Supplementary information

X-ray micro-computed tomography-based approach to estimate the upper limit of natural H_2 generation by Fe^{2+} oxidation in the intracratonic lithologies

Kanchana Kularatne^{a,b*}, Pascale Sénéchal^b, Valentine Combaudon^{a,b,d}, Othmane Darouich^b, Maria Angels Subirana^e, Arnaud Proietti^f, Caroline Delhaye^g, Dirk Schaumlöffel^e, Olivier Sissmann^c, Eric Deville^c, Hannelore Derluyn^a

^aUniversite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LFCR, Pau, France

^bUniversite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, DMEX, Pau, France

°IFP Energies Nouvelles, 1- 4 Avenue du Bois Préau, 92852 Rueil-Malmaison, France

^dDepartment of Geological Sciences, University of Colorado, Boulder, CO 80309, USA

^eUniversité de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, PAU, France ^fCentre de Microcaractérisation Raimond Castaing, 3 Rue Caroline Aigle, 31400 Toulouse, France

^gUniversité Bordeaux 1, Institut des Sciences Moléculaires (ISM) UMR 5255, 351 Cours de la libération, 33405 Talence Cedex, France

*corresponding author: kanchana.kularatne@univ-pau.fr

Contents

#	Supplementary information	Page
SI.1	XRD powder analysis of the monzo-diorite sample	2
SI.2	Parameters us ed for calculation of LAC's	
SI.3	SEM EDS element distribution of Na, K, Fe, Ti, Ca, and Mg	2
SI.4	Micro-Raman analysis: locations of point analysis and spectra	3
SI.5	Histogram of grey values	4
SI.6	Phase segmentation in large samples	4
SI.7	SEM BSE images of veins	6
SI.8	NanoSIMS analysis on the fractures within fayalite	7
SI.9	NanoSIMS analysis on the fractures within feldspar	7
SI.10	Chemical formulae, molar masses and densities of minerals	8
SI.11	Theoretical linear attenuation coefficients (LACs) of the minerals appearing in Eq.2 to 15 as a	8
	function of X-ray energy	

SI. 1. XRD powder analysis of the monzo-diorite sample

SI.2. Parameters used for calculation of LAC's

Mineral	General formula*	Formula used in material creator	Molar mass (g/mol)	Density (g/cm3)*
Olivine	Mg,FeSiO4		153.31	3.30
Serpentine (crysoltite)	Mg3Si2O5(OH)4		277.11	2.59
Brucite	Mg(OH)2		58.32	2.37
Magnetite	Fe3O4		231.54	5.15
Pyroxene (ferrosilite)	FeMgSi2O6		232.32	3.95
Fayalite	Fe2SiO4		203.78	4.39
Siderite	FeCO3		115.86	3,87
Hematite	Fe2O3		159.69	5.30
Pyrite	FeS2		119.98	5.01
Biotite	K(Mg,Fe)3[AlSi3O10(OH,F)2	KMg1Fe2AlSi3O10OHF	433.53	3.10
Arfvedsonite	NaNa2(Fe)5Si8O22(OH)2	NaNa2Fe5Si8O22O2H2	958.89	3.45
Aegirine	NaFeSi2O6		231.00	3.52
Goethite	FeO(OH)		88.85	4.27
Chlorite (chamosite)	(Fe,Mg)5Al(Si3Al)O10(OH,O)8	Fe5AlSi3AlO10O8H8	664.18	3.13
Amphibole(Fe- pargasite)	NaCa2(Fe4Al)(Si6Al2)022(OH)2	KCa2Fe4AlSi6Al2O22O2H2	961.99	3.13
Ilmanite (Fe-Oxide)	FeTiO3		151.73	4.79
Orthoclase	KAlSi3O8		278.33	2.55
Plagioclase	(Na,Ca)(Si,Al)4O8		270.77	2.69

*mineral densities obtained from webminerals

SI.3. SEM EDS element distribution of Na, K, Fe, Ti, Ca, and Mg

SI.4. Micro-Raman analysis: locations of point analysis and spectra

SI.5. Histogram of grey values

Figure below shows the histogram of grey values corresponding to the 2D micro-CT slice shown in Fig.3b. The first peak represents the grey value of the background (grey value=0), then approximately 5-6 peaks can be identified which correspond to phases present in the sample.

SI.6. Phase segmentation in large samples

A summary of micro-CT analysis performed on five gabbro samples are given in the table below. The sample K2_d8-a (top) is the one used to develop the workflow given in Fig.1. The four other samples are larger samples with volumes varying between 511.92 mm3 – 18756.39 mm3. These samples were imaged at higher voxel sizes up to 30 μ m. The aim was to segment two phases (1) feldspar (2) mineral clusters as a whole. Here we report the volume of whole sample (V_(Sample)), volume of feldspar (V_(Feldspar)) and the volume of mineral cluster (pyroxene+fayalite+amphibole+oxides) (V_(Cluster)). Then for each sample, we obtained the percentage volume of mineral cluster and feldspar are coherent in the samples with larger volumes compared to the K2_d8-a (top). Using these data, we calculated the average volume % of mineral cluster (18.50 vol.%) and the average volume % of feldspar (81.50 vol.%). As we already know the volume percentages of individual minerals in a cluster from the analysis of the K2_d8-a (top) sample, we could upscale it to the larger sample volume with 18.5 vol.% clusters and 81.5 vol.% of feldspar, as given in table SI.2.2.

