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Nitsche extended finite element method of a Ventcel
transmission problem with discontinuities at the interface

Daniela Capatina∗, Fabien Caubet†, Marc Dambrine‡, Rodrigo Zelada§

May 23, 2024

Abstract
The objective of this work is to study a diffusion equation with non-standard transmission condi-

tions, which include discontinuities and the Ventcel boundary conditions at the interface. To handle
jumps and means of the flux and test-functions, we use broken Sobolev spaces. We present a Nitsche
finite element approach and compare it with a discontinuous Galerkin method. Consistency, stability
and a priori error estimates are proven and numerically verified.

Keywords: Finite element method; Nitsche method; Ventcel boundary condition; asymptotic model.

AMS Classification: 65N12, 65N15, 65N30, 35S15, 35C20.

1 Introduction
Motivations. In this work, we consider a heat diffusion problem with an interface. Motivated by
the need to optimise the shape of a heat exchanger between two fluids, we find ourselves in a situation
where the wall separating them is very thin. In an actual simulation, it would be extremely expensive
to mesh at the scale of the thickness of this wall. Therefore, we consider the model resulting from an
asymptotic analysis with a small parameter ϵ representing the thickness of the interface. The particularity
of the studied problem is that it involves an interface on which the transmission conditions have jumps
and involve surface scattering. These conditions, also known as Ventcel conditions (see [15]), have the
particularity in this model of involving the small parameter ϵ. The final goal being the optimisation of
the shape of this interface, we want to develop a numerical method that is robust with respect to this
small parameter and that allows the use of iterative solvers.

Setting of the problem. Let us present the precise problem under study. Let B an open bounded
domain of Rd, with d = 2, 3. Let Ω1,Ω2 be a partition of B. We set Γ := ∂Ω1 ∩ ∂Ω2 the interface
between Ω1 and Ω2. We define Ω := B \ Γ. Here and in the following, the subscript i stands for 1 and 2.
The boundaries of Ωi are respectively described by ∂Ωi =: Γi,D ∪ Γi,N ∪ Γ (see Figure 1).

We introduce the following notation for the jump and mean at the interface. Let v any function
defined on Ω, and vi := v|Ωi

its restriction to Ωi. Then the jump and mean of v at Γ are denoted by [·]
and ⟨·⟩ respectively and defined as follows:

[v] := v2 − v1 on Γ, and ⟨v⟩ := v1 + v2
2

on Γ.

∗Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, UMR 5142, 64000 Pau, France.
daniela.capatina@univ-pau.fr

†fabien.caubet@univ-pau.fr
‡marc.dambrine@univ-pau.fr
§rodrigo.zelada-mancini@univ-pau.fr

1



Ω2

Ω1

Γ

Γ1,D

Γ2,D

Γ2,N

Γ2,D

Γ1,D

Γ1,N

Figure 1: Illustration of the domain Ω.

We define ΓD := Γ1,D ∪ Γ2,D and similarly, ΓN := Γ1,N ∪ Γ2,N. We assume here that Γ ∩ ΓN = ∅
and that Γ ∩ ΓD ̸= ∅. Other geometrical configurations could also be treated by changing the functional
spaces. Let κ1, κ2, ϵ, α be strictly positive constants and let ϵ > 0 fixed. We then consider the following
interface problem: 

−div(κi∇ui) = G in Ωi, i = 1, 2,
ui = ui,D on Γi,D, i = 1, 2,

κ
∂u

∂n
= 0 on ΓN,〈

κ
∂u

∂n

〉
= −1

ϵ
[u] +

f̄

ϵ
+ f on Γ,[

κ
∂u

∂n

]
= αϵ∆τ ⟨u⟩+ αϵḡ + g on Γ,

(1.1)

where G ∈ L2(Ω), ui,D ∈ H
1/2
00 (Γi,D) for i = 1, 2, f, f̄ , g, ḡ ∈ L2(Γ) and ∆Γ is the Laplace-Beltrami

operator (see, e.g. [11]). Let uD ∈ H
1/2
00 (Γ1,D ∪ Γ2,D) given by uD|Γi,D := ui,D on Γi,D (i = 1, 2), where

H
1/2
00 (Γ1,D ∪ Γ2,D) := {v|Γ1,D∪Γ2,D

, v ∈ H1/2(∂Ω), v|∂Ω\(Γ1,D∪Γ2,D) = 0}.

Remark 1.1. This problem can be seen as a generalization of the following one studied in [2]:

−div(κi∇ui) = G in Ωi, i = 1, 2,
u = uD on ΓD,

κ
∂u

∂n
= 0 on ΓN,〈

κ
∂u

∂n

〉
= −1

ϵ
[u] on Γ,[

κ
∂u

∂n

]
= 0 on Γ.

Aim of the present work. At the continuous level, such a boundary problem can be analysed using
broken Sobolev spaces. Their numerical implementation implies to double the degrees of freedom at
the interface, which is not always possible in calculation codes such as FEniCS and FreeFem++. We
mention here the work [1] of Allaire et al. in a related context of shape optimisation of an interface where
they overcome the difficulty by using a penalisation/extension method for the numerical approximation,
without any error estimates.
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In the present work, we aim to carry out the numerical analysis of the previous problem and provide a
priori error estimates. However, our problem presents an additional difficulty: the presence of the small
parameter ϵ which appears at different scales in the transmission conditions.

We first highlight that the classical discontinuous Galerkin method is not robust with respect to this
small parameter. The conditioning of the associated linear system blows up when ϵ tends towards 0. The
reason is that the solution of the limit problem, obtained when ϵ tends towards 0, does not belong to the
same variational space. For this reason, we then propose a modification of this first method.

We are inspired by Nitsche’s method, which was introduced in [14] to weakly impose Dirichlet bound-
ary conditions. It was adapted by Hansbo and Hansbo in [10] for transmission problems where the
interface is not aligned with the mesh. In [6], it was used for a scattering problem with Ventcel boundary
conditions. It has to be noticed that in [6], there is also a small parameter ϵ but it does not appear at the

order
1

ϵ
in the transmission conditions which makes the problem different. We propose here a method

based on [12] to deal with these conditioning problems, adapted to Nitsche’s method with Robin-Fourier
conditions.

Organisation of the paper. The paper is organised as follows. Section 2 is devoted to the introduc-
tion of the model problem, the functional spaces and the weak formulation. Section 3 explains the discrete
framework, with the finite element approximation and numerical illustrations, where conditioning prob-
lems are discussed. In Section 4, the Nitsche method is proposed to solve the conditioning problems and
numerical examples are presented. In Section 5, conclusions and prospects for future work are discussed.

