
HAL Id: hal-04634180
https://univ-pau.hal.science/hal-04634180v1

Submitted on 3 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RADIANCE: A CASE Tool For Green Software Design
Jorge Andrés Larracoechea, Sergio Ilarri, Philippe Roose

To cite this version:
Jorge Andrés Larracoechea, Sergio Ilarri, Philippe Roose. RADIANCE: A CASE Tool For Green
Software Design. 32nd International Conference on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WETICE 2024), Jun 2024, Reggio Emilia, Italy. �hal-04634180�

https://univ-pau.hal.science/hal-04634180v1
https://hal.archives-ouvertes.fr


RADIANCE: A CASE Tool For Green Software
Design

1st Jorge Andrés Larracoechea
LIUPPA/I3A

Université de Pau et

des Pays de L’Adour

Univesidad de Zaragoza

Anglet, France

jorge-andres.larracoechea@etud.univ-pau.fr

2nd Sergio Ilarri
I3A

Universidad de Zaragoza

Zaragoza, Spain

silarri@unizar.es

3rd Philippe Roose
LIUPPA

Université de Pau et

des Pays de L’Adour

Anglet, France

Philippe.Roose@iutbayonne.univ-pau.fr

Abstract—Regardless of the improvements in the
efficiency of energy consumption of information and
communication technology, energy consumption will
forever be a requisite for software execution. Conse-
quently, researchers have promoted the development
of green and sustainable software with new develop-
ment methods and tools. These, however, have been
adopted with limited success due to technicalities and
specific language/platform requirements. In this paper,
we present RADIANCE: a web app for designing greener
software with a model-driven approach based on the
Behavior-Based Consumption Profiles (BBCP) external
Domain-Specific Modeling Language (DSML). RADI-
ANCE, in contrast to other tools, embraces users with
different levels of knowledge about green software and
software architecture. Moreover, RADIANCE assesses
and rates, reports, and provides advice on the energy-
consuming patterns of the software models created by
the user, assisting them in identifying possible design
changes that result in greener software designs from
the initial stages of software development.

Index Terms—Software design, Green software, Sus-
tainable software, Energy consumption, Software devel-
opment

I. Introduction

The ongoing energy and environmental crisis has fos-
tered new solutions and approaches to reduce the elec-
trical energy expenses worldwide. Green software (also
called sustainable software), has regained the attention
of researchers as a contribution to reducing the carbon
emissions of Information and Communication Technolo-
gies, the culprit for up to 10% of the electrical energy
expense worldwide [1]. Green software, as specified by
H. Acar [2], can be divided into 3 different categories:
green with software, green within the software, and
green software. Green with software is defined as the
use of software to generate frugal solutions to outside
problems. Green within the software is the use of
power models inside the software to make its execution
more frugal. Finally, green software contemplates the

variables during the software development and its sur-
rounding circumstances to save energy throughout the
creation of software and results with frugal software.

As previous research has concluded, most of the
existing tools and methods available target both the
creation of green with software and green within soft-
ware applications [3]. By placing the existing tools
on a software development framework such as the
traditional waterfall Software Development Life Cy-
cle (SDLC) for comparison, it stands out that all of
them target the latter stages (coding, deployment and
maintenance), leaving the initial stages (analysis and
design) completely unsupported.

In addition, previous studies have found that uni-
versity students already associate electrical energy
expenditure with software execution. Still, they lack
the tools and knowledge required to learn and apply
energy-saving patterns to the software they learn to
design and develop. [4]. Moreover, experienced soft-
ware developers in the industry identify energy effi-
ciency as a parameter for creating successful software.
Still, stakeholders usually neglect the expense of the
overhead time required to trim the energy expense of
software [5].

In this paper, we present our tool RADIANCE (soft-
waRe behAvior DesIgn And eNergy Consumption as-
sEssment). RADIANCE’s goals are the following: (1)
raise the awareness of its users on the energy-
consuming patterns in software models from the anal-
ysis and design stages of a software development
project, (2) rate the user’s software models according
to the presence or lack of energy-consuming patterns,
(3) produce agent simulations that allow the users of
RADIANCE to understand how their models will behave
in mass over time.

