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Abstract. Data Lakes are increasingly deployed as a solution for Big
Data analytics. Recent improvements in Data Lake technology have fo-
cused on improving data access, governance, and discoverability. How-
ever, the energy consumption of data operations, a non-trivial issue for
eco-conscious organizations, is currently overlooked. Furthermore, exist-
ing monitoring tools do not adequately address the complexities of Data
Lake architectures.
This paper presents the initial phase of developing a system for measuring
energy in Data Lake pipeline operations. The novelty of our solution lies
in the fact that we define four measures to assess the power usage of
crucial hardware components in a Data Lake context: CPU, RAM, NIC,
and storage devices. To validate our approach, we developed a monitoring
tool grounded in real-world datasets from a Data Lake benchmark.

Keywords: Data Lakes · energy consumption · data processing.

1 Introduction

Big Data Analytics (BDA) involves advanced analytic techniques for processing
large and diverse data sets from various sources. To enable accurate predictions
and decision-making, BDA requires efficient data management solutions. Con-
sequently, Data Lakes have become a prevalent solution for BDA nowadays.

Despite the importance of Data Lakes, current research, mainly focusing
on metadata management [19, 12], data quality [1], and data discovery [2, 6],
overlooks their energy consumption. This gap represents a real issue, as the
Paris Agreement emphasizes the urgency of reducing greenhouse gas (GHG)
emissions to ensure a sustainable future, to limit global warming to 1.5 degrees
above pre-industrial levels 4.

To optimize Data Lake energy consumption, we must first measure all its
activities granularly, considering all the concerning operating system processes

4https://unfccc.int/sites/default/files/english_paris_agreement.pdf
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and sub-processes. This involves tracking activities like ingestion, transforma-
tion, and analysis. Operationally, a Data Lake begins by ingesting heterogeneous
data from various sources, and storing it in its native format. The data is then
processed (cleaned, transformed, etc.) to meet quality standards and business
needs. Lastly, the Data Lake enables various access methods for analysis, includ-
ing statistical, business intelligence, and machine learning applications.[13].

All these activities load differently four hardware components: CPU, RAM,
Network Interface Controller (NIC), and Storage Devices, each with its differ-
ent energy consumption profile. For instance, during the ingestion phase, the
NIC manages data transfer, while storage devices (SSDs or HDDs) ensure data
durability and accessibility. In the storage phase, these devices take on data
organization, indexing, and retrieval. Finally, in the data processing phase, the
CPU executes tasks such as data transformations and cleaning, with the RAM
providing temporary storage for accessed data and temporary results.

The challenge is the lack of a comprehensive tool to precisely and granu-
larly analyze the energy consumption of all Data Lake processes across the four
mentioned hardware components.

In this article, we present a novel and comprehensive solution for measuring
the energy consumption of a Data Lake. Our solution comprises a model de-
scribing the measurement of the four mentioned hardware components (CPU,
RAM, NIC, SD). This model is integrated into a monitoring system for each
operating-system process of all Data Lake activities. We evaluated our solution
by analyzing the entire ingestion phase of the Audal data lake [14], which in-
corporates the DLBench+ benchmark for these activities. The results display
metrics on the energy consumption evolution of each hardware component ac-
cording to different evaluation configurations.

The paper is organized as follows. Section 2 describes the state of the art,
section 3 presents the model describing the energy consumption of Data Lake
processes, section 4 illustrates our energy measuring system for a Data Lake, and
finally, section 5 describes the experiments we performed and their corresponding
results description.

2 Related work

Accurately measuring a Data Lake’s energy consumption requires analyzing the
energy usage of the four specified hardware components across all data lake ac-
tivities. Currently, there is no solution for comprehensively measuring the energy
consumption of Data Lakes. Yet, in the context of database systems, multiple
works measure energy consumption for its optimization. This consumption is de-
termined per query or workload through models, considering only CPU and disk
usage [5]. Similarly, in cloud environments, research targets energy-saving
strategies for data management, primarily focusing on CPU and disk usage [18].
Finally, with frameworks such as Hadoop, Yarn, and Spark, energy is analyzed
across CPU, network devices, and disk, addressing cluster node management,
data control, and resource allocation scheduling [17, 4, 9, 3, 11].
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Since these solutions are not specifically designed for Data Lakes, the pri-
mary tools available for measuring their energy consumption are physical sensors
and OS-level software solutions. Current physical sensors offer accurate energy
measurements for overall systems. However, they lack the granularity needed to
isolate and evaluate individual OS processes or specific hardware components
components[7]. This detailed information is required for comprehensive and ef-
fective energy measurement for exclusively Data Lake processes.