2 The continuous problem

2.1 Functional setting
Let k ∈ N∗. It is useful to introduce the broken Sobolev space

V k := {v ∈ L2(Ω); vi := v|Ωi ∈ Hk(Ωi), i = 1, 2},

which endowed with the norm

∥v∥k,Ω1∪Ω2
:=

(
∥v1∥2k,Ω1

+ ∥v2∥2k,Ω2

)1/2
is a Hilbert space. Its subspace

V k
Γ := {v ∈ V k; vi ∈ H1

0(Γ) ∩Hk(Γ), i = 1, 2}

endowed with the norm

∥v∥V k
Γ
:=

(
∥κ1/2v∥2k,Ω1∪Ω2

+ ∥(αϵ)1/2 ⟨v⟩ ∥2k,Γ + ∥ϵ−1/2[v]∥2k−1,Γ

)1/2

is also a Hilbert space. Let

V k
Γ,uD

:= {v ∈ V k
Γ ; v = uD on ΓD} and V k

Γ,0 := {v ∈ V k
Γ ; v = 0 on ΓD}.

Finally, in the case k = 1, it is useful to introduce:

∥v∥ :=
(
∥κ1/2∇v∥20,Ω1∪Ω2

+ ||(αϵ)1/2 ⟨∇τv⟩ ||20,Γ
)1/2

and |||v||| :=
(
∥v∥2 + ∥ϵ−1/2[v]∥20,Γ

)1/2

.

Due to the trace theorem on Γ and on Ωi for i = 1, 2, the space V 1
Γ,0 endowed with the norm |||·||| is a

Hilbert space.
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Remark 2.1. In the case where Γ ∩ ΓD = ∅ and Γ ∩ ΓN ̸= ∅, one assumes that the domain Ω is such
that τΓ = nΓN

on ∂Γ, where τΓ is the unit tangent vector to Γ and normal to ∂Γ, and takes as functional
space

V 1
Γ = {v ∈ V 1; vi ∈ H1(Γ), i = 1, 2}. (2.1)

In the case with mixed boundary conditions that intersect the interface, that is Γ ∩ Γj,D ∩ Γj,N ̸= ∅,
where j ∈ {1, 2}, one also assumes τΓ = nΓN

on ∂Γ, and then considers

V 1
Γ = {v ∈ V 1; vi ∈ H1(Γ), i = 1, 2, vj = 0 on Γ ∩ Γj,D ∩ Γj,N}.

Finally, in the case where Γ ∩ ΓD = Γ ∩ ΓN = ∅, one uses the functional space (2.1).

2.2 Variational formulation
For a fixed value of ϵ, one defines the bilinear forms

b(u, v) :=

2∑
i=1

∫
Ωi

κi∇ui · ∇vi dx+

∫
Γ

αϵ∇τ ⟨u⟩ · ∇τ ⟨v⟩ds,

c(u, v) :=

∫
Γ

1

ϵ
[u][v] ds.

Then, one considers the following variational formulation of Problem (1.1):{
Find u ∈ V 1

Γ,uD
such that

∀v ∈ V 1
Γ,0, a(u, v) = l(v),

(2.2)

where
a(u, v) := b(u, v) + c(u, v),

l(v) :=

∫
Ω

Gv dx+

∫
Γ

(f [v] + g ⟨v⟩) ds+
∫
Γ

(
1

ϵ
f̄ [v] + αϵḡ ⟨v⟩

)
ds.

In the next theorem, without loss of generality, we assume that uD = 0, otherwise consider ũD ∈
H1(Ω1 ∪ Ω2) such that ũD = uD on ΓD and then define ũ := u− ũD which belongs to V 1

Γ,0.

Theorem 2.2 (Well-posedness). Let G ∈ L2(Ω), f ∈ L2(Γ), g ∈ L2(Γ) and uD = 0. Then Problem (2.2)
has a unique solution u ∈ V 1

Γ,0. Furthermore, the following estimate holds:

|||u||| ≤ C max
i=1,2

κ
−1/2
i (∥G∥0,Ω + ∥g∥0,Γ + αϵ∥ḡ∥0,Γ) + ϵ1/2∥f∥0,Γ + ϵ−1/2∥f̄∥0,Γ, (2.3)

with a constant C > 0 depending only on the domains Ω1 and Ω2.

Proof. Clearly, a(·, ·) is bilinear and symmetric and l(·) is linear. Note that a(·, ·) is a scalar product
on V 1

Γ,0, of corresponding norm |||·|||, so it is continuous and coercive with respect to this norm, of
continuity and coercivity constants equal to 1. As regards the continuity of l(·), we first note that the
Poincaré inequality yields, for any v ∈ V 1

Γ,0, that

∥v∥0,Ωi
≤ CP (Ωi)κ

−1/2
i ∥κ1/2

i ∇v∥0,Ωi
, i = 1, 2,

while the trace theorem together with the Poincaré inequality yield:

∥ ⟨v⟩ ∥0,Γ ≤ 1

2

2∑
i=1

CT (Ωi)
√
1 + CP (Ωi)2κ

−1/2
i ∥κ1/2

i ∇v∥0,Ωi
.
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The |||·||| - continuity of l(·) follows thanks to the Cauchy-Schwarz inequality:

|l(v)| ≤ |||v|||
(
C max

i=1,2
κ
−1/2
i (∥G∥0,Ω + ∥g∥0,Γ + αϵ∥ḡ∥0,Γ) + ϵ1/2∥f∥0,Γ + ϵ−1/2∥f̄∥0,Γ

)
.

By virtue of the Lax-Milgram theorem, Problem (2.2) has a unique solution in V 1
Γ,0. The estimate (2.3)

is classically obtained by testing the weak problem with v = u and by using the previous bound.

2.3 A remark on the limit problem as ϵ → 0 at the continuous level
Formally, by making ϵ tend towards 0, Problem (1.1) becomes

−div(κi∇u0
i ) = G in Ωi, i = 1, 2,
u0
i = ui,D on ΓD, i = 1, 2,

κ
∂u0

∂n
= 0 on ΓN,

[u0] = f̄ on Γ,[
κ
∂u0

∂n

]
= g on Γ.

(2.4)

The natural functional space in order to study Problem (2.4) is the following affine space:

Uf̃ := {v ∈ V 1
Γ,uD

; [v] = f̃ on Γ}.

Once endowed with the norm ∥v∥U0 := ∥κ1/2∇v∥0,Ω1∪Ω2 ,, the subspace U0 := {v ∈ V 1
Γ,0; [v] = 0 on Γ}

is a Hilbert space. Hence one can prove that Problem (2.4) has a unique solution u0 ∈ Uf̃ : the proof is
a mere adaptation of a Laplacian problem with mixed boundary conditions, considering that instead of
the Dirichlet boundary condition we have the jump condition in the functional space.

Note that the functional spaces associated to Problem (1.1) and Problem (2.4) are different, which
suggests numerical difficulties when ϵ tends to 0. This last point is discussed in the following section.

