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b Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France   
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• Metal content shapes microbial func-
tions in Sepetiba Bay sediment. 

• TOC and metals drive the energetic 
metabolisms. 

• Potential of CH4 emission thrives in 
high; that of depletion in low-polluted 
zones. 

• Nitrification potential, N2O emission, 
prevails in oxic low polluted area. 

• SB greenhouse gas emission potential 
alerts for mitigation strategy 
development.  
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A B S T R A C T   

Although benthic microbial community offers crucial insights into ecosystem services, they are underestimated 
for coastal sediment monitoring. Sepetiba Bay (SB) in Rio de Janeiro, Brazil, holds long-term metal pollution. 
Currently, SB pollution is majorly driven by domestic effluents discharge. Here, functional prediction analysis 
inferred from 16S rRNA gene metabarcoding data reveals the energy metabolism profiles of benthic microbial 
assemblages along the metal pollution gradient. Methanogenesis, denitrification, and N2 fixation emerge as 
dominant pathways in the eutrophic/polluted internal sector (Spearman; p < 0.05). These metabolisms act in the 
natural attenuation of sedimentary pollutants. The methane (CH4) emission (mcr genes) potential was found 
more abundant in the internal sector, while the external sector exhibited higher CH4 consumption (pmo + mmo 
genes) potential. Methanofastidiosales and Exiguobacterium, possibly involved in CH4 emission and associated with 
CH4 consumers respectively, are the main taxa detected in SB. Furthermore, SB exhibits higher nitrous oxide 
(N2O) emission potential since the norB/C gene proportions surpass nosZ up to 4 times. Blastopirellula was 
identified as the main responsible for N2O emissions. This study reveals fundamental contributions of the pro-
karyotic community to functions involved in greenhouse gas emissions, unveiling their possible use as sentinels 
for ecosystem monitoring.  
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1. Introduction 

Coastal areas, which account for 20 % of the world's land surface (Shi 
and Singh, 2003) are home of approximately 40 % of the world's pop-
ulation. They thus concentrate major human activities (World Resources 
Institute, 2000) that generate various chemical pollutions threathening 
the environment (Carvalho et al., 2021; Moreira et al., 2021, 2022; 
Ramsar Convention Secretariat, 2016), ultimately impacting the Earth 
system (Persson et al., 2022; Steffen et al., 2015). Therefore, they 
require special attention in order to mitigate the effect of pollutants. 

Governmental regulations for monitoring coastal zones focus pri-
marily on quantifying eutrophication and pollutant contents (CONAMA, 
2012; WFD, 2000). Curiously, they pay little attention to changes in the 
structure and functioning of benthic microbial communities, which can 
nevertheless signal the harmful effects of pollutants (Bourhane et al., 
2022; Moreira et al., 2023; Seidel et al., 2021). Indeed, benthic micro-
bial communities, which plays a crucial role in biogeochemical cycles, 
are at the basis of the trophic web (Caruso et al., 2015). Thus, disrup-
tions in benthic microbial communities are transmitted along the food 
web impacting higher trophic levels through the so called bottom-up 
effect (Begon et al., 2005). Additionally, they respond rapidly to envi-
ronmental changes thanks to their metabolic versatility and their 
exceptional adaptation capacity by the acquisition of genes conferring 
tolerance/resistance to diverse pollutants such as metals and antibiotics 
via lateral gene transfer (Dick, 2018; Flemming and Wingender, 2010; 
Harrison et al., 2007; Moreira et al., 2022). For example, anaerobic 
microbial taxa have been found predominant in chronically metal- 
polluted coastal sediments indicating the lack of oxygen (Li et al., 
2019; Moreira et al., 2023). As consequence of oxygen depletion, fish-
eries resources can be affected (Cheung et al., 2018) and greenhouse gas 
emissions increased (Ayangbenro et al., 2018; Coclet et al., 2021; 
Tamburini et al., 2020; Wang et al., 2022a, 2022b, 2022c). Therefore, 
microbial communities have a real potential to serve as indicators for 
reporting environmental quality (Bourhane et al., 2022; Moreira et al., 
2022, 2023). Interestingly, the modification of microbial communities 
functioning in response to the presence of pollutants can be assessed by 
targetting the expression of functional genes. In this way the expression 
of nor (denitrification) and mcr (methanogenesis) genes has been re-
ported to increase in polluted sediments (Falk et al., 2019; Li et al., 
2019), indicating that pollution leads to increase the greenhouse gases 
emission, specifically nitrous oxide (N2O) and methane (CH4). Thus, 
accessing microbial functions will provide valuable information on not 
only the direct impact of pollution to microbial community but also the 
consequences at global scale. 

Sepetiba Bay (SB; Rio de Janeiro - Brazil) stands as an illustrative 
case of a coastal region impacted by over half a century by chronic metal 
pollution due to historical mining activities (Carvalho et al., 2021, 2022; 
Lacerda and Molisani, 2006; Moreira et al., 2022). Currently, metallic 
contaminants enter the bay through diverse activities including harbor, 
industrial, tourism, and domestic waste discharge. The latter is a pre-
dominant source, flowing into the bay's main tributaries covering a 
population of over 8 million inhabitants (IBGE, 2011; Moreira et al., 
2021). Prior studies in SB revealed the prevalence of anaerobic pro-
karyotic taxa (Thermodesulfovibrionia, Methanomicrobia, Anaeroli-
neae, Gammaproteobacteria, and Thermoplasmata classes) in the sites 
receiving the most important loads of pollutants from the surroundings, 
which exhibited strong correlation (p < 0.05) with metallic contami-
nation (Moreira et al., 2022, 2023). The presence of such prokaryotic 
taxa with anaerobic metabolisms suggests greenhouse gas emissions 
(Moreira et al., 2023). Whith climate change forcasts predicting an 
intensification of tropical rainfall (Rabalais et al., 2009; Seidel et al., 
2021), the current SB eutrophication and pollution (Carvalho et al., 
2022; Moreira et al., 2021) is likely to increase. Thus, it is of paramount 
importance to early detect the disturbance in order to implement miti-
gation strategies. Particularly, it is essential to understand the ecological 
role played by the microbial community and how biogeochemical 

processes are affected by pollutants (Coclet et al., 2021; Hur and Park, 
2019; Ortiz-Estrada et al., 2018; Su et al., 2020). Predictive tools, based 
on 16S rRNA gene metabarcoding, have provided valuable insights into 
prokaryotic functions in coastal sediments (Bourhane et al., 2022, 2023; 
Moreira et al., 2022; Raiyani and Singh, 2023; Rajeev et al., 2021), and 
assessed the greenhouse gas emission potentials (Li et al., 2020a; 
Wemheuer et al., 2020). They can provide reliable data for bio-
monitoring consistent with enzymatic activity (Su et al., 2018; Wang 
et al., 2022b; Wang et al., 2023) in order to propose countermeasures for 
the mitigation of pollutant effects and limit greenhouse gas emissions. 
We hypothesize that understanding the benthic microbial community 
functions stake in response to pollutant at SB would provide new in-
formation on the factors responsible for greenhouse gas emissions. To 
this aim, the main energy metabolisms prevailing at the SB polluted sites 
were predicted in silico from 16S rRNA metabarcoding data in order to 
determine the microbial taxa potentially associated with greenhouse gas 
emissions. 

