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Quantification of X-ray photoelectron spectroscopy (XPS) data is often limited by the

heterogeneous nature of the material surface. However, it is often the case that het-

erogeneous material contains areas within the analyzed area that are effectively

homogeneous. In this Insight note, concepts, and methods used to analyze both XPS

data are presented to extract both spatial and spectral information from heteroge-

neous surfaces. These concepts and methods are applied to a specific material sur-

face that contains three chemical compounds separated spatially. The analysis entails

converting XPS image data to spectral data and is designed to highlight the potential

of XPS imaging in revealing compositional information correlation with spatial infor-

mation. Properties of algorithms used to evaluate XPS images and spectra are

described to outline their application to image data. A case study of an imaging XPS

data set is presented that demonstrates how poor signal-to-noise images, where the

signal is recorded for 4 s per image, are still open to analysis yielding useful informa-

tion. Ultimately, the methods presented here will aid in interpreting complex XPS

data obtained from spatially complex materials often obtained during extensive

cycling, such as conventional or electrocatalysts.
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1 | INTRODUCTION

Most experiments performed by X-ray photoelectron spectroscopy

(XPS) involve the acquisition of spectra. Spectra measured by XPS are

acquired from a specific analysis area. For most spectra, the analysis

area is relatively large in microscopy terms, because one factor in

obtaining signal-to-noise sufficient for data analysis is the size of the

analysis area. The problem in using a large analysis area arises if

the sample is heterogeneous. Determining relationships between

atoms by XPS is confused by large-area analysis of heterogeneous

materials. Hence, spectra acquired at the limits of spatial resolution

for XPS are desirable. Unfortunately, spectra acquired at the micron

level are deficient in signal. However, if many spectra are acquired at

micron spatial resolution, then there is the possibility of recovering

spectral information with signal-to-noise sufficient for the analysis of

heterogeneous samples. Imaging XPS is a means of acquiring spatially

resolved spectra and therefore provides a solution to the XPS of het-

erogeneous materials.

Photoemission spectra are measured from an analysis area

defined by either an X-ray probe size or an area defined by the trans-

fer lens column of an XPS instrument.1 If quantitative information is

the target of analysis,2 the assumption that permits the conversion of

spectroscopic data to elemental composition is that the material from

which the signal is collected is homogeneous. The homogeneity of the

Received: 8 January 2024 Revised: 22 March 2024 Accepted: 16 May 2024

DOI: 10.1002/sia.7337

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2024 The Author(s). Surface and Interface Analysis published by John Wiley & Sons Ltd.

Surf Interface Anal. 2024;1–12. wileyonlinelibrary.com/journal/sia 1

https://orcid.org/0000-0002-6571-5731
https://orcid.org/0000-0001-5634-955X
mailto:job314@lehigh.edu
https://doi.org/10.1002/sia.7337
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/sia
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsia.7337&domain=pdf&date_stamp=2024-05-28


material is essential for several reasons. One important reason is

related to the ability of an instrument to maintain an analysis area

constant in size and position during the acquisition of spectra. An

instrument for which the transmission response to variation in kinetic

energy is not constant may suffer from issues associated with alter-

ations in the analysis area when measuring spectra.3 The second rea-

son is that, differences in composition over the analysis area, yield

spectra that are difficult to interpret without a full knowledge of the

sample. Thus, for heterogeneous materials, measuring the XPS signal

from a range of locations makes it possible to find regions where

materials are nearly homogeneous. When presented with a heteroge-

neous sample, imaging a sample of unknown composition represents

a systematic approach to acquiring spatially resolved spectra. Conse-

quently, commercial instruments manufactured by Kratos Analytical

Ltd, ThermoFisher Scientific, Ulvac PHI Inc., Focus GmbH, or Scienta-

Omicron AB routinely include options aimed at measuring spectra at

selected locations on a sample that map changes in composition. In

addition, commercially available instruments include stigmatic imaging

of a sample (Kratos Analytical Ltd, ThermoFisher Scientific, and Focus

GmbH), where the transfer lens column forms a total-energy image of

the analysis area before the hemispherical analyzer, which in turn

focuses an energy-resolved stigmatic image of the analysis area on a

two-dimensional detector. While spatial resolution for XPS is poorer

than other imaging techniques, such as electron microscopy, there are

sufficient instances where the need to co-localize spatial and elemen-

tal information warrants the use of imaging XPS.4 Therefore, this

Insight note presents technical details of use to those wishing to

explore how imaging XPS is used in practice.

