Supporting Information

Sensitive detection and quantification of oxygenated compounds in complex samples using GC-combustion-MS

Javier García-Bellido,^{a‡} Montserrat Redondo-Velasco,^{a‡} Laura Freije-Carrelo,^{b,c} Gaëtan Burnens,^{b,c} Mariella Moldovan,^a Brice Bouyssiere,^{c,d} Pierre Giusti^{c,e*} and Jorge Ruiz Encinar^{a*}

^a Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain

^bTotalEnergies One Tech Belgium, Zone Industrielle C, 7181 Feluy, Belgium

^c International Joint Laboratory – iC2MC: Complex Matrices Molecular Characterization, TRTG, 76700 Harfleur, France

^d Universite de Pau et des Pay de l'Adour, E2S UPPA CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux UMR5254, 64053 Pau, France

^e TotalEnergies, TotalEnergies Research& Technology Gonfreville, 76700 Harfleur, France

* Jorge Ruiz Encinar: <u>ruizjorge@uniovi.es</u> and Pierre Giusti: <u>pierre.giusti@totalenergies.com</u> [‡] These authors contributed equally to this work.

Table of Contents

Table S1. Experimental conditions used for the quantitative analysis of O-containing compounds

 by GC-combustion-MS and GC.

 S4

 Table S2.
 Natural isotope abundance of carbon and oxygen (IUPAC). The expanded uncertainties listed in parentheses include the range of probable isotope-abundance variations among different materials as well as measurement uncertainties.

 S5

Table S6. List of the compounds identified in the aliquot of the effluent taken from the hydrotreatment process of a wood bio-oil (144.5 h of the catalyst life). The numbering (#) corresponds to the peak numbers given in Figure 5. Oxygen-containing peaks are highlighted in red. Asterisks indicates the six oxygenates that co-eluted with a more abundant non-O containing compound that could only be discriminated after application of the screening approach using the GC-combustion-MS peak ratios (16/12 and 46/48).

Figure S4. GC-combustion-MS chromatogram obtained for a mixture of eleven alkane compounds (C12-C20) using 18O-enriched oxygen (1% in He) as combustion gas. Blue, orange and pink profiles correspond to m/z 44, 46 and 48, respectively. Compounds' abbreviations and compound concentrations are given in the Experimental Section. Concentration of the compounds was 16 µg C g⁻¹.

Figure S5. Plot of the ratios 16/12 vs 46/48 measured for each chromatographic peak detected in several mixtures of noncontaining and O-containing compounds and analyzed in triplicate on different working days. In total, 200 chromatographic peaks were processed, including 93 noncontaining (3 alkenes, 1 aromatic, 4 N-compounds, 4 S-compounds) and 107 O-containing peaks (13 O-compounds). Red dotted lines correspond to the limits of the 99% confidence interval for the non-containing O-compounds. Oxygen concentrations ranged from 4 to 37 μ g O g⁻¹, with an average value of 14 μ g O g⁻¹. See experimental section for details. Color code: alkanes (grey), aromatics (yellow), N-compounds (purple), S-compounds (green) and O-compounds (blue). **S15**

Figure S6. GC-combustion-MS (left panels) and GC-MS (right panels) chromatograms corresponding to low concentrate solutions (ca. 0.5-0.6 μ g O g⁻¹) of an O-containing compound (2-Pentyl butyrate, retention time: 11.73 min) spiked with a noncontaining O-compound (C12, retention time: 11.67 min) at increasing concentration ratios: 1.1 (A) , 5.6 (B), 9.3 (C), 14.7 (D) and 18.4 (E). Left panels: orange and dark blue traces correspond to signals at *m*/*z* 12 and 16, respectively in the GC-combustion-MS chromatogram. Right panels: pale blue corresponds to the TIC signal in the GC-MS chromatograms and insets correspond to the corresponding MS spectra at the retention times of the individual peaks (A-D) and the unique-global peak (E)....... **\$17-\$17**

Figure S8. GC-MS (A) and GC-combustion-MS at m/z 48 (B) chromatograms of an aliquot of the effluent taken from the hydrotreatment process of a wood bio-oil (144.5 h of the catalyst life).

Table S1. Experimental conditions used for the quantitative analysis of O-containing compoundsby GC-combustion-MS and GC.

