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Abstract 
Thiabendazole, a widely used broad-spectrum fungicide in 

agriculture, poses risks to human health. To monitor its presence in 

water, we propose a fluorescent aptasensor utilizing E. coli 

exonuclease I (Exo I). The findings demonstrate a linear correlation 

between thiabendazole concentrations and digestion percentage, with 

a detection limit (LOD) exceeding 1 µM and a determination 

coefficient (R2) of 0.959. This aptamer-based fluorescence 

spectroscopy detection system holds promise for a rapid, specific, and 

sensitive analysis of thiabendazole in environmental waters and food 

matrices. 

Introduction 
Pesticides play a crucial role in agriculture by enhancing crop yields 

and ensuring adequate food production levels. Since their 

introduction, they have yielded significant economic advantages and 

are thus extensively utilized1. Nevertheless, their extensive utilization 

has resulted in various toxicities and risks to both human well-being2–

5 and to the environment6,7. Thiabendazole is a widely used fungicide 

to prevent fruits, such as citrus, apples, and pears, from being affected 

by mold, rot, and blight, thus keeping them fresh before the waxing 

stage for storage8. Even though thiabendazole is of low toxicity in 

comparison to other pesticides, it has been associated with a range of 

harmful effects, including nephrotoxicity, hepatotoxicity, 

carcinogenicity, and teratogenicity9. As a result, the U.S. 

Environmental Protection Agency (EPA) has classified thiabendazole 

as potentially carcinogenic, particularly at doses that disrupt the 

balance of thyroid hormones10. The use of thiabendazole is also 

regulated by the European directive (98/93/EC) in drinking water11, 

and its concentration should not exceed 0.1 μg L-1, which corresponds 

to 0.5 nM. Consequently, there is a need to develop rapid and sensitive 

methods for detecting thiabendazole in environmental water to 

safeguard consumer’s health. 

Generally, identification and quantification of pesticides are based on 

chromatographic methods, such as high-performance liquid 

chromatography (HPLC) and gas chromatography (GC) coupled with 

mass spectrometry (MS)12–14. Thiabendazole detection in water 

bodies has mainly been performed using liquid chromatography 

coupled with different detectors (Table 1). Its concentration in 

environmental waters can vary significantly according to several 

factors, such as proximity to agricultural areas, as well as geographic 

locations, which depends on the regulation of this pesticide in the 

concerned regions. For example, thiabendazole’s concentration varied 

between 20 nM – 8.5 μM in fruit-processing industry, wastewater 

treatment plants, and in sewage water belonging to the Castelló area 

(Spain)15. 

Table 1 Chromatographic techniques used for the analysis of 

thiabendazole and their application to different matrices of water 

bodies. 

These techniques are highly sensitive and specific. However, they do 

not allow real-time analysis as they require lengthy sample 

preparation steps, in addition to highly skilled technical labor, which 

makes the analysis expensive. 

To meet the requirements of selectivity and sensitivity for 

thiabendazole detection, there have been increasing efforts to explore 

alternative measures. Biosensors are promising tools that could 

potentially replace conventional methods, as they enable the real-time 

detection of analytes, while minimizing the need for tedious sample 

pretreatments. 

Biosensors, which combine a biological sensing element and a 

transducer, are a promising alternative to traditional laboratory-based 

methods. Biological sensing elements such as antibodies, enzymes, 

aptamers, or cells ensure specificity and selectivity22, whereas the 

transducer provides sensitivity by converting the biointeraction into a 

measurable signal for analyte detection. Optical and electrochemical-

based biosensors are particularly attractive for pesticide detection due 

to their potential selectivity and sensitivity23–27. These biosensors 

employ various methods including UV-Vis absorption 

spectroscopy28,29, fluorescence spectroscopy30–32, photoluminescence 

assay33,34, chemiluminescence assay35,36, dynamic light scattering37, 

surface-enhanced Raman scattering (SERS)38,39, potentiometric 

sensing40, impedance sensing41,42, and amperometry43,26. However, 

only a few biosensors developed for pesticide detection have been 

applied to thiabendazole44–47 (Table 2), and none of them are 

currently suitable for in situ detection. 