The remainder of this paper is structured as follows:
section Section II extends the motivations of this paper



providing an overview of the available green-oriented
development tools, their target stage in software de-
velopment, and their features compared against RADI-
ANCE. Section IV through Section VI present the core
features of RADIANCE that difference it from other
approaches, to conclude in Section VIII with our future
work and research directions, in addition to the closing
paragraphs.

II. Related Work

TABLE I
Distribution of the green-oriented tools we studied along a

"classical" waterfall SDLC

Contribution Analysis &
Design

Develop-
ment

Deployment Maintenance

AWS Customer
Carbon Footprint
[6]

✕ ✕ ✓ ✓

Carat [7] ✕ ✓ ✕ ✓

CloudCarbon [8] ✕ ✕ ✓ ✓

CodeCarbon [9]–
[11]

✕ ✓ ✓ ✓

EcoCode [12] ✕ ✓ ✕ ✓

EcoGrader [13] ✕ ✓ ✕ ✓

GCP carbon foot-
print [14]

✕ ✕ ✓ ✓

Green Advisor
[15]

✕ ✓ ✕ ✓

Green Frame
Model [16]

✕ ✕ ✓ ✓

Green Miner [17] ✕ ✓ ✕ ✓

JoularJX [18] ✕ ✓ ✓ ✓

Kepler [19] ✕ ✕ ✓ ✓

PowerJoular [20] ✕ ✓ ✓ ✓

SEED [21] ✕ ✓ ✕ ✓

WebsiteCarbon
[22], [23]

✕ ✓ ✕ ✓

RADIANCE ✓ ✓ ✓ ✓

According to the Green Software Foundation, 2,000
specialized green software tools currently exist in
open-source, academic, and commercial contexts [24].
As we previously noticed a lack of green software ap-
proaches that target the analysis and design phases [3],
we decided to extend our previous search for green-
oriented software tools. We define green-oriented tools
as software tools whose mission or objective is, regard-
less of the stage of software development they target,
to reduce, report, or measure the prospective energy
consumption of software or its collateral effects, such
as carbon emissions. We compared the tools using the
criteria available in Table III, and we took note of what
stage of the SDLC they could be applied to.

As the excerpt of the green-oriented tools we found
available in Table I denotes, most of the existing tools
and approaches target the development [7]–[23], the
deployment [6], [9]–[11], [16], [18]–[20], [25] and the
maintenance stages [6]–[13], [15]–[23], [25]. None of
the tools we studied targeted the analysis and design
stages, verifying what we concluded in a previous
contribution [3]. Due to this severe gap in tools sup-
porting the analysis and design stages, we developed

RADIANCE. A comparison of the features included in
RADIANCE against the tools we previously studied is
available in Table II whilst the criteria for comparison
is available in Table III. The criteria for comparison
is composed of a series of needs we identified during
the development of our Behavior-Based Consumption
Profiles (BBCP), an external Domain-Specific Modeling
Language (DSML).
The BBCP DSL is a software behavior modeling lan-
guage we developed to describe the evolution of soft-
ware behavior over time [26]. Its advantages over
other software behavior modeling languages are (1)
its object-oriented implementation of software model-
ing that uses concepts familiar to programmers and
software architects with any level of expertise, (2)
its support for time-based changes in the behavior of
software, (3) its ability to include probability in the
behavior of software and, finally, (4) the incorporation
of hardware consumption in the models created with
it. It is used as the basis for software modeling in-
side of RADIANCE, as the UI and the core features
of RADIANCE accommodate the concepts introduced
by the BBCP. RADIANCE is also a candidate to be
implemented in the design stage of a Full-Stack Green
Software Development (GSD) Methodology we previ-
ously proposed [27].

TABLE II
Comparison table of the features available in RADIANCE against

other green-oriented tools and approaches

Contribution C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
AWS Customer
Carbon
Footprint [6]

✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

Carat [7] ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✓

CloudCarbon
[8]

✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

CodeCarbon
[9]–[11]

✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✓

EcoCode [12] ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✓

EcoGrader [13] ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✓

GCP carbon
footprint [14]

✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

Green Advisor
[15]

✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

Green Frame
Model [16]

✕ ✕ ✓ ✓ ✕ ✓ ✕ ✕ ✕ ✕

Green Miner
[17]

✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕

JoularJX [18] ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

Kepler [19] ✕ ✕ ✓ ✓ ✕ ✓ ✕ ✕ ✕ ✕

PowerJoular
[20]

✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

SEED [21] ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

WebsiteCarbon
[22], [23]

✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✓

RADIANCE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

III. The Architecture

RADIANCE is a web app with no server-side, writ-
ten entirely in JavaScript and HTML5. Bootstrap, sup-
ports the UI among other open-source libraries that



TABLE III
Criteria used to compare existing approaches to fit our needs

Criteria Description

C1 The approach allows its users to model the

behavior of software.

