
HAL Id: hal-04634187
https://univ-pau.hal.science/hal-04634187

Submitted on 3 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Optimization through a Multidimensional
Distributed Scheduling Approach

Valera Humberto, Giraldo Leonel Isaac Guerrero, Muñoz Carlos Alejandro
Sivira, Marroquin Alan Alfredo Rojas, Damas Lucas Aguilar, Marc Dalmau,

Philippe Roose, Cardinale Yudith

To cite this version:
Valera Humberto, Giraldo Leonel Isaac Guerrero, Muñoz Carlos Alejandro Sivira, Marroquin Alan
Alfredo Rojas, Damas Lucas Aguilar, et al.. Energy Optimization through a Multidimensional Dis-
tributed Scheduling Approach. 23rd International Symposium on Parallel and Distributed Computing
(ISPDC 2024), Jul 2024, Chur, Switzerland. �hal-04634187�

https://univ-pau.hal.science/hal-04634187
https://hal.archives-ouvertes.fr


Energy Optimization through a Multidimensional
Distributed Scheduling Approach

Humberto Valera∗, Leonel Isaac Guerrero Giraldo†, Carlos Alejandro Sivira Muñoz†,
Alan Alfredo Rojas Marroquin‡, Lucas Aguilar Damas§, Marc Dalmau¶,

Philippe Roose¶, and Yudith Cardinale§
∗Technopôle DOMOLANDES, Saint-Geours-de-Maremne, France †Universidad Simón Bolivar, Caracas, Venezuela

‡Universidad Católica San Pablo, Arequipa, Peru §Universidad Internacional de Valencia, Spain
¶E2S UPPA, University of Pau, Anglet, France

Emails: humberto.valera@domolandes.fr, {leonelisaacguerrero, carlos.csivira}@gmail.com, alan.rojas@ucsp.edu.pe,
{laguilard, ycardinale}@universidadviu.com, {Marc.Dalmau, Philippe.Roose}@iutbayonne.univ-pau.fr

Abstract—Distributed systems, spanning pervasive, cloud, and
edge computing, require robust scheduling for tasks and data
management, facing challenges like hardware diversity, QoS,
localization, and energy efficiency. Current solutions often lack
a comprehensive approach, failing to achieve balanced load
management, QoS, and notably in minimizing application energy
use, a key modern concern. We propose a distributed scheduler
using multidimensional spaces and data structures aimed at
comprehensive load balancing, energy efficiency, and QoS. The
scheduler indexes devices within the structure based on diverse
criteria such as hardware availability, GPS, and energy features.
It then organizes applications into abstract graphs, where nodes
are containers and their data items (units of data accessed by
the containers), and edges are the transfer rates among them. To
migrate containers, the scheduler performs range queries within
the structure for optimal devices. To organize data items, it finds
the barycenter of the devices executing the containers linked to
them. We evaluated our scheduler’s effectiveness using the PISCO
simulator, comparing it against other energy-efficient schedulers.

Index Terms—distributed systems, power, energy, scheduling

I. INTRODUCTION

Modern distributed schedulers in cloud and edge envi-
ronments orchestrate resource allocation to ensure consis-
tent Quality of Service (QoS) as defined by Service Level
Agreements. They adapt to changing workloads and device
failures using middleware and virtualization (VM, containers)
to enable task migration and duplication, improving service
continuity and resilience [1]–[3].

The growing complexity of these infrastructures highlights
new critical goals in scheduling operations [4]. These include
the physical location of devices and the nodes where data
elements are deployed (e.g., volumes in Kubernetes or HDFS
in Hadoop), along with energy consumption considerations.
The latter is vital for both economy and sustainability. To
achieve the Zero-Emissions goal by 2050, electricity emissions
must be reduced by 55% by 2030, yet computing devices’
energy use is increasing 7% faster than the global average1.

To manage multiple complex variables and reduce energy
consumption, we introduce an online dynamic scheduling

1https://moderndiplomacy.eu/2022/01/17/surging-electricity-demand-is-putting-power-systems-under-strain-around-the-world/

method based on a previously proposed approach existing in
the literature [5]. It implements an abstract hardware resource
space, indexing devices in a distributed multidimensional
data structure by their hardware availabilities. The scheduler
enables a ’query-to-migrate’ process, properly identifying the
most energy-efficient nodes for containers execution. The
latter are profiled considering CPU, hard disk, and network
usage as primary variables influencing energy consumption,
while RAM usage is treated as a static factor, not impacting
energy usage. Moreover, this method only considers containers
without considering the transfer of information between them
nor the data items they utilize.