Inlet temperature	250 ºC
Injection mode	SRM: Split 1:5 (Diluted 1:1350 in hexane)
	Diesel: Splitless (Diluted 1:100 in hexane)
	Bio-oil: Split 1:200
Injection volume	1 μL
Columns	Standards mixtures and SRM: SH-FameWax (30 m x 0.32 mm x 0.25 $\mu m)$
	Diesel and bio-oil: SH1-MS (30 m x 0.25 mm x 0.25 $\mu m)$
Carrier gas	He (1.5 mL/min)
GC Oven temperature	SRM: 50 ºC (1 min) - 15 ºC/min to 250 (5min)
	Diesel: 30°C (5 min) to 180°C at 5°C/min, 180°C to 320°C (10 min) at 15°C/min
	Bio-oil: 50°C (5 min) to 320°C (10min) at 2°C/min
Acquisition mode	SIM: <i>m/z</i> 12, 16, 32, 34, 44-49
Combustion oven	800 ºC
temperature	
O ₂ /He flow	0.4 mL/min

Table S2. Natural isotope abundance of carbon and oxygen (IUPAC). The expanded uncertainties listed in parentheses include the range of probable isotope-abundance variations among different materials as well as measurement uncertainties.

Element	Mass number	Representative isotopic composition
C	12	0.9893 (8)
C	13	0.0107 (8)
	16	0.99757 (16)
О	17	0.00038 (1)
	18	0.00205 (14)

Table S3. Oxygen concentration (μ g O mL⁻¹) and 46 ($^{12}C^{16}O^{18}O$) to 48 ($^{12}C^{18}O_2$) peak area ratios for the mixture of twelve O-compounds (including alcohols, aldehydes, esters, ethers and carbonils with saturated and aromatic structures) with three noncontaining O compounds (two alkanes and one aromatic compound, highlighted in red) shown in Figure S2. Uncertainty corresponds to 1 SD (n=3).

Compound	O concentration (μg O mL ⁻¹)	Peak area ratio, 46/48
1-butanol	12.1	0.2787 ± 0.0042
Dodecane	0.0	0.1201 ± 0.0016
Pentyl butyrate	7.24	0.2385 ± 0.0026
Cyclohexanone	23.0	0.2891 ± 0.0006
2-Ethoxyethyl acetate	16.9	0.584 ± 0.015
Hexylbutyrate	15.7	0.2487 ± 0.0017
Benzaldehyde	19.8	0.2644 ± 0.0007
1-octanol	15.0	0.2051 ± 0.0012
Acetophenone	11.7	0.2459 ± 0.0011
Dimethyl maleate	34.1	1.163 ± 0.022
PhenetylAcetate	14.7	0.2415 ± 0.0026
Icosane	0.0	0.1265 ± 0.0018
Acenapthene	0.0	0.1276 ± 0.0026
Dibenzofurane	14.3	0.2059 ± 0.0008
Dimethylphtalate	15.0	0.5269 ± 0.0029

Table S4. Oxygen isotope abundances computed for a mixture of eleven alkanes (Figure S4) based on the 46, 47 and 48 peak area ratios. Uncertainty corresponds to 1 SD (n=3), without (A) and with (B) correction using the 32/34 trend.

Compound	Without any correction		
compound	Ab ¹⁶ O	Ab ¹⁷ O	Ab ¹⁸ O
C12	6.21 ± 0.02	1.19 ± 0.01	92.60 ± 0.01
C13	6.27 ± 0.04	1.20 ± 0.001	92.54 ± 0.04
C14	6.31 ± 0.05	1.20± 0.006	92.49 ± 0.05
C15	6.33 ± 0.05	1.20± 0.003	92.48 ± 0.05
C16	6.40 ± 0.04	1.19± 0.004	92.41 ± 0.04
C17	6.45 ± 0.06	1.20± 0.005	92.35 ± 0.05
C18	6.51 ± 0.04	1.19± 0.004	92.30 ± 0.04
C19	6.56 ± 0.06	1.19± 0.004	92.25 ± 0.05
C20	6.64 ± 0.03	1.19± 0.007	92.17 ± 0.03
mean	6.41	1.19	92.40
SD	0.14	0.005	0.1
RSD (%)	2	0.4	0.2

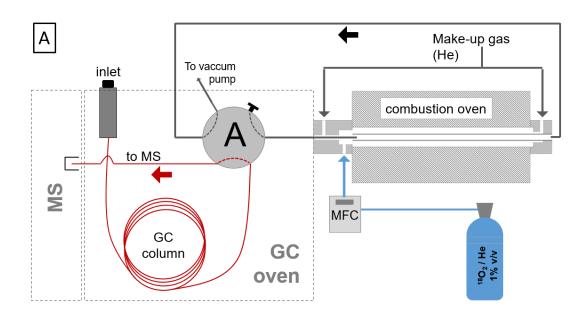
A)

