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E D I T O R I A L

The hydrocarbon pollution crisis: Harnessing the earth 
hydrocarbon-degrading microbiome

As part of the battle against climate change, the de-
carbonization of human activities has been acted in 
many countries worldwide. Thus, in order to limit the 
planet warming, it is expected to reduce the combus-
tion of fossil fuels for decreasing drastically the produc-
tion of greenhouse gas emissions. Although beneficial 
for reducing carbon dioxide (CO2) production to fight 
against climate change, this countermeasure unfor-
tunately does not mean that hydrocarbon pollution is 
behind us because hydrocarbon pollution has many 
sources (Duran & Cravo-Laureau,  2016) that will re-
main. It is estimated that the industrial and petroleum 
activities, which have already left behind a multitude of 
hydrocarbon-contaminated sites that still need to be re-
stored, release accidentally between 1.7 and 8.8 million 
tonnes of oil into the environment each year (Ambaye 
et  al.,  2022). The decarbonization is also expected 
to have a beneficial impact on decreasing the indus-
trial release of hydrocarbons into the environment by 
reducing oil spill frequency and consequences (Little 
et al., 2021). In addition to the direct contribution of hy-
drocarbons resulting from the continued use of fossil 
fuels, the human activities also generate indirect in-
puts such as wildfires introducing polycyclic aromatic 
hydrocarbon (PAH) into the environment (Campos 
et al., 2019; Paul et al., 2023). Particularly “mega fires,” 
which burn large forest areas, are becoming more fre-
quent as a consequence of climate change (Bracewell 
et al., 2023; van Oldenborgh et al., 2021). Of course, 
the natural sources of hydrocarbon contamination, 
such as volcanic activities and marine oil seeps, as well 
as biogenic sources (Duran & Cravo-Laureau, 2016), 
continuously emit hydrocarbons into the environment. 
Thus, hydrocarbons last to be of concern for the envi-
ronment in the future. In order to mitigate the impact of 
hydrocarbons on the environment, exploiting the hydro-
carbon degradation potential that microorganisms have 
is a challenge to meet for scientists and engineers con-
cerned about hydrocarbon pollution.

Important key knowledge has been gained on 
microbial hydrocarbon degradation as well as on 
the ecology of microbial communities inhabiting 
hydrocarbon-contaminated sites. The hydrocarbon 

degradation capacity has been described for a large 
number of microorganisms from diverse terres-
trial and aquatic environments. Several specialist 
hydrocarbon-degrading microbial taxa have been 
described and isolated, as for example, the marine 
obligate hydrocarbonoclastic bacteria (OHCB) ob-
served to bloom during marine oil spills (Yakimov 
et  al.,  2007), hydrocarbon-tolerant fungi found in 
petroleum-contaminated sediment (Álvarez-Barragán 
et al., 2021), and alkane-degrading specialist popula-
tions in soil (Hamamura et al., 2013). The characteri-
zation of specialist hydrocarbon-degrading microbial 
taxa has unveiled the degradation pathways, both 
aerobic and anaerobic, for a wide range of hydro-
carbon compounds from alkanes to PAHs (Chunyan 
et al., 2023). While gaining knowledge, various biore-
mediation strategies have been proposed to mitigate 
the impact of hydrocarbon in contaminated sites 
(Goñi-Urriza et al., 2013). However, the different exist-
ing bioremediation processes for the in situ treatment 
of hydrocarbon-contaminated sites have to content 
several technical, environmental, and regulatory hur-
dles before reaching optimal efficiency and societal 
acceptability (Boopathy,  2000). Particularly, the re-
lease of microorganisms, genetically modified or not, 
into the environment following a bio-augmentation 
approach is controversial at both technical and ethi-
cal point of views (Lensch et al., 2024). Apart from the 
regulatory and ethical issues associated with the use 
of microorganisms for in  situ bioremediation, which 
are not addressed here, there is no clear evidence 
that the added microorganisms colonize the contam-
inated site and effectively degrade the hydrocarbons 
(Wu et al., 2019). The difficulty for the added micro-
organisms to incorporate well-established microbial 
community, known as colonization resistance in eco-
logical theory, depends on several factors controlling 
the microbial community mixing, i.e., microbial com-
munity coalescence (Châtillon, Duran, et  al.,  2023; 
Rillig et al., 2015). These factors include the microbial 
communities legacy based on the history of contami-
nation (Hafez et al., 2022), the size of the added com-
munity (Rillig et al., 2015), and priority effects (Tucker 
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& Fukami, 2014). Nevertheless, the current knowledge 
on hydrocarbon microbial ecology provides crucial in-
formation opening the way for the implementation of 
bioremediation processes based on synthetic biology 
approaches (de Lorenzo, 2008).