We expand this approach to include connection entities
(container-to-container and container-to-data package interac-
tions) and data items (like database files and raw files) as
schedulable elements. Applications are thus abstract graphs,
with nodes being containerized processes and data items, and
edges being average transfer rates among them. Furthermore,
we broaden the scope of energy variables to also encompass
RAM activity, GPU load, and the physical positioning of de-
vices as energy-related factors. Our scheduler performs region
queries for energy-efficient hardware resources to organize
the containers. Then, to schedule data items, it considers the
barycenter of the subspace of hosts executing the containers
linked to these data items. For this, we introduce the corre-
sponding energy-distance functions.

The approach is abstract and applicable across various or-
chestration technologies, enabling the optimization of granular
hardware resource usage and energy consumption, among
other variables, with optimal computational complexity. While
this heuristic is inherently technology-agnostic, it is imple-
mentable in orchestration systems such as Kubernetes (first
implementation steps2). However, in this article, we demon-
strate our approach’s energy and QoS effectiveness through a
simulation environment, comparing it versus methods based on
hardware availability, nodes’ profiles, and historical execution
data.

The rest of this article is structured as follows: Section II

2https://github.com/hhumbertoAv/DistributedEnergyScheduling-for-K8s.git



explores related work; Section III explains data structures in
schedulers; Section IV outlines our multidimensional space
implementation; Section V introduces our scheduler engine
and algorithm; Section VI presents experiments and results
validating our method’s effectiveness; and Section VII con-
cludes with future directions.

II. RELATED WORK

For cloud setups, scheduling approaches address VM over-
load, energy, cost efficiency, tasks’ timing constraints, and
adaptive learning strategies [6]–[13]. They improve energy
efficiency through VM consolidation, noting that while the
majority focus primarily on CPU energy consumption, only a
few also consider memory, and even fewer account for band-
width [14]. For containers, some efforts focus on redeploying
POD within Kubernetes environments for hardware and energy
improvement to scale down active nodes [15].

In the Edge, some initiatives optimize energy and bandwidth
by clustering nodes and profiling tasks [16]. They also focus on
migrating containers in IoT and P2P networks to save energy,
employing k-means and hierarchical clustering algorithms for
identifying efficient hosts [17], or utilizing simple negotiation
among peer nodes for energy-aware container migrations [18],
[19].

While all these strategies improve energy efficiency, often
through predictive models, they may not be compatible with
high workload fluctuations and overlook the full range of
hardware necessary for understanding energy consumption.
In contrast, our abstract approach holistically addresses three
crucial aspects: energy efficiency, dynamic adaptability, and
hardware diversity. For this purpose, our approach leverages
multidimensional data structures, enabling efficient resource
indexing, rapid task-resource matching, and predictable up-
dates during node/application load changes. This technique can
be implemented in different infrastructures, such as K8s3.

III. DATA STRUCTURES AS A SCHEDULER KERNEL

Our scheduler relies on a multidimensional space and struc-
ture for energy savings and QoS optimization. It manages
factors such as hardware resources and the physical location of
devices, enabling complex queries for precise load balancing.
Such a space is defined in Def. 1.

Definition 1 (The Multidimensional Space): The space U is
made up of 7 dimensions/axis: 1) CPU computational capacity
in GHz; 2) RAM capacity expressed in MB; 3) Network
transfer rate expressed in MB/s; 4) Storage speed expressed
in MB/s; 5) GPU computational capacity expressed in GHz,
6) GPS position of devices, and 7) Power consumption of the
network connection in watts. Given a set of devices connected
to a shared network, they are indexed in the space U in terms
of their current average hardware resources’ availability, GPS
position, and connection-based power consumption.

Given the heterogeneous characteristics of space U , a cus-
tom algebra for query operations is essential [20]. We adopt
the methods described by Gaede et al. [20] as follows:

3https://github.com/hhumbertoAv/DistributedEnergyScheduling-for-K8s

• Custom Region Query: This query comprises
four intervals – [CPUi, CPUf ], [RAMi, RAMf ],
[NETi, NETf ], [I/Oi, I/Of ] - and identifies all
devices D that fall within these intervals.

• Custom Nearest Neighbor Query(n): Given a device D
with specific network-related power consumption, this
query identifies the nearest n devices with the shortest
distance to D. This distance calculation incorporates
CPU and RAM usage during data transmission over the
network as Eq. 1 shows.