Techniques and mathematical background that make chemical

state analysis by imaging XPS possible are reviewed herein. A case

study of imaging XPS data is used to illustrate analysis techniques that

recover spectra from image data sets.

1.1 | Imaging XPS data acquisition considerations

There are three approaches to generating XPS images as shown in

Figure 1. In particular, (A) Kratos dual analyzer spherical mirror

stigmatic imaging configuration corresponds to one of them. Both the

lower hemispherical analyzer, designed to measure spectra, and the

upper spherical mirror energy analyzer make use of the same electron

optics for the transfer lens column. Apertures in the transfer lens col-

umn allow spectra from the selected area of the sample to be acquired

via the lower HSA, while energy-specific stigmatic images acquired via

the top analyzer are used to create imaging XPS data. In

(B) ThermoFisher Scientific Fourier transform lens stigmatic configura-

tion is shown. Sigmatic images and spectra are acquired using the

same HSA. Spectra are acquired using channeltron detectors arranged

to accommodate a two-dimensional image detector. In (C) Ulvac Phi

scanned micron-focused X-ray probe is shown. Pixels are defined by

the X-ray spot on the sample, from which a spectrum per pixel is

acquired. The data set consists of many spatially resolved spectra;

therefore, an image of the sample at each energy can be constructed

from these spectra.

When a probe in the form of a focused beam of X-rays is used to

define a relatively small area of the sample from which a recorded sig-

nal emanates, the probe area on the sample from which the photo-

emission signal is recorded defines the spatial resolution of an image.

At each location on the sample defined by the probe, a spectrum is

recorded. An image is constructed from a raster of the probe, where

the raster traces out a rectangular area of dimensions larger than the

probe area. The other approach to measuring image data is the direct

measurement of an image, making use of electron optics, to form for a

given energy, an image of the sample on a two-dimensional detector.

Image data is recorded as a two-dimensional set of data bins. A

sequence of images is collected where each image is measured at an

energy, incremented between image measurements. A data set con-

structed by these means allows the construction of spectra by gather-

ing signals from images into data bins that depend on energy only.

Both approaches to imaging XPS form data sets in which data bins are

arranged over three dimensions representing increments in x, y, and

energy. Data sets constructed from either approach to imaging XPS

are mathematically and physically equivalent.

The need to obtain higher spatial resolution during imaging XPS

analysis necessarily implies reduced signal intensity per image pixel. A

typical imaging XPS experiment involves scanning both energy and

F IGURE 1 Three different instruments designed to create images of a sample.
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location. Hence, XPS images can be partitioned into three-dimensional

data sets. Each data bin records a signal, which is assigned two coordi-

nates that define the position within the analysis area, while a third

coordinate specifies the energy. Partitioning the signal in such a man-

ner results in poor signal-to-noise in any given data bin, but the total

image or a total spectrum contains a good signal-to-noise for the

accumulated data. The reason for the high quality of these summed

forms of data lies in the time over which imaging XPS experiments are

performed. Imaging XPS experiments with good signal-to-noise for

each pixel are long compared to other spectroscopic measurements.

Therefore, data processing becomes an important part of imaging XPS

since it requires noise reduction by principal component analysis

(PCA) to allow for shorter acquisition times. In particular, PCA allows

for the transformation of data and interpretation of mathematical

results in the context of sample properties and is based on a singular

value decomposition (SVD).5–7 This Insight note aims to allow an

informed use of PCA in the analysis of XPS data sets. Therefore, these

mathematical aspects of PCA in the form of SVD are presented

herein. A case study of an imaging XPS data set presented in this work

allows aspects of data processing to be examined in the context of a

sample for which large-area analysis otherwise yields confusing quan-

tification by XPS. Results in the form of PCA-computed images are

used to extract spectra representative of different spatial domains

within the analysis area. Quantification of a spectrum identified with

one domain demonstrates the principles behind the quantification of

heterogeneous materials.