2. Materials and methods 

2.1. Study area 

Sepetiba Bay (Rio de Janeiro, Brazil – Fig. 1) is one of the most 
impacted bays in the region in terms of human activities (Barroso et al., 
2022; Carvalho et al., 2022; Moreira et al., 2021). Spanning an area of 
approximately 419–447 km2, which varies with the tidal cycle, the bay 
exhibits an average depth of 6 m, a volumetric capacity of approxi-
mately 2.56 × 109 m3, and a water renewal time of approximately 6 days 
(Barcellos et al., 1997; Molisani et al., 2004, 2006). 

Since the 1950s, Sepetiba Bay (SB) has been subjected to persistent 
metal contamination, primarily resulting from the extraction of zinc 
(Zn) and cadmium (Cd) from calamine ore. This operation ceased in the 
1990s, leaving an environmental liability that impacts the ecosystem 
until nowadays (Kütter et al., 2021). 

In addition to the long-term contamination, the current state of the 
bay is heavily influenced by industrial, tourism, and harbor activities. 
Besides, the urban expansion that surrounds the bay contributes to 
eutrophication and pollutant loads from the release of untreated sewage 
(Barroso et al., 2022) and effluents discharged into the tributary rivers, 
particularly impacting the stations situated in the internal sector. 
Conversely, the stations in the external sector experience comparatively 
moderate pollution levels due to reduced population density and the 
mitigating influence of ocean currents (Carvalho et al., 2022; Moreira 
et al., 2021). 

2.2. Sampling 

A total of 26 sediment samples (Fig. 1) were collected from Sepetiba 
Bay using a stainless steel Van Veen sampler. The sample stations were 
located along the coastline, striving to catch the influence of continental 
drainage and the contaminant gradient. Internal (eastern portion – SB01 
to SB12) and external (western portion – SB13 to SB26) sectors are 
characterized by increased and reduced anthropogenic pressure, 
respectively (Moreira et al., 2021). 

At each station, a single sample was collected using a pre- 
decontaminated (10 % HCl) plastic spatula. For molecular analysis, 
sediment aliquots were stored in sterile Whirl-Pak® bags and kept cool 
until arrival at the laboratory, where they were frozen at -20 ◦C until 
DNA extraction. Sediment aliquots for Total Organic Carbon (TOC), fine- 
grain (silt + clay content), and metals quantification were stored in 
Ziplock bags and kept cool until arrival at the laboratory. 

2.3. Environmental variables quantification 

2.3.1. Fine-grain and total organic carbon (TOC) content 
For a more detailed description of the pre-treatment of samples and 
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the methodology employed for the quantification of the environmental 
parameters presented in this study, consult Moreira et al. (2021). Briefly, 
the fine-grain content was determined using a laser particle analyzer 
(CILAS Shimadzu 1064) after removing organic matter and carbonate 
through calcination (Heiri et al., 2001). The fine-grain content is re-
ported as the % of silt and clay content (<63 μm). Total organic carbon 
(TOC) quantification was conducted using an elemental analyzer (Flash 
EA1112, Thermo Electron Corporation, Milan, Italy) following the 
NCEA-C-1282 method (U.S. EPA, 2002). The environmental descriptors 
chosen and the methods adopted in this study align with the guidelines 
outlined in the Brazilian legislation for monitoring dredged coastal 
sediments (CONAMA, 2012). 

2.3.2. Metal quantification, contamination factor (CF), and degree of 
contamination (ΣCF) 

Aliquots of dry and homogenized sediment samples were subjected 
to microwave-assisted acid digestion (aqua regia – method US EPA 
3051A; US EPA, 2007) to extract the seven priority toxic metals (Hg, Cd, 
As, Pb, Cr, Cu, and Zn), according to the Brazilian legislation responsible 
for monitoring dredged coastal sediments (CONAMA, 2012). The metal 
quantification was carried out using ICP-MS (Agilent Technologies - 
7900). Further details regarding the detection limit, certified reference 
materials, and metal recovery percentages are available in Moreira et al. 
(2021). 

For assessing the potential for anthropogenic pollution in Sepetiba 
Bay sediments, the contamination factors (CF = C/C0) were determined 
for each sample station based on the metal quantification results. Here, C 
represents the metal concentration (mg⋅kg− 1) in the sediment sample, 
while C0 denotes the metal background concentration (mg⋅kg− 1). The 
ambient background (Gałuszka, 2007) was set using metal concentra-
tions from the current oceanic disposal area for dredged sediments 
(Dump area - Fig. 1). Station SB26, which was formerly used as the 
disposal area for dredged sediments in Sepetiba Bay, was included as a 
control. The overall degree of contamination (ΣCF) reflects the cumu-
lative sum of the contamination factors for all seven metals quantified at 
a sample station. 

2.4. DNA extraction, PCR amplification, and sequencing 

For the environmental DNA extraction, aliquots of 0.25–0.40 g of wet 
sediment were used following the DNeasy® PowerSoil® Kit (QIAGEN) 
protocol. Primers 515F (Parada et al., 2016) and 928R (Wang and Qian, 
2009) were employed to target the amplification of the V4-V5 region of 
the 16S rRNA gene. The PCR amplification was performed using the 
Eppendorf 5333 Mastercycler Thermal Cycler (Germany). The quality 
and size of the amplified DNA sequences were checked by electropho-
resis visualized under UV light as previously described (Moreira et al., 
2022). 