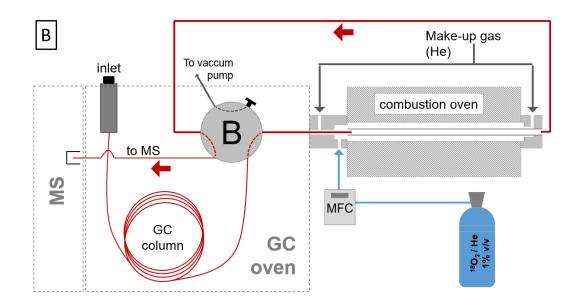
B)

Compound	After correction using the 32/34 trend		
Compound	Ab ¹⁶ O	Ab ¹⁷ O	Ab ¹⁸ O
C12	6.21 ± 0.01	1.19 ± 0.01	92.60 ± 0.003
C13	6.24 ± 0.02	1.20 ± 0.001	92.56 ± 0.02
C14	6.26 ± 0.03	1.20 ± 0.006	92.54 ± 0.04
C15	6.24 ± 0.04	1.20 ± 0.003	92.56 ± 0.03
C16	6.27 ± 0.03	1.19 ± 0.004	92.54 ± 0.02
C17	6.26 ± 0.04	1.20 ± 0.005	92.54 ± 0.04
C18	6.25 ± 0.02	1.19 ± 0.004	92.56 ± 0.02
C19	6.22 ± 0.04	1.19 ± 0.004	92.59 ± 0.04
C20	6.20 ± 0.02	1.19 ± 0.007	92.61 ± 0.02
mean	6.24	1.19	92.57
SD	0.02	0.005	0.03
RSD (%)	0.4	0.4	0.03

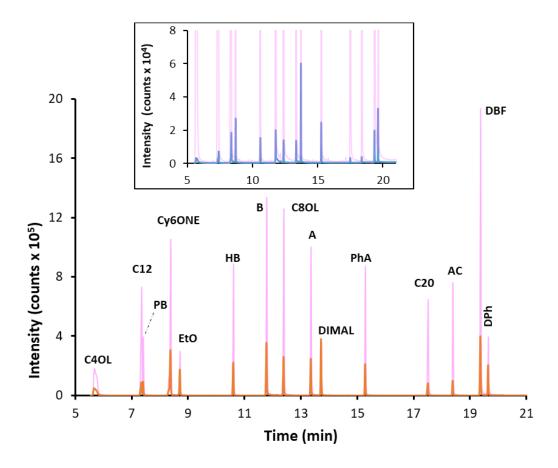
Table S5. Relative (ng O g^{-1}) and absolute detection (pg O) limit for an oxygen-containing compound (2-Pentyl butyrate) obtained under conditions of partial and complete co-elution with a non-containing O-compound (dodecane) present at different concentration ratios (mixtures A-E). Corresponding chromatograms are shown in Figure S6.

Mixture	Alkane to oxygenate ratio of carbon mass	DL computed: ng O/g (pg O)
A	1.1	43 (28)
В	5.6	83 (54)
С	9.3	89 (58)
D	14.7	82 (53)
E	18.4	327 (214)