3 Discontinuous Lagrange finite elements approximation
For the sake of simplicity, one assumes that the domain Ω is a polyhedron in Rd and Γ a finite union

of hyperplanes. Let Th be a regular simplicial mesh of Ω: there exists a parameter σ > 0 such that, for
all K ∈ Th,

hK

ρK
≤ σ,

where hK is the diameter of K and ρK is the diameter of the largest ball contained in K. We define
h := maxK∈Th

hK the mesh size. Assume that the mesh is always aligned with the interface Γ, i.e.,
each K ∈ Th is a subset of only one set Ωi. Finally, we define T i

h := {K ∈ Th;K ⊂ Ωi}, i = 1, 2.
Let Fh be the set of faces of Th, Fh,Γ the set of faces situated on Γ and Th,Γ the set of elements

which have one face on Γ. Let hF be the diameter of the face F ∈ Fh,Γ (in d = 2, hF coincides with the
1-Hausdorff measure of F ). Let k ∈ N∗ and let

P k
h := {vh ∈ V 1

Γ ; vh|Ωi
∈ C(Ωi), vh|K ∈ Pk,∀K ∈ Th} and P k

h,0 := P k
h ∩ V 1

Γ,0.

In the sequel, we make the additional assumption that the Dirichlet condition uD belongs to Hk+1/2(Γ1,D∪
Γ2,D). Let uD,h ∈ P k

h denote a nodal interpolation of uD on ΓD. An intuitive and natural discrete
formulation of Problem (1.1) is then:{

Find wh ∈ P k
h , such that wh = uD,h on ΓD and

a(wh, vh) = l(vh), ∀vh ∈ P k
h,0.

(3.1)
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The aim of this section is first to prove the well-posedness of the discrete formulation and to study
the convergence as h tends towards 0 of its solution towards the solution of the continuous problem, and
then to study through numerical experiments the behaviour of the discrete scheme, in particular for small
values of ϵ.

3.1 Analysis of the discrete formulation
Since P k

h,0 ⊂ V 1
Γ,0, taking v = vh ∈ P k

h,0 in the variational formulation (2.2) immediately yields the
consistency of the discrete problem, stated in the next lemma.

Lemma 3.1 (Consistency of finite element approximation). Let u be a smooth solution to (1.1). Then

a(u, vh) = l(vh), ∀vh ∈ P k
h,0. (3.2)

The coercivity and continuity are directly inherited from the continuous problem, which permits to
obtain the following lemma.

Lemma 3.2 (Discrete coercivity and continuity). One has that

a(vh, vh) = |||vh|||2, ∀vh ∈ P k
h,0 (3.3)

and
a(wh, vh) ≤ |||wh||||||vh|||, ∀wh, vh ∈ P k

h,0. (3.4)

Thus, thanks to the Lax-Milgram theorem, we obtain the following result.

Theorem 3.3. Problem (3.1) has a unique solution wh ∈ P k
h .

Next, in order to obtain the convergence rate of the approximation error, one needs an interpolation
estimate. Similarly to [10] but without cut elements (the mesh being aligned with the interface), for
each k ∈ N∗, we consider

(Ik
h)

∗v = (Ik
hv1)1Ω1

+ (Ik
hv2)1Ω2

,

where Ik
h is the standard nodal interpolation operator from Hk+1(Ω) to P k

h . Using standard interpolation
estimates (see [7, Theorem 3.1.6], [4, Theorem 4.4.20]) and the triangle inequality, one gets the following
interpolation result.

Lemma 3.4 (Polynomial approximation). For any k ∈ N∗ and any v ∈ V k+1
Γ,0 , there exists a con-

stant Cip > 0 independent of h, ϵ, α and κ such that:

|||v − (Ik
h)

∗v||| ≤ Ciph
k∥v∥V k+1

Γ
. (3.5)

Furthermore, we have

|||v − (Ik
h)

∗v|||≤ Ciph
k
(
∥κ1/2∇v∥2k+1,Ω1∪Ω2

+ ∥(αϵ)1/2 ⟨v⟩ ∥2k+1,Γ + h2∥ϵ−1/2[v]∥2k+1,Γ

)1/2

. (3.6)

Proof of Lemma 3.4. Let v ∈ V k+1
Γ,0 . Let K ∈ T i

h , with 1 ≤ i ≤ 2 and F ∈ Fh,Γ. By standard interpolation
estimates, there exists a constant Cip > 0 independent of h, ϵ, α and κ such that:

∥∇(vi − Ik
hvi)∥0,K ≤ Ciph

k
K∥vi∥k+1,K ,

∥[v]− Ik
h [v]∥0,F ≤ Ciph

k
F ∥[v]∥k,F ,

∥∇τ (⟨v⟩ − Ik
h ⟨v⟩)∥0,F ≤ Ciph

k
F ∥ ⟨v⟩ ∥k+1,F .
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Combining these inequalities leads to:

|||v − (Ik
h)

∗v||| ≤ Ciph
k

 2∑
i=1

∑
K∈T i

h

∥κ1/2
i vi∥2k+1,K +

∑
F∈Fh,Γ

(
∥ϵ−1/2[v]∥2k,F + ∥(αϵ)1/2 ⟨v⟩ ∥2k+1,F

)1/2

which proves (3.5).
Since [v] ∈ Hk+1(Γ), one also has

∥[v]− Ik
h [v]∥0,F ≤ Ciph

k+1∥[v]∥k+1,F

which, together with the previous inequalities, proves (3.6).

Therefore, Céa’s lemma yields the following a priori error estimate.

Theorem 3.5 (Error estimate). Let k ∈ N∗ and assume that the solution u of (2.2) belongs to V k+1
Γ .

There exists a constant Ce = 2Cip > 0 independent of h, ϵ, α and κ such that

|||ũ− w̃h||| ≤ Ceh
k
(
∥κ1/2∇ũ∥k+1,Ω1∪Ω2

+ ∥(αϵ)1/2 ⟨ũ⟩ ∥2k+1,Γ + h2∥ϵ−1/2[ũ]∥2k+1,F

)1/2

(3.7)

where ũi := ui − ũi,D, ũ := u − ũD, w̃h := wh − ũD,h with wh the solution of (3.1), ũD ∈ H1(Ω1 ∪ Ω2),
ũD,h ∈ P k

h such that ũD = uD, ũD,h = uD,h on ΓD and ũD = ũD,h = 0 on Ω \ ΓD.

Remark 3.6. The condition u ∈ V k+1
Γ is quite technical to prove but seems to be a reasonable assumption.

On the one hand, it was proved in [13] for the case without interface and with the Ventcel condition on the
whole boundary (i.e. Ω = Ω1, Ω2 = ∅ and Γ = ∂Ω). On the other hand, there exist results for standard
transmission problems (with zero jumps), see for instance [3]. Then, it might be established that u ∈ V k+1

Γ

adapting the previous two proofs under suitable regularity assumptions for the data uD, G, f, g, as well as
the interface Γ, but it is not the topic of the present work.