The sequencing analysis using Illumina MiSeq technology was per-
formed by the NED team (UMR1388 GenPhySE) and the GeT core fa-
cility (Toulouse, France). The complete protocol is displayed at https 
://sites.google.com/site/olivierzembwebsite/16s-sequencing. For data 
processing, the QIIME 2 2019.4 pipeline (Caporaso et al., 2010) was 
used, including demultiplexing, denoising (dada2 package), and rar-
efying sequences. Taxonomy assignment at 97 % similarity was con-
ducted by comparing representative amplicon sequence variants (ASV) 
to the SILVA (v. 132) database of known 16S rRNA gene sequences 
(Beccati et al., 2017; Quast et al., 2013). 

The complete dataset was deposited in the NCBI Sequence Read 
Archive (SRA) database with the accession numbers SAMN20003651 to 
SAMN20003676, and it is associated with the BioProject number 
PRJNA743207. 

2.5. Energy metabolism pathways/marker genes prediction 

Tax4Fun2 (Wemheuer et al., 2020) was used to infer the energy 
metabolism pathways and the related marker genes from the 16S rRNA 
gene sequence data. The relative proportions of functional profiles were 
determined by analyzing protein sequences using the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) orthology (KO) database as a 
reference specifically designed for prokaryotes. 

The KOs belonging to nitrogen (N2 fixation, nitrate reduction 
(assimilatory + dissimilatory reductions: NO3 → NH4), complete 

Fig. 1. Location of sampling station in Sepetiba Bay (Rio de Janeiro – Brazil). The stations highlighted in red make up the internal sector (greater anthropic in-
fluence), while those highlighted in blue make up the external sector (greater oceanic influence). 
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nitrification (NH4 → NO3), and denitrification (NO3 → N2)), methane 
(methanogenesis and methanotrophy), and sulfur (SO4 reduction – 
assimilatory + dissimilatory - and S2O3 oxidation) energy metabolisms, 
as well as their main marker genes, were selected for this work, 
following the KEGG reference pathway database (https://www.genome. 
jp/kegg/pathway.html). The relative proportions of KOs belonging to 
the same module in a specific energy metabolism pathway (e.g., KOs 
belonging to the N2 fixation module) were summed and then stan-
dardized using the ranging for variables with an arbitrary zero approach 
(Milligan and Cooper, 1985). 

2.6. Data analysis 

Before statistical analysis, environmental (TOC, fine-grain, metal 
CFs, and ΣCF), microbial community (classes and genera abundances), 
and predicted data (energy metabolisms modules) - were standardized 
using a min-max scaling approach, which transformed the variables to a 
common scale with arbitrary zero points (Milligan and Cooper, 1985). 
Analyzes involving marker genes did not require standardization. 

Statistical analyses, including Spearman correlation, Mann-Whit-
ney's U test, and Permutational Analysis of Variance (perMANOVA – 
‘Vegan’ package; Oksanen et al. (2019)), were conducted using the R 
programming language. 

Principal Component Analysis (PCA) is a robust statistical approach 
used to explore relationships between variables within complex data-
sets. Using the ‘Vegan’ package (Oksanen et al., 2019), PCA was applied 
to investigate the correlation between environmental parameters (TOC, 
fine-grain content, and metal CFs) and predicted energy metabolisms in 
a diverse microbial community inhabiting Sepetiba Bay sediments. 

The ‘pheatmap’ package (Kolde, 2019) was used to build heatmaps 
and cluster correlations between the predicted energy metabolisms/ 
marker genes and the metal CFs/microbial taxa abundance. Spearman's 
correlation was used when the data did not have a normal distribution 
(Shapiro-Wilk test, p < 0.05). 

The Linear discriminant analysis effect size analysis (LEfSe - Segata 
et al. (2011)) was performed to detect indicator energy metabolisms 
according to the SB sector. Briefly, the non-parametric Kruskal-Wallis 
sum-rank test was used to detect predicted energy metabolisms with 
significant differential proportions (p < 0.05). Biological consistency 
was analyzed using the pairwise Wilcoxon test (p < 0.05). An LDA 
threshold score of 2.0 and 1000 bootstrap interactions was applied. 

The ‘VennDiagram’ package (Chenn, 2018) was used to create a 
Venn diagram showing the distribution of the main 39 energy meta-
bolism marker genes according to the SB sectors. 

To establish the relationship between predicted energy metabolisms/ 
marker genes and prokaryotic abundance, co-occurrence networks were 
constructed using the Cytoscape (CoNet app) and visualized with the 
Gephi software. The analysis was performed with Spearman correlation 
and a 0.05 p-value threshold. In the networks, nodes represented (i) 
energy metabolisms and prokaryotic classes (analysis restricted to 150 
edges), and (ii) marker genes and prokaryotic genera (analysis restricted 
to 150 edges). Edges represent highly significant correlations 
(Spearman; p < 0.01), where red edges indicate mutual exclusion and 
green edges indicate a co-occurrence distribution pattern. 

3. Results and discussion 

3.1. Contamination in the Sepetiba Bay sediments 

The SB sediments have accumulated contaminants (mainly metals) 
since the '50s, due to the extraction of Cd and Zn from calamine ore. This 
activity ceased in the 1990s. In addition to the environmental liabilities 
left behind by the mining industry, the bay is currently suffering the 
input of pollutants and urban effluents by the main tributary rivers that 
contribute densely to the internal SB sector (Carvalho et al., 2021; 
Moreira et al., 2021). Previous report revealed that the internal SB sector 

(SB01 to SB12) exhibited significant differences (Spearman; p < 0.05) in 
the fine-grain and total organic carbon (TOC) contents (Moreira et al., 
2021), the silt + clay content being twice to that observed in the external 
SB sector (SB13 to SB26), and TOC triple (Supplementary material - 
Table S1). In addition, the average ΣCF in the internal SB sector repre-
sents 11-fold that of the external SB sector (Spearman; p < 0.05 – Sup-
plementary material - Table S1). These observations align with the 
hydrodynamic clockwise circulation, which favour the deposition and 
accumumation of fine-grain sediments in the SB internal sector (Signo-
rini, 1980), also explaining the higher TOC and contaminant contents 
found in the internal SB sector because they likely bind at the fine-grain 
sediment surface (Förstner and Schoer, 1984; Förstner and Wittmann, 
1981). In contrast, the strong influence of oceanic circulation, the 
reduced number of tributaries, and lower urbanization likely explain 
that the lower metallic contamination level observed at the external SB 
sector (Moreira et al., 2021). According to the Brazilian legislation 
(CONAMA, 2012), all the stations located in the external SB sector had a 
ΣCF below L1 level (low adverse effects on biota) while nine stations 
located in the internal SB sector exhibit ΣCF over L1, and two other 
stations exceed the L2 (high adverse effects on biota) level (Supple-
mentary material - Table S1). These results underscore the alarming 
extent of metallic contamination in the internal sector, posing potential 
risks to the biota. 