For their part, recent OS-level software solutions such as Powerjoular5 and
Scaphandre6 measure the power consumption of running OS processes. While
they have proven effective in different scenarios, they mainly focus on CPU con-
sumption. As mentioned, this approach offers a limited perspective on energy
consumption, particularly when assessing Data Lakes where processes also load
other important hardware components. Moreover, from our experiments in cer-
tain settings, we found that the power consumption did not align closely with
the processor time taken by the process and its associated heat generation. For
a more detailed explanation, please refer to our project repository7.

All these studies and solutions offer good insights into energy consumption.
However, Data Lakes, which are implemented by different frameworks, remain
unexplored and need a more technology-agnostic approach. Moreover, current
solutions don’t consider simultaneously these four hardware components.

3 Power measurement model

A Data Lake activity (ingestion, transformation, analysis) corresponds to multi-
ple processes within the operating system, each uniquely identified by a Process
ID (PID). Assessing a Data Lake’s energy consumption requires identifying and
calculating the energy used by these processes.

We developed a model based on the mathematical formulas presented in
[16]. This model correlates hardware workload with energy metrics across CPU,
RAM, NIC, and disk. It details the power consumption (in Watts, W ) of each
hardware component, based on the load an operating-system process produces
at a specific moment. For calculating energy (in Joules, J), the model incorpo-
rates the duration of the analysis (T ), allowing the understanding of long-term
efficiency and operational costs.

The CPU is the hardware component responsible for executing an OS process’s
instructions through logical and arithmetic operations. The time and energy
required for these executions can vary based on the CPU’s characteristics. To
estimate a process’s power and energy consumption across all the CPU cores
(
∑nCores

i=0 EPID
CPUi

(t)), the equation incorporates: 1) the CPU’s capacitance based
on the processor’s TDP (thermal design power)8, voltage, and frequency, with

5https://www.noureddine.org/research/joular/powerjoular
6https://github.com/hubblo-org/scaphandre
7https://github.com/hhumbertoAv/DL_Energy_System
8https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
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a surplus of 0.7 [10], 2) The CPU’s current frequency (f) and voltage (V ), 3) the
current ratio of process load to total CPU load: (UPID

CPUi
)/(UCPUi

), 4) the CPU’s
fan energy consumption, proportional to frequency (fanss), and 5) the time in
seconds the CPU consumes power, used to calculate CPU energy consumption
in Watts per second (T ).

no.Cores∑
i=0

EPID
CPUi

(t) =
0.7× TDP

fTDP × V 2
TDP

× fi × V 2
i ×

UPID
CPUi

UCPUi

(t) + fanss(T ) (1)

This equation is based on the principle that the primary power consumption
of the CPU, like any integrated circuit, stems from the charging and discharging
of its capacitors. This activity occurs during computations at a specific voltage
and rate (frequency) [8].

The RAM is the hardware element that the CPU actively uses to read and write
temporal data in a program execution context. To calculate the consumption of
a process in the RAM, the formula correlates the number of read NR and write
NW operations, and their corresponding energy usage, ER, EW .

ERAMapp = NR × ER +NW × EW (2)

The NIC and the storage devices are the hardware components that transmit
and store data in a computer, respectively. In the context of a Data Lake, the
transfer rate of the NIC directly affects the speed of data ingestion from external
sources. Conversely, the transfer rates of storage devices impact data storage and
retrieval performance, affecting both the organization of storage and subsequent
data processing.

For both devices, the energy formula correlates energy (EDp
) with the power

consumption of the device when active (WuD
), the process transfer rate as a

fraction of the device’s maximum transfer capacity, and the analysis time (Tp):

EDp
= (WuD

× Lp

LMAXD

)× Tp (3)

For all the formulas, energy consumption over a given time T is computed
by averaging power measurements taken at regular intervals throughout T .

4 Energy measuring system for a Data Lake

Based on the model presented above, our Data Lake energy measurement system
is implemented by a daemon-type application optimized for GNU/Linux systems.
To obtain the hardware load data (CPU frequency, RAM operations, and I/O
rates), it sources from the operating system’s virtual file systems (sysfs, proc, and
perf). Then, for power information, the daemon accesses data from datasheet
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databases and operating system interfaces, such as the Linux kernel registers
[16].

