

Ambiphilic Reactivity of SF5-Alkynes Applied to Regioselective and Stereodivergent Halogenation Reactions: An Experimental and Theoretical Case Study

David Matchavariani, Lucas Popek, Jorge Cabrera-Trujillo, Thi Mo Nguyen, Nicolas Blanchard, Karinne Miqueu, Dominique Cahard, Vincent Bizet

▶ To cite this version:

David Matchavariani, Lucas Popek, Jorge Cabrera-Trujillo, Thi Mo Nguyen, Nicolas Blanchard, et al.. Ambiphilic Reactivity of SF5-Alkynes Applied to Regioselective and Stereodivergent Halogenation Reactions: An Experimental and Theoretical Case Study. Advanced Synthesis and Catalysis, 2024, 366 (16), pp.3481-3493. 10.1002/adsc.202400446. hal-04606248

HAL Id: hal-04606248 https://univ-pau.hal.science/hal-04606248v1

Submitted on 10 Jun2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ambiphilic Reactivity of SF₅-Alkynes Applied to Regioselective and Stereodivergent Halogenation Reactions: An Experimental and Theoretical Case Study

David Matchavariani,^a Lucas Popek,^a Jorge Juan Cabrera-Trujillo,^c Thi Mo Nguyen,^b Nicolas Blanchard,^a Karinne Miqueu,^{c,*} Dominique Cahard,^{b,*} and Vincent Bizet^{a,*}

^c CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR 5254, 64053 Pau cedex 09, France E-mail: karinne.miqueu@univ-pau.fr

Manuscript received: April 18, 2024; Version of record online:

Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.202400446

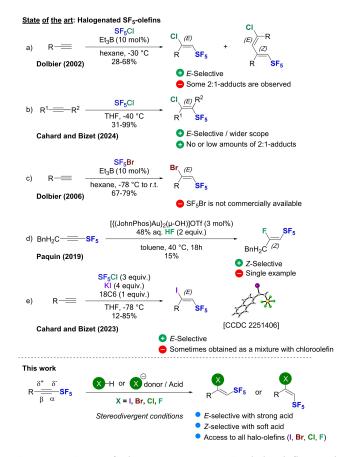
© 2024 The Authors. Advanced Synthesis & Catalysis published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract: We explored the ambiphilic reactivity of SF_5 -alkynes, and we proved they can act as both nucleophiles and electrophiles. We selected halogenation reactions as benchmark reactions and developed highly selective stereodivergent hydrohalogenation (I, Br, Cl, F) reactions of SF_5 -alkynes. The stereochemistry is finely controlled thanks to the nature of the acids used (strong or soft) in the presence of halide source, while the high regioselectivity is governed by the strong polarization of SF_5 -alkynes. Mechanistic studies supported by DFT calculations shed light on two different reaction mechanisms responsible of the excellent stereocontrol. This stereoselectivity was quantitatively rationalized with the ASM and EDA methods. A few dihalogenation reactions are reported and DFT calculations rationalize this *cis*-stereoselectivity. Relative configuration of all the SF_5 -haloalkenes was unambiguously determined by X-ray diffraction. Noteworthy, several post-functionalization reactions such as cross-couplings, cyanation and reductions are described to strengthen the synthetic potential.

Keywords: pentafluorosulfanyl; halogenation; SF₅-alkyne; regioselective and stereodivergent; DFT

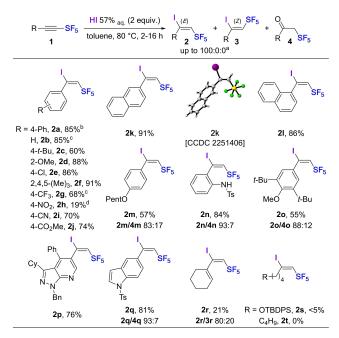
Introduction

Nowadays, the pentafluorosulfanyl group $(SF_5)^{[1]}$ is on the way to become an essential fluorinated group in many fields such as heterocyclic synthesis,^[2] medicinal chemistry,^[3] drug development,^[4] and materials science.^[5] The current craze for this motif is so far limited by the few strategies available to reach sufficient molecular diversity, which rely either on direct radical pentafluorosulfanylation of aliphatic unsaturated compounds,^[6] or on oxidative fluorination of sulfur derivatives.^[7] SF₅-Alkynes^[8] and R-SF₄alkynes^[9] are versatile substrates that have yet to reveal their full synthetic potential. Recently, we developed a fully regio- and stereoselective hydroelementation of SF₅-alkynes with N-, O- and S-nucleophiles, where the SF₅-alkynes were acting as good electrophiles.^[10] Indeed, the strong polarization of SF₅-alkynes towards the SF₅ group was calculated to have a charge difference $\Delta q = 0.39$ with qC_a = -0.298 and qC_β = +0.090 (with R = *p*-Ph-C₆H₄), which makes the C_β electrophilic and the C_a nucleophilic. To pursue our efforts to develop highly regio- and stereoselective transformations we wondered if polarized SF₅-alkynes could react in an ambiphilic manner either as electrophiles or nucleophiles. Thus, we selected the hydrohalogenation


Adv. Synth. Catal. 2024, 366, 1–14 Wiley Online Library 1 These are not the final page numbers!

^a Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France E-mail: vbizet@unistra.fr

^b CNRS, UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France E-mail: dominique.cahard@univ-rouen.fr



reaction of SF₅-alkynes benchmark as transformation.^[11] Thanks to charge difference, we expected high regioselectivity for the halogenation while the stereoselectivity could be modulated by reaction mechanism. Indeed, only a few examples of SF₅-haloalkenes are known in the literature, most of them resulting from the radical introduction of SF₅Cl or SF₅Br onto alkynes (Scheme 1a-c).^[12] A single example of β ,Z-fluoro SF₅-olefin was reported by Paquin in 2019 by gold-catalyzed hydrofluorination but in only 15% yield (Scheme 1d).^[13] In 2023, we proposed the synthesis of β_{5} -iodo SF₅-olefins via the direct iodopentafluorosulfanylation of alkynes, but SF₅-iodoolefins are in some cases obtained in a mixture with SF₅-chloroolefins (Scheme 1e).^[14] In the present study, we made the assumption that SF₅alkynes could act as electrophiles in reaction with nucleophilic halides, and as nucleophiles in reactions with electrophilic species such as strong acids or dihalogens. We anticipated that the nature of the halide and the mechanism involved should have a strong impact on the regio- and stereoselectivity. The aim of this fundamental study is to illustrate the ambiphilic reactivity of SF₅-alkynes and to gain a better understanding via DFT mechanistic studies.

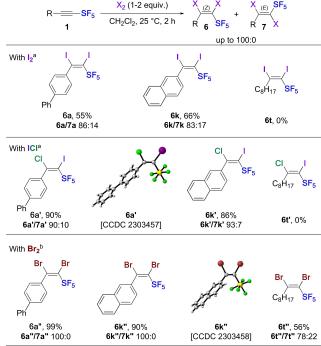
Results and Discussion

At the outset, we considered that SF₅-alkynes could act as nucleophiles. We started our investigation with the hydroiodination of SF₅-alkyne 1a using an aqueous solution of hydroiodic acid (57%)^[15] in toluene at 80 °C and we were delighted to observe full conversion of the SF₅-alkyne into a single regio- and stereoisomer 2a isolated in 85% yield (Conditions A, Scheme 2). The scope and limitations of the substrates were investigated to demonstrate a unique stereoselectivity and good to high yields were obtained with various aromatic (2a-o) and heteroaromatic alkynes (2p-q). The configuration was unambiguously determined by single-crystal X-ray diffraction (SCXRD) analysis of **2k** [CCDC 2251406]^[16] to be the β ,*E*-isomer and we assumed that all other products have the same Econfiguration as they share the same NMR spectral characteristics. The p-NO₂ phenyl SF₅-alkyne 1h, which is strongly deactivated proved to be poorly reactive with HI leading at best to 39% NMR yield of 2h along with 8% of 3h and 13% of 4h after 20 h reaction with 5 equiv. of HI. Interestingly, with alternative conditions using *n*Bu₄NI and TFA, increasing the quantity of nBu_4NI from 1.5 to 5 equivalents helped to improve the conversion up to 90%, but **3h** became the major product (52% NMR vield) along with 21% of 2h and 17% of 4h. This poorly nucleophilic alkyne **1h** is a particular case that seems

Scheme 2. Conditions A: Hydroiodination of SF₅-alkynes with aqueous HI solution.^[a] Unless otherwise noted, **2** was formed as single product. ^[b] Performed with 1.5 equiv. of HI (57% aq.). ^[c] Performed with 3 equiv. of HI (57% aq.). ^[d] Performed with 5 equiv. of HI (57% aq.).