1.2 | Further considerations of imaging XPS data
processing

The target of imaging XPS is constructing spectra from specific areas

on the sample and then applying standard quantification techniques

based on the integration of regions and peak models to understand

sample surface chemistry.8–14 Since spectra associated with locations

on a sample may be of poor-quality signal-to-noise, the first steps in

data processing are designed to enhance signal by numerical methods

based on linear algebra. Imaging XPS data sets formed from spectra or

images can be treated identically. In linear algebra terms, spectra and

images are one-dimensional vectors. The only difference between

spectra and images occurs with respect to the number of coordinates

within a vector formed from a spectrum or an image. In other words,

computing an SVD value for data in either spectral or imaging form

yields identical results. However, from a computational perspective,

the time required can be significantly different. The CPU time of a

computer required to compute the SVD for a set of vectors depends

on the algorithm in use but also depends on the dimension size for

vectors formed from spectra or images. The easiest way to appreciate

the computational problem is to understand that underlying SVD is

the need to formulate a covariance matrix for a set of vectors. A

covariance matrix is a square symmetric matrix of dimension equal to

the number of vectors used in the construction. An image data set

defined with 128 � 128 pixels contains 16,384 spectra. The same

imaging XPS data set may contain as few as 100 images. The

covariance matrix constructed from these 100 images would be of

dimension size 100 � 100, which is significantly more manageable

than a covariance matrix of dimension 16,384 � 16,384 formed from

spectra. Due to the mathematical equivalence between vectors

formed from spectra or images in terms of SVD, it is possible to

choose, from an imaging data set, the most advantageous vectors for

computational efficiency. Algorithms such as iterative SVD (iSVD)

(described below) in CasaXPS15 or non-linear iterative partial least

squares (NIPALS)16 do not require the formation of a covariance

matrix explicitly, but any algorithm that computes all eigenvalues and

eigenvectors of the covariance matrix must choose the smaller dimen-

sioned covariance matrix.

The output from PCA is sometimes more interesting when pre-

sented in image form than in spectral form. The advantage of working

with images rather than spectra is that images, after transformation

by PCA, highlight spatial information for a sample which in some cases

can be used to extract spectra with a common chemistry simply by

classifying image pixels by intensity. Ultimately, spectra that can be

associated with zones on a sample of different compositions are the

objective for XPS, but the analysis of images provides a path for iden-

tifying the ideal scenario of spatially resolved spectra. A further point

relating to PCA of imaging XPS data sets is how PCA results are pre-

sented in practice. It has already been noted that imaging XPS pro-

vides two alternative sources for vectors used in SVD. The terms

scores and loading16 are often used to describe the output of PCA.

However, in the case of imaging XPS, the meaning of scores and load-

ing changes depending on the chosen type of vector, for example,

whether vectors are formed from either images or spectra. If the

results of PCA are recognized as vectors and one form of these output

vectors is described in terms of images or spectra, then these results

are readily viewed as abstract images (AI) or abstract spectra (AS) with

physical significance. AI offer spatial variations within the data set,

while AS can be related to changes in peak and background within

spectra. AI or AS representing noise are also easily identified. How-

ever, if described in terms of scores and loading, these two outputs

from PCA change meaning depending on the chosen form for the

input vectors. Therefore, in this Insight note, PCA outputs will be

described as AI, AS, or generically as abstract factors (AF).

1.3 | iSVD algorithm

iSVD17,18 is a simple but effective iterative method for computing

PCA AFs in the order of significance. As described in this Insight, iSVD

is founded on a least squares principle, and it is this principle that

places the covariance matrix at the heart of any mathematical expla-

nations relating to PCA. However, SVD is more than simply a means

of constructing AFs ranked by significance with respect to the original

set of vectors. SVD is a mathematical decomposition with a useful

purpose; specifically, SVD provides a robust numerical means of com-

puting a linear least squares (LLS) fit of vectors to a chosen vector.19

SVD and the rapid computation of eigenvalues and eigenvectors of a

FERNANDEZ ET AL. 3
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covariance matrix is a tool that underpins both linear and nonlinear

(Marquardt–Levenberg20) optimization, both of which are essential

tools for the analysis of XPS data.