Power(Dev)net = power(CPU)net + power(RAM)net+

power(NET )net;

dis(Dev(A), Dev(B)) = Power(A)net + Power(B)net

(1)

IV. THE DATA STRUCTURE AND THE U SPACE
IMPLEMENTATION

Several approaches deploy distributed structures like ad-
vanced R-trees [21] and KD-trees [22] for network manage-
ment. While a detailed study of these structures exceeds this
paper’s scope, we adopt a non-centralized approach [5] for
its proven energy efficiency in scheduling and its avoidance
of centralized failures. Thereby, we implement our space as a
non-centralized structure based on the MAAN (Multi-Attribute
Addressable Network) overlay [23]. MAAN generalizes the
Chord approach [24] to deploy a multidimensional space in
as many circular device-sorted lists as the space has dimen-
sions. That enables multidimensional queries and element
insertion/deletion in an efficient logarithmic complexity.

In the Chord protocol, devices are organized into an or-
dered circular list, arranged clockwise based on their ID.
Each device maintains a ’Finger table’ comprising network
addresses, typically IP addresses or unique identifiers of other
peers. The table’s size equals the bit string length for the
system’s maximum ID. Each entry in this table is calculated
as node ID+2i, where i ranges from 0 to the bit string length
minus one. This setup enables efficient routing in the network’s
circular ID space. When a node N searches for an element E,
it utilizes its Finger table to find the successor of E’s ID,
streamlining the search process in the distributed network.

A. The node insertion and deletion operation in MAAN

In the Chord protocol, a new node nN joins the network
by first obtaining a unique ID through hashing its IP address.
It then connects to an existing node nN1, identified as its
immediate successor in the network. nN copies the finger
table from nN1 and sets its predecessor to nN1’s predecessor.
Subsequently, nN1’s predecessor is updated to nN . Finally,
nN proceeds to update the finger tables of nodes within a
specific range. This range typically includes the 2n−1 (where
n is the finger’s table size) closest preceding nodes in the
network. These updates are crucial for maintaining network
consistency and ensuring efficient routing, as nN integrates
itself into the existing network structure.

When a node lN needs to leave the network, it first
notifies its predecessor node plN to consider lN ’s immediate



successor, lN1, as the new direct successor. Then, lN1’s
predecessor reference is updated to plN . Following this, an
updating process similar to the join operation is carried out,
but this time with lN1’s ID. This update ensures that the
finger tables of nodes counter-clockwise in the circle remain
current. Finally, the responsibility for the keys (data in the
node) managed by lN is transferred to lN1.

MAAN extends the Chord protocol’s approach for adding or
removing devices, adapting it to a multidimensional context.
This involves applying similar steps as Chord for node updates,
but across multiple dimensions, ensuring each list remains
coherent and accurately reflects the system’s structure.

B. Implementing the space U

To index and operate devices within the resource space U ,
our system implements the MAAN operations but, rather than
relying on IP addresses for ID generation, it uses metrics
based on the hardware resource availability and network-
related power consumption of devices. We employ a specially
designed locality-preserving formula to convert a numerical
value V (availability of a device’s resource or its network
connection’s power consumption) into an ID that fits coher-
ently within our multidimensional space. As shown in Eq. 2,
this process involves scaling V by the maximum number of
nodes N our system can support at any given time, and then
normalizing this product by the highest limit value SL for
device resources or consumption. Values of SL and N are
tailored to the specific constraints of each dimension, ensuring
that the generated ID accurately represents the resource or
power profiles of the devices in each dimension.

ID =

⌈
V ×N

SL

⌉
(2)

When a new node acquires an existing value within a spe-
cific dimension, it becomes part of a twin− list implemented
for each device. All twin−nodes share the same predecessor
and successor pointers within the overlay network.

C. Information frames and the reindexing process

Our structure indexes devices by the dimensions of the
space U , whose values can fluctuate significantly due to
OS scheduling or device movement. To manage this, the
middleware on each device implements ’data frames’, FIFO-
like collections for each dimension. They periodically store
information, average this data, and then apply Eq. 2 to deter-
mine the ID for each device in every dimension. This method
enables controlled reindexing of nodes within the system.

D. The querying process implementation

Our system uses MAAN’s iterative method for queries,
starting with one dimension to create a candidate list X ,
and then refining it by considering other dimensions. To
prevent resource conflicts—when multiple queries select the
same node, causing uncoordinated actions—we introduce a
”candidate lock” so each device in X is locked to one query
at a time. Devices remove locked candidates from X . We

also tackle ”circular saturation,” where device overload from
migrations can strain the system, by predicting resource and
power needs before migration/duplication. These predictions
inform our scheduling algorithm to maintain system stability.
They are detailed in the next section.