C2 The approach allows its users to define a

change in the behavior of a software’s model

over time at different levels of granularity.

C3 The approach supports the analysis of soft-

ware at different levels of granularity.

C4 The approach is oriented towards generating

useful metrics for evaluating the energy con-

sumption of software or software models.

C5 The approach includes the means for pro-

filing/assessing human-provided input or ser-

vices or any way of assessing the impact/un-

predictability of human interaction.

C6 The approach is hardware and software agnos-

tic

C7 The approach targets the initial stages of the

SDLC or initial stages of a software develop-

ment project.

C8 The approach is aimed at users with different

skill levels to promote the democratization of

green software.

C9 The approach exists within a green software

method or intends to become part of one.

C10 The approach provides an algorithmic score

or rank to the software or software model it

analyzes based on its energy consumption, be-

havior, or other related metrics such as carbon

emissions.

make plotting, guiding, and alerting the user easier.
JavaScript was selected due to its popularity, ease of
use, and pervasiveness on the web, as well as Boot-
strap. As RADIANCE uses a single-page architecture,
all the web components are loaded from the beginning,
and the page does not need to reload. Moreover, the
distribution of software updates is performed instantly
and no installation is needed.

Four main tiers constitute the single-page architec-
ture of RADIANCE: the library, the model builder, the
component builder, and the behavioral load consump-
tion simulator. The top tiers depend on the functionality
and products of the lower tiers for RADIANCE to
aggregate to its full scope in functionality, as seen in
Figure 1. The library is the landing page of RADIANCE
and, as its name implies, is responsible for managing
the software models created by the user. The general
purpose of the model builder is to allow its users to

swiftly model the behavior of software and acquire
an energy rating for finished models. The component
builder allows the user to aggregate the models built
with the software builder into logical components that
can be later rated according to the individual mod-
els that compose them. Finally, the products of the
previous components of RADIANCE are employed in
the behavioral load consumption simulator to execute
agent simulations to preview the resource-consuming
behavior of the software components created by the
user.

Fig. 1. The tiers that constitute the architecture of RADIANCE

IV. Software Behavior Modeling

The software behavior modeling feature of RADI-
ANCE allows users to quickly create models of the be-
havior of software using common concepts in software
architecture and Object-Oriented Programming (OOP)
such as functions, I/O parameters, function sequenc-
ing, triggers, and time. The Model Builder (tier 2) of
RADIANCE, is responsible for facilitating the software
behavior modeling process by adapting the available
modeling concepts of the BBCP to the user’s expertise
using UI language levels. UI language levels are re-
configurations of the UI style and natural language that
occur when the user selects its level of expertise.

The level of expertise depends on (1) the acquain-
tance of the user with RADIANCE, (2) the acquaintance
of the user with our BBCP OOML, and (3) the familiar-
ity of the user with the description of the consumption
of hardware resources (CPU, RAM, etc.). The modeler’s
UI level can be changed at any time, as RADIANCE
supports forward and backward compatibility between
UI’s language configurations, meaning that the user
can choose to model on whichever level of expertise
they prefer on the fly, covering the need for a tool that
is easily introduced and used by beginners. UI levels
can also be customized to improve the presentation or
the user experience.



Fig. 2. Three functions labeled by their energy-consuming behavioral
patterns

The model builder is also capable of executing an al-
gorithm that classifies the energy-consuming patterns
of each function similarly to the ones in Figure 2, and
generates a step-by-step classified timing diagram of
the sequential and parallel function calls similar to the
sample in Figure 3. The algorithm used by RADIANCE
can be customized according to the needs of the users,
and a custom algorithm created by us will be included
in the latest release. The classification generated by
the current algorithm depends on the value that the
users select for each property available in the model,
and its underlying mechanics in the BBCP [3], [26].
Each function and step are labeled with a letter and
a color from A in green (most frugal) to G in red
(most energy-consuming), similar to the classification
of the EU’s energy label. After the classification of
functions and function calls, the user is presented with
a prospective energy consumption report similar to
the sample in Figure 4, that (1) warns the user of
the possible high energy consuming behaviors in the
model, (2) provides advice on good practices to con-
serve low energy consumption and, (3) fosters energy-
saving behavioral patterns with positive feedback.