The input to iSVD is a set of data vectors and the number of

desired AFs is an output from the iSVD algorithm. When computing

AFs, iSVD does not explicitly form the covariance matrix. However,

logically the iterative steps of iSVD transform the covariance matrix

formed from the input vectors. Each AF computed by iSVD causes

changes in all vectors involved in the calculation. Thus, in computing

the set of AFs, a set of vectors is maintained from which it is possible

to construct a covariance matrix. The properties of the covariance

matrix are a guide to how iSVD processes AFs. For this reason,

Figure 2 is a set of covariance matrices constructed by iSVD from a

set of valence band spectra measured from vanadium foil. The covari-

ance matrix corresponding to the initial data is labeled Valence Band.

Matrix elements of a covariance matrix are equal to the dot product

of vectors. Therefore, a covariance matrix formed from data vectors

includes nonzero off-diagonal matrix elements. Subsequent applica-

tions of iSVD requesting the calculation of one, two, three, five, and

10 AF create sets of vectors from which covariance matrices are

formed. These covariance matrices are presented by coloring the

matrix elements to reflect the magnitude and sign of the dot product

between vectors for a given output from iSVD. The color scale, used

to display vector output from iSVD, is chosen to assign black to matrix

elements that are close to zero. Hence, the black horizontal and verti-

cal lines of matrix elements indicate the dot product between a com-

puted AF, and all other vectors, for the specified number of AFs, are

close to zero. Figure 2 graphically illustrates how vectors are trans-

formed by iSVD. If all AFs were computed by iSVD, then the only

nonzero matrix elements of the covariance matrix would appear along

the leading diagonal of the covariance matrix formed from a complete

set of AFs. Increasing from one to 10 the number of AFs results in the

patterns shown in Figure 2, where the colors for off-diagonal matrix

elements darken, while the diagonal matrix elements brighten in the

yellow color. The brightness of matrix elements indicates the success

of gathering information through computing a given number of AFs.

The definition of SVD is as follows. Given a set of data vectors

d1,d2,d3,� � �,dmf g, di �ℝn, the standard procedure for expressing these

vectors as a corresponding set of AFs u1,u2,u3, � � �,umf g is through

Equation 1.

D¼UWVT , ð1Þ

where the matrices in Equation 1 are defined in terms of an eigenana-

lysis to include, D¼ d1,d2,d3,� � �,dm½ �, U¼ bu1,bu2,bu3, � � �,bum½ �, ui �ℝn, W

is a diagonal matrix with diagonal matrix elements equal to the square

root of the eigenvalues of the covariance matrix defined by Equation 2,

and V is the matrix formed from the normalized eigenvectors of Z,

ordered with respect to the square root of eigenvalues to correlate

with the diagonal matrix W

Z¼DTD: ð2Þ

The covariance matrix Equation 2 is therefore central to the

mathematics of SVD. Equation 1 and Equation 2 underpin the iSVD

algorithm.

These eigenvectors are computed by sequentially transforming

the set of vectors using 3�3 matrices calculated from three vectors

F IGURE 2 (A) Image representation of covariance matrices formed from a set of vectors in the unprocessed state (labeled as valence band)
and various applications of iterative SVD (iSVD) requesting the computation of 1, 2, 3, 5, and 10 AFs from the unprocessed data. (B) Spectra used
to compute AFs used to construct the covariance matrices in (A). These spectra are measured from a vanadium foil representing an extended
valence band region spanning from 60 to 0 eV to include V 3p, O 2 s and signal close to the Fermi edge of vanadium metal.

4 FERNANDEZ ET AL.
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at a time. The process is an iterative procedure where after each pass

through the data set an approximation to the next largest eigenvector

is obtained. The steps are defined in Table 1:

These simple steps in Table 1 provide a regime for computing the

AF vectors for a data matrix. Each such step places the AF corre-

sponding to the largest eigenvalue of the 3�3 covariance matrix in

the vector y1.

The algorithm in Table 1 computes from a set of vectors an AF of

greatest significance to the set of vectors. At each stage of the algo-

rithm, SVD is performed for three vectors. Given three non-

orthogonal vectors y1, y2, and yi , calculating the 3�3 covariance

matrix (Equation 2) formed from these three vectors, Equation 1 is

used to replace the input vectors with three AFs equivalent to the

three input vectors y1, y2, and yi. There are n-coordinates for each of

the vectors y1, y2, and yi. If these n-coordinates from these three vec-

tors are used to define points aj1,bj2,cji
� �

, a scatter plot of these points

provides a graphical interpretation (Figure 3) of the transformation

performed for each set of three vectors by the inner loop in Table 1.