Scheme 1. State of the art access to SF_5 -halo-olefins and proposed strategy for the hydrohalogenation of SF_5 -alkynes.


Adv. Synth. Catal. 2024, 366, 1–14 Wiley Online Library 2 These are not the final page numbers!


to favor the mechanism of conditions B (*vide infra*). For few substrates 1m-o and 1q, a small amounts of ketones 4 were observed due to partial hydrolysis. Vinylogous alkyne 1r was the only example where we observed a small fraction of β ,*Z*-isomer 3r, while alkyl substituted substrates 1s-t were unreactive under these conditions.

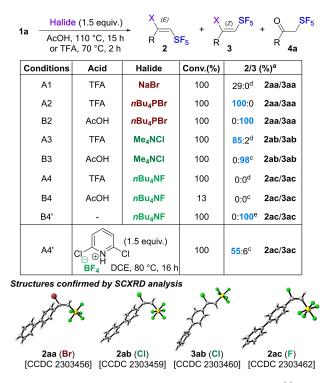
Next, we evaluated SF₅-alkynes as electrophiles with halide salts. For this purpose, we used a combination of sodium iodide in acetic acid at $110 \,^{\circ}C^{[11]}$ and we were pleased to observe full conversion of SF_5 -alkyne **1a** with the formation of the β ,Z-isomer **3a** as single product, isolated in 91% yield (Conditions B, Scheme 3) with stereochemistry confirmed by SCXRD analysis [CCDC 2303461]. The scope of this reaction is much more general than for conditions A as it tolerates aromatic (3a-o), heteroaromatic (3q), vinyl (3r) and even alkyl (3s-t)substituents, affording good to high yields. A limitation was observed with alkynes 1i and 1j, substituted by a cyano and an ester function, respectively, for which reduced E-products 5i-j were observed for the first time. (Z)-Pentafluoro(2-iodovinyl)- λ^6 -sulfane **3u*** was obtained as a single product starting from silvlated alkyne 1u ($R = SiEt_3$). We assume that the expected vinvlsilane **3u** was formed over the course of the reaction and rapidly underwent desilvlation. These results clearly pointed out to an ambivalent reactivity of SF₅-alkynes; next, we wondered what would be the reactivity of these substrates in dihalogenation reactions (Conditions C, Scheme 4).^[17] Reaction of SF₅alkyne 1a with iodine in dichloromethane led to the formation of a 86:14 Z/E mixture of stereoisomers (6a/ 7a). We successfully isolated the Z-isomer 6a, but it appeared to be sensitive and prompt to deiodination over time leading to the partial recovery of 1a along with the appearance of a pink color.^[18] The diiodination was successfully extended to aromatic alkyne 1k but was not effective with alkyl alkyne 1t. The reaction with iodine monochloride was also effective yielding a single regioisomer with introduction of the iodine atom in α -position of the SF₅ and the chlorine atom in β position exclusively (confirmed by SCXRD analysis [CCDC 2303457]), in a Z/E ratio >90:10, with products 6a' and 6k' isolated in 90 and 86% yields, respectively. Unfortunately, once again the reaction was not effective with alkyl substrate 1t. Finally, the reaction with bromine was fully stereoselective with aromatic substrates delivering the Z-isomers 6a" and **6k**" in excellent 99 and 90% yields (confirmed by SCXRD analysis of **6k**" [CCDC 2303458]). Moreover, alkyl alkyne 1t was well tolerated in this case even if a moderate Z/E ratio of 78:22 (6t"/7t") was obtained.

Capitalizing on these results, we wondered if the stereodivergent hydroiodination reactions (Conditions A and B) could be extended to other halogens (Scheme 5a). Replacing HI in conditions A with HBr or HCl, we consistently obtained selectivity for the *E*-isomer. Using HBr, a messy mixture of products was

Scheme 3. Conditions B: Hydroiodination of SF_5 -alkynes with NaI in AcOH. ^[a] Unless otherwise noted, 3 was formed as single product. Product $3u^*$ was obtained from $Et_3Si-C\equiv C-SF_5$ 1u. ^[b] Similar ratios were obtained either using NaI or Bu_4NI .

Scheme 4. Conditions C: Dihalogenation of SF_5 -alkynes with I_2 , ICl and Br_2 . ^[a] Performed with 2.0 equiv. of I_2 or ICl. ^[b] Performed with 1.0 equiv. of Br_2 .

 Adv. Synth. Catal. 2024, 366, 1–14
 Wiley Online Library
 3


 These are not the final page numbers!
 77

1a —	HX toluene, 80 °C Conditions A	R (E) R 2	SF ₅ R	, ^(Z) ^{SF₅} - 3	NaX AcOH, 110 °C Conditions B	[–] 1a
Acid	Conv.(%)	2/3 (%) ^a		2/3 (%) ^a	Conv.(%)	Salt
HI (57% _{aq}	.) 100	100 :0	2a/3a	0: 100	100	Nal
HBr (48%	_{aq.}) 62	17:0 ^b	2aa/3aa	16: <mark>31</mark> ^{b,c}	100	NaBr
HCI (37%	_{aq.}) 100	94:0 ^c	2ab/3ab	18: <mark>50</mark> ¢	71	NaCl
HF (40% _a	0 (_{.p}	-	2ac/3ac	-	0	NaF

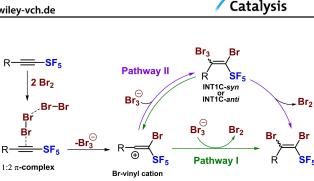
a) Evaluation of halides in conditions A and B (1a, $R = p-Ph-C_6H_4$)

b) Revisited conditions A and B by changing acids and halides

Scheme 5. Evaluation of acids and halide sources. ^[a] NMR yields were determined by ¹⁹F-NMR using PhCF₃ as internal standard. ^[b] A messy mixture of brominated products was obtained. ^[c] Small amounts of α -SF₅-ketone **4a** was observed coming from partial hydrolysis of **1a**. ^[d] Products of addition of TFA were observed by ¹⁹F-NMR leading to the formation of α -SF₅-ketone **4a** after workup. ^[e] Conditions B4': TBAF (1 M in THF, 1.5 equiv.), THF, r.t., 1 h.

observed but no trace of the Z-isomer. Unfortunately, no reaction occurred in the presence of aqueous solution of HF. Under conditions B, we first noticed that NaBr, NaCl or NaF were poorly soluble in acetic acid, resulting in poor reactivity and selectivity. Addition of a small amount of water enhanced the solubility of the salt and the homogeneity of the whole mixture was attained at 110 °C. With NaBr, a mixture of E/Z isomers (**2aa/3aa**) was obtained in 16% and 31% NMR yields, respectively, alongside with ketone **4a** and other by-products. With NaCl, the reaction was

cleaner affording **2ab/3ab** in 18 and 50% ¹⁹F-NMR yields, respectively. Even if E/Z ratios were lower than with NaI, we could notice that the Z-isomers were always favoured as major products under conditions C. However, no reaction took place with sodium fluoride. This difference in reactivity and selectivity depending on the nature of the halide raised several fundamental questions, such as the influence of the pKa of the acid, the difference of nucleophilicity of the halides as well as solubility issues. For a better understanding of these reactions, we carried out experiments using strong acids with various halide sources to mimic conditions A, and we tested more soluble halide sources with soft acetic acid for variation of conditions B.


