by NR4A1 (a modulator of
TXNDC5) silencing regulates ER stress in MCF-7, RKO, MDA-MB-231, and Jurkat cell
lines [35]. DDIT3 deletion has been observed to partially protect both cells and animals
from ER stress-induced cell death, in contrast to overexpression of Ddit3, which has been
shown to trigger cell death in the absence of other stimuli [61]. DDIT3 has been linked to
the overexpression of death receptor 5 (DR5) and the downregulation of the anti-apoptotic
protein BCL2 [62,63]. In contrast, DNA damage-inducible 34 protein (GADD34) has re-
cently been identified in mouse fibroblasts as a target of DDIT3. Consequently, deletion of
either DDIT3 or GADD34 protects cells against acute ER stress-induced cell death [64]. Con-
sequently, the absence of TXNDC5 does not appear to suppress Atf4 and Ddit3 expression
in AML12 cells under ER stress, suggesting that these cells may be induced to apoptosis.
Our findings also indicate that TXNDC5 is not directly involved in the upregulation of Atf4
and Ddit3 expression in hepatocytes under ER stress conditions.

The reduction in one of the three ER stress markers frequently results in the activation
of other ER stress markers in secretory goblet cells [65]. Both the EIF2AK3 and ERN1
pathways are implicated in the control of ER chaperones, ER-associated degradation, and
other protective activities in mouse embryonic cells, NIH-3T3 fibroblasts, human embryonic
kidney 293, and Phoenix-Eco cells [60,66–69]. Tsuchiya et al. also observed an increase in
Eif2ak3 expression in MIN6 cells lacking ERN1 protein [70]. Consequently, the disruption
of EIF2AK3 in TXNDC5-deficient AML12 cells may result in increased ER stress and the
activation of other ER stress sensors (Figure 10), such as ERN1. Indeed, the expression
patterns of hepatocytes indicated that the expression of ERN1 could be increased in the
context of ER stress when the expression of EIF2AK3 is disturbed in the absence of TXNDC5,
as compared to the WT cells (Figures 6A and 7A). It can be postulated that TXNDC5 plays
a dynamic role in ER stress protection between the EIF2AK3 and ERN1 pathways in mouse
hepatocytes, which is independent of the proapoptotic Bax (BCL2-associated X protein)
and Bak (BCL2 antagonist of cell death) proteins, which have the potential to enhance
ERN1 signaling [71,72]. This could explain why, despite the observed enhancement of
ERN1 expression and EIF2AK3 disturbance, no changes in cell mortality were observed in
TXNDC5-deficient hepatocytes.

X-box binding protein 1 (Xbp1) mRNA is the substrate of the endoribonuclease ERN1,
which removes a 26-base intron [73]. It has been demonstrated that mice lacking ERN1 and
XBP1 exhibit embryonic defects in liver formation and B lymphocyte differentiation [74,75].
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The ERN1–XBP-1 signaling pathway has been linked to TXNDC5, as evidenced by the
observation that the pharmacological inhibition of ERN1 and knockdown of XBP1 resulted
in a reduction in TXNDC5 expression in pulmonary fibroblasts [48]. However, the present
study in mouse hepatocytes indicates that the absence of TXNDC5 is associated with a
reduction in Xbp1 expression compared to the WT cells (Figure 7B). Moreover, it was
observed that the absence or presence of TXNDC5 did not result in the induction of Xbp1
by palmitic acid and thapsigargin.
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Figure 10. A summary of the findings of mRNA and protein expressions of ER stress sensors and
their associated genes in response to different ER stressors, with and without TXNDC5. The scheme
was created using Microsoft Publisher 2010. The symbols used to indicate the effects of ER stress
on the expression of genes are as follows: red cross, disturbance in cascade; red color, increased
expression; blue color, decreased expression; and white color, no changes.