3.2 Numerical tests
3.2.1 Numerical implementation

We consider the two dimensional case for all the numerical simulations. Moreover, for the sake of
simplicity, we consider only the case k = 1. The broken Sobolev space P k

h,0 can be seen as the usual FE
space on Ω, enriched with basis functions associated to the nodes situated on the interface. Thus, the
degrees of freedom on Γ are doubled. In order to implement this space, let NΓ be the number of vertices
belonging to Γ and N the number of vertices in the whole mesh of Ω. For each vertex belonging to Γ, of
global index iΓ, we create a copy of new index ĩΓ = N + p, where p is the pth vertex of Γ in ascending
order with respect to the index iΓ of the global mesh, i.e. i1Γ < . . . < ipΓ < . . . < iNΓ

Γ ; for instance, p = 1
and p = NΓ for the minimum and the maximum index iΓ, respectively. By convention, we keep the
original index iΓ for a vertex situated on the interface Γ when we look at it from K ∈ T 1

h and we use ĩΓ
when we look at it from K ∈ T 2

h . Now, in the new mesh structure, we allow for duplicate nodes on the
interface (same value but different indices in the global mesh). So, if we ignore the Dirichlet boundary
conditions, the linear system can be written as Ax = b, where A is a square matrix of size (N +NΓ).

As regards the post-processing, we first reconstruct two vectors of size N : U1 contains the first N
values whereas U2 contains the first N values, but those corresponding to the index iΓ are replaced by the
values corresponding to ĩΓ. Then, we get u1 and u2 by restricting U1 and U2 to Ω1 and Ω2, respectively.
The same idea can be employed for a higher polynomial degree k > 1 (of course, the indexing will be
different due to the additional degrees of freedom).

Finally we precise that all the numerical simulations presented in this article were carried out in C++.
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3.2.2 Convergence of the method with respect to the mesh size h

In this subsection, the small parameter ϵ is given and fixed. We present some numerical tests in order
to validate the error estimate of Theorem 3.5 with respect to h. We consider the two following test-cases.

Case 1. Let us consider B = [0, 1]×[0, 1] and a domain Ω = Ω1∪Ω2, where Ω1 = (−0.5, 0.5)×(0, 0.5) and
Ω2 = (−0.5, 0.5)× (−0.5, 0) with boundaries Γ = {y = 0}, ΓD,1 = ∂Ω1 \ Γ, ΓN,1 = ∅ and ΓD,2 = ∂Ω2 \ Γ,
ΓN,2 = ∅ as illustrated in Figure 2.

Ω2

Ω1

Γ

Γ1,D

Γ2,D

Γ2,D

Γ2,D

Γ1,D

Γ1,D

Figure 2: Geometry for case 1

We consider the exact solution:

u1(x, y) = cos(x+ y) and u2(x, y) = sin(x+ y),

with the corresponding source terms G1, G2 and f(x) = cos(x)κ2

2 − sin(x)κ1

2 , f̄(x) = sin(x) − cos(x),
g(x) = κ1 sin(x) + κ2 cos(x) and ḡ(x) = 1

2 sin(x) +
1
2 cos(x).

We choose κ1 = 1, κ2 = 10−3, ϵ = 10−2 and α = 102. We observe that the method copes well with
the case of highly discontinuous coefficients κ1 and κ2 when using the arithmetic mean on the interface
and not a weighted mean (as employed in [9, 10, 5] for similar problems).

Case 2. As a second example, we consider a curved interface; even if Γ is now different from Γh,
with a fine meshing at the interface we should retrieve a good convergence (at least for k = 1). Let
B = (−1, 1)× (−0.5, 0.5), Ω1 = {(x, y) ∈ B, x ≥ 0, x2 + y2 ≥ 0.52}, Ω2 = B \ Ω1 with an interface given
in polar coordinates by

Γ =
{
(0.5 cos θ, 0.5 sin θ); θ ∈

[
−π

2
,
π

2

]}
and with ∂ΩN = ∅, see Figure 3.

Ω2 Ω1Γ

Γ2,D Γ1,D

Γ1,D

Γ1,DΓ2,D

Γ2,D

Figure 3: Geometry for case 2
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We consider the following exact solution:

u1(x, y) = xey and u2(x, y) = yex,

with the corresponding source terms G1, G2 and with f = xey (κ1 + κ1y)+yex (κ2 + κ2x), f̄ = xey−yex,
g = 2κ2ye

x(x + 1) − 2κ1xe
y(y + 1) and ḡ = −2yex(y2 − 3x − 1) − 2xey(x2 − 3y − 1). We choose here

ϵ = κ1 = κ2 = α = 1.

Numerical results. The energy error e := |||ũ− w̃h||| is split into three parts, e2 = e2g + e2τ + e2j where

• eg := ∥κ1/2(∇ũ−∇w̃h)∥0,Ω1∪Ω2
is the gradient error,

• eτ := ∥(αϵ)1/2 ⟨∇τ ũ−∇τ w̃h⟩ ∥0,Γ is the tangential error on the interface Γ,

• ej := ∥ϵ−1/2[ũ− w̃h]∥0,Γ is the weighted jump error on Γ.

We validate below the convergence with respect to h. For the first case, h varies between 1.3× 10−2

to 7.8 × 10−2 and the energy error e varies between 1.8 × 10−3 to 10−2, whereas for the second case h
varies between 2.5× 10−2 to 1.9× 10−1 and the energy error e varies between 9.8× 10−3 to 7.6× 10−2.

We observe in Figure 4 that in both cases the convergence rate for the energy error e is O(h), as
stated in Theorem 3.5. We obtained similar results for the errors eg and eτ .

(a) Case 1 with ϵ = 10−2 (b) Case 2 with ϵ = 1

Figure 4: Logarithm plot of the energy error e with respect to the mesh size h

Meanwhile, notice that the convergence rate for the jump error ej is O(h2), as shown in Figure 5.
Note that in this case, the gradient error eg is larger than the jump error ej , that is why e is of order one.
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(a) Case 1 with ϵ = 10−2 (b) Case 2 with ϵ = 1

Figure 5: Logarithm plot of the jump error ej with respect to the mesh size h

The numerical convergence rates are summarized in Table 1.

Case 1 Case 2
eg 0.98 1.04
eτ 0.98 1.06
ej 1.97 2.05
e 0.99 1.04

Table 1: Convergence rate of each error for the Lagrange discontinuous finite element method

3.2.3 Convergence with respect to ϵ

As previously explained, when ϵ tends towards 0 the transmission boundary condition changes to

[u0] = f̄ on Γ. (3.8)

It is then expected to encounter some numerical issues in the limit, since condition (3.8) is included in
the functional space whereas our Robin’s type interface condition cannot be included in the functional
space. In order to illustrate this point, we fix h (which takes different values for each test case) and we
let ϵ vary. We can observe in Figure 6 that the energy error e blows up as ϵ decreases towards 0. This is
due in partiuclar to the jump error ej , as shown in Figure 7. One can see in Figure 8 that the tangential
gradient error eτ does not blow up as ϵ → 0 (and the same behaviour occurs for the gradient error eg).