V. THE SCHEDULER

Our energy-aware scheduling method utilizes multidimen-
sional spaces to allocate hardware resources efficiently, al-
lowing for future customizations in various data structures,
frameworks, and optimization dimensions. This paper presents
a general system configuration for our scheduler implementa-
tion, outlined as follows: (i) all devices are indexed within
space U ; (ii) a device D may run multiple containerized
applications [Ci . . . Cj ], each with initial requirements for
CPU, RAM, NIC, GPU, and storage rate; (iii) containerized
applications, identifiable by PIDs, have their energy usage
profiled by equations with values sourced from GNU/Linux
interfaces; (iv) each container can connect to others at an
average transfer rate determined by an information frame;
(v) D stores data units, each identified by an ID and described
by its size in MB; (vi) containers access data units across
the network at an average rate set by an information frame;
(vii) a composite application comprises a set of containerized
applications and data units linked in an incomplete graph;
(viii) the OS on each device runs a single-priority round-robin
scheduling algorithm, ensuring that in overload scenarios,
competing processes proportionally receive resources based on
their requests.

Upon joining the space U , a device’s supervisor Microser-
vice (SM) independently launches a scheduling algorithm in-
stance, potentially enabling devices to operate under different
configurations of the scheduling parameters. The SM is a
daemon-based middleware deployed in each device with three
main objectives: (i) maintain an updated container list that can
be sorted by each axis of the space U ; (ii) track each device’s
component load information; and (iii) implement the technical
overlay aspects (ID, finger tables, and the information frame)
and the scheduling mechanisms, such as the mentioned pro-
jection operations. Let’s first explore the latter mechanisms
before delving into scheduling details.

A. Power calculation and projection

Power and energy metrics for hardware components in space
U , derived from equations using pre-computed values, OS
interfaces, or datasheets have been validated for changes in
power consumption relative to overall computer consump-
tion [4]. While these approximations may oversimplify hard-
ware specifics, typical of software power tools, they align with
our goals to track power variations across components and
predict consumption before deployment or migration. This is
why we do not use tools like PowerJoular [25] or Scaphandre4,
which are effective only for single components and do not
support power-prediction approaches.

4https://github.com/hubblo-org/scaphandre



1) CPU energy estimation.: Power and energy consump-
tion across CPU cores for a process is estimated by Eq. 3,
which incorporates CPU capacitance (calculated from TDP,
VTDP , and fTDP with a 0.7 multiplier [26]), current frequency
(fi), and voltage (Vi) [26], the ratio of process-specific CPU
usage to total CPU usage (UPID

CPUi
/UCPUi

), and CPU fan en-
ergy (fanss) that adjusts based on core frequency thresholds
(fi > fx > fj).

nCores∑
i=0

EPID
CPUi

(t) =
0.7× TDP

fTDP × V 2
TDP

× fi × V 2
i ×

UPID
CPUi

UCPUi

(t)

+fanss(t), where :

fanss = J∀K(fi > fx > fj)

(3)

a) Power projection/prediction:: To estimate the power
consumption of a container C before its migration from device
D to D2, we follow the steps in Eq. 4.

Given:

1. ICD =
XCD × ID

100
, where ID is the number of instructions D

can execute in time T1, and C uses X% of D’s CPU time
XCD in T1; AND

2. XCD2 =
XCD × ID

ID2
, estimating C’s CPU load

percentage on D2, from it’s
CPU’s instruction capacity; THEN

3. ECD2 =
XCD2 × ID × CD2 × V 2

D2 × FD2

100× ID2
+ fanss(t),

is the energy D2’s CPU would consumes processing C.
(4)

2) RAM energy estimation.: For RAM energy, Eq. 5 [27]
covers both background (EBK) and active process energy
(Eactapp

) across its different working states and its operation
quantities.

The RAM energy consumption combines:
1. Background energy, EBK , accounts for:

EBK = Tsf × 0.35W (self refresh) + Tckeoff × 0.89W

(CKEOFF state) + Tact × 1.56W (active state)

+
∑

i∈{ranks}

Tact × 0.098W (per rank),

where T represents time in each state,
2. Active energy, Eact, for read/write operations:

Eact = NR × 6.6 nJ (page read) +NW × 8.7 nJ (page write),
where NR and NW are the number of read and write

operations.
(5)

a) Power projection/prediction:: To project consumption
from device D to D2, we adapt the multipliers of Eq. 5 for
D2, considering RAM-module differences based on datasheet
specifications.

