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ABSTRACT
With the use of microservices, many software solutions have been
improved in terms of scalability, response efficiency, ease of load bal-
ancing among others. However, it is still a challenge to dynamically
deploy them according to devices’ heterogeneity and energy con-
sumption concerns, while maintaining a defined QoS. Centralized
and decentralized approaches that manage microservices deploy-
ment have the traditional pros and cons long discussed over time.
While the former offer greater control over distributed applica-
tion components, the latter offers frugal network negotiations, no
system-wide crashes, privacy, among others.

This work focuses on identifying “ideal” host candidates for
microservices’ execution in a decentralized network, applying run-
time scheduling operations (migration or duplication) to reduce
energy consumption. To do this, we created a scheduling algorithm
using MAAN (a P2P approach) to interpret a decentralized network
as a multidimensional resource (capacity-demand) space, which
supports range queries in a logarithmic quantity of hops. In this
way, a node that runs a set of microservices is able to 1) map them
in terms of their execution requirements (i.e. CPU frequency, RAM
capacity, Network rate and disk speed) 2) Select an ideal microser-
vice to be moved or duplicated, 3) find ideal node(s) that meet all
those requirements in an optimal computational complexity and 4)
negotiate the movement or duplication of the selected microservice,
by analyzing energy consumption and QoS criteria.

CCS CONCEPTS
•Computingmethodologies→Distributed algorithms; •Com-
puter systems organization→Peer-to-peer architectures;Cloud
computing;
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1 INTRODUCTION
Nowadays, the use of microservices has become widespread in the
conception of distributed applications. Microservices are “small”
services running in its own process and communicating with light-
weight mechanisms[15] which permit to deal with problems of ap-
plications’ load balancing, high availability, scalability, among oth-
ers. This is why many companies such Amazon[47] and Netflix[38],
among others, use microservices to deploy their applications and
at the same time, offer the use of their microservices technologies
through APIs in a dynamic and efficient way.

Microservices are difficult to manage despite their advantages.
Their orchestration, which consists in finding the best way of de-
ployment, scaling, load balancing and scheduling[8] remains a chal-
lenge. Criterias such as the amount of energy consumed, control of
devices with heterogeneous capabilities or ensuring optimal QoS,
must be evaluated by intelligent distributed scheduling algorithms
to achieve desired results.

Such algorithms can be oriented to either centralized or decen-
tralized philosophies. Each of them has advantages and disadvan-
tages, depending on the type of application, deployment politic or
deployment level (i.e. Cloud, grid or host). For example, while Netflix
prefers centralized microservices orchestration (by it’s well known
Conductor) to choreography mainly for scalability issues[38], de
langue et. al[12] took advantage of a decentralized environment
to develop a non-formal learning system in CoPs (Communities
of Practice) based on a microservices architecture. Similarly, there
are technologies such as Kalimucho[11], which offer a middleware
platform to intelligently manage microservices in a p2p network of
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heterogeneous devices, enabling microservices movement, duplica-
tion and routing operations.

On the other hand, we are aware that excessive energy consump-
tion has economic and sustainability repercussions. For this reason
several works aim at optimizing the use of resources for energy
saving purposes. They use the two approaches mentioned in the
previous paragraph in order to manage energy consumption accord-
ing to their applications and/or their architecture. Thereby, some
works use centralized approaches to decrease energy consumption.
For example, they studied CPU’s features and capacities to be able
to model mathematically the energy consumption over a period of
time[42][46], in order to take centralized decisions like migrating
virtual machines[43] in data centers or cloud environments, allow-
ing the reduction of CPU frequency, use PCPG[28], or even put
selected servers in sleep mode[1][48]. Facing the same problem, de-
centralized approaches save energy by storing information close to
nodes[39] in order to reduce hops when recovering it, or establish-
ing negotiation processes between nodes so that both information
and data are relocated to more energy-efficient processing units[32],
taking into account the characteristics of the software modules and
those of the hardware[30].