As Algorithm 1 depicts, the system deploys the daemon across every node
of the Data Lake. During bootstrapping, users specify Data Lake process names
or PIDs to be monitored. The system then tracks the energy use of these pro-
cesses and, if configured, their subprocesses’ power consumption to cover multi-
processing and multi-threading contexts. Additionally, the system allows for con-
figurable measurement frequencies during the model’s window-time T to prevent
CPU overloads caused by the monitoring daemon.

Algorithm 1: Energy Consumption Monitoring Procedure
Input: List of service names in the Data Lake.
Output: Energy consumption metrics (Joules)

1 Initialization: Start the monitoring daemon.
2 while daemon is running do
3 foreach service name do

/* Launch monitoring in a new thread */
4 Start a new thread for service monitoring.
5 Obtain main process PID.
6 Get the list of all sub-process PIDs.
7 foreach PID do
8 if process with PID is active then
9 Measure&record power consumption of CPU, RAM, NIC, SD.

10 Calculate power consumption (W), add it to a window period
P , and wait the freq. time

11 Compute energy consumption (J) in P (J = W × P ).
12 Store energy consumption metrics for the service.
13 else
14 Remove inactive PID from the monitoring list.
15 end
16 end
17 end

/* Pause to minimize CPU contention */
18 Sleep for a configured time interval before the next scan.
19 end

5 Experimental evaluation

To test our system, we require a real benchmark implementation for Data Lake
instances. These benchmarks are essential to evaluate operational efficiency across
the (meta)data processing pipeline, considering different hardware setups and
workloads. To our knowledge, DLBench+[14] is the only existing benchmark in
this context. The goal of our experiments is to measure the energy use of the
data ingestion in a Data Lake.
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5.1 AUDAL Datalake and DLBench+

AUDAL [15] is a Data Lake instance built for textual and tabular document
analysis. It uses MongoDB, Neo4J, SQLite, and ElasticSearch as (meta)data
storage and management systems. Using AUDAL, DLBench+ introduces an
ingestion activity composed of several data and metadata functional operations
described in Figure 1.

Regarding data operations, DLBench+ first retrieves two large-volume raw
data sets through three operations: In OP1, initially scans and sources scientific
PDF files from the HAL9 repository until reaching a specified document count.
OP2 then acquires a set of SQL tables with diverse data about educational
institutions and bus stop boardings, among others. Finally, OP3 converts all
documents, including image-only ones, into readable text and stores them in an
Elasticsearch index.

Fig. 1. Operations in DLBench+

Once DLBench+ ingests the raw data, it executes five operations to gener-
ate metadata. OP4 first extracts the basic metadata from PDFs (like word
dictionaries, titles, and authors, among others) for storage in Elasticsearch and
MongoDB. Then, OP5 creates nodes, category groups, and "in" relations in a
Neo4j instance for each dictionary word. OP6 processes metadata by remov-
ing stopwords, lemmatizing, tokenizing words, and establishing coincidence vec-
tors in MongoDB. Following this, OP7 extracts table metadata using initially
downloaded data, creates MongoDB keywords from table values, and populates
SQLite entries. OP8, lastly, forms Neo4j nodes for tables, columns, rows, re-
fined tables, and names, defining relations based on Jaccard and Jaro-Winkler
similarity metrics and potential primary/foreign key matches.

5.2 System Setup and Experimental Methodology

We deployed AUDAL and carried out energy evaluation of DLBench+ execution
on a server with software and hardware specifications described in 5.2.

9https://hal.science/search/index



Energy Measurement System for Data Lake: An Initial Approach 7

HARDWARE SETUP
Hardware Spec. Power Params.
CPU Intel Core I7-850H 2.20GHZ (12 vcores) TDP: 45W
RAM samsung M471A2K43CB1-CRC Values in section XX

NIC Cannon Lake PCH CNVi WiFi Dowload Power: 0.55W
Upload Power: 1.029 W

SD Samsung MZVLW512HMJP Write Power: 6.1 W
Read Power: 5.1 W

SOFTWARE SETUP
Software Spec.
O.S. Ubuntu Linux - Kernel V. 6.2.0-26
Frameworks Neo4j 4.1.12, Elasticsearch 7.17.10, MongoDB 6.0.5, SQLite 3.37.2

Table 1. Server’s software and hardware configuration

We analyze two main variables. The first is the level of parallelism, deter-
mined by the number of dedicated cores concurrently running AUDAL’s func-
tional operations (from 1 to 5). To ensure this core allocation and to prevent
measurement interference from our system’s interruptions, we configured the
process affinity10 provided by GNU/Linux environments. This confines AUDAL
processes to cores 1−5 and restricts our tool exclusively to the rest of the cores.