3.2. Distribution of predicted energy metabolic functions in Sepetiba Bay 

The Tax4Fun2 prediction, based on 16S rRNA gene sequence data in 
which the unused sequences was 34 %, generated 8321 predicted 
functional orthologues (KO). Only the KOs belonging to nitrogen (33), 
sulfur (21), and methane (64) energy metabolisms were considered in 
the present study. 

The Principal Component Analysis (PCA) showed that fine-grain 
content, TOC, and contamination factor (CF) of Cr, Hg, Zn, Cd, As, Cu, 
and Pb explain 71.7 % of the distribution of the predicted energy 
metabolic functions in the SB sediments (Fig. 2). Nitrogen (N2) fixation, 
methanogenesis, nitrate (NO3) reduction, thiosulfate (S2O3) oxidation, 
and denitrification were the main predicted energy metabolic functions 
detected in the internal SB sector stations, characterized by highest 
metallic and organic pollution (Carvalho et al., 2021; Moreira et al., 
2021, 2022, 2023). Noteworthy, these energy metabolic functions 
exhibited significant higher relative abundance in the internal SB sector 
(Fig. 3A), further confirmed by their correlation (Spearman correlation, 
p < 0.05) with metal contents (Fig. 3B). Additionally, taxa affiliated with 
the Thermoplasmata, Thermococci, Thermodesulfovibrionia, and 
Dehalococcoidia classes, anaerobic taxa resistant to metallic pollution 
typically found in reduced environments (Ma et al., 2016; Matturro 
et al., 2016; Nuzzo et al., 2017; Tangherlini et al., 2020; Teske, 2009), 
were found dominant in the sediments of the internal SB sector stations 
(Moreira et al., 2022, 2023), reduced environments due to high TOC and 
nutrient inputs. The presence of sulfide producing taxa (Thermode-
sulfovibrionia, Dehalococcoidia, and Thermococci) (Govindarajan et al., 
2022; Lalzar et al., 2023; Löffler et al., 2013) likely generate reduced 
conditions, which are potentially conductive to conditions favouring the 
development of greenhouse gas (GHG) emiting taxa such as Thermo-
plasmata, archeon methanogen (Lin et al., 2011). In the same way, the 
presence of metals favoured denitrification functions (Fig. 2A) consis-
tent with previous reports (Andreote et al., 2012; Liu et al., 2016; Lu 
et al., 2022; Xi et al., 2021), leading to the GHG N2O production, while 
nitrification functions were correlated with the external SB sediments 
(Figs. 2 and 3B). It is thus likely that the conditions observed in the 
sediments of the internal SB sector may favour GHG emissions. In 
contrast, the sediments of the external SB sector have the potential to 
consume methane and other GHGs via the prevalence of methanotrophy 
and nitrification metabolisms, as shown by Tax4Fun2 prediction (Figs. 2 
and 3A), being thus GHG sink. 

In addition, several genera belonging to diazotrophic heterotrophs 
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such as Proteobacteria, Firmicutes, and Spirochetes, shown as respon-
sible for N2 fixation in eutrophic coastal environments (Jabir et al., 
2021) with capacity of pollutant degradation (Bazylinski et al., 2000; 
Ferreira et al., 2018; Odokuma and Inor, 2002), were defined as bio-
indicators of metallic contamination in the internal SB sector stations 
(Moreira et al., 2023). The predicted nitrogen fixation functions showed 
similar correlation patterns with metal contents as methanogenesis 
(Figs. 2 and 3B), suggesting that both metabolisms are closely coupled. 
Such observation is in agreement with previous studies showing the 
diazotroph/methanogen association, nitrogen fixation releasing 
hydrogen that is then consumed by methanogens (López-García et al., 
2017). 

Regarding sulfate reduction, the Tax4Fun2 prediction showed that 
the related genes were evenly distributed in both sectors with however a 
slight higher abundance in the external sector stations (Fig. 3A). Note-
worthy, sulfate-reducing metabolisms were predominant over those of 
methanogenesis in external SB stations (Figs. 2 and 3A), which was 
consistent with a previous study showing that methane emissions were 
reduced in the permanently flooded sediments close to the SB14 and 
SB15 stations (Marinho et al., 2012), which was also observed in flooded 
wetlands (Bourhane et al., 2023). In contrast, methanogenesis outcom-
pete sulfate reduction in the internal SB sector that may be explained by 

the fact that high amounts of labile organic substrates promotes the 
selection of methanogens (Chen et al., 2011) as methanogens compete 
with sulfate-reducing taxa for the same substrate, acetate (Sela-Adler 
et al., 2017). Thus, it is likely that the input of organic matter (e.g. raw 
sewage) is one of the key factors driving methanogenesis at SB. It is also 
important to note that methanogenesis can be favoured by the lower 
salinity prevalent in the internal SB sector stations, due to continental 
freshwater input (Marinho et al., 2012), as well as by syntrophic asso-
ciation with sulfate reducers (Morris et al., 2013). 

The high abundance of predicted genes involved in methanogenesis 
and denitrification indicated the degradation capacities of the microbial 
community in the internal SB sector. Indeed, it has been shown that 
methanogenesis and denitrification are related to natural attenuation 
ability of the benthic microbial community (Li et al., 2019; Zhang et al., 
2015). Methanogens can degrade complex organic compounds present 
in sediments, including hydrocarbons (Zhou et al., 2022), generating 
methane as end product (Shima et al., 2002). Likewise, denitrifying 
bacteria, that use nitrate as electron acceptor, can degrade organic 
matter and oil-derived contaminants (Zhang et al., 2015). Thus, the 
potential degradation processes that may occurs in the sediments of the 
internal SB sector are conductive to the emission of GHG, which is of 
concern at the regional and global scales. The disturbances reported in 