3.2.4 Conditioning

We are now interested in the conditioning of the discrete problem in order to explain the bad behaviour
of the method when ϵ is too small. We first underline that this has been observed in [12] by Juntunen
and Stenberg for the model problem −div(κ∇u) = G in Ω,

κ
∂u

∂n
= −1

ϵ
u+

f̄

ϵ
+ f on Γ.
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(a) Case 1 with h = 1.6× 10−2 (b) Case 2 with h = 2.5× 10−2

Figure 6: Logarithm plot of the energy error e with respect to ϵ

(a) Case 1 with h = 1.6× 10−2 (b) Case 2 with h = 2.5× 10−2

Figure 7: Logarithm plot of the jump error ej with respect to ϵ

In this case, they observed that the condition number depends on the value of ϵ as follows:

cond = O(h−2 + (ϵh)−1),

which leads to

cond =

{
O(h−2) if ϵ ≥ Ch

O((ϵh)−1) if ϵ ≤ Ch

for some C > 0.
For our problem, we also observe that the condition number for the two previous test-cases depends

on ϵ, as shown in Figure 9. We considered a fixed value of h, the same parameters as in the previous
subsection and plotted the condition number in decimal log scale with respect to k = − log10 ϵ.
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(a) Case 1 with h = 1.6× 10−2 (b) Case 2 with h = 2.5× 10−2

Figure 8: Logarithm plot of the tangential gradient error eτ with respect to ϵ

(a) Condition number of case 1
with h = 3× 10−2

(b) Condition number of case 2
with h = 5× 10−2

Figure 9: Logarithm plot of the condition number for the two test-cases with respect to ϵ

Despite the consistency property and the optimal convergence with respect to h (at fixed ϵ), the
discrete problem gets ill-conditioned when ϵ tends towards 0. Therefore, we propose below another
numerical method, which is consistent and coercive, but equally well-conditioned and convergent with
respect to ϵ.

4 Modified Nitsche’s type formulation
The Nitsche method was originally designed for the weak imposition of Dirichlet boundary conditions

in [14]. It was later adapted in [10] to transmission conditions where the mesh is not necessarily aligned
with the interface, leading to Nitsche’s extended fininite element method (NXFEM). The latter was used
in [6] to deal with non-standard transmission conditions involving the Laplace-Beltrami operator.

The main difference between the model problem of [6] and ours is that in [6], the authors considered a

12



simpler jump condition [T ] = [χ] on Γ, which can be treated by adding to the classical bilinear form the
Laplace-Beltrami term. Meanwhile, we consider here a transmission condition of Robin type, involving
both the jump and the mean of the normal flux:〈

κ
∂u

∂n

〉
= −1

ϵ
[u] +

1

ϵ
f̄ + f on Γ. (4.1)

Therefore, we have to adapt the standard bilinear form used in Nitsche’s method.

The general idea of stabilized methods is to add positive (and often, consistent) terms in order to
enhance the discrete coercivity with respect to the new energy norm. Here, the issue is not the loss of
coercivity but the dependence on ϵ, due to the presence in the energy norm of the jump term, which

is multiplied by
1

ϵ
. So contrarily to stabilized methods, we propose here to subtract a positive term

multiplied by a stabilisation parameter depending on both ϵ and h, in view of improving the constant in
front of the jump term.

Thus, in order to obtain a consistent and symmetric formulation, we introduce the bilinear and linear
forms, defined for any uh ∈ P k

h , vh ∈ P k
h,0 by

ah(uh, vh) := a(uh, vh)−
∑

F∈Fh,Γ

βF

(〈
κ
∂uh

∂n

〉
+

1

ϵ
[uh],

〈
κ
∂vh
∂n

〉
+

1

ϵ
[vh]

)
0,F

,

lh(vh) := l(vh)−
∑

F∈Fh,Γ

βF

(
f +

1

ϵ
f̄ ,

〈
κ
∂vh
∂n

〉
+

1

ϵ
[vh]

)
0,F

,

where the parameter βF > 0 will be chosen later. We then consider the following Nitsche’s type formu-
lation of Problem (1.1): {

Find uh ∈ P k
h such that uh = uD,h on ΓD and

ah(uh, vh) = lh(vh), ∀vh ∈ P k
h,0.

(4.2)

4.1 Analysis of the discrete formulation
The consistency is straightforward, thanks to (3.2) and to the fact that the transmission condi-

tion (4.1), which is weakly imposed in the new formulation, is also strongly satisfied by the continuous
solution.

Lemma 4.1 (Consistency of Nitsche’s formulation). Let u be a smooth solution to (1.1) and βF ∈ R, for
any F ∈ Fh,Γ. Then one has that

ah(u, vh) = lh(vh), ∀vh ∈ P k
h .

In order to show the discrete coercivity, we need a well-known inverse inequality (see for instance [8,
Section 1.4.3]). For the sake of clarity, we recall it below and we sketch its proof.

Lemma 4.2 (Inverse inequality). Let F ∈ Fh,Γ such that F = ∂K1 ∩ ∂K2, with Ki ∈ T i
h for i = 1, 2.

There exists a constant CI > 0 independent of h, ϵ, α, γ and κ such that:

hF

∥∥∥∥〈κ
∂vh
∂n

〉∥∥∥∥2
0,F

≤ CI

2∑
i=1

∥κi∇vh,i∥20,Ki , ∀vh ∈ P k
h .
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Proof. From the discrete trace inequality combined with a standard inverse inequality (see for example [8,
Lemma 1.46]), we have for any wh,i ∈ (Pk−1(Ki))d, i = 1, 2, that

1

hF
∥κiwh,i∥20,F ≤ Ctr

h2
Ki

∥κiwh,i∥20,Ki .

Taking wh,i = ∇vh,i and noting that hF ≤ hKi and that
∣∣∣∣∂vh,i∂n

∣∣∣∣ ≤ |∇vh,i|, we immediately obtain:

hF

∥∥∥∥〈κ
∂vh
∂n

〉∥∥∥∥2
0,F

≤ 1

2

2∑
i=1

hF

∥∥∥∥κ∂vh,i∂n

∥∥∥∥2
0,F

≤ CI

2∑
i=1

∥κi∇vh,i∥20,Ki , ∀vh ∈ P k
h

with CI = Ctr/2.

We are next interested in how to choose the stabilization parameter βF . For this purpose, we write:

ah(vh, vh) = b(vh, vh) +
1

ϵ

∑
F∈Fh,Γ

(1− βF

ϵ
)

∫
F

[vh]
2ds−

∑
F∈Fh,Γ

βF

∫
F

〈
κ
∂vh
∂n

〉2

ds

−
∑

F∈Fh,Γ

2βF

ϵ

∫
F

〈
κ
∂vh
∂n

〉
[vh] ds.