Initially, we focused our effort on hydrobromination reaction (Scheme 5b) and we found that using the combination of trifluoroacetic acid (TFA) and sodium bromide in place of HBr, we were able to get the single stereoisomer 2aa in up to 29% yield (Conditions A1). More interestingly, using TFA and *n*Bu₄PBr (Conditions A2) we reached 100% selectivity for the Eisomer 2aa in quantitative yield. This excellent result encouraged us to compare the bromide sources under soft acidic conditions B. We found that *n*Bu₄PBr in acetic acid yielded exclusively the Z-isomer 3aa (Conditions B2) and compared favourably with the use of NaBr probably for solubility reasons. These results indicate that protonation of the alkyne by means of a strong acid is required in conditions A, and a good solubility of the halide source is necessary for the reaction to proceed, especially in conditions B. We then confirmed this finding by extending this reactivity to hydrochlorination. The same trend was observed with the E-isomer 2ab being predominantly obtained in conditions A3 (85% ¹⁹F-NMR yield) whereas the Zisomer **3ab** was the unique product in conditions B3 (98% ¹⁹F-NMR yield) (Scheme 5b). We also confirmed that conditions B2 and B3 were suitable with the aliphatic substrate 1t, delivering products 3ta and 3tb in 69 and 76% yield, respectively.^[19] For reactions performed in TFA in the presence of moderately nucleophilic halides, i.e. NaBr and Me₄NCl, trace amount addition of TFA on 1a was observed, but the corresponding enol trifluoroacetate is too sensitive to hydrolysis and delivers the α -SF₅-ketone 4a after hydrolysis. In attempts to carry out hydrofluorinations, the use of TBAF as a fluoride salt in conditions A4 and B4 was unsuccessful (Scheme 5b). In conditions A4 with TFA, full conversion was observed to form α -SF₅-ketone 4a as main product coming from the protonation of the alkyne followed by addition of TFA anion or water (observed by NMR) rather than fluoride anion. In conditions B4, only 13% conversion into α -SF₅-ketone **4a** was observed.

After some optimization, we were very pleased to find that by simplifying the conditions B4 to conditions B4' (Scheme 5b) with addition of TBAF solution (1 M

Adv. Synth. Catal. 2024, 366, 1–14	Wiley Online Library	4
These are not the	final page numbers!	77

in THF) without acid and by carrying out the reaction at room temperature, we were able to perform fully selective hydrofluorination to get β_{z} product **3ac** via nucleophilic addition of fluoride anion followed by protonation with water contained in TBAF solution. During the writing of the present article, same conditions for Z-selective hydrofluorination of SF5alkynes and pyridines-SF₄-alkynes have been discovered and reported by the group of Shibata, which highlights the emulation of this research topic.^[20] In addition, inspired by the work from Liu and Wang,^[21] we successfully obtained the βE isomer (55% of **2ac**) by using an excess of 2,6-dichloropyridinium tetrafluoroborate in DCE at 80 °C. This result is beyond the context of the present study and was not further optimized. Structures of 2aa [CCDC 2303456], 2ab [CCDC 2303459], 3ab [CCDC 2303460] and 2ac [CCDC 2303462] were unambiguously determined by SCXRD analysis.

In order to have better insights on the mechanisms and on the stereocontrol of the dihalogenation and hydrohalogenation reactions involving SF₅-alkynes, we carried out Density Functional Theory (DFT) calculations at the PCM(solvent)-B3LYP-D3(BJ)/6-311G** level of theory.^[19] In the initial phase of our investigation, our focus was directed towards the computational study of dihalogenation reactions (conditions C). To this end, we chose to explore the dibromination reaction as model reaction, as it can occur both in the presence of aromatic or alkyl substituents on the alkyne. Moreover, experimentally it has been shown that the nature of the substituent influences the stereoselectivity outcome. Our experimental results revealed that dibromination reactions of SF₅-alkynes featuring an aromatic substituent led uniquely to Z-isomer. On the contrary, with an alkyl substituent a Z:E ratio of 78:22 was obtained (Scheme 4). The intriguing nature of this phenomenon prompted us to investigate more closely this case and try to rationalize it through DFT calculations. Dibromination reactions of alkynes are generally accepted to proceed via the electrophilic addition of a bromonium cation, thereby forming a bridged or open cationic intermediate.[22] Such electrophilic addition has been proposed to be facilitated by a second molecule of Br₂, which favours the breaking of the Br-Br bond.^[23] Consequently, we considered two molecules of Br₂ in our computational study. We proposed that a 1:2 π -complex is first formed between the SF₅-alkyne and two molecules of dibromine, followed by the formation of a Br-vinyl cation and Br_3^- (Scheme 6). Subsequently, this vinyl bromide cation can either undergo nucleophilic addition of Brdirectly from Br3-, to form the dibrominated compounds (pathway I) or be stabilized by the $Br_3^$ counter-anion through a rapid ion-collapse, leading to the formation of intermediates (labelled as INT1C-syn

Advanced

Synthesis &

Scheme 6. Proposed mechanisms for dibromination of internal SF₅-alkynes.

and INT1C-anti in Scheme 6) and forming the final product after release of Br₂ (pathway II).

To start our computational study, we first investigated the structural characteristics of the cationic intermediates resulting from the electrophilic addition of Br⁺ to SF₅-alkyne featuring either an aromatic (R = Ph, as model) or an aliphatic (R = Et, as model)substituent. Our aim was to clarify which structure best described these intermediates: a bridged or an open vinyl-type structure? As depicted in Figure 1, DFToptimized structures reveal that the C=C double bond interacts in an asymmetric manner with Br⁺ for both substituents ($\Delta(Br-C)$: 0.7 to 0.9 Å and WBI(C_{β} -Br): 0.134 to 0.279 vs WBI(C_{α} -Br) ~ 1.0), clearly indicating an open-type structure. A more important dissymmetry appears for the aryl substituent as attested by the bond lengths (Br– $C_{\alpha} \sim 1.875$ Å for both alkynes vs Br-C_{β}=2.766 and 2.600 Å for R=Ph and R=Et, respectively) and the bond angles (Br– C_{α} – C_{β} : 121.1 vs 109.4°, respectively), consistent with the delocalization of the arene into the vacant $2p^{\pi}(C)$ of the carbocation to stabilize the positive charge. It is important to note

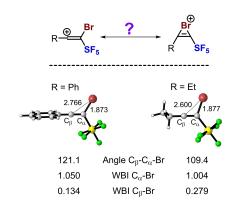
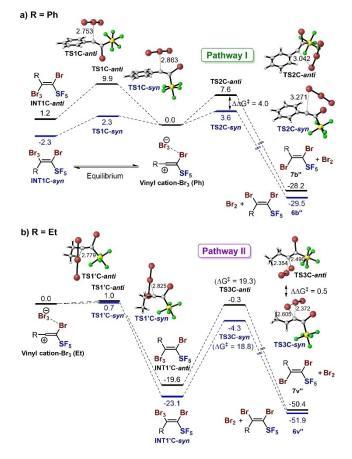


Figure 1. DFT-computed structures of the cationic intermediates after electrophilic addition of Br⁺ to SF₅-alkynes featuring an aromatic (Ph) or alkyl (Et) substituent. Distances are given in Å and bond angles in °. All data have been computed at the PCM(DCM)-B3LYP-D3(BJ)/6-311G** level of theory. WBI = Wiberg Bond Index from NBO calculations.

© 2024 The Authors. Advanced Synthesis & Catalysis


published by Wiley-VCH GmbH

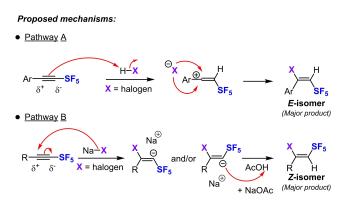
Wiley Online Library Adv. Synth. Catal. 2024, 366, 1-14 5 These are not the final page numbers!

that the dibromination reactions proceeding *via* vinyl cations are typically non-stereospecific,^[22c] suggesting that the SF₅ group plays a crucial role in driving the stereospecificity of our reactions. To further support the proposed pathways shown in Scheme 6, we computed the complete reaction profiles for the dibromination reactions involving $R-C\equiv C-SF_5$ alkynes with R=Ph (1b) or Et (1v) (Figure 2a and 2b, respectively). Since the stereochemical determining step cannot be the formation of the vinyl cation, the profiles presented in Figure 2a–b focus directly on how nucleophilic addition occurs over the respective vinyl cations.