The ecology of microbial communities living in 
hydrocarbon-contaminated sites has been concep-
tualized on the basis of experimental and in  situ 
observations. According to the disturbance theory 
(Allison & Martiny, 2008), the resistance, resilience, 
and functional redundancy of microbial communi-
ties in response to hydrocarbon contamination have 
been illustrated in several studies (Châtillon, Cébron, 
et  al.,  2023; Chronopoulou et  al.,  2013; Stauffert 
et  al.,  2014; Zerebecki et  al.,  2022). However, the 
microbial communities have been shown extremely 
dynamic and interactive in response to hydrocar-
bon contamination (Head et  al.,  2006; McGenity 
et al., 2012), requiring to switch beyond the concepts 
of resistance, resilience, and redundancy in order 
to better understand the structure or function rela-
tionships (Bissett et  al.,  2013). The ecological suc-
cession, microbial taxa replacement over time, has 
been observed in many cases after hydrocarbon 
contamination experimentally (Bordenave, Fourçans, 
et  al.,  2004; Bordenave, Jézéquel, et  al.,  2004; 
Cerqueda-García et al., 2020) and in situ after an oil 
spill (Kimes et  al.,  2014; Péquin et  al.,  2022). Such 
ecological succession relies on the fact that hydro-
carbon degradation is effected by a consortium of mi-
croorganisms, not all of which are directly involved in 
the degradation process. The microbial interactions 
have an extremely important ecological role in hydro-
carbon degradation; hydrocarbon consumers receiv-
ing beneficial products (vitamins, EPS, metals, etc.) 
from associated microbes in return for their detoxify-
ing activity (Louati et al., 2013; McGenity, 2014); even 
some associated microbes can also provide biosur-
factants increasing hydrocarbon bioavailability that 
facilitates their degradation (Brito et al., 2009; McKew 
et al., 2007; Schweitzer et al., 2022). The microbial in-
teractions also involve co-metabolism and synergistic 
processes in which the degradation of hydrocarbons 
is enhanced by the use of a co-substrate (Chen & 
Aitken,  1999; García-Rivero & Peralta-Pérez,  2008) 
or terminal electron acceptors (oxygen, nitrogen, 
sulphur) produced by other (micro) organisms 
(McGenity,  2014). Also, the microbial interactions 
allow microorganisms to colonize novel niches as 
illustrated by the inter-kingdom interaction between 
fungi and bacteria (Álvarez-Barragán et al., 2022), in 
which bacteria use the hyphosphere as ‘fungal high-
way’ for dispersal (Álvarez-Barragán et  al.,  2023). 
Understanding the network of processes within mi-
crobial assemblages and the underlying mechanisms 
from which they arise is of paramount importance 
to achieve efficient bioremediation practices for 

oil-polluted sites. It is accepted that trade-offs drive 
microbial assemblages (Østman et al., 2014), particu-
larly niche specialization has been recognized as key 
process in hydrocarbon degradation, each degrada-
tion step being performed by different microbial func-
tional groups (Dalby et al., 2008). The establishment 
of ecotypes, step in niche specialization (Gushgari-
Doyle et  al.,  2022), has been demonstrated by the 
emergence of ecotypes adapted to either hydro-
carbon structure (Kleindienst et  al.,  2015; McKew 
et al., 2007), temperature (Bargiela et al., 2015) or ox-
ygen conditions (Terrisse et al., 2017). The genomic 
evolution conducting to niche specialization involves 
several adaptation mechanisms such as switch of 
integron gene cassettes (Abella et al.,  2015; Huang 
et  al.,  2009) and horizontal gene transfer (Shahi 
et al., 2017); mechanisms that have been proposed to 
spread key degradation genes to harness microbial 
communities for hydrocarbon degradation in a syn-
thetic biology approach (French et al., 2020).