Fig. 2. Distribution of energy metabolism modules in SB sediments. Principal Component Analysis (PCA) shows the distribution of energy metabolism modules 
across Sepetiba Bay (SB) sectors and their correlations with the environmental variables - fine grain content (<63 μm), TOC, and metal CFs. The red triangles 
represent internal sector stations, while those in blue represent external sector stations. 
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the internal SB sector, eutrophication and chemical pollution, are among 
the planetary boundaries that have been transgressed (Persson et al., 
2022; Steffen et al., 2015). The excessive amount of contaminants 
released in coastal ecosystems participate to climate imbalances (Her-
bert-Read et al., 2022). Approximately 5 % of the Brazilian territory 
covers coastal areas (Governo do Estado da Bahia, 2022), where the 
main economic activities are developed (IBGE, 2011), concentrating 30 
% of the Brazilian population. The disturbance of coastal ecosystems, 
due to pollutant imput results in the installation of anaerobic microbial 
metabolism, generating GHG (N2O and CH4) emissions (Chen et al., 
2010). Alas, the situation will be aggravated as surface runoff is ex-
pected to increase as a consequence of intensification of tropical runfall 
anticipated by climate change prediction (Rabalais et al., 2009; Seidel 
et al., 2021). It is thus urgent to implement sanitary countermeasures in 
order to reduce metal and organic inputs because such pollution 
contribute to GHG emission (Coclet et al., 2021; Li et al., 2019) with 
global repercussions (Steffen et al., 2015). 

3.3. Predicted energy metabolic indicators of metallic contamination 

The Linear discriminant analysis Effect Size (LEfSe), performed with 
the eight energy metabolism modules, identified differentially abundant 

metabolisms according to the SB sector (Fig. 4), which can be considered 
as functional indicators (Segata et al., 2011). For the external SB sector, 
methanotrophy, sulfate reduction, and nitrification metabolisms were 
identified as function indicators (Fig. 4). Consistently, these metabo-
lisms were negatively correlated with metal CFs (Fig. 3B). 

For the internal SB sector, thiosulfate oxidation and nitrogen fixation 
were found as metabolism indicators (Fig. 4). This observation was 
supported by the higher abundance of thiosulfate oxidation and N2 
fixation predicted genes in the internal SB sector (Fig. 3A). Noteworthy, 
the abundance of these genes was significantly correlated with metal CFs 
(Spearman; p < 0.05; Fig. 3B), suggesting that metallic pollution select 
such energy metabolisms. Thiosulfate oxidation, universal metabolism 
in the environment (Newsome and Falagán, 2021), has been found 
coupled with denitrification and nitrogen fixation in eutrophic envi-
ronments (Zhang et al., 2024). Nitrogen fixation likely compensate for 
the lack of nitrogen (Li et al., 2022), favouring the development of mi-
crobial taxa involved in the metabolization of environmental pollutants 
(Bazylinski et al., 2000; Ferreira et al., 2018; Odokuma and Inor, 2002; 
Onwurah, 1999). Additionally, thiosulfate oxidation has been shown to 
be involved in metal transformation mechanisms, reducing their 
bioavailability and toxicity (Juyakumar et al., 2022; Nguyen et al., 
2022; Srichandan et al., 2019). 

3.4. Identification of microbial classes linked to the energy metabolisms 
selected by metallic pollution 

The co-occurrence network, correlating the predicted energy me-
tabolisms linked to metal contamination (CFs) with the microbial clas-
ses, identified the microorganisms potentially involved with the 
functions stake in the environment as well as the metabolism coupling 
(Fig. 5). The co-occurrence network, restricted to 150 edges considering 
the extremely significant (Spearman; p < 0.01) interactions, showed 
positive correlations between methanogenesis, N2 fixation, and NO3 
reduction metabolisms (Spearman; p < 0.01 - Fig. 5). Several studies 
have reported biogeochemical cycles coupling in various environments 
(Bae et al., 2018; Dang et al., 2021), particularly in eutrophized coastal 

Fig. 3. Comparison of energy metabolism modules distribution among the different Sepetiba Bay stations. The Heatmap (a) shows the energy metabolism modules' 
relative proportions (%) in different Sepetiba Bay (SB) stations - significant differences between SB sectors are indicated by ‘*’ (Spearman; p < 0.05) and extremely 
significant differences are indicated by ‘**’ (Spearman; p < 0.01). The cluster correlation (b) shows the relationship between the energy metabolism modules and the 
environmental variables - fine grain content (<63 μm), TOC, and metal CFs. 

Fig. 4. Comparison of energy metabolism modules at Sepetiba Bay sectors. 
Linear Discriminant Analysis Effect Size (LEfSe) shows energy metabolism 
modules that have significantly different abundances between Sepetiba Bay 
(SB) sectors. These metabolisms are indicators of the environmental conditions 
of each sector. 
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marine ecosystems (Howarth et al., 2011). The co-occurrence network 
showed the coupling between methanogenesis and N2 fixation (Fig. 5), 
confirming the correlation observed in the internal SB sector (Fig. 3A, 
B). Coupling mechanisms involving methane and nitrogen bio-
geochmical cycles have been described in mangrove ecosystems (Qian 
et al., 2023) and other aquatic environments (Bae et al., 2018). The 
coupling between biogeochemical cycles has been shown dependent not 
only on the microorganisms present but also on the availability of 
electron donors and acceptors, pH and other abiotic factors (Handley 
et al., 2013) as well as the presence of metallic pollutants (Sun et al., 
2020). The network showed that the abundance of methanogenesis, N2 
fixation, and NO3 reduction metabolisms were positively correlated 
(Spearman; p < 0.01 – Fig. 5) with Anaerolineae, Bathyarchaeia, 
Dehalococcoidia, Spirochaetia, Deltaproteobacteria, and Thermode-
sulfovibrionia classes while Thermoplasmata and Deltaproteobacteria 
were correlated with the abundance methanogenic and N2 fixation 
metabolisms (Spearman; p < 0.01; Fig. 5). It is likely that members 
associated to these taxa are involved in mechanisms coupling the energy 
metabolisms. It has been shown that both, Thermoplasmata and Del-
taproteobacteria, have the ability of nitrogen fixation (Bae et al., 2018; 
Jabir et al., 2021; Kapili et al., 2020; Nobu et al., 2016; Staples et al., 
2007). They are key players in biogeochemical cycling in marine sedi-
ments (Li et al., 2019), being engaged in syntrophic interactions. Del-
taproteobacteria releases hydrogen subsequently used by methanogens 
to fuel their metabolism (Compte-Port et al., 2017; Dawson et al., 2015). 
Deltaproteobacteria have been shown to exhibit a compelling obligate 
syntrophy with members of the Firmicutes (López-García et al., 2017), 
phylum also dominant in the internal SB sector (Moreira et al., 2023). 
Thus, interconnected energetic metabolisms interactions between 
Archaea (methanogen) and Bacteria (sulfate-reducers) are likely fav-
oured in the internal SB sector because of the disturbed conditions 

imposed by the human activities. Similar metabolic associations have 
been described in contaminated aquatic environments (Ahmerkamp 
et al., 2020; Hamann et al., 2017). However, further studies are required 
involving functional analysis going beyond predictive approach to 
decipher the mechanism coupling the different energy metabolisms in 
disturbed natural environments. 