Fig. 3. A timing diagram created, classified, and labeled of a software
model using RADIANCE

V. Component Behavior Modeling

As mentioned in Section IV, the model sequencer
allows users to create cross-model interactions and de-
pendencies. To allow the users to model more complex

Fig. 4. A snapshot of an energy patterns report created with
RADIANCE

applications or software components, we included a
component behavior modeler in the component builder
(tier 3 of Figure 1). To control how models can be
grouped, the component modeler uses "collections":
logical agglomeration of individual models or nested
collections. Models in the same collection can share
parameters and triggers (logical conditions for setting
a model in an active state). Inheritance among children
collections is also supported. Similarly to the behavior
modeler, the component behavior modeler is capable of
executing a collection rating algorithm. We will soon
propose an algorithm to rate collections so that the
user can easily comprehend the impact on the ener-
gy/hardware consumption of grouping specific models
and collections.

VI. Behavioral Load Simulator

Taking advantage of the previous features in RA-
DIANCE and in addition to the characteristics that
make the BBCP different from other software behavior
description languages, we embedded a behavioral load
simulator in RADIANCE. The behavioral load simula-
tor uses an engine tailored to interpret the variables
of BBCP-supported models, interpreting models into
agents. Collections can be configured as logical spaces
where the member agents’ consumption is mitigated,
data policies are enforced, and the projected energy
consumption can be increased or decreased to ac-
count for diverse scenarios such as power source or
hardware environments. As BBCP models support the
re-definition of certain variables during specific time-
frames in a simulation, the behavior of models can
change through time. Furthermore, if a user would like
to include uncertainty as part of a model’s behavior,



it is possible to define specific probabilities for an
agent to enter an active state or an inactive state. The
probabilities can change at specific time frames at pre-
defined rates.

The results of the engine, once it has been configured
to interpret one or more collections, are a dataset of
the usage created by each agent and a plot graph
showing each change in state per agent. A sample of
the plot graph is available in Figure 5, showing the
results in the change of the binary state (active and
inactive) of 3 different models throughout 2 simulated
hours.

Fig. 5. A sample of the change in the state of 3 profiles between
active and inactive throughout 2 simulated hours

The data generated by the behavioral load simulator
can be later used by software deployment simulators so
that, during the design stage, the users of RADIANCE
can understand the future challenges that will arise
during the development and deployment phases, and
anticipate them proactively.

VII. Incorporating RADIANCE Into a GSD Method

Our proposal to incorporate RADIANCE into the
multiple stages of a GSD method is the following:

1) Introduce RADIANCE to software designers and
architects in the design stages of the project,
resulting in:

a) A description of behavior, expected hard-
ware consumption and functional dependen-
cies, at the individual function level.

b) Recommended practices to employ to mit-
igate energy consumption, the parallel or
sequential flow of function calls, and an ex-
pected share of hardware consumption per
function, at the single model level.

c) The dependencies management among com-
ponents and an expectation of component
hardware consumption, at the component
level.

Which are later passed on to the DevOps (devel-
opment and operations) team.

2) The DevOps team uses the results of the design
stage to:

a) Identify and implement the best practices in
the code and technology stack, in addition to
other tools such as SEED [21] or EC0lint for
the code [28], JoularJX [18] for testing the
prototype’s consumption.

b) Swiftly re-adjust the models in RADIANCE to
categorize the actual hardware consumption
of the prototype.

c) Employ the Behavioral Load Simulator to
generate the estimated prospective usage
data based on the adjusted software models.

3) The DevOps team uses the prospective usage data
of the models to:

a) Create proactive orchestration algorithms
that account for the evolution of hardware
usage throughout time using re-deployment
simulators like PISCO [29].

b) Obtain information about the prospective
consumption of their stack at the deploy-
ment level with tools such as Cloud Carbon
[30] or Green Cost Explorer [31].

c) Re-adjust the technology stack for the final
deployment.