3) Network interfaces, storage devices, and GPU esti-
mation.: For these components, we provide a model that

considers the load generated by a process P (LP /LMAXD
)

and the device’s active power consumption (WuD
) (see Eq. 6).

EDM = (WuD × LP

LMAXD

)× TD (6)

a) Power projection/prediction:: We use Eq. 6 for pro-
jecting power consumption to a device D2, adjusting PC and
LMAXD

for D2’s load by a process P (LP /LMAXD2
).

B. The communication protocol

Each SM in our system uses a descriptor vector in peer
negotiations, detailing six metadata types per device: resource
capacity, current hardware load, resource availability, container
Ci execution requirements, load average by Ci, and operation
type (request/answer). This ensures a cost-effective communi-
cation method for scheduling (see Algorithm 2, line 1).

C. The scheduling algorithm

Upon joining, devices’ SM run a scheduling algorithm
(Algorithm 1) considering three main scenarios:

In the first scenario (line 6 to line 13), if a device’s
component load hits an overload condition (lines 6-13), the
system migrates containers to prevent cooling systems from
maxing out and driving up power consumption, a situation
rooted in a nonlinear load-power relationship. Containers,
ranked by their load on the most taxed component (line 4),
are migrated in iterations based on three scenarios (line 8)
—reflecting the best, average, and worst cases— to avoid
network overload. This process continues until the device exits
the overload state or migration becomes unfeasible for even
the smallest container.

The second scenario addresses a device’s underload con-
dition (lines 14 to 19), where the supervisor aims to minimize
the device’s workload. The objective is to lower all component
loads below a set threshold, enabling the device to enter a
suspended state. This saves energy across all the device’s
internals, including the motherboard, extra fans, etc. Upon all
hardware components reaching minimal load levels (line 14),
the SM seeks to migrate all active containers to proper devices
(line 15). If successful, the device enters a suspension state,
reactivating only upon receiving a certain number of migration
requests within a given timeframe (lines 16 and 17).

In both scenarios, the SM follows Algorithm 2’s migration
policy, using region queries (O(log(n)), where n is the device
count) to find candidates with sufficient resources (lines 2-8). It
then chooses the destination with minimal power consumption
across all hardware components (lines 12-17).

The third scenario (lines 20-32) addresses stable deploy-
ments where load balancing is impossible due to resource
constraints or doesn’t fit the first two scenarios’ criteria.
The SM determines the device’s stability by analyzing its
maximum downtime over the last million operations, tracked
via the MovementsWindow. Optimizing data package lo-
cations is crucial due to the energy and time costs of data
migrations. The algorithm selects the most energy-efficient
connection device as the centroid for data placement (line 24),



migrating data there if hardware resources are sufficient and
data replicas are preserved (line 26). Failing that, the algorithm
seeks alternatives through the nearest neighbor query (line 30),
iterating until migration success or return to the starting node.

The three scenarios implement an energy recovery method,
as described in Algorithm 3. Each SM assesses the energy
expended on its last operation (line 1) and the power saved
by it (line 2). Once enough time has passed to ensure that
the saved energy is at least double the energy expended, the
algorithm attempts to execute another operation.

Algorithm 1: Main algorithm for device D
1 timeSlice← 1min;
2 MovementsWindow ← [];
3 size← size(containerList);
4 sortByfactors(containerList);
5 while true do
6 if isOverLoadSituation then
7 while isOverLoadSituation() do
8 for Mi in [containerList[size− 1],

containerList[size/2], containerList[0]] do
9 if MigrateContainer(Mi) = true then

10 containerList.delete(Mi);
11 break;

12 if No container moved then break;

13 WaitUntilEnergyIsRecuperated() # see Algorithm 3;
14 else if isUnderLoadSituation then
15 migrateAllContainers(containerList);
16 if containerList.empty() then
17 suspendUntilExternalCall();
18 else
19 WaitUntilEnergyIsRecuperated() # see

Algorithm 3;

20 else if NoMovements(timeSlice) then
21 dataUnit← selectMostUsed();
22 centroid← D;
23 while centroid isDifferentTo D do
24 centroid←

lessNetworkConsumption(dataUnit.connectedPeers());

25 if move(dataUnit, centroid) then
26 sendAndDeleteData(D, centroid);
27 MovementsWindow.add(now −

lastOperationTime);
28 break;

29 else
30 centroid←

CustomNearestNeighborQuery(centroid);