3.5. Energy metabolism marker genes under chronic metallic pollution 

The predicted genes for sulfate-reduction, thiosulfate-oxidation, 
methanotrophy, methanogenesis, N2-fixation, nitrification, nitrate- 
reduction, and denitrification metabolisms were identified via the 
KEGG database. Their relative abundance was correlated with envi-
ronmental parameters including metal contaminant factors (CFs), TOC 
and fine grain contents. In total 39 specific gene markers exhibiting 
significant correlations with metal contamination factors were identi-
fied (Fig. 6A), which showed significant difference (perMANOVA; p <
0.001) between the SB sectors. The methanogenesis (mcr) and N2-fixa-
tion (nif) marker genes exhibited high correlation with metallic 
pollutant content (Spearman; p < 0.05 – Fig. 6A), suggesting that the 
metal stress conditions, prevailing in the internal SB sector stations, are 
adequate for the development of microorganisms carrying these genes. 
Interestingly, the three methanogenesis marker genes (mcrA/B/G) were 
exclusively predicted for the internal SB sector (Fig. 6B), further sup-
porting that methanogenesis is the main metabolism in the internal SB 
sector. Additionally, the high correlation of the nifH marker gene for N2- 
fixation, carried by sulfate-reducers (Jabir et al., 2021; Jing et al., 2015), 
with metallic contaminants indicated that they play a crucial role in the 
bioremediation of metal-contaminated sediments as previously sug-
gested (Li et al., 2019). 

In contrast, methanotrophy marker genes (pmo and mmo family 

Fig. 5. Co-occurrence network between the energy metabolism modules that prevail at SB internal sector and prokaryotic classes that inhabit SB sediments. The 
network was inferred from the relative proportions of the five energy metabolism modules that prevail at the SB internal sector – according to Figs. 1 and 2A - and the 
prokaryotic classes identified at SB sediments (Moreira et al., 2023) by applying Spearman correlations (curved lines), p-value threshold 0.05. The positive corre-
lations are indicated in green lines and mutual exclusions in red lines. Nitrogen, methane, and sulfur energy metabolism modules are represented by green, red, and 
orange circles, respectively. 
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genes) were not or were negatively correlated with metal CFs 
(Spearman; p < 0.05). Such observation indicated that methanotrophy 
was favoured at the stations of the less impacted SB sector, which was 
consistent with the PCA and correlation analyses showing that meth-
anotrophy was strongly associated with sulfate-reduction metabolisms 
(Figs. 2 and 3B). The methane-oxidation/sulfate-reduction association 
has been shown as the main balance/consumption mechanism for 
methane emissions in coastal areas (Bhattarai et al., 2019; Weber et al., 
2017). 

The relative abundance of predicted dsrA/B genes (dissimilatory 
sulfate reduction) was positively correlated (Spearman correlation r >
0.75, p < 0.05) with metal content, while the relative abundance of 
predicted sir and cysJ/I genes (assimilatory sulfate reduction) was 
negatively correlated (Spearman correlation r < − 0.75, p < 0.05) with 
metal content (Fig. 6A). Such observation indicated that sulfide pro-
duction potential was detected at the SB, further supporting the 

homogenous distribution of sulfate-reduction metabolism across the two 
SB sectors (Fig. 3A), but via assimilatory sulfate reduction in the low 
metal-contaminated external SB sector, while through dissimilatory 
sulfate reduction in the high metal-contaminated internal SB sector. 
Such observation suggested functional redundancy of sulfate reduction 
in the SB sediments. The dissimilatory sulfate reduction, sulfate used as 
electron acceptor, is predominant in wastewater treatment plants (Li 
et al., 2020b; Rodrigues et al., 2020), organic-contaminated and metal- 
rich ecosystems (Giloteaux et al., 2010; Stauffert et al., 2015; Wu et al., 
2013), while the assimilatory sulfate reduction, incorporation to syn-
thetize sulfure amino-acids, has been described in different environ-
ments (Zheng et al., 2017; Zhu et al., 2018). 

Similarly, the relative abundance of the predicted thiosulfate 
oxidation related genes showed different correlations. Genes of the sox 
complex (soxA/B/X/Y/Z) correlated positively with metal content 
(Spearman r > 0.5, p < 0.05), while the relative abundance of the 

Fig. 6. Specific energy metabolism marker genes selection under SB chronic metal pollution. The correlation heatmap (a) was performed with the relative pro-
portions (%) of specific marker genes belonging to the 8 energy metabolism modules and the environmental variables considered in this study - fine grain content 
(<63 μm), TOC, and metal CFs. The heatmap shows Spearman correlations, with significant correlations (r < − 0.39 or r > 0.39 and p < 0.05) underscored with ‘*’. 
The Venn diagram (b) shows the shared and exclusive marker genes between either SB sector. The bar plot (c) shows the mcr and pmo + mmo marker genes 
(methanogenesis and methanotrophy, respectively) and their relative proportions (%) across SB sectors. While, the bar plot (d) shows the norB, norC, and nosZ marker 
genes (denitrification) and their relative proportions (%) across SB sectors. 
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predicted soxC and soxD genes, encoding SoxCD protein involved in the 
last oxidation step (Ghosh and Dam, 2009), was negatively correlated 
(Spearman r < − 0.5, p < 0.05) with metal content (Fig. 6A). It is likely 
that microorganisms inhabiting the high metal-contaminated internal 
SB sector are lacking this final step. The sulfur atom probably enter 
another pathways or serve as sulfur storage (Ghosh and Dam, 2009). It is 
important to note that sulfide oxidation can also be performed through 
reverse dissimilatory sulfate reduction (Wu et al., 2021), which has been 
found correlated with metal content (Fig. 6A). 

