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Abstract - The share of fossil fuel in some District Heating Networks (DHN) makes Dynamic Real-Time 

Optimisation (DRTO) techniques paramount in improving the energy efficiency of such networks. This 

research project is a fraction of the RESEAUDATA project, which aims to improve the heat network 

management technique through machine learning and dynamic optimisation approaches. This paper then 

focuses on simulating the DHN to accomplish the optimal planning phase for the DRTO and to generate the 

Big Data to form and train the machine learning model. The procedures for designing a Blackbox model 

generator are also established in this paper. 

Index and exponent 

k- instance or observation, k = 1, 2, … n_inst 

n_inst- number of instances 

ot- an output variable, 

in- an input feature variable 

inp- total number of input feature variable 

outp- total number of output variables 

1 Introduction 
1.1 Background Information 

50% of the world’s energy consumption is used for heating, representing 40% of the global CO2 

emission[1]. These statistics show the need and the effects of heat generation. According to [1], 50% 

of this thermal energy is used in the industry. The other 50% is used for space heating, heating 

buildings, hot water supplies in buildings, and in the agricultural sector. A district heating system can 

efficiently generate and distribute thermal (heat) energy from the energy generation source to various 

end users. An inefficient DHN would require the excess generation of energy to meet up the power 

demands of the consumers, which will increase the cost of energy generation, reduce the life span of 

the generation components, and increase CO2 and other greenhouse gases emission (if fossil fuel 

resources are the energy sources). This illustrates the necessity of an effective district heating 

distribution and production system and gives a solid backup for optimising such a system. Therefore, 

this research focuses on the Dynamic Real-Time Optimisation (DRTO) of a district heating system 

because it allows real-time control and operation for design or operation improvement purposes. 

The algorithm of the dynamic real-time optimisation of any system relies on swift computational 

time for model resolution. The models that can be developed to simulate any process parameter in a 

district heating network can only be achieved using the knowledge-based energy and mass balance 

general principles. However, the simulation of these models requires high computational time and 

supercomputers for large-scale district heating systems [2]. The simulation time of these models can 

be drastically decreased by finding the equivalent Machine Learning (ML) models, which can be 

integrated into the dynamic real-time optimisation algorithms. Also, the lack of sufficient data as a 

ML model training challenge can be abridged thanks to the availability of big data from an industrial 

partner of this research. 

1.2 Objectives of the RESEAUDATA Project 

 As a branch of the RESEAUDATA Project, this research paper considers the first two sections of 

the outlined pathways shown in Figure 1; model development and simulation of DHN and the 

preliminary steps in designing a Blackbox Model Generator explained in section 2 and section 3, 

respectively. This technique can also be applied to other energy generation and distribution sectors.
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Several researchers have worked vastly on the thermal and hydraulic models of DHNs [2], [3] and 

[4], so the models are pretty classical. The developed models are based on the general mass and 

energy balance principles around the nodes (splitter and mixer), heat transfer fluid (HTF) transporting 

pipes, consumer’s substations and around the thermal energy generation station, and they are 

therefore adapted to simulate the case study presented in Figure 2. The simulation results are shown 

in section 2. 

2 Result Analysis 

The result analysis is based on the given data and the analysis of the simulated result 

2.1 Given Data  

The given data for the DHN simulation are the pipe dimensions shown in Table 1, the 

meteorological data (ground surface temperature), the consumers’ power demand shown in Figure 3, 

and the thermophysical properties of the heat transfer fluid (water) and that of the pipe materials. 

Based on the assumptions made by previous researchers in modelling DHNs, the thermophysical 

properties of water and that of the insulation and protective material are assumed to be constant within 

the range of operation of the district heating Network.  The property values include: specific heat 

capacity, density, and dynamic viscosity of water are 4187 J/(kg.K)), 965.3 (kg/m3) and 0.000315 

kg/(m.s) respectively, the thermal conductivity of water, pipe, insulation material and soil are 0.65, 

54,0.024, and 1.2 W/(m.K), and the depth of buried pipes in the ground is 1m. 