Since the two approaches always try to optimize the use of each
device hardware component to reduce energy consumption, either
by (1) taking full advantage of their particular characteristics (as
CPU-DVFS), (2) reducing the processing time of a task, (3) keeping
only the necessary devices on, or (4)improving process scheduling;
in this work, we improve the idea implemented into Kaligreen. In
both of its versions[32][30], it is shown that moving, duplicating,
stopping and restarting microservices taking into account the het-
erogeneity of hardware components in a p2p network can reduce
energy consumption without establishing expensive negotiations
with a single central device, which can become saturated or even
fail, causing the entire network to crash.

To make this improvement, we use the concepts of overlay p2p
networks and multidimensional data structures. For this, we de-
ployed a 4-dimensional space on a MAAN[4] network overlay. This
technique organizes the nodes of a non-centralized network in a
circular list whose search method is based on a table of addresses
called "finger table". With it, the search for information or a node
through another is carried out in a logarithmic number of hops.

We use MAAN to contrast the microservices’ needs for its ex-
ecution and the hardware availability that each device has. Our
approach is based on the fact that in a certain period of time or
under certain circumstances (i.e. battery problems, overload, etc.),
one device can find a peer in order to negotiate with it and move
or duplicate a selected microservice𝑀 to save energy. To perform
this “find” operation, we consider the processing requirements of
𝑀 in terms of CPU frequency, RAM, network transfer rate, disk
speed and dependencies management (applications using 𝑀 and
QoS repercussions), as well as the specific characteristics of the
involved devices in the same terms. Finally, to carry out the negoti-
ation process, we implemented a distributed scheduling algorithm
based on Kaligreen, in which, circumstantially, each node tries to
save energy by moving its heaviest/lightest microservice to another
peer that can run it in a more frugal manner.

To demonstrate the efficiency of our approach, we deployed 2
types of experiments: One based on scalability in which the num-
ber of devices and microservices grows over time and the other
based on stress, in which devices are saturated by a big quantity of
microservices. The first one shows that our approach is capable of
saving 27% of energy against a deployment without an algorithm
and 11% against the one proposed by Kaligreen with an optimal QoS
level. The second experiment ensures a higher quality of service
by a margin of 5% against the aforementioned approaches besides
displaying a higher energy consumption. To our knowledge, this is
the first work that tries to focus on energy consumption using mul-
tidimensional resources (CPU, RAM, network and HDD) approach,
which allows linking “ideal” microservices with “ideal devices” in a
logarithmic number of hops.

In order to explain the abstract part of our approach, this ar-
ticle introduces multidimensional spaces in section 2, describes
our multidimensional resources space in section 3; and explains
the relation between hardware component’s load and energy con-
sumption in section 4. Then, to explain the implementation of our
approach, it describes multidimensional P2P approaches in section
5, the implementation of our multidimensional space in section
6, our distributed scheduling algorithm in section 7; and the ex-
periments and results in section 8. Finally, the article explains our
conclusions and future works in section 9.

2 MULTIDIMENSIONAL SPACES
Data management is a great concern in computer science. For this
reason, there are structures that allow modeling data sets as spaces
with as many dimensions as data sets have characteristics. They
allow data to be inserted, identified and retrieved at efficient oper-
ation costs. As one dimensional examples, all binary-based trees
like AVL, RedBlack and B* perform data management operations in
O(Log(N)) in the average case; while hash based structures do the
same in O(1) in the best case. However, these operations become
more complicated with the increment of search dimensions (data
characteristics). To deal with this problem, several solutions based
on metrics (defined by distance functions) and/or n-dimensional
spaces have been created. These are able to manage multidimen-
sional data sets from the viewpoint of: 1) The distances among its
elements[5] (e.g. BKT, BT or LAESA) or 2) the abstraction of the uni-
verse in which they exist[16] (e.g. K-D-Tree, R*tree or Z-ordering).

These data management approaches allow not only to process
queries based on a single characteristic/dimension to obtain a single
element, but also to retrieve all data that meets various criteria in
a certain range or region, either from the viewpoint of another
element or from the viewpoint of the entire universe.