The transformation matrix (defined by Equation 1) formed from the

computed eigenvectors and eigenvalues of the 3�3 covariance

matrix (Equation 2) prescribes how to alter the initial scatter plot of

points in 3D space to maximize variation in the transformed scatter

points in the direction of the coordinate axes (Figure 3). Thus, each

step in the inner loop gathers the information contents into three new

vectors. The vector y1 is the target of the inner loop, namely, y1 is the

approximation to the most significant AF. With each step performed

in the inner loop, the position in the list of vectors increments, indi-

cated by the index of yi, from last to first, and the position in the list

of vectors for the other two vectors y1and y2 remain constant. The

steps performed in the iSVD algorithm are analogous to an insertion

sort algorithm, in the sense that after one passes through a list of

records, the record with the largest key is placed in the first entry in

the table of records. Insertion sort achieves the movement of records

to a sorted list of records by comparing for each record, the size of

the key. The comparison in the case of insertion sort differs from

iSVD in the sense that the values of the key for each record are not

modified. In the case of iSVD, the values for the key (eigenvalues) and

the records (eigenvectors) alter with each comparison. Nonetheless,

changes occur during iSVD that always maintain the movement of

information toward obtaining the AF that characterizes the greatest

variance within the initial set of vectors.

A single pass through a set of vectors does not yield the exact AF

of interest for the following reason. When calculating the most signifi-

cant AF, the set of vectors is divided into the vector y1and the set of

vectors y2,…,ymf g. The steps in Table 1 only ever apply the least

squares principle to three vectors at a time. Therefore, one pass

through the inner loop cannot, in general, yield a vector with the prop-

erty required of the most significant AF, namely, orthogonality to the

transformed vectors y2,…,ymf g. The least squares principle applied

through forming 3�3 covariance matrices must be repeated multiple

times to achieve, on convergence, a new vector u1that is orthogonal

to all vectors in the set y2,…,ymf g.

TABLE 1 Algorithmic steps used to compute the most significant
abstract factor (AF) from a set of vectors.

Given a set of vectors y1 ,…,ymf g

yk ¼

a1k
a2k
a3k
..
.

..

.

ank

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

repeat “while current approximation to largest eigenvector has not

converged”
loop i =m down to 3 do

“Replace the vectors y1, y2 and yi by transformed vectors

corresponding to the eigenvectors of the covariance matrix computed

from y1, y2, and yi in the order of magnitude of the eigenvalues and

return the largest eigenvalue.”

F IGURE 3 (A) Three vectors (in this case derived from spectra with minimal peak structure) displayed with respect to the natural coordinate axes.
The elliptical curves are plotted with respect to the principal axes computed for these data points. (B) Three abstract vectors calculated for the 3 � 3
covariance matrix formed from vectors in (A). The scatter plot formed from AS aligns the variance within the point distribution with the coordinate axes.

FERNANDEZ ET AL. 5
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2 | CASE STUDY: APPLICATION OF
IMAGING XPS TO THE ANALYSIS OF A GOLD
WIRE FIXED TO GLASS USING SILVER
COATING

2.1 | Sample description

A sample suitable for illustrating aspects of imaging XPS is prepared

with a thin gold wire attached to a silicon glass by a silver DAG. The

position of the wire on the glass fixed using silver coating at one end

of the wire offers three compositionally distinct materials in three spa-

tially separated zones within the analysis area. Stigmatic imaging of

the sample is performed using a Kratos Axis Nova imaging analyzer.19

The measurement proceeds by measuring the signal using a delay line

detector configured to discriminate x-, and y-coordinates for the sig-

nal detected. The transfer lens system is used to form the total elec-

tron image of the sample at the entrance aperture to the mirror

hemispherical analyzer which then energy-filters the image formed at

the entrance aperture plane to allow an energy-specific image of the

sample to form at the detector plane. A set of images is measured cor-

responding to energies incremented over the interval [600, �5] eV of

binding energy. This imaging XPS data set is acquired using 4 s per

image. The entire acquisition time for these data is 40.4 min. The max-

imum count per pixel in all images is 8 counts. Despite these low

counts, the imaging data set remains open to analysis.