When examining the reaction profile involving the aromatic alkyne, our calculations indicate that the ionpair vinyl-cation/Br₃⁻ species and the adduct **INT1C**syn can be in equilibrium at RT (activation barrier $\Delta G^{\neq} = 2.3$ kcal/mol via **TS1C**-syn and $\Delta G_R = -2.3$ kcal/mol in favour of **INT1C**-syn). In contrary, the formation of **INT1C**-anti is clearly less

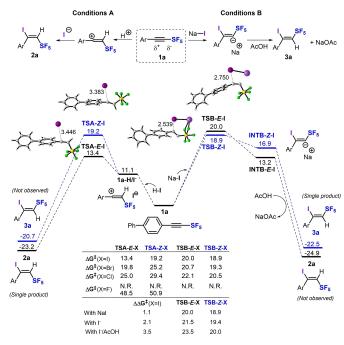
Figure 2. Reaction profiles of the dibromination reactions (conditions C) of SF₅-alkynes featuring: a) an aromatic (R = Ph) or b) an alkyl (R = Et) substituent. Free energy values (ΔG) are given in kcal/mol and main distances in TS in Å. All data have been computed at the PCM(dichloromethane)-B3LYP-D3(BJ)/6–311G** level of theory.

favoured ($\Delta G^{\neq} = 9.9 \text{ kcal/mol}$ via **TS1C**-anti and $\Delta G_{R} = +1.2$ kcal/mol). Next, our attempts to locate a transition state corresponding to the release of Br₂ from INT1C-syn or INT1C-anti, to yield the dibrominated products, failed (pathway II). Instead, two transitions states, TS2C-syn and TS2C-anti, associated to the direct transfer of a bromide atom from the tribromide anion to the vinyl cation were found, leading to the final products 6b" and 7b". These results indicate that the pathway I is favoured for the aryl substituent, and that the vinyl cation stabilized by the delocalization of the aromatic substituent, may be sufficiently persistent to enable nucleophilic addition of bromide directly from Br_3^- to produce the final dibrominated products. Notably, the energy difference between the two activation barriers of TS2C-syn $(\Delta G^{\neq} = 3.6 \text{ kcal/mol})$ and TS2C-anti (ΔG[≠] = 7.6 kcal/mol) is 4.0 kcal/mol, precisely in line with the experimentally observed stereoselectivity (100:0 6a"/7a" in favour of the syn addition with R = p-Ph- $C_{6}H_{4}).$


On the other hand, when examining the reaction profile with an alkyl substituent (R = Et), we observed, that both INT1'C-syn and INT1'C-anti are promptly generated. As expected, and in contrast to the aromatic substituent, the energy gap between these two intermediates and the initial ion pair is now significant $(\Delta G_R = -23.1 \text{ and } -19.6 \text{ kcal/mol}, \text{ respectively})$ and the ion-collapse transition states (TS1'C-syn and TS1'C-anti) for the syn- and anti-additions of the tribromide anion to the vinyl cation, exhibit rather low barriers of less than 1.0 kcal/mol. This implies that these species are not in equilibrium under the reaction conditions, as proposed for the aromatic alkyne, but that the intermediates (INT1'C) are the only species in solution. Proceeding from these intermediates, we successfully located the corresponding transition states, TS3C-syn and TS3C-anti, associated to the release of Br₂ and leading directly to the 6v" and 7v" dibrominated products (Pathway II). Importantly, the computed activation barriers are 18.8 and 19.3 kcal/mol for TS3C-syn and TS3C-anti. The slight energy difference $(\Delta\Delta G^{\neq} = 0.5 \text{ kcal/mol})$ results in a computed stereoselectivity of 70:30 syn/anti, closely mirroring the experimentally obtained stereoselectivity (78:22 6t''/7t'' when $R = C_8H_{17}$).

Next, we also carried out a DFT-study of the hydrohalogenation reaction with SF₅-alkynes in order to clarify the observed differences in stereoselectivity between the two reactions occurring in conditions A or B and to assess the impact of the halogen on the process. We selected the reaction with SF₅-alkyne **1a** as model reaction and focus our attention on the formation of β ,*E* or β ,*Z*-isomers. According to our experimental results, the β ,*E*-isomer was exclusively formed in the presence of a strong acid (hydrogen halide, HX) and the reaction only takes place with an

Adv. Synth. Catal. 2024, 366, 1–14 Wiley Online Library 6 These are not the final page numbers!


aromatic substituent. In sharp contrast, β -Z-isomer was obtained with a halide salt and the reaction is compatible with both aromatic and alkyl substituents. These facts led us to propose two different mechanisms, according to the experimental conditions (Scheme 7). In conditions A, the initial step of the mechanism involves the protonation of the alkyne, resulting in the formation of a carbocation which can be stabilized by π -donation from the aromatic substituent. Subsequently, a nucleophilic attack by the halide on the carbocation leads to the unique E-SF₅alkenyl halides (Scheme 7, top). On the other hand, when a halide salt (NaX) is involved in the presence of a soft acid AcOH (Conditions B), we propose that the SF₅-alkyne acts as an electrophile, undergoing a nucleophilic attack by the halide. This results in the generation of a carbanion with an increased basicity compared to the initial alkyne. This intermediate is now able to abstract a proton from acetic acid, leading to the predominant or unique Z-SF₅-alkenyl halides (Scheme 7, bottom).

According to this mechanistic proposal, we computed the corresponding reaction profiles of the hydrohalogenation processes (halogen = Cl, Br, or I) of alkyne 1a through pathway A or pathway B. For the latter, we used the reaction with NaX as a model reaction. Additionally, although the hydrofluorination reaction does not occur experimentally through the use of aqueous HF, for the sake of completeness, we also computed the corresponding hydrofluorination reaction of **1a** via pathway A. As an illustrative example, both hydroiodination pathways are presented in Figure 3 and the activation barriers for the other halogens are provided in the associated table (for complete reaction profiles see Figures S1-S2). For conditions B, we initially included the Na⁺ counter-cation in the calculations in order to consider its potential role over the halide nucleophilic addition. We found that all processes highly computed are exergonic $(\Delta G_R \sim -20 \text{ kcal/mol})$, regardless of the halide involved

Scheme 7. Mechanistic proposals for the hydrohalogenation of SF_5 -alkynes with H–X (pathway A) or Na–X (pathway B); X = halogen.

Advanced Synthesis & Catalysis

asc.wiley-vch.de

Figure 3. Reaction profiles of the hydroiodination of alkyne **1a** leading to the *E*- or *Z*-isomers through pathway A (left) or pathway B (right, with NaX). For comparison, activation barriers for the hydrohalogenation involving different halides (F, Cl, Br, or I) are given in the table. Free energy values (ΔG) are given in kcal/mol and distances in Å. All data have been computed at the PCM(solvent)-B3LYP-D3(BJ)/6–311G** level of theory. Solvent is toluene for pathway A and acetic acid for pathway B. In the table are also included the data for iodine, in the case of the nucleophilic addition of I⁻ in absence or presence of AcOH. $\Delta\Delta G^+$, in kcal/mol, corresponds to the energy difference between the activation barriers affording *Z* and *E* isomers.

and that the E-isomer is thermodynamically favoured compared to Z-isomer ~2.4 kcal/mol. Concerning the activation barriers, clear trends can be identified: (i) all the processes take place with a lower activation barrier when going down in the halogen group from F to I, which is consistent with the nucleophilicity of the halide; (ii) when following pathway A for the same halide, the transition state leading to the E-isomer is kinetically favoured over that affording the Z-isomer $(\Delta\Delta G^{+} = 2.4 \text{ to } 5.8 \text{ kcal/mol}, \text{ from F to I});$ (iii) conversely, when analysing pathway B, the kinetically favoured process corresponds to the formation of the Z-isomer ($\Delta\Delta G^{\dagger} = 1.1$ to 1.6 kcal/mol, from I to Cl). These results highlight that the stereoselectivity arises from kinetic preferences rather than thermodynamic factors, with formation of the β -E-isomer with HX and the β -Z-isomer with NaX (X = halogen). Moreover, the activation barriers are accessible under the experimental conditions for I, Br and Cl ($\Delta G^{+} < 25 \text{ kcal/mol}$) and not for F ($\Delta G^{\dagger} \sim 50$ kcal/mol), for which no reaction occurs. By looking more closely at the energy