The Cauchy-Schwarz and the Young inequalities yield that:

−2
∑

F∈Fh,Γ

βF

ϵ

∫
F

〈
κ
∂vh
∂n

〉
[vh]ds ≥ − 1

2ϵ

∑
F∈Fh,Γ

(1− βF

ϵ
)∥[vh]∥20,F −

∑
F∈Fh,Γ

2β2
F

ϵ− βF

∥∥∥∥〈κ
∂vh
∂n

〉∥∥∥∥2
0,F

.

Plugging this inequality in the definition of ah(vh, vh) leads to:

ah(vh, vh) ≥ b(vh, vh) +
1

2ϵ

∑
F∈Fh,Γ

(1− βF

ϵ
)∥[vh]∥20,F −

∑
F∈Fh,Γ

βF

hF
(1 +

2βF

ϵ− βF
)hF

∥∥∥∥〈κ
∂vh
∂n

〉∥∥∥∥2
0,F

.

Using next Lemma 4.2, we have that:

ah(vh, vh) ≥
∑

K∈Th\Th,Γ

∥κ1/2∇vh∥20,K +
∑

K∈Th,Γ

(
1− CI

βF (ϵ+ βF )

hF (ϵ− βF )

)
∥κ1/2∇vh∥20,K + ∥α1/2∇τ ⟨vh⟩ ∥20,Γ

+
1

2ϵ

∑
F∈Fh,Γ

(1− βF

ϵ
)∥[vh]∥20,F . (4.3)

Thus, in order to obtain the discrete coercivity of ah(·, ·), it is sufficient to choose βF such that

βF < ϵ and βF
ϵ+ βF

ϵ− βF
<

hF

CI
. (4.4)

Following [12], where a boundary value problem with similar non-standard boundary conditions was
considered, we choose 2βF as the harmonic mean of ϵ and γhF , where γ > 0 is a constant independent
of ϵ and of the discretization, that is:

βF :=
γhF ϵ

ϵ+ γhF
. (4.5)
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Then clearly βF < ϵ, while the second inequality of (4.4) translates into
γ(ϵ+ 2γhF )

ϵ+ γhF
<

1

CI
and holds

true for γ <
1

2CI
. With this choice, the bilinear and linear forms can be written as follows:

ah(uh, vh) = b(uh, vh) +
∑

F∈Fh,Γ

1

ϵ+ γhF

∫
F

[uh][vh]ds−
∑

F∈Fh,Γ

γhF ϵ

ϵ+ γhF

∫
F

〈
κ
∂uh

∂n

〉〈
κ
∂vh
∂n

〉
ds

−
∑

F∈Fh,Γ

γhF

ϵ+ γhF

∫
F

(〈
κ
∂uh

∂n

〉
[vh] +

〈
κ
∂vh
∂n

〉
[uh]

)
ds,

lh(vh) =

∫
Ω

Gvhdx+

∫
Γ

(g ⟨vh⟩+ αϵḡ ⟨vh⟩)ds

+
∑

F∈Fh,Γ

1

ϵ+ γhF

∫
F

(ϵf + f̄)

(
[vh]− γhF

〈
κ
∂vh
∂n

〉)
ds.

Remark 4.3. The case γ = 0, that is βF = 0 for any F ∈ Fh,Γ, corresponds to the previous discrete
formulation (3.1). The other case when βF vanishes, that is for ϵ = 0, is more interesting. Contrarily to
problem (3.1), we can directly take ϵ = 0 in the new formulation (4.2) and obtain the standard Nitsche
formulation of the limit problem (2.4).

Finally, we introduce the following mesh-dependent norm on P k
h :

|||vh|||h :=

(
∥vh∥2 +

∑
F∈Fh,Γ

1

ϵ+ γhF
∥[vh]∥20,F

)1/2

and we prove below the main result of this subsection, which yields the well-posedness of the discrete
problem (4.2) for γ sufficiently small.

Lemma 4.4 (Coercivity and continuity of Nitsche’s formulation). For γ sufficiently small, there exist
two positive constants CN

cv, CN
ct independent of h, ϵ, α, γ and κ such that for any uh, vh ∈ P k

h,0, one has:

ah(uh, vh) ≤ CN
ct |||uh|||h|||vh|||h and ah(vh, vh) ≥ CN

cv|||vh|||
2
h.

Proof. The proof of the continuity is standard. The Cauchy-Schwarz inequality yields, for any uh, vh ∈
P k
h,0, that

ah(uh, vh) ≤ ∥uh∥∥vh∥+
∑

F∈Fh,Γ

γhF ϵ

ϵ+ γhF

∥∥∥∥〈κ
∂uh

∂n

〉∥∥∥∥
0,F

∥∥∥∥〈κ
∂vh
∂n

〉∥∥∥∥
0,F

+
∑

F∈Fh,Γ

1

ϵ+ γhF
∥[uh]∥0,F ∥[vh]∥0,F

+
∑

F∈Fh,Γ

γhF

ϵ+ γhF

(
∥[uh]∥0,F

∥∥∥∥〈κ
∂vh
∂n

〉∥∥∥∥
0,F

+

∥∥∥∥〈κ
∂uh

∂n

〉∥∥∥∥
0,F

∥[vh]∥0,F
)
.

Noting that
γhF ϵ

ϵ+ γhF
≤ γhF and that

γhF

ϵ+ γhF
≤

(
γhF

ϵ+ γhF

)1/2

and using again the Cauchy–Schwarz

inequality, we further obtain

ah(uh, vh) ≤
(
∥uh∥2 + 2

∑
F∈Fh,Γ

(
1

ϵ+ γhF
∥[uh]∥20,F + γhF

∥∥∥∥〈κ
∂uh

∂n

〉∥∥∥∥2
0,F

))1/2
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×
(
∥vh∥2 + 2

∑
F∈Fh,Γ

(
1

ϵ+ γhF
∥[vh]∥20,F + γhF

∥∥∥∥〈κ
∂vh
∂n

〉∥∥∥∥2
0,F

))1/2

.

The conclusion is reached thanks to Lemma 4.4, with CN
ct = 2max{1, CI}, independent of γ.

As regards the uniform coercivity, the choice (4.5) of βF together with (4.3) yields that

ah(vh, vh) ≥
∑

K∈Th\Th,Γ

∥κ1/2∇vh∥20,K +
∑

K∈Th,Γ

(1− 2γCI)∥κ1/2∇vh∥20,K + ∥α1/2∇τ ⟨vh⟩ ∥20,Γ

+
1

2

∑
F∈Fh,Γ

1

ϵ+ γhF
∥[vh]∥20,F .

Choosing, for instance, γ <
1

4CI
, we obtain the |||·|||h- coercivity with a constant CN

cv =
1

2
.