	K2_d8-a (top)	K2_d8-b	K2_d8 (full core)	K2_d20	K2_block	Average
		(global)				
Scanner	TESCAN	TESCAN	BRUKER	TESCAN	TESCAN	-
Energy	60 kV	60 kV	70 kV	160 kV	140 kV	-
Voxel size (µm)	3.5	3.5	6	10	30	-
V _(Sample) (mm ³)	217.5	511.92	944.62	3254.94	18756.39	-
V _(Feldspar) (mm ³)	193.71	412.83	777.19	2696.74	15052.46	-
V _(Cluster) (mm ³)	23.79	99.09	167.43	558.2	3703.93	-
Cluster vol.%	10.94	19.36	17.72	17.15	19.75	18.50
Feldspar vol.%	89.06	80.64	82.28	82.85	80.25	81.50

Table. SI.2.1. Summary of micro-CT analysis on the five samples and volumes of phases obtained

Table. SI.2.2. Recalculated mineral vol.% for the sample with average volume (18.50 vol.% of clusters and 81.50 vol.% of feldspar)

		K2d8-a (top)	
	Vol.% minerals	Vol.% minerals	±uncertainty
	within a cluster	within the full sample	-
Feldspar	-	81.50	1.26
Amphibole	28.72	5.31	0.36
Pyroxene	61.53	11.38	0.77
Fayalite	7.02	1.30	0.09
oxides	2.73	0.50	0.03
	100	100	

SI.7. SEM BSE images of fractures

SEM BSE image showing fractures in a fayalite grain. FIJI software was used to measure the thickness of the fractures. The thickest fractures are marked on the figure (numbered 1-9) and their thicknesses are given in μ m. The last column (Length) in the adjacent table gives the thicknesses of randomly measured fractures in mm. The average thickness of fractures within fayalite is taken as 18 μ m.

SEM BSE image showing fractures in a feldspar. The last column of table shows the thicknesses of the fractures in mm. The avrage thickness of fractures within feldspar was taken to be $5 \,\mu$ m.

Some of the randomly measured thickness of fractures in feldspar

File Edit Fort Results					
File	Area	Min	Max	Angle	Length
1	6.571E-6	65	88.215	-101.310	0.004
2	6.571E-6	77	85.281	-50.711	0.004
3	5.257E-6	72	89.000	-94.764	0.003
4	5.257E-6	77.125	95.417	-94.764	0.003
5	6.571E-6	77.625	100.609	-90.000	0.005
6	6.571E-6	83.250	102.250	-90.000	0.004
7	5.257E-6	68.611	80.167	-127.569	0.003
8	1.314E-5	70.667	118.840	-116.565	0.010
9	1.183E-5	73.917	114.667	-115.463	0.009
10	7.886E-6	75.500	110.545	-127.405	0.006
11	6.571E-6	64.438	83.562	-130.815	0.004
12	5.257E-6	59.181	76.457	-135.000	0.004
13	6.571E-6	69.833	97.611	0.000	0.005
14	6.571E-6	83.000	107.875	45.000	0.004
15	6.571E-6	67.500	94.840	-78.024	0.005
16	9.200E-6	65.000	117.703	-87.510	0.007
17	6.571E-6	70.250	104.500	-137.490	0.005
18	1.183E-5	71.833	123.729	13.173	0.009
19	6.571E-6	69.000	84.750	0.000	0.004
20	1.051E-5	82.562	124.750	0.000	0.008
21	7.886E-6	83.222	111.573	-88.210	0.006
22	1.446E-5	81.000	123.611	-60.751	0.011
23	6.571E-6	76.750	95.062	-90.000	0.004
24	6.571E-6	73.750	93.771	-98.130	0.004

SI.8. Fractured fayalite grain showing the exact location of nanoSIMS analysis

SEM BSE images of the polished sample

Microscopy image showing spots of nanoSIMS analysis. The yellow square shows the exact spot of the element maps shown in Fig.3c.

SI.9. Fractured feldspar in the sample showing the exact location of nanoSIMS analysis

SEM BSE images of the polished sample

Microscopy image showing spots of nanoSIMS analysis. The yellow square shows the exact spot of the element maps shown in Fig.3f.

Mineral	Chemical formula	Molar mass (gmol ⁻¹)	Density (gcm ⁻³)
Plagioclase	$Na_{0.8}Al_{0.2}Ca_{0.2}Si_{2.8}O_8$	238.44	2.62
Orthoclase	$K_{0.8}Na_{0.2}AlSi_3O_8$	275.11	2.56
Pyroxene	$FeCa_{0.7}Mg_{0.3}Si_2O_6$	631.40	3.95
Amphibole	$Fe_{3.5}Al_{1.9}Ca_{1.7}Mg_{1.1}Na_{0.4}K_{0.2}Si_6O_{22}$	879.11	3.17
Fayalite	Fe ₂ SiO ₄	203.77	4.39
Oxides	*FeTiO ₃	151.71	5.20
Serpentine	$*Fe_3Si_2O_5$	371.7	3.35
Chlorite	$^{*}Mg_{5}Al(AlSi_{3}O_{10})(OH)_{8}$	555.80	2.60

SI. 10. Chemical formulae, molar masses and densities of minerals present in monzo-diorite from Kansas, USA

*Generalized formulae

SI.11. Theoretical linear attenuation coefficients (LACs) of the minerals appearing in Eq.2 to 15 as a function of X-ray energy