Edgar Chavez et al.[5] describe the possible queries in metric
multidimensional spaces, also applicable in spatial access methods:

• Range query (𝑞, 𝑟 )𝑑 . Retrieve all elements which are within
distance 𝑟 to 𝑞. This is, {𝑢 ∈ 𝑈 | 𝑑 (𝑞,𝑢) ≤ 𝑟 }.

• Nearest neighbor query 𝑁𝑁 (𝑞). Retrieve the closest element
to 𝑞 in U. This is, {𝑢 ∈ 𝑈 | ∀𝑣 ∈ 𝑈 ,𝑑 (𝑞,𝑢) ≤ 𝑑 (𝑞, 𝑣)}.

• K-Nearest neighbor query 𝑁𝑁𝑘 (𝑞). Retrieve the 𝑘 closest
elements to 𝑞 in U. This is, retrieve a set 𝐴 ⊂ 𝑈 such that
|𝐴| = 𝑘 and ∀𝑢 ∈ 𝐴, 𝑣 ∈ 𝑈 −𝐴,𝑑 (𝑞,𝑢) ≤ 𝑑 (𝑞, 𝑣).
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In this paper, we propose that querying a multidimensional space
of hardware resources is very useful to understand how to save
energy in a microservices environment, since energy consumption
is strongly related to the way of using hardware resources. In other
words, at a certain moment, for a microservice𝑀 that is executed
in a device 𝐷 generating a load of 𝐿 and an energy consumption 𝐸,
it is possible to find a device 𝐷 ′ that: (1) has at least availability of
resources𝐶 , in such a way that𝐶 >= 𝐿 and (2) the energy consump-
tion 𝐸 ′ generated by𝑀 in 𝐷 ′ is less than 𝐸 (because of current load
or particular characteristics of involved hardware components). In
the next section, we will explain our hardware resource space and
its features.

3 MULTIDIMENSIONAL RESOURCES SPACE
In a decentralized network environment, managing microservices
is challenging. Concepts such as load balancing, microservices dis-
covery or energy saving are difficult to analyze in the absence of a
central entity that contains all the information necessary to apply
scheduling heuristics. However, we believe that by organizing the
devices of a P2P network in an intelligent way, it is possible to
replace centralized scheduling by optimal negotiations between
its members. Thereby, (1) a device with overload or energy prob-
lems (as low battery situation or fans energy spending) can move
a microservice to another peer to decrease its load and save en-
ergy or (2) an underloaded device can offer help to other peers to
process microservices in a more energy-efficient way[32]. This is
why multidimensional spaces are the cornerstone of our work. The
basis of our approach is to abstract and efficiently query hardware
resources as a 4-dimensional space. It contains devices’ available
capabilities in terms of CPU frequency, RAM capacity, network rate
and hard drive speed.

Definition 3.1. Given a set of devices connected to a common
network, we define a space U made up of 4 dimensions/axis: (1)
CPU frequency in GHz(2) RAM capacity in MB (3) network transfer
rate and (4) Hard disk speed. Devices are elements of U in terms of
its hardware resources current availability.

Queries in this space will allow a device to know which peers
have sufficient resources to run a certain microservice. For this, in
order to decide whether a microservice is a candidate to bemoved or
duplicated in a subsequent negotiation process with another peer, a
device should analyze the microservice’s processing requirements,
type and restrictions. The authors of Kaligreen V2[30] made an
interesting analysis of the characteristics that should be analyzed
before operating a microservice. For example, they considered that:

• There are microservices which remain running until a tar-
get is achieved, while others are kept running permanently
pending requests.

• There are microservices that can be moved or not based on
their objectives. For example, while a microservice which
performs high-cost CPU operations could be moved or du-
plicated to balance load; a microservice that represents an
element of a graphical interface[37] should not always be
moved since it works usually with a single screen.