31 WaitUntilEnergyIsRecuperated();
32 timeSlice← max(MovementsWindow);

VI. EXPERIMENTS AND RESULTS

To demonstrate our scheduler effectiveness, we evaluated
three main variables through experiments: total and average
hardware component energy consumption across all de-
vices, total containers runtime, and average containers’
QoS. We considered two scenarios: one comparing our al-
gorithm (Multidimensional Distributed Scheduling - MDS)
against an initial deployment based on resource availability
(as most schedulers do today), and another comparing our
approach to two other energy-aware scheduling strategies,
explained further below. We made this distinction because,
to the best of our knowledge, our method uniquely considers

Algorithm 2: MigrateContainer(M) for device D
1 V ← buildV ector(M);

ResourceCandidateLists← CustomRegionQuery(V );
CandidateList← intersect(ResourceCandidateLists, V );

2 foreach Dl in CandidateList do
3 sendVector(V, Dl);
4 WaitForCandidateReponse(20);
5 if isCandidatePossible(Dl,M) then
6 lock(Dl);

7 else
8 DeleteFromCandidateList(Dl);

9 if isEmpty(CandidateList) then
10 return false;

11 cheapestDevice← CandidateList[0];
12 foreach Dl in CandidateList do

// Project consumption for CPU, RAM, NIC, Storage,
and GPU

13 c← projectConsumption(V,Dl);
14 if c < projectConsumption(V, cheapestDevice) then
15 cheapestDevice← Dl;

16 sendAndDeleteContainer(M , cheapestDevice);
17 MovementsWindow.add(now − lastOperationTime);
18 return true;

Algorithm 3: WaitUntilEnergyIsRecuperated for a de-
vice D

1 usedWatts = getOperationsPower();
2 timeSavings = 2× usedWatts×operationsTime

InitialWatts−FinalWatts ;
3 sleep(timeSavings);

all elements of the U space comprehensively, including con-
nections to data items that containers may have, an aspect not
comparable with other algorithms. Each scenario deployed 50
devices and executed a sequence of 100, 200, 300, 400, 500,
and 600 containers to evaluate scalability and performance
under varying workloads.

Regarding the experimentation environment, we utilized the
PISCO simulator [28] for its capacity to dynamically abstract
and deploy any network topology and scheduling heuristic.
We chose PISCO due to our physical infrastructure limitations
and our interest in technology neutrality. To our knowledge,
PISCO is the only simulator capable of such comprehensive
abstraction.

A. Power, load, and QoS values

Using PISCO, we deployed two scenarios by considering
delimited random values for hardware capabilities and power
consumption, based on appropriate metrics collections5,6,7,8,9

[7]. Additionally, we explored a range of workloads to
assess their needs for different computing capabilities and
data package sizes, as outlined in the Figure 1. For QoS,
we considered the average ratio of computational capacities
required by a workload versus what is provided across all

5https://www.samsung.com/semiconductor/global.semi.static/Samsung\
SSD\ 860\ EVO\ Data\ Sheet\ Rev1.pdf

6https://a1dev.com/sd-bench/stats/cpu-frequency/
7https://www.memorybenchmark.net/amount-of-ram-installed.html
8https://nationalpcbuilder.com/graphics-card-gpu-power-consumption-comparison-chart/
9https://www.tomshardware.com/features/ssd-vs-hdd-hard-drive-difference/

2



hardware components [4]. The first scenario, which is more
comprehensive, considers the transfer rate of containers to
their data items, influenced by the physical distance between
devices (the 6th dimension of space U, benchmarked against
internet standards10). Here, we equally weighted hardware
resources and connections.

Fig. 1. Consumption and load values

B. The first Scenario
Our first goal is to assess our algorithm against an initial

deployment based solely on resource availability. As Figure 2
depicts, when workloads increase, MDS maintains QoS im-
provement, for example, from 48.1% to 55.5% at the 600-
container level. MDS also shows gains in time efficiency,
decreasing an average of 46% across all cases. Energy con-
sumption analysis reveals that MDS globally saves energy. For
instance, CPU energy dropped from 105459.26 to 64213.93
joules and GPU energy from 90470.04 to 49050.85 joules at
the 600-container scale. MDS saves energy also for storage
devices. At the maximum scale, it decreases from 5310.47
to 3311.49 joules, highlighting the importance of storage
optimization for scheduling strategies. For NIC energy, MDS
shows an increase in energy consumption in specific cases
(e.g., 200, 300, and 600 containers). This is attributed to
MDS’s workload migrations; however, it does not detract from
the overall strategy, as these migrations enable significant
energy savings in other critical hardware components, thus
enhancing global energy efficiency.