Chen et al. proposed that ERN1 may regulate TXNDC5 through Xbp1 mRNA splicing
in lung fibroblasts [48] and that it plays a role in NAFLD, in which DDIT3, caspase-12,
and JNK participate in ER stress by enhancing its activities [76]. In contrast, autophos-
phorylation of ERN1 may activate downstream genes without causing the Xbp1 mRNA
splicing, suggesting that ERN1 can exist in more states than just “on” and “off” in mouse
embryonic fibroblasts and human pancreatic beta cells [77,78]. It has been postulated
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that XBP1 may interact with TXNDC5 indirectly [29], through binding to the promoter
regions of downstream target genes, including HSPA5 in C2C12 myoblasts and MIN6
cells. This interaction may modulate Txndc5 expression [79]. Our findings demonstrate
that thapsigargin is an effective agent for converting Xbp1 from its unspliced form to the
spliced variant. Furthermore, the absence of TXNDC5 results in an increase in the latter
form in AML12 cells (Figure 7C,D). In conclusion, the absence of TXNDC5 in hepatocytes
modulates the splicing process of Xbp1 in the context of thapsigargin exposure in the ERN1
cascade, which points to the role of TXNDC5 and its mRNA expression in this particular
splicing process, and it is possible that ERN1 affects Xbp1 splicing, not just its mRNA.

ERN1 and XBP1 target the translocon and translocon auxiliary components in mouse
embryonic fibroblasts and HEK293T cells [66,80]. Studies in HeLa and Cos-7 cells have
shown that XBP1 splicing is maximized when ERN1 binds to the translocons and SRP
recruits unspliced XBP1 (XBP1u) to the ER [81,82]. This suggests that ERN1 may act in
physical association with the translocons, unlike ATF6 or EIF2AK3 [82]. SEC61A1, which
encodes an ER protein–translocation channel, and SSR2, a translocon auxiliary protein,
are involved in SRP-mediated protein targeting to the ER [22]. Furthermore, repression
of the SEC61A1 translocon subunits appeared to exclusively and specifically activate the
ERN1 branch and also upregulated the SSR2 in human embryonic kidney cells and mouse
embryonic fibroblasts [22,83]. The present report indicates that the Ssr2 expression was
not significantly induced by ER stress in TXNDC5 knockout cells (Figure 8A), although
it was only induced by palmitic acid in WT cells. In contrast, the expression of Sec61a1
was augmented in WT cells via all ER stressors. However, its expression exhibited no
alterations in tunicamycin exposure in TXNDC5-KO cells (Figure 8B). This observation
corroborates previous findings indicating that Sec61a1 expression is uniquely regulated by
the ERN1 cascade [80]. Moreover, translocons may also be regulated by other mediators,
such as DDIT3 and HSPA5. The suppression of SEC61A1 and SEC61B has been observed
to stimulate Ddit3 expression in myelogenous leukemia cells [84]. However, DDIT3 was
upregulated in SEC61A1-induced HeLa cells [85], which is consistent with our findings.
In addition, Txndc5, Sec61a1, and Ssr2 are upregulated in XBP-1-transduced NIH-3T3
fibroblasts and murine macrophage cells [86,87]. However, another study indicated that
in the presence of sertraline as an anti-stress drug in HepG2 cells, the mRNA level of
Txndc5 decreased and Ssr2 and Ern1 increased [88]. Consequently, it is plausible that
the regulation of translocons by DDIT3 and HSPA5 is contingent upon the specific tissue
in question. These results indicate a feedback paradigm where TXNDC5 can regulate
translocon expression by modulating the expression of the ERN1 cascade via the XBP1
mediator in ER stress conditions. Additionally, ERN1 may be utilized to monitor the status
of the translocon in mouse hepatocytes. Furthermore, the expression of Ssr2 and Sec61α1
ER protein–translocon channels is selectively influenced by the absence of TXNDC5, with
the influence dependent on the source of ER stress.