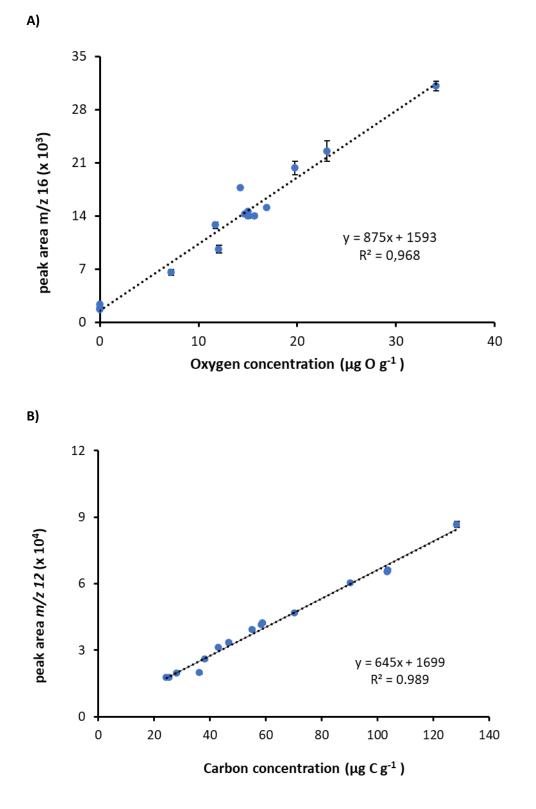

Table S6. List of the compounds identified in the aliquot of the effluent taken from the hydrotreatment process of a wood bio-oil (144.5 h of the catalyst life). The numbering (#) corresponds to the peak numbers given in Figure 5. Oxygen-containing peaks are highlighted in red. Asterisks indicates the six oxygenates that co-eluted with a more abundant non-O containing compound that could only be discriminated after application of the screening approach using the GC-combustion-MS peak ratios (16/12 and 46/48).

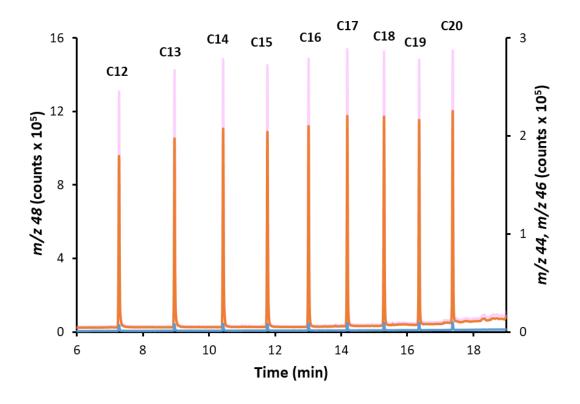

#	Compound	RT (min)
	Formic acid	
1*	Propane	2.2
	Propane,2-nitro	
2*	Butane	2.3
	Acetone	·
3*	Isobutane	2.4
4	1-Butanol	2.5
5	1-Propanol	2.7
6	Cyclopentane	2.8
7	Butane,2-3-dimethyl-	2.8
8	Pentane,3-methyl	2.9
9	Furan, 2-methyl-	3.0
10	2-Ethyl-oxelate	3.0
11	Cyclopentane, methyl-isomer	3.2
12	Cyclopentane, methyl-isomer	3.3
13	4-Hexen-1-ol, (Z)-	3.5
14	Cyclohexane	3.6
15	Cyclohexene	3.8
16	Cyclopentane,1,3-dimethyl-cis-	3.9
17	2-Undecane,3-methyl-, (Z)-	3.9
18	Furan,2-ethyl-	4.0
19	Heptane	4.2
20	Cyclohexane, methyl-	4.5
21	Cyclopentane, ethyl-	4.8
22	cis-Hept-4-enol	4.8
23	5,10-Dioxatricyclo [7.10.0(4,6)] decane	5.3
24	Toluene	5.3
51	Naphthalene	27.8

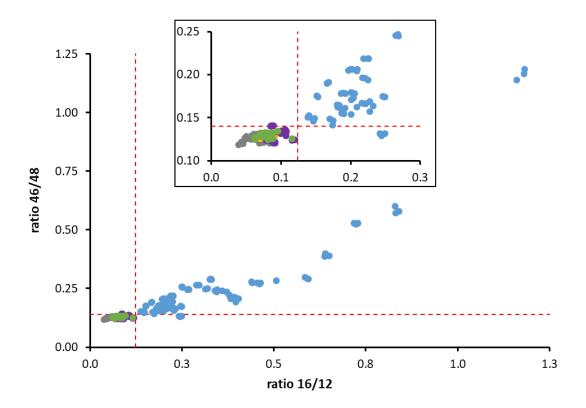
#	Compound	RT (min)
25	Cyclohexene,1-methyl	5.6
26	Cyclohexene, ethyl	7.9
27	Cyclohexene, 1-ethyl-	8.6
28	p-xylene	9.0
29	o-xylene	10.1
30	Cyclohexane, propyl-	12.8
31	Benzene, propyl-	13.6
32	Benzene, ethyl-methyl- isomer	14.1
33	Benzene, ethyl-methyl- isomer	14.2
34	Phenol	15.4
35	1H-Indene, octahydro-, cis	15.9
36	Benzene,1,2,3-trimethyl-	16.1
37	Indane	18.4
38	Phenol,2-methyl-	19.9
39	Phenol,3-methyl-	21.6
40	Indan,1-methyl	21.8
41	Phenol, 2,6-dimethyl-	23.0
42	Benzofuran, 2-methyl-	23.1
43	Dodecane	24.5
44	1H-Indene,2,3-dihydro-5- methyl-	25.5
45	Phenol, 2-ethyl	25.6
46	Benzene, 1-methyl-2-(2- propenyl)-	25.8
47	3,9-Dodecadiene	26.1
48	Phenol,3,5-dimethyl	26.2
49*	1H-Indene-1,2-diol,2,3-dihydro- cis- Naphthalene, 1,2,3,4-	26.4
	tetrahydro-	
50	Phenol, 4-ethyl-	27.5
71	Phenol,2-(1-methylpropyl)-	38.1