2.2 Supply Temperature and Mass flow rates 

In an adiabatic DHN, these values of supply temperature should be equal to the outlet temperature 

of the combined thermal generation plant 𝑇0,𝑝𝑚𝑝(𝑡) = 90oC. However, due to heat losses along the 

pipe length in the time domain, Figure 4 and Figure 5 depict that the supply temperature at each of 

the consumers reduces as a function of the overall heat transfer coefficient, which is dependent on 

the pipe diameter, the insulation thickness and the thermal conductivity of the insulation material. 

The supply temperatures also vary with time as the ground surface temperatures and the mass flow 

rates (function of the power demands) vary. Therefore, the trajectories of the supply temperatures in 

the DHN reflect the changes in the power demand, meteorological conditions and the thermophysical 

properties of the heat transfer fluid and the pipe material. 

 The mass flow rate in each extended pipe of a consumer is a function of the power demand of the 

consumer. Therefore, its trajectory varies in the same manner as the power demand, as shown in 

 
Figure 1: pathways for the optimal management 

of a District Heating Network (DHN) 

considering real-time optimisation. 

 
Figure 2: A DHN network of 10 consumers. 



Figure 6. This is quite reasonable in the explanatory physics of the DHN. Suppose the supply 

temperatures dynamically change based on the weather condition and power demand. In that case, 

the changes in the mass flow rates should be proportional to that of the power demands to ensure the 

power demands of each consumer are met. 

 
Figure 3: Power demands and surface ground 

temperature 

Consumer Ф𝒎𝒑(in) 𝑳𝒎𝒑(m) Ф𝒆𝒑(in) 𝑳𝒆𝒑(m) 

C1 8.00 279.93 5.00 95.21 

C2 6.00 720.07 4.00 150.00 

C3 5.00 176.46 2.00 40.00 

C4 5.00 124.69 3.50 30.00 

C5 1.50 397.32 1.50 100.00 

C6 10.00 190.01 5.00 25.00 

C7 8.00 97.04 3.50 10.00 

C8 6.00 268.79 3.00 90.20 

C9 5.00 1280.60 3.00 200.00 

C10 5.00 198.28 4.00 50.00 

P1-10 12.00 200.00   
Table 1: pipe dimensions with thickness and insulation 

thickness of 0.01m and 0.053m, respectively 

2.3 Overall Network temperature during the forward and return flow distribution 

Figure 7 and Figure 8 represent the dynamic spatial temperature distribution through the main and 

return pipes, excluding the production pipes during the forward and return flow distribution, 

respectively. The configuration of these network temperature plots is similar to the main and return 

pipes arrangement in Figure 2. The maximum temperature in Figure 7 illustrates the outlet 

temperature of the heat transfer fluid from the production pipe. The temperature decreases towards 

the positive and negative x-axis. This implies that the longer the network, the more heat losses to the 

surroundings. However, concluding the temperature chronology during the return flow distribution is 

quite complex. Due to the mixing of the heat transfer fluid from a preceding consumer with the heat 

transfer fluid from the extended-out pipe of this consumer (the outlet temperature of each consumer’s 

substation is assumed to be 70oC), a decrease or an increase in the fluid temperature can be observed. 

This explains the non-uniform temperature distribution along the network length during the return 

flow distribution.  

2.4 Power Generation and the Overall Return Temperature 

The dynamic power demands of each consumer can be theoretically validated using the time 

profile supply mass flow rates values in Figure 6, and the transient supply temperature values in 

Figure 4 and Figure 5. The question that might catch up with this study is what amount of power must 

be generated in the combined thermal plant to meet up the total demand of the network. The total 

generated power during the simulation of the DHN is always greater than the total power demand due 

 
Figure 4: supply temperatures in 

division 1 

 
Figure 5: supply temperatures in 

division 2 

 
Figure 6: Supply Mass flow rates to 

the consumers 



to the overall network heat losses that must be compensated for, as shown in Figure 9. The variation 

of the overall return temperature is also affected by the same parameters that change the supply 

temperatures. Therefore, the dynamic of the overall return temperature of the network is majorly 

influenced by meteorological conditions and power demands.  