In spectroscopic terms, by summing the counts in each image and

plotting the sum of counts per image against energy, an energy spec-

trum is obtained. Figure 4A is a spectrum formed from the data set of

images shown in Figure 4B. To illustrate in more detail, the lack of sig-

nal per image pixel within the imaging data set in Figure 4B, four

images from the data set (corresponding to apparent binding energy

for Ag 3d photoemission, [371,367] eV) are plotted in Figure 4C.

Using PCA noise-reduction (described below), making use of three

AFs in the reconstruction of images, the enhancement of signal that

results for these four images is shown in Figure 4D. Spatially distinct

signals can be discerned within these images, where a low-intensity

signal (green) indicates an absence of silver. The intense signal at the

top-right-hand corner of Figure 4D is due to emission from the silver

coating, while the vertical line of signal in the center of the image is

related to the presence of the gold wire. These three zones

(Figure 4D) are far less obvious in the raw data (Figure 4C). The PCA

processing resulting in these images in Figure 4D is an example of

how linear algebra and SVD make it possible to identify spatial infor-

mation without sacrificing energy information.

2.2 | Calculating AI

The imaging XPS data set illustrated in Figure 4B contains 606 images.

Each image contains 16,384 pixels; therefore, when vectors are con-

structed from spectra, the number of vectors involved when computing

AS is also equal to 16,384, but even constructing vectors from images

results in 606 vectors. If it were necessary to form the covariance

matrix for either 606 images or 16,384 spectra, diagonalization of the

covariance matrix through computing all eigenvalues and eigenvectors

for the chosen covariance matrix, would render SVD unusable for these

data. Fortunately, for imaging XPS data, the number of AFs required to

complete an analysis is typically less than 20. Further, iSVD and NIPALS

algorithms do not require the computation of all eigenvalues and eigen-

vectors for the chosen covariance matrix, and so, the excessive time

required to compute a full SVD is unnecessary.

Even if we choose to compute a limited number of eigenvalues and

eigenvectors, the convergence of iteration schemes such as iSVD and

NIPALS is slowed by the numerical precision necessary and the size of

the problem posed by the data set in Figure 4B. Hence, an alternative

strategy is required for such data sets. One solution is to prefilter the

images using iSVD, where the numerical precision required to achieve

SVD is relaxed. The sorting properties of iSVD are still active, even when

the criteria for terminating the outer loop in Table 1 is relaxed. There-

fore, the first step to computing AI is to sort the data set using iSVD,

where iSVD performs fewer iterations per cycle for iSVD steps described

in Table 1. The precision in each abstract image, so computed, is lower

than if SVD was performed correctly, but the sorting achieved by iSVD

moves the important information into the newly created AI. Thus, fol-

lowing the prefiltering phase a limited set of AI are calculated that form

the input to full precision iSVD. The change in images shown between

Figure 4C,D and is achieved by prefiltering the entire data set by com-

puting 20 low-precision AI. High-precision iSVD is applied to these 20 AI

to produce the final 20 AI. Three high-precision AI are selected for

reconstructing all images in the data set resulting in the quality of

images shown in Figure 4D. The information sorting property of iSVD is

essential for this approach to computing a limited number of AI.

Application of the prefiltered iSVD algorithm to the data set in

Figure 4B yields AI in Figure 5A and AS in Figure 5B. These two sets of

AFs calculated from the same data set demonstrate the abstract nature

of PCA of spectra, in the sense that, all AS contain shapes that would

be considered nonphysical spectral forms. By contrast, AI is more easily

interpreted with respect to zones on the sample of different composi-

tions. It is certainly true that on inspection of the AS, it is possible to

identify peak patterns that could be viewed as belonging to the glass

material (AS 1st). Similarly, AS 2nd and AS 3rd include peaks that could

be associated with the silver composite and the gold wire, respectively.