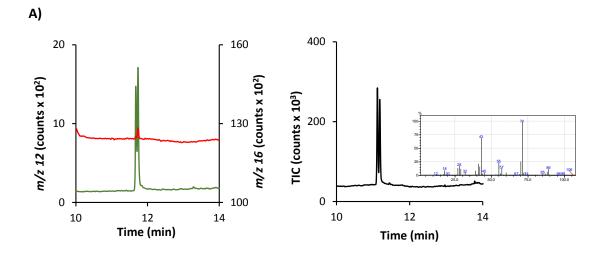

52	Phenol, 3-ethyl-	28.2	
53	1H-Indene, dihydro-dimethyl- isomer	29.0	
54	1H-Indene, dihydro-dimethyl- isomer	29.2	
55	2-ethyl-2,3-dihydro-1H-indene	29.5	
56	1H-indene,2,3-dihydro-1,6- dimethyl-	30.0	
57	Naphthalene, 1,2,3,4- tetrahydro-2-methyl-	30.5	
58	Phenol,2-propyl	31.3	
59*	Phenol,2,4,6-trimethyl-	21.0	
59	2-ethyl-2,3-dihydro-1H-indene	31.6	
60	Phenol, -ethyl-methyl- isomer	31.9	
61	Phenol, -ethyl-methyl- isomer	32.3	
62	Naphthalene, 1,2,3,4- tetrahydro-1,5-dimethyl-	32.5	
63	Phenol, -ethyl-methyl- isomer	32.6	
64	1H-indene,2,3-dihydro-4,7- dimethyl-	33.0	
65	Naphthalene, 1,2,3,4- tetrahydro-5-methyl-	33.8	
66	Phenol,3-propyl	33.9	
67	Naphthalene, methyl-isomer	35.4	
68	Naphthalene, methyl-isomer	36.3	
69	Benzaldehyde, 2-ethyl-	36.9	
70	Naphthalene, 1,2,3,4- tetrahydro-2,7-dimethyl-	37.2	