Lemma 4.5 (Polynomial approximation in energy norm). For any k ∈ N∗ and v ∈ V k+1
Γ,0 , there exists a

constant Cip > 0 independent of h, ϵ, α, γ and κ such that:

|||v − (Ik
h)

∗v|||h ≤ Ciph
k

(
∥κ1/2v∥2k+1,Ω1∪Ω2

+ ∥(αϵ)1/2 ⟨v⟩ ∥2k+1,Γ +
∑

F∈Fh,Γ

hF

γ
∥[v]∥2k+1,F

)1/2

. (4.6)

Moreover, one also has that:

|||v − (Ik
h)

∗v|||h ≤ Ciph
k

(
∥κ1/2v∥2k+1,Ω1∪Ω2

+
1

γ
∥v∥2k+1,Ω1∪Ω2

+ ∥(αϵ)1/2 ⟨v⟩ ∥2k+1,Γ

)1/2

. (4.7)

Proof. With the same standard interpolation estimates as in Lemma 3.4, we immediately get that

|||v − (Ik
h)

∗v|||2h ≤ C2
iph

2k

( 2∑
i=1

∑
K∈T i

h

∥κ1/2
i vi∥2k+1,K +

∑
F∈Fh,Γ

∥(αϵ)1/2 ⟨v⟩ ∥2k+1,F

)
+ C2

iph
2k

∑
F∈Fh,Γ

h2
F (ϵ+ γhF )

−1∥[v]∥2k+1,F .

Noting that γhF (ϵ+ γhF )
−1 < 1, we immediately obtain (4.6). As regards estimate (4.7), it follows from

the well-known trace inequality: there exists C > 0 such that for any F ∈ Fh,Γ with F = ∂K1 ∩∂K2 and
any wi ∈ H1(Ki) with 1 ≤ i ≤ 2,

1√
hF

∥[w]∥0,F ≤ C

2∑
i=1

(
1

hKi

∥wi∥0,Ki + |wi|1,Ki

)
.

Using next standard interpolation estimates, one gets for any F ∈ Fh,Γ that

1

ϵ+ γhF
∥[v]− (Ik

h)
∗[v]]∥20,F ≤

C2
ip

γ

2∑
i=1

h2k
Ki

|vi|2k+1,Ki
.

The announced estimate is obtained by summing upon F ∈ Fh,Γ.

The a priori error estimate for Nitsche’s method is given below and follows from Céa’s lemma.
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Theorem 4.6 (Error estimate in energy norm). Let k ∈ N∗, u ∈ V k+1
Γ the solution of (2.2) and uh the

solution of (4.2). For γ sufficiently small, there exists a constant CN
e = (1 + CN

ct /C
N
cv)Cip independent

of h, ϵ, α, γ and κ such that:

|||ũ− ũh|||h ≤ CN
e hk

(
∥κ1/2ũ∥2k+1,Ω1∪Ω2

+ ∥(αϵ)1/2 ⟨ũ⟩ ∥2k+1,Γ +
∑

F∈Fh,Γ

hF

γ
∥[ũ]∥2k+1,F

)1/2

, (4.8)

where ũ := u− ũD, ũh := uh − ũD,h with ũD ∈ H1(Ω1 ∪ Ω2), ũD,h ∈ P k
h such that ũD = uD, ũD,h = uD,h

on ΓD and ũD = ũD,h = 0 on ∂Ω \ ΓD. In addition, one has

|||ũ− ũh|||h ≤ CN
e hk

(
∥κ1/2ũ∥2k+1,Ω1∪Ω2

+
1

γ
∥ũ∥2k+1,Ω1∪Ω2

+ ∥(αϵ)1/2 ⟨ũ⟩ ∥2k+1,Γ

)1/2

. (4.9)

Remark 4.7. One can note that, contrarily to the error estimate (3.7) of the first method, estimate (4.8)

is robust for small values of ϵ. Indeed, if ϵ ≤ γhF , then
hF

γ
≤ h2

F

ϵ
and moreover, the weight

h2
F

ϵ
blows

up as ϵ → 0.

4.2 Numerical tests
In this subsection, we carry out some numerical experiments for the same test-cases as in Subsec-

tion 3.2, but using now the new Nitsche’s type formulation. The goal is to illustrate that the energy
error remains bounded for small values of ϵ, which is the main issue in the numerical examples of the
previous section. The energy norm for Nitsche’s formulation eN := |||ũ − ũh|||h is also split into three
terms, (eN )2 = e2g + e2τ + (eNj )2, where eNj now denotes the stabilised jump error on the interface,

(eNj )2 :=
∑

F∈Fh,Γ

(ϵ+ γhF )
−1∥[ũ− ũh]∥20,F .

4.2.1 Convergence of the method with respect to the mesh size

We use a stabilisation parameter γ = 10−1 for the first case and γ = 5 × 10−3 for the second case.
We check numerically the error estimate given in Theorem 4.6 for the energy norm eN , more precisely
the convergence rate with respect to h at fixed ϵ.

The results are depicted in Figures 10 and 11 for the energy norm and the jump stabilized norm of the
error, respectively. We observe that the results are similar to Figures 4 and 5. The orders of convergence
are summarized in Table 2.

Case 1 Case 2
eNg 0.98 1.04
eNτ 0.99 1.06
eNj 1.87 2.06
eN 0.96 1.04

Table 2: Convergence rates of each error for Nitsche’s method

4.2.2 Convergence with respect to ϵ

Let now h be fixed, for each test-case. We observe from Figure 12 that Nitsche’s energy error eN is
bounded for small values of ϵ, contrarily to the energy error e that blows up. This is due to the fact that
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(a) Case 1 with ϵ = 10−2 (b) Case 2 with ϵ = 1

Figure 10: Logarithm plot of the energy error eN with respect to the mesh size h

(a) Case 1 with ϵ = 10−2 (b) Case 2 with ϵ = 1

Figure 11: Logarithm plot of the jump error eNj with respect to the mesh size h

Nitsche’s jump error is bounded, as shown in Figure 13. We note for both methods the good behaviour
as ϵ decreases of the gradient and tangential errors, which are not affected by the 1

ϵ -term. The tangential
gradient errors are plotted in Figure 14.

4.2.3 Conditioning

In Figure 15, we observe that the condition number of the Nitsche’s method is bounded as ϵ tends
towards 0, whereas the condition number of the first method increases, as highlighted in Subsection 3.2.4.

4.3 Application: use of iterative solvers
In this subsection we apply an iterative solver, more precisely the conjugate gradient method, to solve

the linear system.
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(a) Case 1 with h = 1.6× 10−2 (b) Case 2 with h = 2.5× 10−2

Figure 12: Logarithm plot with respect to ϵ of the energy errors e = |||u− wh||| and eN = |||u− uh|||h, for
FEM and Nitsche’s methods respectively

(a) Case 1 with h = 1.6× 10−2 (b) Case 2 with h = 2.5× 10−2

Figure 13: Logarithm plot with respect to ϵ of the jump errors ej = ∥ϵ−1/2(u− wh)∥0,Γ and
eNj = (

∑
F∈Fh,Γ

∥(ϵ+ γhF )
−1/2(u− uh)∥20,F )1/2, for FEM and Nitsche’s methods respectively

Firstly, we consider the test-case 1 as in Subsection 3.2.2, with fixed h = 1.6 × 10−2 and γ = 10−1

for Nitsche’s method. We let ϵ vary in order to see how the conditioning affects the performance of each
method. We set the tolerance equal to 10−3 and the maximum number of iterations I equal to the matrix
size, in this case I = 11391. Let r := ∥Ax− b∥ the residual in the last iteration. We can see from Table 3
that as ϵ decreases, the number of iterations to reach the fixed tolerance with the first method increases;
consequently, the errors increase too, since convergence is not reached in the last iterations. On the other
hand, Table 4 shows that the number of iterations for Nitsche’s method remains limited as ϵ goes to 0,
and so do the errors.