 

Technique  Range (nM) 
LOD  

(nM) 

Validity for water 

bodies 

HPLC16 0.05 – 79 0.02 
River and 

underground water 

LC-MS/MS17 0.05 – 5 

Not 

defined 

(ND) 

Treated waste water 

LC-Fluorescence 

spectroscopy18 
25 – 4 × 103 2.5 – 50 

Lake, rain and well 

waters 

LC-Fluorescence 

spectroscopy19 
50 – 5 × 103 14.4 – 37 ND 

HPLC20 5 – 500 0.4 –0.64 

Natural water, sea 

water and purified 

waste water 

HPLC21 2.5 – 1.5× 103 0.2 

Seawater, 

groundwater and 

waste water 
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Table 2 Immunosensors developed for the detection of thiabendazole. 

Transduction LOD 
Validity of detection in real 

matrices 

White Light Reflectance 

Spectroscopy (WLRS)44 
4 nM Wine: 4.7 nM 

Surface Plasmon 

Resonance (SPR)45 
250 nM PBS: ND  

SPR46 0.64 nM Orange: 1.43 nM 

Strip-based assay 
(colorimetry)47 

0.4 nM Fruit juices: 0.25 nM 

We present here a novel approach for the specific detection of 

thiabendazole using a fluorometric aptasensor based on Exo I 

enzymatic digestion. The biosensor is composed of an aptamer 

sensing element and a fluorescence detection platform, offering high 

specificity and sensitivity. Aptamers, which are oligonucleotide 

switching structures, form a complex with the target with high affinity 

and specificity48,49. In our study, we tested the interaction between 

thiabendazole and its aptamer BOL009 developed by Novaptech, 

using Exo I digestion method. The activity of Exo I is commonly used 

to demonstrate the specific interaction between a ligand and an 

oligonucleotide switching structure50–54. The Exo I digest BOL009 

into mononucleotides that do not fluoresce upon interaction with the 

fluorescent probe, Sybr Gold. However, in the presence of 

thiabendazole, a BOL009/thiabendazole complex is formed which 

hinders the enzymatic activity, resulting in a high fluorescence signal 

upon the interaction of not digested BOL009 with Sybr Gold. This 

method has allowed for the specific detection of thiabendazole in the 

range of 1 – 100 μM with an R2 value of 0.959. These results not only 

demonstrate the potential of our biosensor for the accurate and rapid 

detection of thiabendazole in environmental waters, but also 

contribute to the immediate advancement of scientific research within 

the community, given the potential of this method to detect and 

analyze all types of targets for which the specific aptamers have been 

selected and optimized. 

Material and methods 
All chemicals and reagents used in this study were of analytical grade 

(> 99%) and used without further purification. 

Tris(hydroxymethyl)aminomethane (Tris-HCl), sodium chloride 

(NaCl), sodium acetate (CH3CO2Na), potassium chloride (KCl), 

potassium acetate (CH3CO2K), magnesium acetate tetrahydrate 

(CH3CO22Mg4H2O), hydrochloric acid (HCl), sodium hydroxide 

(NaOH), magnesium chloride hexahydrate (MgCl26H2O), 

ethylenediaminetetraacetic acid (EDTA), and sodium dodecyl sulfate 

4X (SDS) were purchased from Euromedex (Strasbourg, France). 

Ethanol (EtOH) and methanol (MeOH) were purchased from VWR 

Chemicals (Radnor, Pennsylvania, USA). Thiabendazole, glyphosate, 

aminomethylphosphonic acid (AMPA), simazine, carbendazim, 

isoproturon, atrazine-desethyl and atrazine were purchased from 

Sigma Aldrich (St. Louis, MO, USA). SYBR Gold was purchased 

from Invitrogen (Thermo Fischer Scientific, Waltham, Massachusetts, 

USA). 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid 

(HEPES) was purchased from Pan Reac Application (ITW Reagents, 

Castellar del Vallès, Spain). E. coli Exo I (20 000 U mL-1) was 

purchased from New England Biolabs (Ipswich, Massachusetts, 

USA). 