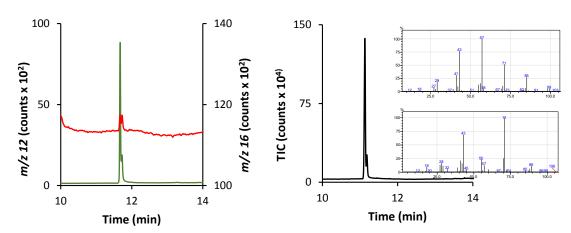
721H-Inden-5-ol,2,3-dihydro-38.573Phenol, 2-(1-methylpropyl)-38.674Phenol, 3,5-diethyl-39.575Naphthalene, 2-ethenyl-40.775Naphthalene, 2-ethenyl-40.776*5,8,11-Eicosatriynoic acid, metyl ester41.776*Naphthalene, 1-ethyl-42.478Naphtalene, dimethyl-isomer42.379Naphtalene, dimethyl-isomer43.380Naphtalene, dimethyl-isomer43.381Naphtalene, dimethyl-isomer43.482Naphtalene, dimethyl-isomer44.482Naphtalene, dimethyl-isomer44.283Naphtalene, dimethyl-isomer44.384Naphtalene, dimethyl-isomer45.285Naphthalene, 1,6,7-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-50.085Naphthalene, trimethyl-isomer50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.889Fluorene52.3			
74Phenol, 3,5-diethyl-39.575Naphthalene, 2-ethenyl-40.775S,8,11-Eicosatriynoic acid, metyl ester41.776*S,8,11-Eicosatriynoic acid, metyl- ester41.776*Naphthalene, 1-ethyl-42.477Naphtalene, dimethyl-isomer42.478Naphtalene, dimethyl-isomer42.579Naphtalene, dimethyl-isomer43.380Naphtalene, dimethyl-isomer43.381Naphtalene, dimethyl-isomer44.482Naphtalene, dimethyl-isomer45.283Naphtalene, 1,4,6-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	72	1H-Inden-5-ol,2,3-dihydro-	38.5
Naphthalene, 2-ethenyl- 40.7 5,8,11-Eicosatriynoic acid, metyl ester 41.7 76* Naphthalene, 1-ethyl- 77 Naphtalene, dimethyl-isomer 42.4 78 Naphtalene, dimethyl-isomer 42.5 79 Naphtalene, dimethyl-isomer 43.3 80 Naphtalene, dimethyl-isomer 43.3 81 Naphtalene, dimethyl-isomer 43.5 81 Naphtalene, dimethyl-isomer 44.4 82 Naphtalene, dimethyl-isomer 45.2 83 Naphtalene, dimethyl-isomer 45.2 84 Naphthalene, 1,4,6-trimethyl- 48.5 84 Naphthalene, trimethyl-isomer 50.0 86 Heneicosane 50.6 87 Azulene, 4,6,5-trimethyl- 51.1 88 Naphthalene, trimethyl-isomer 51.8	73	Phenol, 2-(1-methylpropyl)-	38.6
5,8,11-Eicosatriynoic acid, metyl ester41.776*Naphthalene, 1-ethyl-77Naphtalene, dimethyl-isomer78Naphtalene, dimethyl-isomer79Naphtalene, dimethyl-isomer79Naphtalene, dimethyl-isomer80Naphtalene, dimethyl-isomer81Naphtalene, dimethyl-isomer82Naphtalene, dimethyl-isomer83Naphtalene, dimethyl-isomer84Naphtalene, 1,4,6-trimethyl-85Naphthalene, trimethyl-isomer86Heneicosane87Azulene, 4,6,5-trimethyl-88Naphthalene, trimethyl-isomer	74	Phenol, 3,5-diethyl-	39.5
76*ester41.7Naphthalene, 1-ethyl-42.477Naphtalene, dimethyl-isomer42.478Naphtalene, dimethyl-isomer42.579Naphtalene, dimethyl-isomer43.380Naphtalene, dimethyl-isomer43.581Naphtalene, dimethyl-isomer44.482Naphtalene, dimethyl-isomer45.283Naphtalene, dimethyl-isomer45.284Naphthalene, 1,4,6-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	75	Naphthalene, 2-ethenyl-	40.7
Naphthalene, 1-ethyl-77Naphtalene, dimethyl-isomer42.478Naphtalene, dimethyl-isomer42.579Naphtalene, dimethyl-isomer43.380Naphtalene, dimethyl-isomer43.581Naphtalene, dimethyl-isomer44.482Naphtalene, dimethyl-isomer45.283Naphtalene, 1,4,6-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	76*		<i>A</i> 1 7
78Naphtalene, dimethyl-isomer42.579Naphtalene, dimethyl-isomer43.380Naphtalene, dimethyl-isomer43.581Naphtalene, dimethyl-isomer44.482Naphtalene, dimethyl-isomer45.283Naphtalene, 1,4,6-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	,0	Naphthalene, 1-ethyl-	41.7
79Naphtalene, dimethyl-isomer43.380Naphtalene, dimethyl-isomer43.581Naphtalene, dimethyl-isomer44.482Naphtalene, dimethyl-isomer45.283Naphtalene, dimethyl-isomer45.284Naphthalene, 1,4,6-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	77	Naphtalene, dimethyl-isomer	42.4
80Naphtalene, dimethyl-isomer43.581Naphtalene, dimethyl-isomer44.482Naphtalene, dimethyl-isomer45.283Naphtalene, 1,4,6-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	78	Naphtalene, dimethyl-isomer	42.5
81Naphtalene, dimethyl-isomer44.482Naphtalene, dimethyl-isomer45.283Naphthalene, 1,4,6-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	79	Naphtalene, dimethyl-isomer	43.3
82Naphtalene, dimethyl-isomer45.283Naphthalene, 1,4,6-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	80	Naphtalene, dimethyl-isomer	43.5
83Naphthalene, 1,4,6-trimethyl-48.584Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	81	Naphtalene, dimethyl-isomer	44.4
84Naphthalene, 1,6,7-trimethyl-49.785Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	82	Naphtalene, dimethyl-isomer	45.2
85Naphthalene, trimethyl-isomer50.086Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	83	Naphthalene, 1,4,6-trimethyl-	48.5
86Heneicosane50.687Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	84	Naphthalene, 1,6,7-trimethyl-	49.7
87Azulene, 4,6,5-trimethyl-51.188Naphthalene, trimethyl-isomer51.8	85	Naphthalene, trimethyl-isomer	50.0
88 Naphthalene, trimethyl-isomer 51.8	86	Heneicosane	50.6
	87	Azulene, 4,6,5-trimethyl-	51.1
89 Fluorene 52.3	88	Naphthalene, trimethyl-isomer	51.8
	89	Fluorene	52.3