The second variable is a scale factor associated with the volume ingested
by the Data Lake. We evaluated scale factors of 1, 3, and 5, which correspond
to processing an average of 5, 000, 15, 000, and 25, 000 documents, respectively.
This translates to average data volumes of 4.3GB, 12.5GB, and 18.75GB.

We executed all of DLBench+’s functional operations for every combination
of parallelism level and scale factor. For each scale factor, we assessed the energy
consumption starting with 1 core and scaling up to 5 cores. To ensure the reli-
ability of our findings, we repeated the entire experiment sequence twice, with
minor differences in the outcomes.

5.3 Energy measurement Results

After conducting the experiments, we observed distinct trends in processing
time and energy consumption, influenced by parallel processing and scale factor
evolution for data volume. This led to interesting differences in consumption
across the four hardware components. The following paragraphs will detail the
results and analysis, each accompanied by key insights gained.

Data vs. Metadata In DLBench+, at its maximum scale (18.75 GB of raw
documents and 1.4 GB of raw tables) in 5 cores, metadata processing consumes
73.4% (1363.26 Joules) of the total energy, which amounts to 1859.55 Joules
for both metadata and data processing combined. Data processing, in contrast,
accounts for only 26.6% (496.29 Joules) of the total energy use. Data processing

10https://man7.org/linux/man-pages/man1/taskset.1.html



8 ALVAREZ-VALERA et al.

requires 9.56 hours, whereas metadata processing takes longer, at 12.62 hours.
Despite the narrower time difference, metadata processing’s energy consumption
is significantly higher, demonstrating its greater resource intensity compared to
data processing, as can be seen in the operations OP .

Fig. 2. Data vs. Metadata

On the other hand, as figure 2 shows, the energy consumption within meta-
data processing is primarily allocated to the CPU and RAM, with about 47%
and 43% of its total energy used, respectively. In comparison, data processing
distributes energy more evenly, with the largest share for SD storage at 40%
and 17% for the NIC, indicative of I/O-oriented tasks. This distinction in en-
ergy usage highlights the different computational demands of metadata and data
processing.

Key Insight: In a Data Lake, data and metadata processing consume en-
ergy and time unevenly. In DLBench+, data operations (OP1 - OP3), focusing
on intensive I/O tasks like SQLite and Elasticsearch queries, use more energy
in storage and NIC. In contrast, metadata operations (OP4 - OP8), such as
document categorization and similarity graph generation using RAM-intensive
technologies like Neo4j, place more stress on the CPU and RAM.

Parallelism: is it always a good idea? Using more cores may be expected
to improve processing efficiency. However, as Figure 3 depicts at the right, DL-
Bench+ results for the max scale data processing show that moving from 1 to 2
cores reduced processing time from 32.08 to 16.86 hours, a 47.5% improvement.
By the fifth core, the time decreased further to 9.56 hours, a 41.6% reduction
from 2 cores, which reveals the limits of parallel processing. For energy, the
CPU’s consumption reduced modestly from 105.10 Joules with 1 core to 100.49
Joules with 5 cores, a 4.4% decline, due to the independent parallel tasks in
data processing (See: OP1 to OP3). The SD also presented a reduction from
212.54 to 197.46 Joules, a 7.1% decrease, as faster CPU task completions reduced
read/write wait times. RAM and NIC displayed varying energy use, suggesting
their tasks are less affected by CPU and SD efficiencies.

For metadata processing, as Figure 3 describes at the left, the increase from
1 to 2 cores leads to an 8.1% rise in processing time, likely due to increased
contention for CPU resources. With 3 cores, performance drops further, indi-
cating inefficiencies in handling cache-dependent tasks and more idle states in
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Fig. 3. Data and Metadata Processing Efficiency Metrics

the CPU. However, at 5 cores, there’s a noticeable improvement, with process-
ing time dropping by 12.8% from one core. This improvement could be due to
better load balancing and reduced contention. With more cores, the system can
distribute tasks more effectively, lessening the competition for CPU resources.
This change implies that at 5 cores, the system overcomes initial bottlenecks and
manages CPU resources more efficiently.

Regarding energy, the pattern is not linear. While the overall CPU energy
use from 1 to 5 cores increases by 11.2%, this increase is not uniform across all
cores. Particularly at 3 cores, where we see the highest processing time, the CPU
energy consumption does not peak correspondingly, due to inefficient utilization
or idle states.