All oligonucleotides used in this work were synthesized by 

Eurogentec (Seraing, Belgium) with polyacrylamide gel 

electrophoresis (PAGE) or HPLC purification grade. The 

oligonucleotides were dissolved in MilliQ water and the 

concentrations were measured by UV-Vis spectroscopy using the 

Nanodrop 2000 spectrometer (Mettler Toledo, Columbus, Ohio, 

USA). 

Enzymatic digestion was performed at 37 °C with gentle stirring at 

240 rounds per minute (rpm) using a thermomixer (Eppendorf, 

Hamburg, Germany). All experiments of interaction between 

BOL009 and thiabendazole (or other pesticides) were performed in 

the HEPES buffer according to the appropriate interaction conditions 

(Table 3). All experiments were performed in duplicate or triplicate. 

The standard deviations of fluorescence values, obtained in triplicate 

and converted into digestion percentages according to Equation 1, 

were calculated and shown on graphs as error bars. The pH of all 

buffers was measured with a Seveneasy pH-meter (Mettler Toledo, 

Columbus, Ohio, USA) and was adjusted using either a 1 M NaOH 

solution or a 0.1 M HCl solution. 

Table 3 Interaction conditions of thiabendazole with BOL009. 

HEPES buffer composition Interaction conditions 

20 mM HEPES, 20 mM 

CH3CO2Na, 140 mM CH3CO2K, 3 

mM CH3CO22Mg4H2O and 17% 

MeOH 

BOL009 is incubated with 

thiabendazole in HEPES 

buffer for 30 min at room 

temperature 

Enzymatic digestion prior to fluorescence spectroscopy is widely used 

to analyze the interaction between an aptamer and its target50–54. The 

described interaction leads to a delayed digestion of the 

oligonucleotide as a result of the formation of an aptamer/target 

complex, which hinders the enzymatic digestion50–54. Building upon 

this principle, we have developed a fluorescent aptasensor for 

detecting thiabendazole using its specific aptamer, BOL009 (Figure 

1). 

 
Schematic illustration of the fluorescence aptasensor developed for 

the detection of thiabendazole.  

The assessment of the interaction between BOL009 and thiabendazole 

was performed using the following experimental procedure mainly 

developed in our previous work31: initially, 10 µM of BOL009 

solution was heated at 95 °C for 3 minutes and subsequently cooled 

on ice for 3 minutes. Next, 10 µL of 10 µM BOL009 were withdrawn 

and mixed with 70 µL of the HEPES buffer without MeOH. The 

mixture was then incubated at room temperature for 30 minutes in 

order to obtain the functional conformation of BOL009 aptamer. 

Afterward, 17 µL of thiabendazole solubilized in MeOH at different 

concentrations were added to the reaction medium, followed by 

another 30-minutes incubation at room temperature. As a control, a 

sample without thiabendazole was prepared as-well, using HEPES 

buffer only. Upon completion of the incubation period, 3 µL of Exo I 

at a concentration of 20 U µL-1 (which corresponds to a final 

concentration of 0.6 U µL-1, as optimized) were added to the reaction 

medium and the digestion was performed as described before. 

Subsequently, 5 µL of the samples were withdrawn and loaded into 

the wells of a black 384-well microplate (Corning black, Thermo 

Fisher Scientific) containing 25 µL of a stop solution (1.2X SYBR 

Gold, 12 mM Tris-HCl, pH 7.4, 48% formamide v/v, 3.75 mM 

EDTA). Fluorescence measurements were performed at 535 nm after 

excitation at 495 nm using a Tecan Infinite M1000 Pro instrument 

(Männedorf, Switzerland). The obtained fluorescence intensity was 

converted into digestion yield using the following equation: 

% 𝑜𝑓 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛 =
(𝐹0−F)

𝐹0
× 100  (Equation 1) 

where F0 represents the fluorescence signal without digestion, and F 

represents the fluorescence signal after digestion. 