Fig. 2. MDS vs. HW availability-based Initial deployment

C. The Second Scenario
For comparative purposes, we evaluated our algorithm

against other energy-aware approaches: the algorithm pro-
posed by Ferere et al. [6], and the scheduler proposed by Li

10https://wondernetwork.com/pings

et al. [8]. We selected these energy-conscious approaches to
compare the effectiveness of using data structures versus an
energy-aware method selective of hardware components and
a strategy based on processing historical data. Ferere’s algo-
rithm uses a two-step approach to assign queries to servers,
optimizing for energy and resource efficiency. It first profiles
servers and queries by their CPU, RAM, GPU, and network
latency. Then, it allocates tasks using a Server Ability to An-
swer a Query (SAAQ) score, choosing servers that fulfill query
needs using the least resources to save energy. Li et al. propose
an energy-efficient Spark scheduler (EASAS in this paper)
that aligns with Big Data SLA. It uses a dynamic strategy
that records task times and energy, adjusting task assignments
to prioritize energy efficiency across a varied cluster. Tasks
are ranked in a queue by their energy consumption rate, with
lower rates preferred, promoting even execution times.

Fig. 3. MDS vs. EASAS and SAAQ

As Figure 3 shows, MDS improves QoS more than the other
two approaches, for instance, from 48.1% to 55.5% at the 600-
container level, surpassing EASAS and SAAQ, which cap at
15.98% and 18.64%, respectively. In terms of execution time,
MDS demonstrates superior efficiency, reducing time by an
average of 46% across all cases, with a notable decrease to
252 seconds at the 600-container scale, compared to EASAS’s
1671 seconds and SAAQ’s 738 seconds. This enhanced ef-
ficiency is further mirrored in the overall energy consump-
tion, where MDS reports a total energy usage of 397040.47
joules at the 600-container workload, significantly lower than
EASAS’s 2652380.47 joules and SAAQ’s 1315532.51 joules.
These findings highlight MDS’s capacity to not only optimize
execution time and QoS performance but also significantly
improve energy efficiency across all the hardware components.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a distributed scheduling algorithm based
on multidimensional spaces and data structures. This approach
indexes devices by various heterogeneous criteria, such as
hardware availability, hardware characteristics, or the physical
location of devices. In this work, our primary goal has been
comprehensive energy saving, demonstrating that by managing



various variables such as the characteristics of hardware com-
ponents and the location of devices, we have been able to save
time and energy and gain in QoS compared to an initial de-
ployment that only considers availability and other schedulers
based on hardware type or historical execution of workload
charges. We are working on the actual implementation of this
approach in K8s architectures, as part of a custom scheduler.

VIII. ACKNOWLEDGMENT

This research was supported by the internal project UbiC-
Data: Data Science for Ubiquitous Computing Envi-
ronments, Number VIU23008, financed by Valencian In-
ternational University, Spain and partially supported by the
”GreenSE4IoT: Towards Energy-efficient Software for Dis-
tributed Systems” project whose code is STIC-AMSUD 22-
STIC-04.

REFERENCES

[1] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on scheduling
strategies for workflows in cloud environment and emerging trends,”
ACM Computing Surveys, vol. 52, no. 4, pp. 1–36, 2019.

[2] X. Liu and R. Buyya, “Resource management and scheduling in
distributed stream processing systems: a taxonomy, review, and future
directions,” ACM Computing Surveys, vol. 53, no. 3, pp. 1–41, 2020.

[3] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in
edge computing: A survey,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2131–2165, 2021.

[4] A. V. H. Humberto, “An energy saving perspective for distributed
environments: Deployment, scheduling and simulation with multidimen-
sional entities for software and hardware,” Ph.D. dissertation, UPPA,
https://www.theses.fr/s342134, 2022.

[5] H. H. Alvarez Valera, M. Dalmau, P. Roose, J. Larracoechea, and
C. Herzog, “An energy saving approach: Understanding microservices
as multidimensional entities in P2P networks,” in SAC, ser. SAC ’21.
ACM, 2021, p. 69–78.

[6] D. Ferere, I. Dongo, and Y. Cardinale, “SAAQ: A characterization
method for distributed servers in ubicomp environments,” Sensors,
vol. 22, no. 17, p. 6688, 2022.