Regarding denitrification, the relative abundance of the predicted 
norC gene was positively correlated (Spearman r > 0.4, p < 0.05) with 
metal content, while that of the predicted norB gene was negatively 
correlated with metal (Spearman − 0.3 > r > − 0.5, p < 0.05) content 
(Fig. 6). Such observation showed once again the functional redundancy 
at SB. The reduction of nitric oxide (NO) to nitrous oxide (N2O) is likely 
performed by distinct microorganisms (Borrero-de Acuña et al., 2016), 
with norC gene-carrying microorganisms being active in the metal- 
contaminated internal SB sector. These microorganisms are cnorB de-
nitrifiers performing the NO reduction by the cytochrome NorBC 
reductase (Yang et al., 2024). Although norB genes have been found 
correlatd with metallic contaminants in estuarine sediments (Wang 
et al., 2022a, 2022b, 2022c), so far the distribution of cnorB denitrifiers 
according to the presence of pollutants has not been reported to be 
different to that of qnorB denitrifiers (quinol-oxidizing type nitric oxide 
reductase) carrying only a norB gene (Yang et al., 2024). Thus, further 
analysis are required in order to determine the impact of pollution on 
the distribution of the different type of NO reducers. Interestingly, the 
relative abundance of predicted nosZ gene was positively correlated 
(Spearman r > 0.4, p < 0.05) with metals, which was in agreement with 
a previous report showing the correlation with arsenic (Wang et al., 
2022a, 2022b, 2022c). 

The observed differences in the relative abundances of predicted 
genes according to the environmental conditions (Fig. 6A) rely probably 
on their evolution history. Evolutionary mechanisms involving muta-
tions, duplications, and vertical and horizontal gene transfers result in 
orthologous genes (Adam et al., 2022; Bolhuis et al., 2010; Staples et al., 
2007; Wang et al., 2021), conducting to the diversification and adap-
tation of organisms in a wide range of environmental conditions (Har-
rison et al., 2007). Therefore, the identified energy metabolism marker 
genes according to metal CFs can also trace the adaptation trajectory 
that has led to the ability to withstand different types of pollution. 

Because Tax4Fun2, as any predictive analysis, has inherent limita-
tions, particularly considering that some functional genes are species 
specific (Breitkreuz et al., 2021), further analyses are required to 
establish the functional gene inventory by shotgun sequencing or by 
monitoring specifically the abundance or expression of the functional 
genes by qPCR. Ideally, a study combining molecular approaches tar-
geting specifically the functional genes with geochemical analysis 
measuring GHG fluxes would provide a comprehensive picture of the 
microbial processes stake in SB. 

3.6. Potential methane and nitrous oxide emissions at Sepetiba Bay 

Although predictive, our study provide useful information on the 
presence of potential functional genes involved in GHG emissions, 
laying the foundations and hypotheses for the orientation of future 
research. In order to draw the potential balance of GHG emissions, we 
considered the relative abundance of the following genes: (i) mcrA/B 
(methyl-coenzyme M reductase) catalyzing the formation of methane; 
(ii) mmo/pmo (methane monooxygenase) consuming methane by 
transforming it into methanol; (iii) norB/C (nitric oxide reductase) 
catalyzing the formation of nitrous oxide from nitric oxide; and (iv) nosZ 
(nitrous oxide reductase) consuming nitrous oxide by transforming it 
into N2. These genes showed significant different relative abundance 
(perMANOVA, p < 0.05) between the SB sectors. 

Regarding methane emission, only the pmo/mmo genes ensuring 

methanotrophy were predicted in the external SB sector. Such obser-
vation indicated that the external SB sector is probably a methane sink 
where even if methane is produced it is likely consumed by methano-
trophs. The aerobic methane oxidation is an important methane con-
sumption in aquatic ecosystems (Hanson and Hanson, 1996) under oxic 
conditions, as those prevaling at the external SB sector due to the 
oceanic influence. In contrast, the relative abundance of the predicted 
pmo/mmo genes was two times lower than that of the predicted mcr 
(methanogenesis) genes in the internal SB sector (Fig. 6C). Even if 
methane consumption under anaerobic conditions can occurs through 
methanotrophs/sulfate-reducers association with reverse methano-
genesis (Bhattarai et al., 2019; Weber et al., 2017), such observation 
suggested that the metal-contaminated internal SB sector acts as 
methane emission as shown in previous studies (Barroso et al., 2022; 
Marinho et al., 2012). The methane production is attributed to organic 
matter loads entering the internal SB sector through the many rivers that 
flow into SB (Carvalho et al., 2021). 

Regarding nitrous oxide (N2O) emission, the microbial community 
inhabiting SB sediments demonstrated potential N2O emission because 
the relative abundance of the predicted norB + norC genes, involved in 
N2O production, was higher than that observed for the predicted nosZ 
gene, involved in N2O transformation into N2 (Fig. 6D). It is important to 
note that N2O emissions have been shown to be attributed to both 
denitrification and nitrification processes (Murray et al., 2015). The 
relative abundance of the predicted genes involved in nitrification was 
not correlated with metal content (Fig. 6A), being higher in the external 
SB sector (Figs. 2, 3, 4). Such observation indicated that nitrification is 
likely favoured in the external SB sector probably because the ocean 
currents create favourable oxic conditions (Moreira et al., 2021, 2023). 
Nitrous oxide is a potent GHG (Wang et al., 1976) resulting from human 
activities (Chen et al., 2022; Murray et al., 2015), estuaries contributing 
for almost 10 % of its emission although they represent <1 % of the 
global ocean area. 

3.7. Potential microbial genera contributors to GHG 

In order to identify the potential genera contributing to the GHG 
emissions, co-occurrence networks were constructed to correlate energy 
metabolism marker genes with the 50 most prevalent genera that 
colonize SB sediments. The relative abundance of mcr, methanogenesis 
marker genes, exhibited positive correlation (Spearman, p < 0.01) with 
genera affiliated to the Methanofastidiosales order, exclusively detected 
in the internal sector (Fig. 7A). Members of the Methanofastidiosales have 
been detected in sediments from various aquatic ecosystems where they 
play a key role in methane production (Qu et al., 2024; Song et al., 
2020). Thus, it is likely that Methanofastidiosales members are probably 
involved in methane emissions in the internal SB sector. 