Secondly, we consider the test-case 2 and we now set tol = 10−4, h = 2.5 × 10−2 and γ = 5 × 10−3.
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(a) Case 1 with h = 1.6× 10−2 (b) Case 2 with h = 2.5× 10−2

Figure 14: Logarithm plot with respect to ϵ of the tangential gradient errors eτ = ∥(αϵ)1/2∇τ (u−wh)∥0,Γ
and eNτ = ∥(αϵ)1/2∇τ (u− uh)∥0,Γ, for FEM and Nitsche’s methods respectively

(a) Condition number of case 1
with h = 3× 10−2

(b) Condition number of case 2
with h = 5× 10−2

Figure 15: Logarithm plot with respect to ϵ of the condition number for the two methods

The matrix size is now 11005, so the maximum number of iterations is I = 11005. Tables 5 and 6 show
similar results to the previous test-case.

Finally, we are interested to see how many iterations are necessary in order to attain convergence,
without setting a maximum number of iterations. In Figure 16 we observe for both test-cases that the
number of iterations in the FEM approximation (in blue) increases as ϵ decreases, whereas it remains
bounded for Nitsche’s method. Thus, the iterative solution of Nitsche’s method converges faster than the
one of the standard method.
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ϵ I r e ej eτ

100 11391 5.6 · 10−3 1.2 · 10−1 1.3 · 10−3 7.8 · 10−2

10−1 11391 1.9 · 10−3 3.4 · 10−2 8 · 10−4 1.3 · 10−2

10−2 6411 9.5 · 10−4 1.7 · 10−2 1.1 · 10−4 1.5 · 10−3

10−3 2627 9.1 · 10−4 1.9 · 10−2 2.9 · 10−4 5 · 10−4

10−4 5439 9.3 · 10−4 1.8 · 10−2 8.9 · 10−4 1.9 · 10−4

10−5 8189 8.9 · 10−4 1.9 · 10−2 2.7 · 10−3 6.1 · 10−5

10−6 11391 1 · 10−3 1.8 · 10−2 9.5 · 10−3 3.5 · 10−5

10−7 11391 1.8 · 10−3 4.1 · 10−2 2.7 · 10−2 2.2 · 10−5

Table 3: Convergence history of conjugate gradient for case 1, using FEM approximation

ϵ I r eN eNj eNτ

100 11391 5.4 · 10−3 1.3 · 10−1 1.3 · 10−3 7.8 · 10−2

10−1 11391 1.6 · 10−3 3.3 · 10−2 5.2 · 10−4 1.3 · 10−2

10−2 6408 9.9 · 10−4 1.7 · 10−2 1.2 · 10−4 1.5 · 10−3

10−3 2396 9.3 · 10−4 2.3 · 10−2 2.1 · 10−4 5 · 10−4

10−4 2313 9.2 · 10−4 2.1 · 10−2 3.1 · 10−4 1.9 · 10−4

10−5 2543 9.4 · 10−4 1.8 · 10−2 3 · 10−3 6.1 · 10−5

10−6 2512 9.6 · 10−4 1.9 · 10−2 3.7 · 10−3 3.5 · 10−5

10−7 2508 9.9 · 10−4 1.9 · 10−2 3.4 · 10−2 2.2 · 10−5

Table 4: Convergence history of conjugate gradient for case 1, using Nitsche’s method

ϵ I r e ej eτ

100 926 9.1 · 10−5 9.8 · 10−3 7 · 10−5 2.5 · 10−3

10−1 434 9.9 · 10−5 9.5 · 10−3 5.7 · 10−5 8 · 10−4

10−2 303 8.7 · 10−5 9.5 · 10−3 9.6 · 10−5 2.5 · 10−4

10−3 492 9.3 · 10−5 9.5 · 10−3 2.6 · 10−4 8 · 10−5

10−4 949 8.8 · 10−5 9.5 · 10−3 7.9 · 10−4 2.5 · 10−5

10−5 1447 9.5 · 10−5 9.8 · 10−3 2.5 · 10−3 8.1 · 10−5

10−6 1916 9.5 · 10−5 1.3 · 10−2 8.3 · 10−3 2.5 · 10−6

10−7 2404 9.2 · 10−5 2.7 · 10−2 2.6 · 10−2 8.1 · 10−7

Table 5: Convergence history of conjugate gradient for case 2, using FEM approximation

(a) Case 1
(h = 1.6× 10−2, γ = 10−1, tol = 10−3)

(b) Case 2
(h = 2.5× 10−2, γ = 5× 10−3, tol = 10−4)

Figure 16: Variation of the number of iterations with respect to ϵ for the txo methods
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ϵ I r eN eNj eNτ

100 933 9.4 · 10−5 9.8 · 10−3 7.9 · 10−5 2.5 · 10−3

10−1 435 9.8 · 10−5 9.5 · 10−3 1.1 · 10−4 8 · 10−4

10−2 312 8.5 · 10−5 9.5 · 10−3 4.7 · 10−4 2.5 · 10−4

10−3 484 1 · 10−4 9.6 · 10−3 1.5 · 10−3 8 · 10−5

10−4 848 1 · 10−4 1 · 10−2 3.9 · 10−3 2.5 · 10−5

10−5 1036 9.3 · 10−5 1.1 · 10−2 6 · 10−3 8.1 · 10−5

10−6 1061 9.9 · 10−5 1.1 · 10−2 6.3 · 10−3 2.5 · 10−6

10−7 1084 9.5 · 10−5 1.1 · 10−2 6.3 · 10−3 8.1 · 10−7

Table 6: Convergence history of conjugate gradient for case 2, using Nitsche’s method

5 Conclusion and perspectives
In this paper, we have studied an extended Nitsche’s type method for non-standard transmission

problems with a mesh-aligned interface. We have shown optimal convergence with respect to h for a
2D piecewise linear approximation. Its main advantage, in comparison with a standard finite element
method discontinuous at the interface, is the behaviour as ϵ decreases to 0 of its condition number, which
remains bounded. This is particularly important if one uses iterative solvers to solve the linear system,
especially in 3D problems with complex geometries.

In a future work, we plan to apply these techniques to shape optimisation in discontinuous interface
problems, in particular to a thin film heat exchanger problem where ϵ is very small.
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