Adv. Synth. Catal. 2024, 366, 1–14

Wiley Online Library

These are not the final page numbers! 77

difference between the 2 activation barriers for the hydroiodination reaction in conditions В $(\Delta\Delta G^{\#} = 1.1 \text{ kcal/mol})$, we noticed that the gap between the TSs leading to E- or Z-isomer is not high enough to theoretically confirm the exclusive formation of Z-isomer. Considering this, we additionally computed the hydroiodination of alkyne **1a** in absence of the counter-cation to take into account a scenario where Na^+ and I^- are fully dissociated in the polar acetic acid solvent. Our results indicate that the profiles are very similar to the previous ones, with C-I bond lengths in TS and activation barriers of the same order of magnitude. They also indicate that the gap $\Delta\Delta G^{\#}$, in absence of the counter-cation, increases from 1.1 kcal/mol (see table in Figure 3 and Figure S3) to 2.1 kcal/mol, in line with the experimental results. A similar situation was also found when computing the nucleophilic addition of the iodide to 1a including explicitly one molecule of AcOH. In this case, the E:Z gap increases even further from 2.1 to 3.5 kcal/mol (see table in Figure 3 and Figure S3).

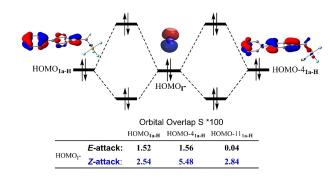
In order to quantitatively analyse the physical factors responsible for the stereoselectivity, we next applied the Activation Strain Model (ASM) of reactivity.^[19] The ASM approach decomposes the electronic energy (ΔE) of a chemical system into two different terms: (i) the strain energy (ΔE_{strain}), representing the energy needed to deform the reactants from

their equilibrium geometries during a chemical process and (ii) the interaction energy (ΔE_{int}), which describes both the destabilizing and stabilizing interactions that occur when the increasingly distorted reactants approach each other. We started our ASM study by comparing the two possible nucleophilic attacks (leading to *E*- or *Z*-isomer) of the iodide over the protonated alkyne **1a-H** during pathway A. In order to enable an accurate comparison, we selected two structures along the Intrinsic Reaction Coordinate (IRC) with nearly identical C-I distance of ~3.44 Å close to the TSs (for a plot of the ASM terms along the entire reaction coordinate, see Figure S4). From these results (Table 1, top Path A), we found that the lower electronic energy of the process forming the *E*-isomer ($\Delta E = -39.6$ and -34.8 kcal/mol, for *E*- and *Z*-attack, respectively) is originated by a combination of a lower strain energy $(\Delta E_{\text{strain}})$ and a more stabilizing interaction energy (ΔE_{int}) between the reactants $(\Delta E_{\text{strain}} = 1.2 \text{ vs } 4.0 \text{ kcal/}$ mol and $\Delta E_{int} = -40.8 \text{ vs} - 38.8 \text{ kcal/mol}$). This lower strain energy can be rationalized by a less distorted structure of the protonated alkyne 1a-H, as illustrated by the change in the CAr-C-C angle from 179.9° (equilibrium geometry) to 173.9° or 167.2° for the geometries leading to E- or Z-isomer (reaction coordinate C.-I~3.44 Å). Such bond angle modification leads to a considerable difference in the distortion energy by 2.8 kcal/mol from E- to Z-attack.

3.446 173.9 <i>E</i> -attack <i>E</i> -attack <i>E</i> -attack						
Pathway A	d C…I	ΔE	$\Delta E_{ m strain}$	$\Delta E_{ m int}$	Angle C _{Ar} –C–C	
E-attack	3.446	-39.6	1.2 (-2.8)	-40.8 (-2.0)	173.9	
Z-attack	3.440	-34.8	4.0	-38.8	167.2	
		F-attack		2.825 144.7 Z-attack		
Pathway B	d C…I	ΔE	$\Delta E_{ m strain}$	$\Delta E_{\rm int}$	Angle C–C–S	
E-attack	2.824	8.1	19.6 (-6.7)	-11.5 (+3.7)	120.8	
Z-attack	2.825	5.0	12.9	-7.8	144.7	

Table 1. Activation Strain Model (ASM) analysis of the hydroiodination of alkyne **1a** with HI (top, pathway A) or NaI (bottom, pathway B) leading to the E- or Z-isomer, respectively.^[24]

The reaction coordinates have been selected as the C···I distance at ~3.44 Å or ~2.82 Å for pathways A or B. Energy values are given in kcal/mol, distances in Å, and bond angles in °. All data have been computed at the PCM(solvent)-B3LYP-D3(BJ)/6-311G** level of theory. Solvent = toluene or acetic acid for pathway A or B. Into brackets, the variation of ΔE_{strain} and ΔE_{int} using the non-privileged attack as reference point.


8

Adv. Synth. Catal. 2024, 366, 1–14 Wiley Online Library

These are not the final page numbers! 77

In order to understand the Z-stereoselectivity under reaction conditions B, we carried out an ASM analysis for the hydroiodination reaction of alkyne **1a** along the reaction coordinate (Figure S5). The ASM results at a quasi-identical C-I distance of 2.82 Å, close to TS, are shown in Table 1, bottom Path B. They revealed that the interaction energy is again more stabilizing for the *E*-attack (-11.5 kcal/mol) compared to the *Z*-attack (-7.8 kcal/mol). However, this difference is lower than that found in the distortion energy ($\Delta E_{\text{strain}} = 19.6$ vs 12.9 kcal/mol for the E- vs Z-attack). Therefore, the experimentally observed Z-stereoselectivity under reaction conditions B finds its origin uniquely by a lower strain energy. As previously, this strain energy difference can be readily understood from a more distorted geometry of the alkyne 1a in the *E*-attack. Indeed, the angle C-C-S varies from 180.0° in the equilibrium geometry of 1a to 120.8° or 144.7° in the selected geometries at the reaction coordinate C-I of 2.82 Å for the E- or Z-attack, respectively. As the interaction energy plays also a significant role for understanding the *E*-stereoselectivity observed during the hydroiodionation process under reaction conditions A, we next applied the Energy Decomposition Analysis (EDA) method to quantitatively analyse this interaction. The EDA approach decomposes the ΔE_{int} term into different and chemically meaningful terms, namely, the electrostatic interaction (ΔV_{elstat}), the orbital interaction $(\Delta E_{\rm orb})$, the Pauli repulsion $(\Delta E_{\rm Pauli})$ and the dispersion energy (ΔE_{disp}). Solvation effects (ΔE_{solv}) were also quantified by means of the Conductor like Screening Model (COSMO).^[19] The terms deriving from our EDA analysis are shown in Table 2. The orbital interaction $\Delta E_{\rm orb}$, the solvation $\Delta E_{\rm solv}$ and the dispersion ΔE_{disp} energies are more stabilizing for the Zattack ($\Delta \Delta E_{orb} = 5.2$; $\Delta \Delta E_{disp} = 1.0$; $\Delta \Delta E_{solv} = 1.1$ kcal/ mol) than for the E-attack, suggesting that these factors are not responsible at all for the experimentally observed E-stereoselectivity.