Thiabendazole

Exo I

SYBR Gold

SYBR Gold

h�

BOL009

Exo I

Interaction conditions

30 min at 37°C

30 min at 37°C

Partial digestion

Total digestion

High fluorescence
(535 nm)

No fluorescence
(535 nm)

No thiabendazole

Interaction conditions

(495 nm)

h�
(495 nm)

Fig. 1
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Results and discussion 
In order to analyze the interaction between BOL009 and 

thiabendazole, the digestion test of BOL009 was performed in the 

absence and presence of thiabendazole in excess (1 mM). Initially, the 

optimization of Exo I concentration was conducted to achieve the 

maximum yield of BOL009 digestion (Figure S1). Notably, the 

optimal percentage of digestion was achieved at a concentration of 0.6 

U µL-1. Consequently, this concentration value was chosen to perform 

the interaction test. Figure 2a shows the percentage of digestion 

obtained upon enzymatic digestion of BOL009 by Exo I in the 

presence and absence of thiabendazole according to the conditions 

described above. 

The experiment revealed significant findings regarding the impact of 

thiabendazole on the activity of Exo I digestion. In the absence of 

thiabendazole, Exo I achieved a digestion rate of 92% for the BOL009 

aptamer. However, in the presence of thiabendazole, the digestion rate 

decreased to 56%. These results provide strong evidence that the 

presence of thiabendazole significantly affects the activity of Exo I 

digestion. The reduction in enzymatic activity is directly attributed to 

the formation of the BOL009/thiabendazole complex. Therefore, 

these findings confirm the existence of an interaction between 

BOL009 and thiabendazole, highlighting its critical role in 

modulating the activity of Exo I digestion. 

It is well-established that pesticides can inhibit the activity of some 

enzymes, including acetylcholinesterase (AChE)55, 

butyrylcholinesterase (BChE)56, tyrosinase57,58, alkaline 

phosphatase59,60, peroxidase61, acid phosphatase62, urease63 and most 

recently Exonuclease I in particular conditions31. Therefore, it is 

crucial to verify that thiabendazole does not inhibit the activity of Exo 

I. To accomplish this, a validation test was conducted under the same 

experimental conditions as the BOL009/thiabendazole interaction 

test, employing the glyphosate aptamer64 (GLY3) instead of BOL009 

(Table 4). 

Table 4 The glyphosate aptamer sequence used to study the inhibition 

of Exo I activity by thiabendazole. 

Aptamer name Sequence 

GLY364 

5’-TGC-TAG-ACG-ATA-TTC-GTC-CAT-CCG-

AGC-CCG-TGG-CGG-GCT-TTA-GGA-CTC-
TGC-GGG-CTT-CGCGGC-GCT-GTC-AGA-

CTG-AAT-ATG-TCA-3’ 

Since GLY3 is not expected to interact with thiabendazole, we 

performed GLY3 digestion by Exo I in the presence and absence of 

thiabendazole (Figure 2b). Similarly to the optimization process 

conducted for BOL009, an optimization of Exo I concentration was 

carried out for the GLY3 before analyzing its interaction with 

thiabendazole (Figure S2). The optimal concentration was 

determined to be 0.6 U µL-1 and it is therefore this concentration value 

that is selected for the interaction assessment.  

As observed in Figure 2b, Exo I performs over 80% of digestion both 

in presence and absence of thiabendazole which proves that Exo I is 

not inhibited by thiabendazole. 

 
Digestion of (a) BOL009 and (b) GLY3 at 1 µM by Exo I (0.6 U µL-

1) for 30 min at 37 °C (240 rpm) in HEPES buffer in the presence and 

absence of 1 mM thiabendazole. 

Following the confirmation of the interaction between BOL009 and 

thiabendazole, our proposed fluorescence aptasensor successfully 

detected thiabendazole. The reduction in enzymatic activity was 

found to be directly proportional to the number of complexes formed 

between BOL009 and thiabendazole. Thus, an increase in the 

concentration of complexes was expected to result in a greater 

reduction of Exo I activity. Leveraging these findings, we conducted 

an experiment wherein BOL009 was subjected to digestion at various 

concentrations of thiabendazole (0, 1, 10, 20, 40, 60, 80, and 100 µM), 

under the same previously described conditions (Figure 3). 