[7] B. Gul, I. A. Khan, S. Mustafa, O. Khalid, S. S. Hussain, D. Dancey, and
R. Nawaz, “Cpu and ram energy-based sla-aware workload consolidation
techniques for clouds,” IEEE Access, vol. 8, pp. 62 990–63 003, 2020.

[8] H. Li, H. Wang, S. Fang, Y. Zou, and W. Tian, “An energy-aware
scheduling algorithm for big data applications in spark,” Cluster Com-
puting, vol. 23, pp. 593–609, 2020.

[9] F. Pop, V. Cristea, N. Bessis, and S. Sotiriadis, “Reputation guided
genetic scheduling algorithm for independent tasks in inter-clouds envi-
ronments,” in Internat. Conf. on Advanced Information Networking and
App Workshops, 2013, pp. 772–776.

[10] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, “TTSA: An
effective scheduling approach for delay bounded tasks in hybrid clouds,”
IEEE Transactions on Cybernetics, vol. 47, no. 11, pp. 3658–3668, 2017.

[11] Z. Zhong, J. He, M. A. Rodriguez, S. Erfani, R. Kotagiri, and R. Buyya,
“Heterogeneous task co-location in containerized cloud computing envi-
ronments,” in IEEE 23rd Internat. Symposium on Real-Time Distributed
Computing, 2020, pp. 79–88.

[12] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya, “Machine
learning-based orchestration of containers: A taxonomy and future
directions,” ACM Computer Surveys, 2022.

[13] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive learning pso-based
deadline constrained task scheduling for hybrid iaas cloud,” IEEE
Transactions on Automation Science and Engineering, vol. 11, no. 2,
pp. 564–573, 2014.

[14] N. Hamdi and W. Chainbi, “A survey on energy aware vm consolidation
strategies,” Sustainable Computing: Informatics and Systems, vol. 23,
pp. 80–87, 2019.

[15] Z. Zhong and R. Buyya, “A cost-efficient container orchestration strategy
in kubernetes-based cloud computing infrastructures with heterogeneous
resources,” ACM Trans. Internet Technol., vol. 20, no. 2, 2020.

[16] Y. Hao, J. Cao, Q. Wang, and J. Du, “Energy-aware scheduling in edge
computing with a clustering method,” Future Generation Comp. Systems,
vol. 117, pp. 259–272, 2021.

[17] P. Chhikara, R. Tekchandani, N. Kumar, and M. S. Obaidat, “An efficient
container management scheme for resource-constrained intelligent iot
devices,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 597–
12 609, 2021.

[18] H. H. Alvarez Valera, M. Dalmau, P. Roose, and C. Herzog, “The archi-
tecture of Kaligreen V2: A middleware aware of hardware opportunities
to save energy,” in IOTSMS, 2019, pp. 79–86.

[19] H. H. Alvarez Valera, P. Roose, M. Dalmau, C. Herzog, and K. Respi-
cio, “Kaligreen: A distributed scheduler for energy saving,” Procedia
Computer Science, vol. 141, pp. 223–230, 01 2018.

[20] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Computer Surveys, vol. 30, no. 2, p. 170–231, 1998.

[21] C. du Mouza, W. Litwin, and P. Rigaux, “Sd-rtree: A scalable distributed
rtree,” in IEEE 23rd Internat. Conf. on Data Engineering, 2007, pp.
296–305.

[22] P. Ganesan, B. Yang, and H. Garcia-Molina, “One torus to rule them all:
Multi-dimensional queries in p2p systems,” in 7th International Work-
shop on the Web and Databases: Colocated with ACM SIGMOD/PODS
2004. ACM, 2004, p. 19–24.

[23] M. Cai, M. Frank, J. Chen, and P. Szekely, “Maan: a multi-attribute ad-
dressable network for grid information services,” in First Latin American
Web Congress, 2003, pp. 184–191.

[24] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
vol. 31, 01 2001, pp. 149–160.

[25] A. Noureddine, “Powerjoular and joularjx: Multi-platform software
power monitoring tools,” in 18th Internat. Conf. on Intelligent Envi-
ronments, 2022.

[26] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring energy
hotspots in software,” Automated Software Engg., vol. 22, no. 3, p.
291–332, 2015.

[27] A. Karyakin and K. Salem, “An analysis of memory power consumption
in database systems,” in 13th Internat. Workshop on Data Management
on New Hardware. ACM, 2017.

[28] P. Roose, M. Dalmau, and H. H. A. Valera, “Système et procédé de
planification de traitement de programme,” Patent Pattent N°2 107 199,
2021.