4. Materials and Methods
4.1. Generation of TXNDC5 Knockout AML12 Cells

The Alpha mouse liver (AML12) cell line with a stable knockout of TXNDC5 was gen-
erated as previously described [28]. The cells were transfected with TXNDC5/ERp46 HDR
and TXNDC5 CRISPR/Cas9 KO plasmids (Santa Cruz Biotechnology, Dallas, TX, USA)
using lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA, USA). The TXNDC5
CRISPR/Cas9 KO plasmid contains a gRNA sequence, 5′-TTATCAAGTTCTTCGCTCCG-
3′, which generates a double-stranded break (DSB) specifically in the fifth exon of the
Txndc5 gene. After multiple rounds of puromycin incubation, puromycin-resistant AML12
TXNDC5-KO cells were selected. RNA and Western blot analyses confirmed the deletion
of TXNDC5 (Supplementary Figure S1).



Int. J. Mol. Sci. 2024, 25, 7128 18 of 26

4.2. Cell Culture and Treatment

The AML12 cell line (WT) was obtained from the ATCC collection (Manassas, VA,
USA) and generated TXNDC5-KO AML12 cells (KO) cultured in a 6-well plate (in duplicate)
at 37 ◦C in a humidified atmosphere of 5% CO2 in Dulbecco’s modified Eagle’s minimum
essential medium (DMEM; Thermo Fisher Scientific, Waltham, MA, USA): F-12-Ham’s
medium (GE Healthcare Life Science, South Logan, UT, USA) at a 1:1 ratio supplemented
with 10% fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA), 1:500 insulin-
transferrin-selenium (Corning, Bedford, MA, USA), 40 ng/mL dexamethasone (Sigma-
Aldrich; Merck Millipore, Darmstadt, Germany), 1% nonessential amino acids (Thermo
Fisher Scientific, Waltham, MA, USA), 1% amphotericin B (1000 mg/mL; Thermo Fisher
Scientific, Waltham, MA, USA), 1% penicillin (1000 U/mL; Thermo Fisher Scientific), and
1% streptomycin (1000 mg/mL; Thermo Fisher Scientific, Waltham, MA, USA). After
reaching 90–100% confluence, the AML12 cells were given fresh medium without fetal
bovine serum and amphotericin B. For RNA isolation, the cells were treated with 1 and
20 µg/mL of tunicamycin (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany), 12.5 nM
of thapsigargin (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany), and 600 µM of
palmitic acid (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany) for 24 h.

4.3. MTT Assay

Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide test (MTT; Sigma-Aldrich, Merck Millipore, Darmstadt, Germany). The cells
were seeded at a density of 5000 cells/well on a 96-well plate and exposed to a range of
1 to 20 nM of thapsigargin (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany) for
24 h. Tunicamycin (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany) was dissolved
in 0.1% DMSO to a concentration of 1 to 20 µg/mL, while palmitic acid (Sigma-Aldrich,
Merck Millipore, Darmstadt, Germany) was dissolved in ethanol to a concentration of 50 to
4000 µM. The culture medium was then supplemented with 1 mg/mL of MTT. After a
3-h incubation, the cell growth medium was replaced with DMSO and the absorbance
was measured at 570 nm using a SPECTROstar® Nano Microplate Reader (Omega, BMG
Labtech, Ortenberg, Germany). The IC50 survival rates of AML12 WT and TXNDC5-KO
cells in ER stress circumstances were obtained using this method.

4.4. TXNDC5 Promoter Plasmid Construction and Transfection

To investigate the activity of the Txndc5 promoter, we constructed expression plasmids
by inserting PCR-amplified 2024 bp length Txndc5 promoter (nucleotides 38,527,915 to
38,529,935 of GRCm38.p6 Mus musculus assembly) into the EcoRI site of the pEZX-GA01
expression vector (GeneCopoeia, Rockville, MD, USA) following the CloneAmp™ HiFi
PCR Premix and In-Fusion® HD Cloning Kit Protocols (Takara Bio, San Jose, CA, USA).
AML12 cells were plated at a density of 1 × 104 cells/well in 96-well plates containing
Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum. After
24 h, LipofectAMINE 3000 reagent (Invitrogen, Carlsbad, CA, USA) was used to transfect
the cells with 100 ng of the constructed plasmid, following the manufacturer’s protocol.
The cells were then treated with thapsigargin (6.25 nM), palmitic acid (300 µM), and
tunicamycin (20 µg/mL) for 24 h.