 
Digestion of BOL009 at 1 µM by Exo I (0.6 U µL-1) at 37 °C for 30 

min (240 rpm) in HEPES buffer in the presence of different 

concentrations of thiabendazole (1 – 100 µM). 

The results shown in Figure 3 demonstrate that the concentration of 

thiabendazole has a direct impact on the activity of Exo I, resulting in 

a decrease of digestion efficiency. Our findings show that the 

reduction of enzymatic activity occurs within a linear range of 0 to 

100 µM with a determination coefficient of 0.959 and a limit of 

detection (LOD) over 1 µM. We observed however notable variations 

in the error, more particularly at high concentrations of thiabendazole. 

This can be attributed to the high number of BOL009/thiabendazole 

complexes formed, leading to the inhibition of the enzymatic activity 

and resulting in oligonucleotides of different size at the end of 

digestion. These interact differently with the fluorescence probe, Sybr 

Gold, which results in variations in the fluorescence signal. 

To assess the specificity of the interaction between BOL009 aptamer 

and thiabendazole, we investigated the binding affinity with other 
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pesticide molecules that have similar weight and structure, 

specifically carbendazim analogs containing a benzimidazole group. 

The following pesticide molecules were tested: thiabendazole, 

glyphosate, AMPA, simazine, carbendazim, atrazine, isoproturon and 

atrazine-desethyl (Figure 4). 

 
Digestion of BOL009 at 1 µM by Exo I (0.6 U µL-1) at 37 °C for 30 

min (240 rpm) in HEPES buffer in the absence and presence of 

different pesticide molecules at 1 mM. 

As shown in Figure 4, only thiabendazole induces a strong reduction 

in Exo I activity, indicating that its interaction is specific to BOL009. 

In order to verify whether the developed enzymatic digestion method 

is applicable for the detection of other targets having their aptamers, 

the detection of thrombin molecule was tested. It should be recalled 

that the thrombin aptamer is a short 20-mer sequence, whereas 

thrombin is a large molecule (33.7 kDa). Figure 5 shows the result of 

the interaction test performed in the following thrombin interaction 

buffer: 20 mM Tris-HCl (pH 7.4), 120 mM NaCl, 1 mM MgCl2 and 

10 mM KCl. 

 
Digestion of thrombin aptamer (1 µM) by Exo I (0.6 U µL-1) for 30 

min at 37 °C in the appropriate interaction buffer in the absence and 

presence of 0.1 mM thrombin. 

In the presence of thrombin, enzymatic digestion is reduced (52% of 

digestion) compared to the same condition without thrombin in which 

the enzymatic digestion is optimal (97% of digestion). 

This result shows clearly that the enzymatic digestion method is 

applicable to any target for which a specific aptamer has been selected 

and optimized. 

Conclusion 
In conclusion, the findings of this study demonstrate the successful 

interaction of BOL009 with thiabendazole, resulting in a specific 

reduction of Exo I activity, as determined by fluorescence 

spectroscopy. This decrease in enzymatic activity is attributed to the 

formation of the BOL009/thiabendazole complex, indicating the high 

specificity of our method in detecting thiabendazole. The developed 

method offers various advantages as it enables simple, rapid, and 

specific detection of thiabendazole, with potential applications for the 

detection of other targets for which specific aptamers have been 

developed as demonstrated for thrombin, a large molecule recognized 

by a 20-mer short sequence aptamer. Nevertheless, this method 

provides an LOD that exceeds current EU recommendations. To 

address this limitation, a preconcentration step, using for example a 

dedicated Solid Phase Extraction (SPE) column, would enable to both 

concentrate and extract thiabendazole from environmental matrices. 

Besides, additional studies are ongoing to assess the analytical 

properties of the method, including robustness, batch-to-batch and 

day-to-day variability tests, its validation for water bodies, and 

exploration of miniaturization techniques to enable on-site and real-

time analysis of thiabendazole in environmental waters. 
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