However, in spectroscopic terms, neither the first three AI nor the first

three AS result in spectroscopic shapes for all spectra-at-pixels recon-

structed from three AFs. These nonphysical spectroscopic shapes mani-

fest as negatively inverted peak shapes associated with the Ag 3d

signal (Figure 5C). By contrast, the spatial partitioning of information in

the AI results immediately offers a means of selecting pixels from which

spectroscopic data can be gathered from Figure 4B. That is, AI 2nd in

Figure 5A highlights a zone corresponding to silver composite. Similarly,

AI 3rd partitions the image into the gold wire and not the gold wire.

Thus, classifying pixels by intensity in AI 2nd, then summing spectra-

at-pixels for the zone in which silver composite is found, allows a spec-

trum mostly representative of silver composite to be computed. The

complement of the silver composite zone will be a combination of sig-

nals from gold wire and glass signal. Similarly, AI 3rd provides the

6 FERNANDEZ ET AL.
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classification of pixels by intensity, a spectrum mostly originating from

the gold wire and a spectrum containing glass and silver composite sig-

nals. Hence, the image AFs provide a relatively simple path to obtaining

spectra that are readily interpreted.

2.3 | Extracting spectra from images

The simplest way to construct a spectrum from an imaging XPS data

set is to integrate signals for each image over the full area of the

images and then present these intensities using the energy for images

as the independent variable. Figure 4A is an example of a spectrum

constructed by this method. However, the spectrum in Figure 4A does

not permit a meaningful atomic concentration for the sample in the

sense that the elements labeled in Figure 4A are not uniformly distrib-

uted over the sample surface. There is no meaningful relationship

between silicon, for example, and silver; thus reporting the composi-

tion of the sample based on the spectrum Figure 4A does not reflect

the three distinct materials that form the sample in question. The

spectrum does provide an overview in terms of elements present, but

F IGURE 4 (A) Spectrum formed from data bins corresponding to energy at which image data is acquired. The intensity in each data bin of the
spectrum is the sum of the signal recorded for an image. (B) Rectangular cuboid formed by plotting the set of images ordered within the display
by energy for each image. The spectrum in (A) is calculated from the images in (B). (C) Four unprocessed images were measured with energy
corresponding to the photoemission binding energy of Ag 3d. (D) The four images displayed in (C), following the reconstruction of images by
fitting the three most significant AI computed from image data displayed in (B).

FERNANDEZ ET AL. 7
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to properly understand the sample, the pixels would be better used by

partitioning the imaged area with respect to the locations of these dif-

ferent materials.

Classifying pixel locations according to intensity offers a means of

constructing spectra from imaging XPS data sets that correspond to

zones for which the composition is more homogeneous than the

F IGURE 5 (A) The first four abstract images (AI) calculated by iterative SVD (iSVD) applied to image vectors corresponding to the data set in
Figure 4B. (B) The first four abstract spectra (AS) calculated by iSVD applied to spectrum vectors corresponding to the data set in Figure 4B.
(C) Two examples of PCA-enhanced spectrum-at-pixels spectra. These two pixels are chosen to illustrate the potential for erroneous peak

intensities made obvious by the negatively going peak shape corresponding to the Ag 3d signal. These two spectrum-at-pixels spectra were
reconstructed from three PCA AFs computed using, so-called, optimum scaling21–23 preprocessing of image data. (D) Comparison of PCA
reconstructed spectrum-at-pixel computed for the pixel (63,58) using PCA without scaling (Direct PCA) and PCA following scaling of data using
optimum scaling.22,23 Note that the spectrum-at-pixel computed by PCA using raw data is predominantly the character of the average spectrum
shown in Figure 4A, whereas the spectrum-at-pixel computed using optimal scaling has a pronounced Au 4f peak. In principle, both spectra-
at-pixels should be identical for the identical pixel in the imaging XPS data set.

8 FERNANDEZ ET AL.
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sample taken as a whole. The images and spectra in Figure 6 are

examples where the images are classified into two zones per image,

and from these two zones marked up using red and green colors, for

each image, two spectra are calculated from the data set illustrated in

Figure 4B. These four spectra shown in Figure 6C,D are true spectra

in the same sense as the spectrum in Figure 4A. These spectra may

not fully represent the individual zones required to characterize glass,

silver composite, and gold wire, but from these spectra, component

spectra representative of glass, silver composite, and gold wire can be

constructed.