 
Figure 7: forward flow transient temperature 

variation along network length. 

 
Figure 8: return flow transient temperature 

variation along network length. 
2.5 Hydraulic Result Analysis 

The primary purpose of the hydraulic analysis is to determine the dynamic variation of the 

pumping power required in divisions, which depends on the pressure drop in the divisions. One of 

the independent parameters of the pressure drop calculation is the transient fluid velocity, and its 

constraints must be respected to prevent pipe erosion [2], [4]. 

Although a single pump or pump based on the number of divisions can be used in a DHN, this 

research considers two pumps based on the number of divisions in the case study. 

 
Figure 9: total generated power, total 

demand and the overall network return 

temperature 

 
Figure 10: Pressure drop and 

pumping power of the pumps 

   

 

 

Figure 10 depicts the variation of the pressure drops and pumping powers with time, the pumping 

powers and pressure drops majorly depend on the mass flow rate profiles. Therefore, their time 

profiles will be similar in shape to that of the total power demand in each division. Thus, increasing 

demand for all the consumers will increase the mass flow rates, leading to high pressure drop in the 

division and thereby requiring pumps with huge pumping powers to compensate for the pressure drop 

in the system. 

3 Designing a Blackbox Model Generator 

The aim of designing a Blackbox Model Generator is to formulate a reduced and fast computing 

model that can predict the output variables (supply temperatures and mass flow rates, final network 

return temperature, spatial overall network temperatures, pressure drops and pumping powers), using 

the input feature variables which include the time series features (power demands, outlet generation 

temperature, outlet substation temperatures), meteorological conditions (ambient or soil temperature) 

and physical network parameters (pipe dimensions, thermophysical properties of network heat 

transfer fluid and pipes). The simulation of the case study DHN over 24 hours took more than an hour 

using a Windows 10 DELL PC, 32Gb RAM, 12th Gen Intel(R) Core (TM) i7-12700H, 2.30 GHz 
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Processing speed, the Blackbox model to be generated must simulate the case study DHN in seconds 

if possible, for efficient DRTO of the network.  

The steps in developing a model for resolving any Machine Learning Problem are similar and can 

be presented in Figure 11. 

3.1 Definition of feature variables and problem analysis 

Indeed, this research has developed thermal and hydraulic models for predicting the output 

variables. Therefore, it is easy to build the dataset for training the Blackbox Model generator. This 

kind of dataset has output variables for all the input feature variables. In machine learning techniques, 

the best ML channel for solving such a problem is the Supervised Learning technique due to the 

presence of labels (output results) for all data input. Since the datasets are continuous, the ML 

techniques with Regression Analysis will be considered [4]. This is in contrast to the other ML 

channel counterparts, Non-supervised learning; there is no available output label for the input feature 

variables, and it encourages methods such as clustering for dataset grouping [4] and Reinforcement 

Learning, where a ML agent learns based on experience. Its learning algorithm encourages 

maximising total cumulative rewards [4]. 

3.2 Generating Dataset 

Building the dataset involves collating results from simulating a DHN of different values of the 

feature variables to generate as many observations (k) as possible. A typical form of the compiled 

dataset can be visualised in Table 2. 

3.3 Model Training  

This is the main section for developing a Blackbox model where the entire dataset is initially split 

into the training and test datasets. Before diving into the details, let us analyse the model relationship 

based on the dataset. 

  𝑦𝑘
𝑜𝑡 = 𝑓(𝑥𝑘

1, 𝑥𝑘
2, … , 𝑥𝑘

𝑖𝑛𝑝 , 𝑐)   ∀ 𝑜𝑡 = 1,2, … , 𝑜𝑢𝑡  (1) 

Equation (1 shows the generic form of the Blackbox model that must be developed, 𝑐- vector of 

constants that must be obtained during the training algorithm. 

In developing a Blackbox model, the selection of essential feature variables and the training 

algorithm are the two important characteristics that must be carefully analysed [5] – [7]. For this 

reason, this research section will review previous literature to examine the best ML training algorithm 

and the principle of essential feature variable selection. Considering all the feature variables might 

increase the computational time in some training algorithms [6], which might nullify the importance 

of using ML models, so it is imperative to select the essential feature variables if possible. 