In recent years, the concept of synthetic biol-
ogy has been extended to microbial community 
(Borchert et al., 2021; De Roy et al., 2014) and even 
to the ecosystem (Hammond et  al.,  2023). The de-
sign of engineered microbial community, crucial 
step in the synthetic biology approaches, relies on 
microbial ecology principles and rules governing mi-
crobial assemblage processes such as community 
coalescence, habitat filtering, taxa replacement and 
turnover, and priority effects (Bernstein,  2019) for 
improving not only the biodegradation capacity but 
also favouring the colonization (Rocca et  al.,  2021; 
Ruan et  al.,  2024). Several strategies have been 
proposed to design synthetic microbial communities 
(SynComs) either by enrichment techniques result-
ing in simplified communities, defined as top-down 
approaches, or reconstruction of microbial consortia 
by assembling bacterial strains, known as bottom-up 
approaches (Bernstein,  2019; De Roy et  al.,  2014; 
Hu et  al.,  2022). Anent the top-down approach, the 
current momentum for obtaining engineered micro-
biomes owning the desired functions can implement 
successive sub-culturing under defined conditions (Li 
et  al.,  2023) applying as well high-throughput tech-
niques (Duran et al., 2022), or artificial selection ap-
plying sequential breeding (Swenson et al., 2000), or 
directed evolution subjecting community to perturba-
tion cycles (Sánchez et al., 2021). The construction of 
SynComs, synthetic microbial assemblages, follow-
ing a bottom-up approach combines isolated micro-
organisms, genetically modified or not. The current 
efforts to build SynComs are based on the metabolic 
division of labour (MDOL) concept, the different steps 
of a metabolic pathway being performed by distinct 
populations in order to reduce the burden for each 
population (Tsoi et al., 2018). The design of SynComs 
also consider functional traits and potential niche 
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occupancy (Jing et al., 2024), ecological coexistence 
(Chen et al., 2023), as well as microbial species in-
teractions within the microbiome and outside the mi-
crobiome with organisms in its environment (Leggieri 
et al., 2021), that will benefit hydrocarbon bioremedi-
ation treatments. In order to direct the construction of 
microbial consortia, guide their transfer into the envi-
ronment and anticipate their effects once released, 
SynComs draws largely on the recent developments 
of powerful computational genomic analyses (Jing 
et al., 2024), mathematical models (Tsoi et al., 2018), 
machine learning (Ghannam & Techtmann,  2021), 
and artificial intelligence (Patowary et  al.,  2023). 
The engineered microbial consortia have not only 
promising potential for developing technologies to re-
claim hydrocarbon-contaminated ecosystems (Yang 
et  al.,  2021), but they have also been proposed as 
tool for microbiome rescue to restore ecological sta-
bility in damaged ecosystems (de Lorenzo,  2018; 
Shade,  2023). Several stratagems and formulations 
have been proposed to deliver microorganisms and 
microbial consortia into contaminated sites to en-
sure their colonization and maintenance overcom-
ing colonization resistance (Das & Chandran, 2011), 
which have been conceptualized as ‘Environmental 
Galenics’ (de Lorenzo,  2022). Most of them involve 
(bio)surfactants, foams, encapsulation, and immo-
bilization of cells using supports such as biochar or 
nanoparticles (Mrozik & Piotrowska-Seget,  2010; 
Patowary et  al.,  2023). Even, engineered horizon-
tal gene transfer has been proposed especially 
for the treatment of large contaminated areas (de 
Lorenzo, 2022). Albeit the progress made in building 
artificial microbial communities, whether synthetic 
or not, to improve both degradation and colonization 
capacities for efficient bioremediation, some techni-
cal hurdles still need to be overcome to achieve ef-
fective bioremediation. Particularly, it is still required 
to improve the stability of microbial community by 
strengthening microbial interactions (Xu & Yu, 2021), 
as well as establish rules for a safe introduction of en-
gineered microorganism into the environment (Wang 
& Zhang, 2019). The most glaring shortcoming is the 
lack of effective control of the artificial microbial com-
munities in time, space, and composition for which 
promising strategies have been proposed relying, 
respectively, on signalling and adhesive systems, 
and symbiotic relationships (Grandel et  al.,  2021). 
Likewise, although it has been suggested that gene 
spread via horizontal transfer is self-limited until fit-
ness advantages over selection pressure persist (de 
Lorenzo, 2010), control systems should also consider 
the resilience of the local microbial community with 
respect to ecosystem biogeochemical cycling func-
tions (French et al., 2020).

The evaluation of the performance of the bioreme-
diation treatment requires robust monitoring methods 

to determine the efficiency of hydrocarbon degrada-
tion and removal, the effectiveness in reducing the 
toxicity, as well as the innocuousness of the applied 
technologies for human health and the environment. 
Thus, it is not enough to just assess hydrocarbon con-
tent in the contaminated environment by analytical 
chemistry methods but the monitoring toolbox must 
also include a battery of (eco)-toxicity tests in order 
to appraise the ecological status (Schuijt et al., 2021). 
In the recent years, the development of microbial bio-
markers for reporting the ecological status has gained 
momentum leading to the elaboration of microbial 
indexes such as microgAMBI (Aylagas et al., 2017), 
which adds the panoply of test. However, holistic 
approaches in line with the ‘One Health’ concept 
are recommended (Burke et al., 2017) for a compre-
hensive evaluation of the treatments' performances. 
In a world driven by economics, the implementation 
of bioremediation treatment for the rehabilitation of 
hydrocarbon-contaminated sites, like any damaged 
site whatever the cause, must include collaboration 
with socio-economic players within translational ecol-
ogy framework (Enquist et  al.,  2017) and promote 
circular economy (Jagaba et al., 2022). The develop-
ment of such initiatives will clearly demonstrate the 
financial benefits generated by taking care of envi-
ronmental health, thus paving the way for the upturn 
of environmental engineering harnessing the Earth 
hydrocarbon-degrading microbiome for reclaiming 
hydrocarbon-contaminated sites.
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