Figure S1. Scheme of the six-way valve and its connections within GC-combustion-MS. Position A (GC-MS mode): GC effluent is directly sent to the MS. Position B (GC-combustion-MS mode): GC effluent is first mixed online with the O_2 /He combustion gas and the He makeup-flow before entering the combustion furnace and finally brought to the MS.


Figure S2. GC-combustion-MS chromatogram obtained for a mixture of three noncontaining (C12, C20 and AC) and twelve O-containing (C4OL, PB, Cy6ONE, EtO, HB, B, C8OL, A, DiMAL, PhA, DBF, DPh) compounds using ¹⁸O-enriched oxygen (1% in He) as combustion gas. Compounds' abbreviations are given in the Experimental Section. Oxygen concentration ranged from 7.1 to 34.2 μ g O g⁻¹ with an average value of 17 μ g O g⁻¹. Orange, blue, pink profiles correspond to 46, 44 and 48, respectively.


Figure S3. Oxygen (*m*/*z* 16, A) and Carbon (*m*/*z* 12, B) calibration curves obtained from the GCcombustion-MS chromatogram shown in Figure 2, which consists of a mixture of three noncontaining (C12, C20 and AC) and twelve O-containing (C4OL, PB, Cy6ONE, EtO, HB, B, C8OL, A, DiMAL, PhA, DBF, DPh) compounds using ¹⁸O-enriched oxygen (1% in He) as combustion gas. Uncertainty bars correspond to 1 SD (n=3). Compounds' abbreviations and compound concentrations are given in the Experimental Section.


Figure S4. GC-combustion-MS chromatogram obtained for a mixture of eleven alkane compounds (C12-C20) using 18O-enriched oxygen (1% in He) as combustion gas. Blue, orange and pink profiles correspond to m/z 44, 46 and 48, respectively. Compounds' abbreviations and compound concentrations are given in the Experimental Section. Concentration of the compounds was 16 µg C g⁻¹.

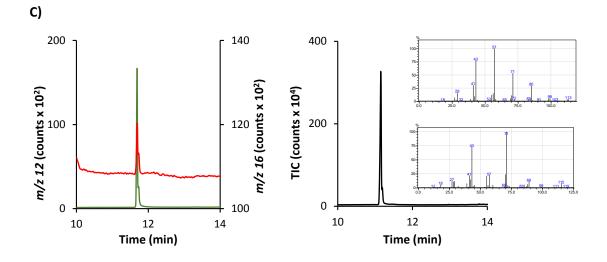
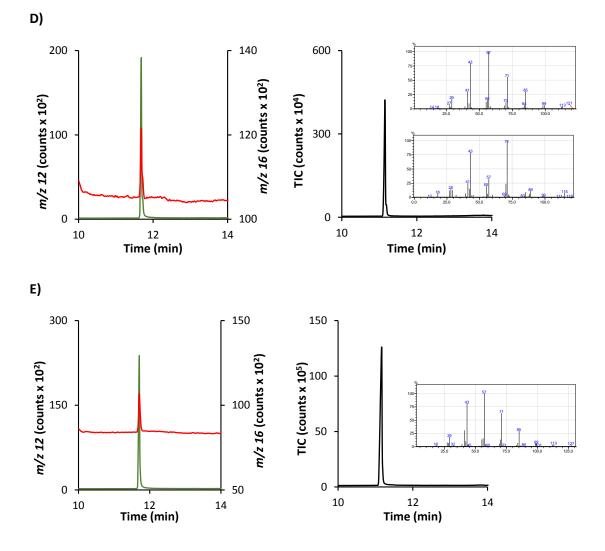
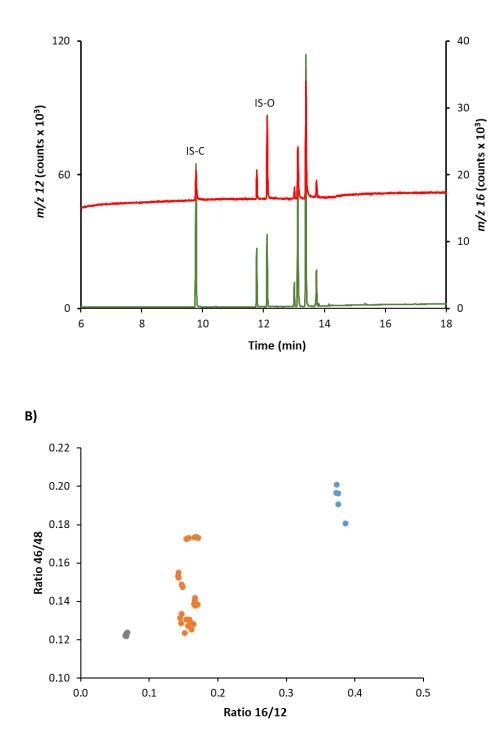
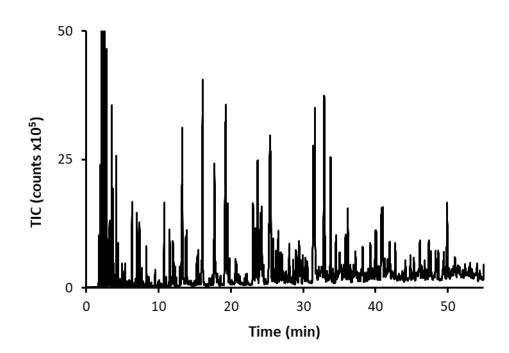