On the contrary, the Pauli repulsion ΔE_{Pauli} , which quantify steric repulsion, is considerably lower for the process affording the *E*-isomer ($\Delta \Delta E_{\text{Pauli}} = -6.5$ kcal/ mol). This factor and to a lesser extent the electrostatic interaction ($\Delta \Delta V_{\text{elest}} = -2.3$ kcal/mol) are therefore responsible for the *E*-selectivity. In order to find the reason of the lower Pauli repulsion for the *E*-attack in

Synthesis &

Catalysis

Figure 4. Schematic representation of the interaction between occupied molecular orbitals of the iodide and the protonated alkyne **1a-H** involved in the Pauli repulsion term. Orbital overlaps multiplied by 100 (S*100) are given for the attack leading to the *E*- or *Z*-isomers. Plot of the HOMO and HOMO-4 (cutoff : 0.05) of the protonated alkyne **1a-H** and the HOMO of I⁻ in geometries close to TSs at C···I of ~3.44 Å. Hydrogen atoms have been omitted for clarity.

conditions A, we conducted a Kohn-Sham molecular orbital analysis. To this end, we selected the same structures we used during the ASM/EDA studies, at the consistent distance of C-I of ~3.44 Å, and we analyzed the overlap (S) between occupied orbitals, which is the sole factor affecting the ΔE_{Pauli} term. Among all the plausible occupied-occupied orbital interactions between the iodide and the protonated alkyne (1a-H), we searched those where the orbital overlap differs considerably between the E- or Zattack. As illustrated in Figure 4, we found that the interactions between the well-oriented lone pair of the iodide and the HOMO or HOMO-4 (π system involving $2p^{\pi}(C_{\beta})$ and the aromatic system) of the **1a**-H are much larger and therefore much more destabilizing for the attack leading to the Z-isomer compared to the attack leading to the E-isomer (S*100(HOMO-HOMO) = 2.54 vs 1.52 and S*100(HOMO-HOMO-(4) = 5.48 vs 1.56). We also found an important difference in overlap between the same iodide lone pair and the HOMO-11 of 1a-H, which corresponds mainly to a combination of the lone pairs associated with the fluorine atoms of the SF_5 group (Figure S6). As expected, this overlap is negligible for the E-attack (S*100 = 0.04) but extremely relevant for the Z-attack

Table 2. Energy Decomposition Analysis (EDA) of the stereodivergent hydroiodination of alkyne 1a under reaction conditions A.

Pathway A	d C…I	$\Delta E_{\rm int}$	$\Delta E_{\mathrm{Pauli}}$	$\Delta V_{ m elstat}$	ΔE_{Orb}	ΔE_{Disp}	$\Delta E_{ m solv}$
<i>E</i> -attack	3.446	$-39.5 \\ -38.0$	26.6	-86.6 (72.1%)	-28.1 (23.4%)	-5.4 (4.5%)	54.0
<i>Z</i> -attack	3.440		33.1	-84.3 (68.0%)	-33.3 (26.9%)	-6.4 (5.2%)	52.9

The reaction coordinates have been selected as the C···I distance of ~3.44 Å. Energy values are given in kcal/mol. Data computed at COSMO(Toluene)-ZORA-B3LYP-D3(BJ)/QZ4P//PCM(Toluene)-B3LYP-D3(BJ)/6-311G** level of theory. Contribution (in %) of each stabilizing term in relation to the sum of all stabilizing terms, are given into brackets.

Adv. Synth. Catal. 2024, 366, 1-14	Wiley Online Library	9
These are not the	final page numbers! 💈	17

(S*100 = 2.84). To emphasize the primary details, the combination of ASM, EDA and Orbital analyses evidences that the stereoselectivity originates from a less important deformation (ΔE_{strain}) of the reactants during the hydroiodination processes. In addition, the formation of the *E*-isomer in conditions A is also driven by steric effects, as confirmed by a lower overlap between the lone pair of I- and the π -occupied molecular orbitals of the protonated alkyne involving $2p^{\pi}(C_{\beta})$ and the aromatic system or F lone pairs of SF₅, which reduce the repulsive occupied-occupied orbital interactions.

Finally, several functionalizations of iodoolefins 2a and **3a** were carried out (Scheme 8). First, we performed an evaluation of the compatibility of 2a and **3a** with different bases. Indeed, iodo-olefins are likely to undergo dehydrohalogenation under basic conditions to give back SF₅-alkyne **1a** (See Table S1 for details). We first identified that E-iodo-olefin 2a is much more sensitive to base than **3a**, leading to decomposition with most of the bases tested. In contrast, Z-iodo-olefin **3a** is much more robust and compatible with Et₃N or Hünig's base for instance. We then evaluated various post-functionalizations with both compounds 2a and **3a** but those transformations are out of the scope of the present study and were not fully optimized. As evaluated earlier, 2a was prone to decomposition, so we focused efforts on the Z-iodo-olefin 3a.

We developed for the very first time effective palladium-catalyzed cross-coupling reactions, which allow the introduction of an alkyl (8a), a vinyl (9a), an

10a

d) Sonogashira

69%

e) Cyanation

Zn(CN)₂

83%

-Cu

11a

12a

SF,

Ph

f) Radical reduction

TMS₃Si-H

94% from 2a

57%

c) Suzuki

Ph-B(OH)₂

B

3a

 $BP = p - Ph - C_{i}$

b) Stille

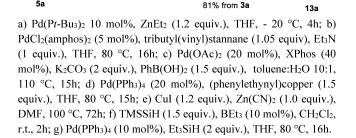
91%

a) Negishi

Zn(Et)2

45%

g) Pd-Catalyzed reduction


SiEt₃-H

71%

8a

BF

SnBu₃

Scheme 8. Post-functionalizations of β -iodo SF₅-olefins.

aryl (10a), an alkynyl (11a) or even a cyano group (12a). With diethylzinc, a 57:43 ratio of coupling product **8a** and reduced product **5a** (resulting of β -hydride elimination) was obtained, but they can be separated and isolated in 45 and 35% yield, respectively. Reduction of either *E*- and *Z*-iodoolefins **2a** and **3a** with tris(trimethylsilyl)silane was performed with a catalytic amount of triethylborane, leading to high yields of the unique *Z*-reduced product **13a**. This can easily be explained by the formation of the most stable radical intermediate.^[6b] The *E*-isomer **5a** could be obtained in 71% yield by performing a palladium-catalyzed hydrodeiodination with triethylsilane.

Advanced

Catalysis

Synthesis &

Conclusion

asc.wiley-vch.de

In summary, we have validated the hypothesis that SF₅-alkynes can react both as electrophile and nucleophile by developing regioselective and stereodivergent methodologies to perform independently β ,Z- and β ,Eselective hydroiodination of SF₅-alkynes with excellent selectivities. The transformation can be extended easily to bromination and chlorination, while fluorination required some adjustments. Dihalogenation with I2, Br2 and ICl yielded in all cases the cis-dihalogenated isomers as major products alongside with full regioselectivity for ICl. DFT calculations have provided a detailed description of the mechanisms for the dihalogenation and the hydrohalogenation reaction of SF₅alkynes using strong or soft acidic conditions in the presence of halide sources. We rationalized the privileged cis-stereochemistry of the dibromination reaction of SF₅-alkynes depending on the alkyne substituents. We found that the aromatic substituent stabilizes the Br-vinyl cation formed after electrophilic addition of Br^+ on the alkyne, allowing the direct transfer of bromide from the Br₃⁻ anion with complete cis-selectivity. On the contrary, with alkyl substituent, the vinyl cation is considerably less stable and a rapid ion-collapse occurs with the Br₃⁻ anion. Then, the release of Br₂ leads to the final dibrominated products as mixture of *syn/anti* addition products. Concerning hydrohalogenation reactions of SF₅-alkynes using strong or soft acidic conditions in the presence of halide sources, two mechanistic scenarios occur. With strong acids, the reaction proceeds via protonation of the SF₅-alkyne followed by a nucleophilic attack of the halide. Conversely, with the aid of soft acid, the halide nucleophilic attack on the alkyne occurs first with a subsequent protonation of the corresponding anionic intermediate. We extensively analyzed the E- and Zstereodivergence of these processes using the ASM method. We found that E-stereoselectivity is a result of the combination of a lower strain energy and a stronger stabilizing interaction between the reactants, while the Z-stereoselectivity is due solely to the lower energy requirement to distort the reactants. With the help of

 Adv. Synth. Catal. 2024, 366, 1–14
 Wiley Online Library
 10

 These are not the final page numbers!
 77

the EDA method, we highlighted that the stronger interaction between the reactants upon the formation of *E*-alkenyl halides is due to a smaller overlap between the main occupied orbitals of the reactants, ultimately leading to lower Pauli repulsion. Several post-functionalization reactions of these halo-olefins were developed which clearly highlight the great synthetic potential of these building blocks.