The relative abundance of pmo genes family, methane oxidation 
marker genes, was positively correlated (Spearman, p < 0.05) with 
Actibacter, Aquibacter, Blastopirellula, Candidatus Nitrosopumilus, Eudor-
aea, Exiguobacterium, Filomicrobium, and uncultured Sandaracinaceae 
(Fig. 7B). Pmo genes were found 37 times more abundant in the low 
metal contaminated external SB sector (Fig. 6C), in accordance with the 
fact that methanotrophy has been identified as metabolism marker for 
the external SB sector (Fig. 4). The genera positively linked to pmo genes 
have been found in various marine ecosystems contaminated or not 
(López-Sánchez et al., 2024; Wu et al., 2009; Zárate et al., 2021), they 
are thus likely the main players involved in methane consumption (or its 
intermediary) in the external SB sector. Noteworthy, members of the 
Exiguobacterium genus have been found closely associated with meth-
yloprophs, even increasing methane oxidizing activity (Veraart et al., 
2018). 

The relative abundance of norB and norC, nitrous oxide producing 
marker genes, was positively correlated with the relative abundances of 
Blastopirellula, Desulfobulbus, Eudoraea, and Paeniclostridium genera 
(Fig. 7C). In agreement with previous study reporting that these genera 
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were identified as bioindicators of reduced pollution/eutrophication in 
the external SB sector (Moreira et al., 2023), this observation suggested 
that they are probably responsible for N2O emissions at external SB 
sector. Interestingly, the correlation of Desulfobulbus, sulfate-reducing 
bacteria, with denitrification genes highlight the interaction between 
biogeochemical cycles in marine ecosystems (Zhang et al., 2023). 

Finally, the relative abundance of nosZ gene, responsible for N2O 
reduction to N2 (Kim et al., 2022), was positively correlated (Spearman; 
p < 0.01) with the relative abundance of Anderseniella, uncultured 
Anaerolineaceae, Robiginitalea, and Spirochaeta-2 (Fig. 7C). It has been 
shown that some members of the Hyphomicrobiale order (e.g. genus 
Anderseniella) are able to grow anaerobically using nitrate as an electron 
acceptor (Oren and Xu, 2014), further confirming the biogeochemical 
cycles interaction at SB. 

4. Conclusions 

The Sepetiba Bay (SB) presents two contrasted sectors, the internal 
SB sector exhibiting contaminated sediments caused by the excess of 
nutrients and pollutants conveyed by the major tributary rivers that flow 
into the bay, while the external SB sector sediment presents moderate 
pollution because of the oceanic currents' influence. 

The relative abundances of metabolisms involved in methano-
genesis, nitrate-reduction, denitrification, N2-fixation, and thiosulfate 
oxidation were found higher in the internal SB sector. The chronic 
metal-contamination and the high organic content, as well as redox 
conditions may explain the higher relative abundance of these metab-
olisms in the internal SB sector, which probably play a crucial role in the 
natural attenuation of contaminants. Particularly, N2-fixation and 
thiosulfate-oxidation were identified as energy metabolism indicators of 
the polluted internal SB sector. The N2-fixation was also found to be 
associated with methanogenesis, Methanofastidiosales being the main 
taxa involved in this process. Thus, the internal SB sector holds higher 
CH4 emission and higher N2O consumption than the external sector. In 
contrast, the external sector exhibited a higher relative abundance of 
predicted pmo marker genes (methane oxidation), and higher relative 
abundance of norB/C marker genes involved in N2O emission. Note-
worthy, both SB sectors exhibited the potential for N2O emission, the 
relative abundance of norB/C genes being 3 to 4 times higher than that 
of nosZ gene. Thus, SB should be considered as a bay where the potential 
of N2O emission dominates. 

Our study revealed that SB own microbial communities exhibiting 
the potential to produce GHG, the main concern being the production of 
N2O. However, further studies are required to determine the compre-
hensive actual balance of GHG emissions. Nevertheless, we recommend 
that research efforts should be made to identify and map the key 

microbial taxa associated with GHG emissions in coastal areas impacted 
by human activities. By unveiling the pivotal players within coastal 
microbial communities, such investigations will pave the way for tar-
geted strategies aimed at mitigating greenhouse gas emissions and 
advancing sustainable environmental practices worldwide. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2024.174341. 
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Andreote, F.D., Jiménez, D.J., Chaves, D., Dias, A.C.F., Luvizotto, D.M., Dini- 
Andreote, F., Fasanella, C.C., Lopez, M.V., Baena, S., Taketani, R.G., de Melo, I.S., 
2012. The microbiome of Brazilian mangrove sediments as revealed by 
metagenomics. PLoS One 7, 14. https://doi.org/10.1371/journal.pone.0038600. 

Ayangbenro, A.S., Olanrewaju, O.S., Babalola, O.O., 2018. Sulfate-reducing bacteria as 
an effective tool for sustainable acid mine bioremediation. Front. Microbiol. 9, 1986. 
https://doi.org/10.3389/FMICB.2018.01986/BIBTEX. 

Bae, H.S., Morrison, E., Chanton, J.P., Ogram, A., 2018. Methanogens are major 
contributors to nitrogen fixation in soils of the Florida Everglades. Appl. Environ. 
Microbiol. 84 https://doi.org/10.1128/AEM.02222-17. 

Barcellos, C., De Lacerda, L.D., Ceradini, S., 1997. Sediment origin and budget in 
Sepetiba Bay (Brazil) - an approach based on multielemental analysis. Environ. Geol. 
32, 203–209. https://doi.org/10.1007/s002540050208. 

Barroso, G.C., Abril, G., Machado, W., Abuchacra, R.C., Peixoto, R.B., Bernardes, M., 
Marques, G.S., Sanders, C.J., Oliveira, G.B., Oliveira Filho, S.R., Amora-Nogueira, L., 
Marotta, H., 2022. Linking eutrophication to carbon dioxide and methane emissions 
from exposed mangrove soils along an urban gradient. Sci. Total Environ. 850, 
157988 https://doi.org/10.1016/j.scitotenv.2022.157988. 

Bazylinski, D.A., Dean, A.J., Schuler, D., Phillips, E.J.P., Lovley, D.R., 2000. N2- 
dependent growth and nitrogenase activity in the metal-metabolizing bacteria, 
Geobacter and Magnetospirillum species. Environ. Microbiol. 2, 266–273. https:// 
doi.org/10.1046/j.1462-2920.2000.00096.x. 

Beccati, A., Gerken, J., Quast, C., Yilmaz, P., Glöckner, F.O., 2017. SILVA tree viewer: 
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