Figure S5. Plot of the ratios 16/12 vs 46/48 measured for each chromatographic peak detected in several mixtures of noncontaining and O-containing compounds and analyzed in triplicate on different working days. In total, 200 chromatographic peaks were processed, including 93 noncontaining (3 alkenes, 1 aromatic, 4 N-compounds, 4 S-compounds) and 107 O-containing peaks (13 O-compounds). Red dotted lines correspond to the limits of the 99% confidence interval for the non-containing O-compounds. Oxygen concentrations ranged from 4 to 37 µg O g⁻¹, with an average value of 14 µg O g⁻¹. See experimental section for details. Color code: alkanes (grey), aromatics (yellow), N-compounds (purple), S-compounds (green) and O-compounds (blue).






S16

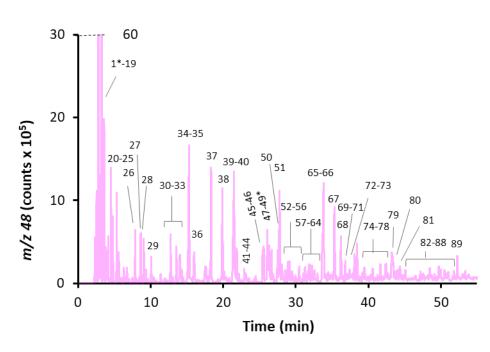

Figure S6. GC-combustion-MS (left panels) and GC-MS (right panels) chromatograms corresponding to low concentrate solutions (ca. 0.5-0.6 μ g O g⁻¹) of an O-containing compound (2-Pentyl butyrate, retention time: 11.73 min) spiked with a noncontaining O-compound (C12, retention time: 11.67 min) at increasing concentration ratios: 1.1 (A) , 5.6 (B), 9.3 (C), 14.7 (D) and 18.4 (E). Left panels: orange and dark blue traces correspond to signals at *m*/*z* 12 and 16, respectively in the GC-combustion-MS chromatogram. Right panels: pale blue corresponds to the TIC signal in the GC-MS chromatograms and insets correspond to the corresponding MS spectra at the retention times of the individual peaks (A-D) and the unique-global peak (E).

Figure S7. A) GC-combustion-MS chromatogram of an aliquot of the Biodiesel SRM 2772 previously spiked with Nonadecane and Dimethylphtalate as generic Internal Standards of C (IS-C) and O (IS-O). B) Plot of the ratios 16/12 vs 46/48 measured for each chromatographic peak detected in the quintuplicate analysis. Color code: IS-C (grey), IS-O (blue) and FAMEs (orange, O-compounds).

B)

Figure S8. (A) GC-MS and (B) GC-combustion-MS at m/z 48 chromatograms of an aliquot of the effluent taken from the hydrotreatment process of a wood bio-oil (144.5 h of the catalyst life).