Experimental Section

Conditions A1–A3: General Procedure for the β -E Hydrohalogenation of SF₅-alkynes using Halides in TFA

In a flask, the SF₅-alkyne **1** (1 equiv.) was mixed with TFA (10 mL/mmol). Then, the halide (For iodide: NaI or TBAI; for bromide: nBu_4PBr ; for chloride: Me₄NCl (1.5 equiv.)) was added. The mixture was stirred at 70 °C for 1 h until completion of the reaction as followed by ¹⁹F-NMR or TLC. The mixture was washed with water and extracted with 3 volumes of dichloromethane. The organic layers were combined, dried with MgSO₄, filtered, concentrated under vacuum and purified over silica gel column chromatography affording the β-*E*-iodo SF₅-olefin **2**.

Conditions B1–B3: General Procedure for the β -Z hydrohalogenation of SF₅-alkynes using Halides in AcOH

In a flask, the SF₅-alkyne **1** (1 equiv.) was dissolved in AcOH (10 mL/mmol). Then, the halide (for iodide: NaI or TBAI; for bromide: nBu_4PBr ; for chloride: Me_4NCl (1.5 equiv.)) was added. The solution was stirred at 110 °C for 15 h. The completion of the reaction was followed by ¹⁹F-NMR or TLC. The mixture was washed with water and extracted with 3 volumes of dichloromethane. The organic layers were combined, dried with MgSO₄, filtered, concentrated under vacuum and purified over silica gel column chromatography affording the β -*Z*-iodo SF₅-olefin **3**.

Conditions C: General Procedure for the Dihalogenation of SF₅-alkynes

In a flask, the SF₅-alkyne **1** (1 equiv.) was dissolved in dichloromethane. Then the dihalogen (either I₂, ICl or Br₂, 1–2 equiv.) was added, the reaction was stirred at room temperature for 2 h and followed by ¹⁹F-NMR or TLC. The mixture was concentrated under vacuum and the crude purified over silica gel column chromatography to give *Z*-(dialogeno)vinyl-SF₅ **6** as major product.

The CCDC numbers - [CCDC 2303456, **2aa**], [CCDC 2303459, **2ab**], [CCDC 2303460, **3ab**], [CCDC 2303462, **2ac**], [CCDC 2251406, **2k**], and [CCDC 2303461, **3a**] – contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/structures.

Acknowledgements

This work is supported by the ANR SULFIVE project (grant ANR-PRC-21-CE07-0042) of the French National Research Agency (ANR), Université de Haute-Alsace, Université de Strasbourg, Normandie Université, and CNRS. The authors acknowledge Didier Le Nouën (LIMA UMR7042 CNRS-Unistra-UHA), Corinne Bailly and Nathalie Gruber (Service de radiocristallographie de la Fédération de Chimie Le Bel FR 2010) who contributed, by their valuable technical and scientific support in NMR and X-ray diffraction, to the achievement of this research project. The "Direction du Numérique" of the Université de Pau et des Pays de l'Adour and Mésocentre de Calcul Intensif Aquitain (MCIA) are acknowledged for computational facilities. This work was also performed using HPC resources from GENCI-IDRIS (Grant 2022–2023-[project AD010800045R1-R2]).

References

- For general reviews about SF₅, see: a) R. Kordnezhadian, B.-Y. Li, A. Zogu, J. Demaerel, W. M. De Borggraeve, E. Ismalaj, Chem. Eur. J. 2022, 28, e202201491; b) M. Magre, S. Ni, J. Cornella, Angew. Chem. Int. Ed. 2022, 61, e202200904 ; c) G. Haufe, Tetrahedron 2022, 109, 132656; d) D. Rombach, H.-A. Wagenknecht, Synthesis 2022, 54, 4883; e) Y. Kraemer, E. N. Bergman, A. Togni, C. R. Pitts, Angew. Chem. Int. Ed. 2022, 61, e202205088 ; f) D. J. Burton, Y. Wang, V. Bizet, D. Cahard, in Encyclopedia of Reagents for Organic Synthesis, 2020, P1–7; g) Ponomarenko, G.-V. Röschenthaler, in Frontiers of Organofluorine Chemistry, 2019, pp. 251–279; h) P. R. Savoie, J. T. Welch, Chem. Rev. 2015, 115, 1130.
- [2] a) M. Sani, M. Zanda, Synthesis 2022, 54, 4184; b) V. Debrauwer, I. Leito, M. Lõkov, S. Tshepelevitsh, M. Parmentier, N. Blanchard, V. Bizet, ACS Org. Inorg. Au 2021, 1, 43; c) P. Beier, in Emerging Fluorinated Motifs: Synthesis, Properties and Applications; D. Cahard, J.-A.Ma, Eds.: Wiley-VCH: Weinheim, Germany, 2020; Vol 2, pp 551–570; d) B. Cui, N. Shibata, Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 658; e) P. Das, E. Tokunaga, N. Shibata Tetrahedron Lett. 2017, 58, 4803; f) O. S. Kanishchev, W. R. Dolbier, in Advances in Heterocyclic Chemistry, E. F. V. Scriven, C. A. Ramsden, Eds.; Academic Press, 2016; Vol. 120, pp 1–42.
- [3] a) M. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633; b) L. Xing, T. Honda, L. Fitz, I. Ojima, in Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals (Eds.: G. Haufe, F. R. Leroux), Academic Press, 2019, pp. 181–211; c) M. F. Sowaileh, R. A. Hazlitt, D. A. Colby, ChemMedChem 2017, 12, 1481.
- [4] a) R. Gujjar, F. El Mazouni, K. L. White, J. White, S. Creason, D. M. Shackleford, X. Deng, W. N. Charman, I. Bathurst, J. Burrows, D. M. Floyd, D. Matthews, F. S. Buckner, S. A. Charman, M. A. Phillips, P. K. Rathod, J. Med. Chem. 2011, 54, 3935; b) J. T. Welch, D. S. Lim,

Adv. Synth. Catal. 2024, 366, 1–14 Wiley Online Library 11 These are not the final page numbers!

Bioorg. Med. Chem. 2007, 15, 6659; c) D. S. Lim, J. S. Choi, C. S. Pak, J. T. Welch, J. Pestic. Sci. 2007, 32, 255.