Any of the previous steps proposed can be revisited
to accommodate new changes that contribute to more
frugal software.

VIII. Conclusion and Future Work

Throughout the paper, we presented RADIANCE: a
tool for designing models of the behavior of software
using model-driven design, and assessing and cata-
loging the energy-consuming patterns of software mod-
els. Moreover, we introduced the objectives, compo-
nents, features, and the general architecture. Thanks
to its flexibility, RADIANCE will be a stepping stone
toward the democratization of green software by fa-
cilitating green software design at diverse levels of
complexity and granularity. A limited build of RADI-
ANCE is available in the following URL: https://joal
ago.github.io/RADIANCE-demo/. We are currently in-
tegrating RADIANCE with PISCO [29], a simulator for
microservices deployment. This integration will allow
us to replace the static hardware resource consump-
tion simulated by PISCO with a dynamic hardware con-
sumption backed by the software models and behavior

https://joalago.github.io/RADIANCE-demo/
https://joalago.github.io/RADIANCE-demo/


generated with RADIANCE to study and create more
efficient energy-saving algorithms for the deployment
stage of the SDLC.

In future work, we will perform a usability test on
RADIANCE to prove 3 major points: that the current
UI expertise levels are useful to the public they are tar-
geted at, and that the report and the energy category
affect the decision-making of the users, contributing to
the latter stages of the SDLC.

Acknowledgment

This publication is part of the project
PID2020-113037RB-I00, funded by MICI-
U/AEI/10.13039/501100011033. We also thank the
support of the Government of Aragon (COSMOS
research group).

References

[1] E. Gelenbe, “Electricity Consumption by ICT: Facts, trends, and
measurements,” Ubiquity, vol. 2023, no. August, pp. 1:1–1:15,
Aug. 2023.

[2] H. Acar, “Software development methodology in a Green IT en-
vironment,” Ph.D. dissertation, Université de Lyon, Nov. 2017.

[3] J. Larracoechea, P. Roose, S. Ilarri, Y. Cardinale, S. Laborie, and
M. González, “Towards Services Profiling for Energy Manage-
ment in Service-oriented Architectures,” in 17th International
Conference on Web Information Systems and Technologies, Jan.
2022, pp. 209–216.

[4] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What Do Pro-
grammers Know about Software Energy Consumption?” IEEE
Software, vol. 33, pp. 1–1, Jan. 2015.

[5] E. Jagroep, J. Broekman, J. M. E. M. van der Werf,
S. Brinkkemper, P. Lago, L. Blom, and R. van Vliet, “Awakening
awareness on energy consumption in software engineering,” in
Proceedings of the 39th International Conference on Software
Engineering: Software Engineering in Society Track, ser.
ICSE-SEIS ’17. Buenos Aires, Argentina: IEEE Press, May
2017, pp. 76–85. [Online]. Available: https://doi.org/10.1109/IC
SE-SEIS.2017.10

[6] “Carbon Footprint Reporting – Customer Carbon Footprint Tool
– Amazon Web Services,” https://aws.amazon.com/aws-cost-
management/aws-customer-carbon-footprint-tool/, accessed on
06-05-2024.

[7] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma,
“Carat: Collaborative energy diagnosis for mobile devices,”
in Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, ser. SenSys ’13. New York, NY,
USA: Association for Computing Machinery, Nov. 2013, pp. 1–
14.

[8] “Methodology | Cloud Carbon Footprint,” https://cloud-carbon-
footprint.github.io/docs/methodology, accessed on 06-05-2024.

[9] “CodeCarbon.io,” https://codecarbon.io/, accessed on 06-05-
2024.

[10] “Mlco2/codecarbon,” https://ec0lint.com/get-started, Jan. 2024,
accessed on 06-05-2024.

[11] “Visualize — CodeCarbon 2.3.4 documentation,”
https://mlco2.github.io/codecarbon/visualize.html, accessed
on 06-05-2024.

[12] “GitHub - green-code-initiative/ecoCode: Reduce the environ-
mental footprint of your software programs with SonarQube,”
https://github.com/green-code-initiative/ecoCode, accessed on
06-05-2024.

[13] “Ecograder,” https://ecograder.com/how-it-works, accessed on
06-05-2024.