4.5. Alkaline Phosphatase Assay

The transfected cell culture medium was collected and heated at 65 ◦C for 15 min.
Then, 100 µL of 4-nitrophenyl phosphate disodium salt hexahydrate (1 mg/mL) dissolved in
deionized water (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany) was added to 10 µL
of each sample in a microplate. Absorbance was measured at a wavelength of 405 nm using a
SPECTROstar® Nano microplate reader (Omega, BMG Labtech, Ortenberg, Germany).
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4.6. Luciferase Activity Assay

The luciferase assay was conducted based on the ratio of luciferase to alkaline phos-
phatase units. Coelenterazine (6 µM) dissolved in deionized water (Sigma-Aldrich, Merck
Millipore, Darmstadt, Germany) was added to 10 µL of culture medium of transfected cells
in a microplate. The intensity of luminescence was measured with a microplate reader
(FLUOstar®, Omega, BMG Labtech, Ortenberg, Germany) using an emission filter with a
gain of 3600.

4.7. RNA Extraction

Total cellular RNA was extracted using a Quick-RNATM MiniPrep kit (Zymo Research,
Tustin, CA, USA) following the manufacturer’s instructions. RNA concentration was
measured at 260/280 nm wavelengths using a SPECTROstar® Nano microplate reader
(Omega, BMG Labtech, Ortenberg, Germany). The integrity of the 28S and 18S ribosomal
RNAs was confirmed by electrophoresis on a 1% agarose gel followed by ethidium bromide
staining (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany), and the 28S/18S ratio
was greater than 2.

4.8. Quantitation of mRNA by RT-qPCR

To measure gene RNA expression, cDNA was prepared from 500 ng of total RNA using
the PrimeScript RT reagent kit (TaKaRa Biotechnology, Kusatsu, Shiga, Japan) following the
manufacturer’s instructions. The cDNA was then analyzed using a Step One Plus Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA) with SYBR Green PCR Master Mix
(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s guidelines.
The primers for RT-qPCR were designed using Primer Express (Applied Biosystems, Foster
City, CA, USA). They were then validated for gene specificity and amplification of cDNA
rather than genomic DNA using BLAST analysis (NCBI). Finally, the primers were selected
based on their efficiency (Table S1). The comparative 2−∆∆CT method was used to calculate
the relative ratio of each gene’s transcript expression level to the mean values of control
samples. The results were normalized to the reference genes Ppib and Tbp.

4.9. Estimation of Xbp1 mRNA Splicing

To estimate the extent of Xbp1 mRNA splicing, 500 ng of cDNA was amplified with
specific primers using CloneAmp™ HiFi PCR Premix (TaKaRa Biotechnology, Kusatsu,
Shiga, Japan) in a standard thermocycler. The primers used were Mouse Xbp1 forward,
5′-GAG AAC CAG GAG TTA AGA ACA CG-3′ and reverse, 5′-GAA GAT GTT CTG GGG
AGG TGA C-3′ [70]. To evaluate the spliced and unspliced forms of Xbp1 mRNA, the PCR
products were separated by electrophoresis on 4% agarose gels and visualized by ethidium
bromide staining (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany). The intensities
of the bands were then measured to determine the extent of Xbp1 splicing by Quantity One
software version 4.6.8 (Bio-Rad, Hercules, CA, USA).