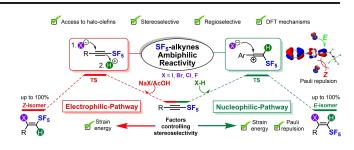
- [5] J. M. W. Chan, J. Mater. Chem. C 2019, 7, 12822.
- [6] Selected examples: a) Y. Kraemer, J. Buldt, A. Stephens, W.-Y. Kong, A. Ragan, Z. Haidar, A. Patel, J. Fettinger, D. Tantillo, C. R. Pitts, ChemRxiv. 2023, DOI: 10.26434/ chemrxiv-2023-dwkhg. This content is a preprint and has not been peer-reviewed b) M. Birepinte, P. A. Champagne, J.-F. Paquin, Angew. Chem. Int. Ed. 2022, 61, e202112575; c) J.-Y. Shou, F.-L. Qing, Angew. Chem. Int. Ed. 2022, 61, e202208860; d) J.-Y. Shou, X.-H. Xu, F.-L. Qing, J. Fluorine Chem. 2022, 261-262, 110018; e) Y. Kraemer, C. Ghiazza, A. N. Ragan, S. Ni, S. Lutz, E. K. Neumann, J. C. Fettinger, N. Nöthling, R. Goddard, J. Cornella, C. R. Pitts, Angew. Chem. Int. Ed. 2022, 61, e202211892; f) D. Rombach, B. Birenheide, H.-A. Wagenknecht, Chem. Eur. J. 2021, 27, 8088; g) A. Gilbert, P. Langowski, M. Delgado, L. Chabaud, M. Pucheault, J.-F. Paquin, Beilstein J. Org. Chem. 2020, 16, 3069; h) A. Gilbert, J.-F. Paquin, J. Fluorine Chem. 2019, 221, 70.
- [7] For recent examples, see: a) R. Kordnezhadian, T. De Bels, K. Su, L. Van Meervelt, E. Ismalaj, J. Demaerel, W. M. De Borggraeve, Org. Lett. 2023, 25, 8947; b) T. Gatzenmeier, Y. Liu, M. Akamatsu, T. Okazoe, K. Nozaki, ChemRxiv. 2023, DOI: 10.26434/chemrxiv-2023-jzn11. This content is a preprint and has not been peer-reviewed c) R. Kordnezhadian, A. Zogu, C. Borgarelli, R. Van Lommel, J. Demaerel, W. M. De Borggraeve, E. Ismalaj, Chem. Eur. J. 2023, 29, e202300361; d) K. Tanagawa, Z. Zhao, N. Saito, N. Shibata, Bull. Chem. Soc. Jpn. 2021, 94, 1682; e) C. R. Pitts, D. Bornemann, P. Liebing, N. Santschi, A. Togni, Angew. Chem. Int. Ed. 2019, 58, 1950; f) J. Ajenjo, B. Klepetářová, M. Greenhall, D. Bím, M. Culka, L. Rulíšek, P. Beier, Chem. Eur. J. 2019, 25, 11375; g) P. Das, E. Tokunaga, N. Shibata, Tetrahedron Lett. 2017, 58, 4803; h) B. Cui, M. Kosobokov, K. Matsuzaki, E. Tokunaga, N. Shibata, Chem. Commun. 2017, 53, 5997; i) B. Cui, S. Jia, E. Tokunaga, N. Saito, N. Shibata, Chem. Commun. 2017, 53, 12738; j) P. Das, E. Tokunaga, N. Shibata, Tetrahedron Lett. 2017, 58, 4803.
- [8] L. Popek, T. M. Nguyen, N. Blanchard, D. Cahard, V. Bizet, Tetrahedron 2022, 117-118, 132814.
- [9] a) K. Iwaki, K. Maruno, O. Nagata, N. Shibata, J. Org. Chem. 2022, 87, 6302; b) K. Iwaki, K. Tanagawa, S. Mori, K. Maruno, Y. Sumii, O. Nagata, N. Shibata, Org. Lett. 2022, 24, 3347; c) K. Maruno, K. Niina, O. Nagata, N. Shibata, Org. Lett. 2022, 24, 1722; d) K. Maruno, K. Hada, Y. Sumii, O. Nagata, N. Shibata, Org. Lett. 2022, 24, 3755; e) P. Das, K. Niina, T. Hiromura, E. Tokunaga, N. Saito, N. Shibata, Chem. Sci. 2018, 9, 4931.
- [10] For recent examples of hydroelementation of SF_4X and SF₅-alkynes, see: a) L. Popek, J. J. Cabrera-Trujillo, V. Debrauwer, N. Blanchard, K. Miqueu, V. Bizet, Angew. Chem. Int. Ed. 2023, 62, e202300685; b) T. Aggarwal, K. Hada, Y. Murata, Y. Sumii, K. Tanagawa, K. Niina, S. Mori, J. Escorihuela, N. Shibata, Angew. Chem. Int. Ed.

2023, 62, e202307090; c) J. O. Wenzel, F. Jester, A. Togni, D. Rombach, Chem. Eur. J. 2023, 30, e202304015; d) H. Kucher, J. O. Wenzel, D. Rombach, ChemRxiv. 2022, DOI 10.26434/chemrxiv-2022-01jhn. This content is a preprint and has not been peerreviewed.

- [11] For examples of iodination of CF₃-alkynes, see: a) F.-L. Qing, W.-Z. Gao, J. Ying, J. Org. Chem. 2000, 65, 2003; b) T. Yamazaki, T. Yamamoto, R. Ichihara, J. Org. Chem. 2006, 71, 6251; c) T. Konno, J. Chae, T. Tanaka, T. Ishihara, H. Yamanaka, J. Fluorine Chem. 2006, 127, 36; d) X.-G. Zhang, M.-W. Chen, P. Zhong, M.-L. Hu, J. Fluorine Chem. 2008, 129, 335.
- [12] a) S. Aït-Mohand, W. R. Dolbier, Org. Lett. 2002, 4, 3013; b) T. M. Nguyen, L. Popek, D. Matchavariani, N. Blanchard, V. Bizet, D. Cahard, Org. Lett. 2024, 26, 365-369; c) W. R. Dolbier, S. Aït-Mohand, T. D. Schertz, T. A. Sergeeva, J. A. Cradlebaugh, A. Mitani, G. L. Gard, R. W. Winter, J. S. Thrasher, J. Fluorine Chem. 2006, 127, 1302.
- [13] R. Gauthier, M. Mamone, J.-F. Paquin, Org. Lett. 2019, 21, 9024.
- [14] T. M. Nguyen, C. Y. Legault, N. Blanchard, V. Bizet, D. Cahard, Chem. Eur. J. 2023, 29, e202302914.
- [15] For analogous reaction with CF₃-alkynes, see: a) G. Prié, M. Abarbri, J. Thibonnet, J.-L. Parrain, A. Duchêne, New J. Chem. 2003, 27, 432; b) P.-A. Wang, M.-Z. Deng, R.-Q. Pan, S.-Y. Zhang, J. Fluorine Chem. 2003, 124, 93; c) G. Prié, J. Thibonnet, M. Abarbri, A. Duchêne, J.-L. Parrain, Synlett 1998, 839.
- [16] X-ray diffraction presented using CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org).
- [17] For examples of dihalogenation of CF₃-alkynes, see: a) B. J. Murray, T. G. F. Marsh, D. S. Yufit, M. A. Fox, A. Harsanyi, L. T. Boulton, G. Sandford, Eur. J. Org. Chem. 2020, 2020, 6236; b) M. N. Bobrovnikov, Russ. J. Org. Chem. 1994, 30, 1767.
- [18] Unless otherwise noted, the stability of all the halogenated products is excellent. We observed that diiodination reaction needs light to proceed but at the same time 6a, 6i seems to be light sensitive. Reactions with ICl and Br₂ works the same way under day light or in the dark.
- [19] See supporting information for more experimental and computational details.
- [20] Y. Murata, K. Hada, T. Aggarwal, J. Escorihuela, N. Shibata, Angew. Chem. Int. Ed. 2024, 63, e202318086.
- [21] R. Guo, X. Qi, H. Xiang, P. Geaneotes, R. Wang, P. Liu, Y.-M. Wang, Angew. Chem. Int. Ed. 2020, 59, 16651.
- [22] a) T. Okazaki, K. K. Laali, J. Org. Chem. 2005, 70, 9139; b) M. Smith, J. March, March's Advanced Organic Chemistry Reactions, Mechanisms, and Structure (6th ed.). Wiley Interscience: New York. 2007; c) F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Part A Structure and Mechanisms (5th ed.). New York Springer. 2007.
- [23] a) R. Bianchini, C. Chiappe, G. Lo Moro, D. Lenoir, P. Lemmen, N. Goldberg, Chem. Eur. J. 1999, 5, 1570;

Wiley Online Library Adv. Synth. Catal. 2024, 366, 1-14 These are not the final page numbers!

12


- b) G. Bellucci, R. Bianchini, R. Ambrosetti, J. Am. Chem. Soc. 1985, 107, 2464; c) H. Slebocka-Tilk, R. G. Ball, R. S. Brown, J. Am. Chem. Soc. 1985, 107, 4504;
 d) R. Bianchini, C. Chiappe, R. Herges, J. Grunenberg, D. Lenoir, P. Lemmen, Angew. Chem. 1997, 109, 1340; Angew. Chem. Int. Ed. 1997, 36, 1284.
- [24] It is noteworthy that for conditions B, the ASM analysis has also been carried out for I⁻ alone (without the presence of the counter-cation) and compared to the results with NaI. The conclusions are identical (see comparative table in SI, table S2).

RESEARCH ARTICLE

Ambiphilic Reactivity of SF₅-Alkynes Applied to Regioselective and Stereodivergent Halogenation Reactions: An Experimental and Theoretical Case Study

Adv. Synth. Catal. 2024, 366, 1-14

D. Matchavariani, L. Popek, J. J. Cabrera-Trujillo, T. M. Nguyen, N. Blanchard, K. Miqueu*, D. Cahard*, V. Bizet*