Key Insight: The processing time of data or metadata in a Data Lake may
not be faster or more energy efficient if the number of CPU cores increases.
It depends on the operations involved and the operating system optimization.
The reasons are related to resource contention during intensive processing on a
single resource, execution of dependent tasks, limitations of parallel execution,
management of CPU internal caches, and handling of idle resource states.

Scale factor and resource energy usage Figure 4 describes at the left pro-
cessing data sets of 4.2, 12, and 18.7 GB for SF 1, SF 3, and SF 5 in DLBench+.
CPU usage increases by about 200% from SF 1 to SF 5, due to the increased
parallel processing in text conversion and indexing (as in operations OP1 - OP3).
For the same reason, the SD energy consumption also rises significantly, about
470% at SF 5, reflecting more I/O operations during data retrieval and storage
in larger data sets, along with frequent switching between active and idle states.
NIC’s consumption increases by 150% but shows a linear increase, corresponding
to the demand for transferring large amounts of data.

Meanwhile, RAM exhibits more uniform energy increases, about 60% from
SF 1 to SF 5. This increase is linked to the need for more memory for caching,
leading to increased read and write operations, particularly in processes involving
document scanning and conversion.
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Fig. 4. Data Processing energy consumption by scale factor

These disproportionate increases in CPU and SD energy consumption alter
their energy proportions among the components, with the CPU’s share rising to
about 20% and the SD to nearly 40% at SF 5, highlighting the shifting balance
towards processing and storage demands as data scale and complexity escalate.

Concerning metadata processing energy consumption depicted in Figure 4
at the right, at SF 1, CPU accounts for 74.59% of energy usage because of
complex operations such as text lemmatization or node categorization (OP5 -
OP8). However, as the scale factor rises to SF 3 and SF 5, corresponding to
larger data volumes, CPU’s energy proportion decreases to 62.47% and then to
46.75%. That is because the RAM energy consumption becomes more prominent,
jumping from 23.15% at SF 1 to 42.64% at SF 5. This increase is likely due to the
heightened demand for memory access and caching, particularly for operations
involving the creation and management of Neo4j nodes, which become more
memory-intensive with larger datasets.

Regarding the SD, its energy proportion also rises to 10.55% at SF 5, indicat-
ing increased storage activity, potentially for document indexing and managing,
or due to constant idle states. However, the SD and NIC do not represent a
significant portion of the total energy consumption.

Moreover, it’s interesting to note that the CPU and RAM evolve differently
in terms of energy consumption, likely due to the non-linear increment tendency
of cache misses when dealing with larger data sets.

Key Insights: Energy consumption in a Data Lake varies by operation type
and hardware, not just data volume. Moreover, larger datasets in data processing
notably increase CPU and SD energy, affected by parallel processing and I/O
operations, with rises in RAM and NIC use. Finally, for metadata processing,
larger datasets significantly boost CPU and RAM energy due to more RAM
accesses and CPU-intensive tasks.
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Energy usage by operation Figure 5 delineates the energy dynamics in both
data and metadata operations. The three most energy-intensive operations are
OP8, OP6, and OP1. OP8, in metadata processing, stands out as the highest
energy consumer, utilizing a total of 1027.9729 Joules. This energy demand is
primarily due to CPU-intensive Neo4J operations, which involve complex calcu-
lations for nodes and tables. OP6 follows closely, with a notable 498.5907 Joules
consumption in RAM, attributed to memory-intensive tasks like lemmatization
and tokenization in metadata analysis.

Fig. 5. Heatmap: Data and Metadata operations energy costs

OP1 is the third most energy-expensive, consuming 195.3762 Joules predom-
inantly in the SD component, largely due to I/O operations for data acquisition
and data initial processing. These operations collectively account for 75% of the
total energy expenditure, highlighting the procedures and hardware components
that are key targets for potential energy-aware strategies in Data Lakes.

6 Conclusions and future work

This paper presents an energy measurement system for Data Lake instances,
focusing on the analysis of four key hardware components: CPU, RAM, NIC,
and storage devices. In our study, which extends beyond the usual focus on CPU
consumption, we highlight the importance of considering all hardware elements
to fully understand energy consumption in Big Data Analysis (BDA). Addressing
the paradox of seeking frugality in BDA, we recognize the need for a clear view
of energy costs in such architectures. Our evaluation of DLBench+ provides this
perspective, paving the way for future enhancements in Data Lake deployments.
This includes potential load-balancing strategies to improve energy efficiency, an
area of ongoing research [16].
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