4.10. Western Blot

Proteins were extracted from AML12 WT and TXNDC5-KO cells that were treated
with stressors, as explained above. The proteins were quantified and transferred to a
polyvinylidene difluoride (PVDF) membrane (Bio-Rad, Hercules, CA, USA)., following the
methodology described in previous publications [28,89]. The membranes were then blocked
with phosphate-buffered saline (PBS) containing 5% bovine serum albumin (BSA) for 1 h
at room temperature. Following blocking, the membranes were incubated overnight at
4 ◦C with rabbit primary polyclonal antibody against mouse TXNDC5 (1:1000, Proteintech,
Manchester, UK), mouse monoclonal anti-HSPA5 (1:1000, Proteintech, Manchester, UK),
mouse monoclonal anti-ATF6 (1:500, Proteintech, Manchester, UK), rabbit monoclonal
anti-EIF2AK3 (1:500, Cell Signaling Technology, Danvers, MA, USA), rabbit monoclonal
anti-ERN1 (1:500, Thermo Fisher Scientific, Waltham, MA, USA), rabbit monoclonal anti-β-
ACTIN (1:2000, Sigma, St. Louis, MO, USA), and mouse monoclonal anti-β-ACTIN (1:2500,
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Sigma, St. Louis, MO, USA). The membranes were washed with a PBS solution containing
0.1% Tween 20 before incubation for 1 h at room temperature with a conjugated goat anti-
rabbit IgG (H&L) DyLight 800 secondary antibody (1:15,000, Thermo-Scientific, Waltham,
MA, USA) or a goat anti-mouse IgG (H&L) DyLight 680 secondary antibody (1:30,000,
Thermo-Scientific, Waltham, MA, USA). The blots were captured using the Odyssey® Clx
(LI-COR, Bad Hamburg, Germany). The blots were quantified using Image Studio Lite
Version 5.2 software from LI-COR Biosciences GmbH in Bad Homburg, Germany. The
densitometric values were normalized to the housekeeping antibodies and expressed in
arbitrary units.

4.11. ROS Assessment with Flow Cytometry

To quantify cellular ROS, flow cytometry was used to assess AML12 WT and TXNDC5-
KO cell lines. The cells were treated with 10 µL of 2.0 mg/mL 2,7-dichlorofluorescein
diacetate (DCFH-DA; Sigma-Aldrich, Merck Millipore, Darmstadt, Germany) dissolved
in fresh PBS for 30 min at 37 ◦C. After exposure, the cells were trypsinized, washed,
collected, centrifuged, and resuspended to 7.5 × 105 cells/mL in PBS. The fluorescence
within the cells was measured using flow cytometry (Beckman Coulter, Brea, CA, USA)
with excitation/emission spectra of 485/520 nm, respectively. A total of 30,000 cells were
analyzed for all conditions, and the data were processed using Kaluza Analysis Version
1.5a software.

4.12. Intracellular ROS Production

AML12 WT and TXNDC5-KO cells were seeded at a density of 5000 cells per well in
a 96-well plate and cultured for 72 h at 37 ◦C. The cells were treated with thapsigargin,
palmitic acid, and two different concentrations of tunicamycin for 24 h. The treatments
were administered in medium free of fetal bovine serum and amphotericin B at a concen-
tration of 6.25 nM, 300 µM, 1 and 20 µg/mL of the respective substances. Subsequently,
10 µL of 2.0 mg/mL DCFH-DA (Sigma-Aldrich, Merck Millipore, Darmstadt, Germany)
dissolved in fresh PBS was added to the cells. After 30 min at 37 ◦C, the medium was
removed, and the presence of reactive oxygen species was assessed by measuring the con-
version of DCFH-DA into fluorescent DCF using a microplate reader (FLUOstar®, Omega,
BMG Labtech, Ortenberg, Germany) at excitation and emission wavelengths of 485 and
520 nm, respectively.

4.13. Mitochondrial Membrane Potential Assay

The mitochondrial membrane potential assay (Ab228569 TMRM assay kit, Abcam,
Waltham, MA, USA) was used to determine potential mitochondrial damage caused by dif-
ferent ER stressors in AML12 WT and TXNDC5-KO cells. The cells were seeded in 96-well
plates at a concentration of 5 × 105 cells/mL and exposed to thapsigargin, palmitic acid,
and tunicamycin at concentrations of 6.25 nM, 300 µM, and 1 and 20 µg/mL, respectively,
for 24 h. After exposure, the cells were washed with PBS and 1µM TMRM was added.
After 30 min incubation in 37 ◦C, the cells were washed twice with PBS/0.2% BSA. Then,
1X live cell imaging buffer was added. The fluorescence intensity was measured using
a microplate reader (FLUOstar®, Omega, BMG Labtech, Ortenberg, Germany) with an
excitation/emission of 548/575 nm.