One advantage of imaging XPS data is that spectra from zones

with different proportions of the sample chemistry can be obtained

in the same way that spectra in Figure 6 relate to the colored pixels

in the two images. All that is required is to make a different classifi-

cation of pixels, of which the rectangular zone shown in Figure 7B

is an example. It is therefore possible to test component spectra by

fitting component spectra to spectra, such as the spectrum in

Figure 7A. Figure 7A is an example of fitting three component

spectra to a spectrum using LLS optimization.19 The quality of the

fit of these component spectra to data is measured through the

residual standard deviation statistic and the uniformity of the

residual plot. The rectangular zone (Figure 7B) includes a signifi-

cant proportion of the gold wire but also includes pixels corre-

sponding to the silver composite and the glass. Hence, all three

component spectra are required to fit the spectrum shown in

Figure 7A.

The value of constructing three component spectra lies in obtain-

ing spectral shapes that can be interpreted using conventional quanti-

fication of XPS spectra. By way of example, the component spectrum

corresponding to silver composite is displayed in Figure 7C, where a

quantification table based on integration regions is displayed over the

data. The ability to separate a spectrum into component spectra for

which quantification is possible provides a deeper insight into sample

chemistry than would be possible if the total spectrum in Figure 4A

was the only spectrum available. Indeed, imaging XPS data sets are a

source for spectra in a variety of forms, all of which can be used to

test the validity of the hypothesis that the three component spectra

in Figure 7A are physically meaningful.

F IGURE 6 Classification of
AI 2nd and AI 3rd images using
intensity to assign two colors
highlighting (A) the silver
composite in AI 2nd and (B) the
gold wire in Al 3rd. Spectra
computed by summing spectra-
at-pixels with common color
assignment in (A) and (B) are

displayed in (C) and (D),
respectively.

FERNANDEZ ET AL. 9
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2.4 | Data scaling

For the described sample, preprocessing of data in preparation for

PCA can be shown to be important. Attempting to identify pixels cor-

responding to the location of the gold wire is susceptible to low

signal-to-noise and the scarcity of pixels within the gold domain com-

pared to glass or silver composite domains. If PCA is applied to raw

image data, only two AI are distinct from noise. Only when data are

scaled using optimum scaling21–23 are the three AI shown in

Figure 5A apparent. Moreover, if noise reduction is performed using

PCA applied to raw data and if two AI are used in the reconstruction

step that enhances signal-to-noise, then the spectra-at-pixels fail to

include a contribution in the form of varying Au 4f signal (Figure 5D).

Hence, a direct application of PCA to raw imaging XPS data may fail

to characterize a thin gold wire on a sample. For this reason, it is

always advisable to experiment with scaling options available to PCA

for imaging XPS data sets.21 It is also advisable to construct spectra

by summation of raw spectra-at-pixels. If PCA is applied to produce

AI and pixel intensities are classified into zones corresponding to

physically different domains, then constructing spectra directly from

F IGURE 7 (A) Lookup table (LUT) spectrum constructed from the data set in Figure 7B using only pixels within the rectangle shown in (B).
The spectrum is decomposed into three component spectra calculated from the spectra displayed in Figure 6. (B) LUT zone overlaid on an image
of the gold wire. Only pixels within the rectangle marked in red and yellow are used to sum spectra-at-pixels from the data set Figure 4B to form
the spectrum in (A). (C) Component spectrum gathered from the location of the silver composite used to fix the gold wire to glass.

10 FERNANDEZ ET AL.
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raw imaging XPS data ensures that artifacts within spectroscopic data

due to PCA are eliminated. This point should be emphasized by reiter-

ating that the spectra in Figure 6C,D are examples of spectra com-

puted directly from imaging XPS raw data and are therefore without

artifacts that otherwise appear due to data processing, such as those

evidenced in Figure 5D.

3 | SUMMARY

Linear algebra and more direct methods for computing spectra from

imaging XPS are described. The role of data scaling in the analysis of

imaging XPS is demonstrated to be important when working with low

signal-to-noise data. A case study of imaging XPS applied to a sample

with three domains of different compositions is used to demonstrate

the use of these methods to recover spectroscopic data from distinct

sample domains. The imaging XPS methods described here are espe-

cially applicable to a broad field of materials including conventional

and electrochemical catalysts where spatial sample composition

dependence is important and evolves with time and reaction

conditions.
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