[14] “Carbon Footprint reporting methodology | Carbon
Footprint Documentation,” https://cloud.google.com/carbon-
footprint/docs/methodology, accessed on 06-05-2024.

[15] K. Aggarwal, A. Hindle, and E. Stroulia, “GreenAdvisor: A tool
for analyzing the impact of software evolution on energy con-
sumption,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sep. 2015, pp. 311–320.

[16] “Greenframe-cli,” https://github.com/marmelab/greenframe-
cli/blob/main/src/model/README.md, accessed on 06-05-2024.

[17] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “GreenMiner: A hardware based mining soft-
ware repositories software energy consumption framework,”
in Proceedings of the 11th Working Conference on Mining
Software Repositories - MSR 2014. Hyderabad, India: ACM
Press, 2014, pp. 12–21.

[18] A. Noureddine, “PowerJoular and JoularJX: Multi-Platform Soft-
ware Power Monitoring Tools,” in 2022 18th International
Conference on Intelligent Environments (IE), Jun. 2022, pp. 1–
4.

[19] M. Amaral, H. Chen, T. Chiba, R. Nakazawa, S. Choochotkaew,
E. K. Lee, and T. Eilam, “Kepler: A Framework to Calculate
the Energy Consumption of Containerized Applications,” in
2023 IEEE 16th International Conference on Cloud Computing
(CLOUD), Jul. 2023, pp. 69–71.

[20] “PowerJoular,” accessed on 06-05-2024. [Online]. Available:
https://www.noureddine.org/research/joular/powerjoular

[21] I. Manotas, L. Pollock, and J. Clause, “SEEDS: A software
engineer’s energy-optimization decision support framework,” in
Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: Association
for Computing Machinery, May 2014, pp. 503–514.

[22] “How does it work?” https://www.websitecarbon.com/how-does-
it-work/, accessed on 06-05-2024.

[23] “Introducing the Website Carbon Rating System,”
https://www.websitecarbon.com/introducing-the-website-
carbon-rating-system/, accessed on 06-05-2024.

[24] “There are 2,000 specialized green software
tools available in open-source, commercial, and
academic contexts | State of Green Software,”
https://stateof.greensoftware.foundation/insights/green-
software-specialized-tools/.

[25] “Calculating My Carbon Footprint | Microsoft Sustainabil-
ity,” https://www.microsoft.com/en-us/sustainability/emissions-
impact-dashboard.

[26] J. Larracoechea, P. Roose, S. Ilarri, Y. Cardinale, S. Laborie,
and O. Vara, “Behavior-Based Consumption Profiles for the
Approximation of the Energy Consumption of Services,”
International Conference on Information Systems Development
(ISD), Sep. 2022. [Online]. Available: https://aisel.aisnet.org/i
sd2014/proceedings2022/usability/1/

[27] P. Roose, I. Sergio, J. A. Larracoechea, Y. Cardinale, and S. La-
borie, “Towards an Integrated Full-Stack Green Software De-
velopment Methodology,” in 29th International Conference on
Information Systems Development, Sep. 2021.

[28] “Ec0lint,” https://ec0lint.com/get-started.
[29] H. Humberto Alvarez Valera, M. Dalmau, P. Roose, J. Larra-

coechea, and C. Herzog, “PISCO: A smart simulator to deploy
energy saving methods in microservices based networks,” in
2022 18th International Conference on Intelligent Environ-
ments (IE), Jun. 2022, pp. 1–4.

[30] “Overview | Cloud Carbon Footprint,” https://cloud-carbon-
footprint.github.io/docs/, accessed on 06-05-2024.

[31] “The green web foundation/green-cost-explorer,” The Green
Web Foundation, Dec. 2023, accessed on 06-05-2024.

https://doi.org/10.1109/ICSE-SEIS.2017.10
https://doi.org/10.1109/ICSE-SEIS.2017.10
https://www.noureddine.org/research/joular/powerjoular
https://aisel.aisnet.org/isd2014/proceedings2022/usability/1/
https://aisel.aisnet.org/isd2014/proceedings2022/usability/1/

	Introduction
	Related Work
	The Architecture
	Software Behavior Modeling
	Component Behavior Modeling
	Behavioral Load Simulator
	Incorporating RADIANCE Into a GSD Method
	Conclusion and Future Work
	References