4.14. TMRM Microscopy Procedure

To confirm the TMRM results, the microscopy procedure was also performed with
200 nM of TMRM (Ab228569 TMRM assay kit, Abcam, Waltham, MA, USA). Additionally,
we used 20 µM carbonylcyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) as a positive
control for 10 min prior to staining with TMRM. The cell’s nucleus was stained using
NucBlue Live Ready Probes Reagent (Invitrogen, Thermo-Scientific, Waltham, MA, USA)
and incubated for 20 min at 25 ◦C. The cells were evaluated using a FLoid Cell Imaging
Station (Life Technologies, Invitrogen, Thermo-Scientific, Waltham, MA, USA) that was
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equipped with bandpass filters capable of visualizing EX/EM = 548/573. The data were
analyzed using ImageJ (Fiji) software version windows 64-bit Java 8.

4.15. Statistical Analysis

The figures display means ± standard deviations. Statistical significance was calcu-
lated using GraphPad Prism 8 for Windows (GraphPad, San Diego, CA, USA). The normal
distribution of the data and homogeneity of variance among groups were assessed using the
Shapiro–Wilk test and Bartlett’s or Levene’s tests, respectively. Statistical differences were
calculated using the one-tailed Mann–Whitney’s U- or Student’s t-tests. The figure legends
indicate the p-values, denoted as *, p < 0.05; **, p < 0.01; ***, p < 0.001, and ****, p < 0.0001.

5. Conclusions

The results of the current study indicate that TXNDC5 deficiency is associated with a
reduction in mRNA expression of Ern1, Xbp1, Eif2ak3, and Sec61a1 and an increase in those
of Atf4, Hspa5, and Ddit3 in mouse hepatocytes. The expression of Atf6 and Ssr2 was not
significantly altered in the absence of TXNDC5. The protein expression results of prominent
ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated,
while the HSPA5 protein was upregulated. Moreover, the ATF6 protein did not exhibit
any significant changes in the absence of TXNDC5 at the protein level. The knockout
of TXNDC5 has been demonstrated to increase cellular ROS production in AML12 cells.
Furthermore, TXNDC5 activity is required to maintain normal mitochondrial function
during tunicamycin-induced ER stress. The enhancement of TXNDC5 in AML12 cells is
dependent on the induction of ER stress by thapsigargin, palmitic acid, and tunicamycin.
Tunicamycin, an inhibitor of glycosylation, has been observed to disrupt the protein levels
of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. Additionally, tunicamycin
has been shown to affect the mRNA levels of Eif2ak3 and Sec61a1 in TXNDC5-deficient
cells. However, palmitic acid, which is an inducer of excessive saturated fatty acids, can
disarrange ATF6, HSPA5, and EIF2AK3 at the protein level and Atf6, Hspa5, Eif2ak3, and
Ssr2 at the gene expression level in TXNDC5 knockout cells. The absence of TXNDC5
did not affect any ER stress cascades in thapsigargin-induced ER stress in hepatocytes,
despite the activation of the ERN1–XBP1 pathway under these conditions. Furthermore,
the absence of TXNDC5 can induce the Xbp1 spliced form. Moreover, it is conceivable
that the upregulation of ERN1 may alter the splicing pattern of Xbp1, rather than merely
influencing its mRNA expression. In summary, TXNDC5 can selectively activate different
ER stress cascades via HSPA5, depending on the source of ER stress. Conversely, the
absence of TXNDC5 can disrupt the EIF2AK3 cascade.

Limitations and Future Research

To address the potential limitations of cell viability as an endpoint, we plan to include a
broader range of functional assays in future experiments. These could include assessments
of lipid accumulation, inflammatory cytokine production, and markers of liver injury and
fibrosis. Such approaches would provide a more comprehensive understanding of the
impact of TXDNC5 on liver health under stress conditions. In addition, it is important
to consider the long-term effects of TXDNC5 deficiency. Chronic stress conditions or
prolonged exposure to ER stress inducers may reveal cumulative effects on cell viability and
function that are not apparent in short-term assays. Finally, future studies could examine
the effects of TXDNC5 KO on the expression of proteins involved in lipid metabolism,
inflammation, and fibrosis, which are key components of NAFLD progression.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25137128/s1.