As the dataset is regressive and the machine learning task is supervised, the ML algorithms that 

can be employed include Linear Regression (LR) or Multiple Linear Regression (MLR), Support 

Vector Regression (SVR), Artificial Neural Network (ANN), Recurrent Neural Network (RNN) or 

(Long Short-Term Memory (LSTM) network), Random Regression Forest (RF), Gradient Boosting 

or Extreme gradient boosting (XGBoost), and ensemble models [5] – [7]. Table 2 gives the 

operational principle of each algorithm, their validated research inferences and limitations. To the test 

of our knowledge, no research paper has been published on designing a Blackbox model generator 

for the DRTO of a DHN to eliminate the impractical ML techniques based on the validated results of 

the past study. Nevertheless, the non-linearity of a DHN thermal and hydraulic model depicts that 

using LR or MLR algorithm is impossible. 

A grey box model based on optimal parametric identification can also be considered along with 

the Blackbox ML Algorithms.  



3.4 Model Evaluation Metrics 

Model Evaluation is a process of validating model performance. Some ML experts consider using 

the training dataset for the model evaluation to check the effectiveness of both the model and the 

training phase. However, [7] considered splitting the dataset into three (3) sections rather than the 

traditional two divisions, which include 60%, 20% and 20% for training, evaluation and testing. The 

work of [7] intended to choose the best model through cross-validation using the evaluation dataset 

before testing the model with the test dataset. 

According to  [5] – [7], the evaluation metrics for the regression supervised learning technique include 

Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared (RMSE), Mean 

Absolute Percentage Error (MAPE), Coefficient of determination (R2) and Coefficient of Variation 

(CV).  In developing a Blackbox model, several training algorithm models can be obtained and 

compared with one another, the model with the least cumulative error will be considered the optimum 

Blackbox model [7] for the model generator. 

3.5 Model Testing 

The obtained models can then be tested with the test dataset to be considered for further analysis 

or can be tested after a cross-validation analysis. The model algorithm with the lowest bias and 

variance is the best algorithm to generate the black box model. It should be noted that evaluation 

metrics are also employed to evaluate the model effectiveness or variance based on the test dataset. 

3.6 Model Inference 

The obtained model (1), with the estimated parameters, is then used to predict each output variable 

at instance k. 

𝑦𝑘
𝑜𝑡 = 𝑓(𝑥𝑘

1, 𝑥𝑘
2, … , 𝑥𝑘

𝑖𝑛𝑝 )   ∀ 𝑜𝑡 = 1,2, … , 𝑜𝑢𝑡 (2) 

Equation (2) can predict each output variable at instance k given values of the input variables at 

instance k. It can then be considered as the generated Blackbox model by the Model generator. 

 

Table 2: a sample of the Generated dataset for building the Blackbox Model Generator. 

 

 



Table 3: ML Algorithms for formulating a data-driven model 

4 Conclusion 

This research focused on the pathway for the Dynamic Real-Time Optimisation of District Heating 

Networks for their efficient management in real-time operation. 

A case study simulation of a ten (10) consumer District Heating Network was initially considered, 

and the MATLAB simulation algorithm ran for more than 1hour on a standard Dell laptop. Practical 

DRTO approaches require such simulation to run within seconds because the input parameter of the 

model (meteorological conditions and consumer power demands) changes as such. To achieve this 

objective of the optimal operation of DHN, this research primarily simulated DHN with a combined 

generation station. Then it proposed the method for building big datasets from the simulation results 

to train an equivalent ML model.  

Having confirmed the Supervised Regression learning technique as the best ML channel for 

designing a Blackbox model generator to facilitate the optimal operation of DHNs, this research 

reviewed the principle, validated inferences and limitations of LR or MLR, SVR, ANN, RNN or 

LSTM, RF, XGBoost, and ensemble models as the possible ML algorithms for the training phase. 

MAE, MSE, RMSE, MAPE, R2 and CV were reviewed as the evaluation metrics for comparing the 

ML algorithms. 
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