Author Contributions: Conceptualization, S.H.B., C.B., J.S.-M., R.M.-B., M.A.N., M.J.R.-Y., S.C.M.F.
and J.O.; methodology, S.H.B., C.B., J.S.-M. and R.M.-B.; software, S.H.B., C.B. and J.S.-M.; validation,
S.H.B., C.B. and J.S.-M.; formal analysis, S.H.B., C.B., J.S.-M. and R.M.-B.; investigation, S.H.B.;

https://www.mdpi.com/article/10.3390/ijms25137128/s1
https://www.mdpi.com/article/10.3390/ijms25137128/s1


Int. J. Mol. Sci. 2024, 25, 7128 22 of 26

resources, M.J.R.-Y. and J.O.; data curation, S.H.B. and J.O.; writing—original draft preparation,
S.H.B.; writing—review and editing, S.H.B., C.B., J.S.-M., R.M.-B., M.A.N., M.J.R.-Y., S.C.M.F. and
J.O.; visualization, S.H.B.; supervision, M.A.N., S.C.M.F. and J.O.; project administration, M.J.R.-Y.
and J.O.; funding acquisition, M.J.R.-Y. and J.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by grants (CIBEROBN, CB06/03/1012, 1 January 2008) from
CIBER Fisiopatología de la Obesidad y Nutrición as an initiative of FEDER-ISCIII, Ministerio de
Ciencia e Innovación-Fondo Europeo de Desarrollo Regional (PID2022-136414OB-I00, 1 June 2023),
SUDOE (Manpower, S1/1.1/E0116), Plan de Recuperación, Transformación y Resiliencia-MRR, and
Fondo Social Europeo-Gobierno de Aragón (B16_23R, 26 March 2023). S.H.B. was a recipient of a joint
fellowship from the Universities of Zaragoza and Pau and short-term fellowship from Universidad
de Zaragoza, Fundación Bancaria Ibercaja, and Fundación CAI (CM 7/22, 4 October 2022), and J.S.-M.
was a recipient of a Fundación Cuenca Villoro fellowship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Material.

Acknowledgments: We extend our gratitude to the flow cytometry service at Centro de Investi-
gación Biomédica de Aragón (CIBA) and Tania Herrero Continente for their invaluable assistance in
maintaining the laboratory.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
ATF6 Activating transcription factor 6
HSPA5 Heat shock protein 5
EIF2AK3 Eukaryotic translation initiation factor 2 alpha kinase 3
ATF4 Activating transcription factor 4
DDIT3 DNA-damage inducible transcript 3
ERN1 Endoplasmic reticulum (ER) to nucleus signaling 1
XBP1 X-box binding protein 1
SSR2 Signal sequence receptor, beta
SEC61A1 Sec61 alpha 1 subunit
Tbp TATA-box binding protein
Ppib Peptidylprolyl isomerase B
TXNDC5 Thioredoxin domain containing 5
WT Wild-type AML12
KO TXNDC5-Knockout AML12
ER Endoplasmic reticulum
CRISPR Clustered regularly interspaced short palindromic repeats
UPR Unfolded protein response
PDI Protein disulfide isomerase
MTT 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide
ROS Reactive oxygen species
AML12 Alpha mouse liver cell line
NIH-3T3 Mouse NIH/Swiss embryo fibroblasts
MCF-7 Michigan Cancer Foundation-7
RKO Human colon carcinoma cell line
MDA-MB-231 M.D. Anderson-metastatic breast 231
Jurkat Immortalized line of human T lymphocyte cells
L3.6pL L3.6 pancreas-liver cell line
MIN6 Mouse insulinoma cell line 6
C2C12 C2C12 mouse myoblast cell line
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HEK293T Human embryonic kidney cells 293T
HeLa Henrietta Lacks cancer cells
COS-7 Monkey African green kidney fibroblasts
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