Then, in order to perform microservices movement or duplica-
tion operations, Kaligreen authors contrasted this information with:

1) its CPU load, 2) its size in RAM memory, 3) the amount of data
it handles on disk and 4) the amount of data it transfers to other
microservices and/or other external entities. In our case, we will
use the same analytical criteria; however: (1) instead of taking into
account the amount of data that a microservice manages on the
disk, we study the latency it produces since we are also interested
in the energy consumed by this device in terms of its load, leaving
microservices-driven data analysis to future work and (2) we do
not take into account the functional aspects of each microservice
as axes of our space 𝑈 . Instead, we study them at the time of prior
negotiation of a scheduling operation.

As it is possible to see, in this work a device can self-analyze
in terms of its load, its energy situation and the microservices it
executes. Moreover, it has the ability to decide which microservice
to move or duplicate based on energy saving and load balancing
scheduling heuristics. Finally, it will be able to efficiently search for
candidate peers to execute, after a negotiation process, the selected
microservice(s) querying the resources𝑈 space.

In the next section, we will explain the relation between the load
of each hardware component and energy consumption.

4 ANALYSIS OF HARDWARE COMPONENTS
(AXES OF SPACE𝑈 )

Whenever energy saving is sought in any network of devices, it is
necessary to study the characteristics of devices’ hardware com-
ponents and how they are used by running processes. In our case,
as our approach is based on microservices execution taking into
account their load in terms of CPU frequency, RAM, network rate
and disk speed (axis of our 4-dimensional space), we will explain in
the following paragraphs some formulas that allow understanding
for each component: (1) How much energy is consumed in terms of
its load, (2) how much energy is consumed by a running microser-
vice and (3) How much energy would a microservice consume if
migrated or duplicated on another device.

4.1 CPU
Several works study power consumption by analyzing running
software features and the physical properties that a CPU has. Some
of these approaches consist of:

• Finding the relation between a standardized workload and
energy consumption[46][3][19].

• Finding the relation between the type of task and the clock
cycles it generates[22][24][18].

• Finding the consumption difference between real or virtual-
ized environments[6].

• Using capabilities like DVFS or PGPC[30][28].
• Finding the relation between CPU energy consumption and
its frequency[12].

We will base our study on the last two points because we con-
sider the first three more appropriate for the analysis of energy
consumption in the stages of application conception, analysis and
design; while the other two are useful for our analysis of the sched-
uling of already running distributed applications. Consequently, in
order to find the amount of energy consumed in a certain time 𝑇
by the CPU of a device, henceforth device 𝐷 , in terms of its load,
we will use the formula provided by intel[19] (Ohm’s law). This
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formula alone calculates the power consumption in watts of 𝐷 ′𝑠
CPU 𝑃𝐶𝑃𝑈𝐷

in terms of its capacitance being switched per clock
cycle (C), voltage (V), and the processor frequency F (cycles per
second). To obtain the energy consumption in joules (watts/s), we
add the factor 𝑇 in seconds to the formula.

𝐸𝐶𝑃𝑈𝐷
= 𝐶𝐷𝑉

2
𝐷𝐹𝐷𝑇𝐷 (1)

4.1.1 Microservice’s energy consumption in terms of the CPU. In
order to know the energy consumed by a microservice, henceforth
𝑀 , in terms of 𝐷 ′𝑠 CPU, we interpret equation 1 proportionally to
the load that𝑀 generates in this component. Thereby, If we know
this processor’s capacitance 𝐶 , voltage 𝑉 and the total frequency
𝐹 in a certain moment; and if 𝑀 loads it at 𝑋%, the energy con-
sumed to process 𝑀 will be calculated in the same proportion as
the mentioned load, as shown in Equation 2:

𝐸𝐶𝑃𝑈𝐷
=
𝑋𝐶𝐷𝑉

2
𝐷
𝐹𝐷𝑇𝐷

100
(2)

4.1.2 Microservice’s energy consumption in terms of an external
CPU. In order to know the energy consumed by𝑀 on an external
device’s CPU, we will interpret Equation 2 in such a way that we
deduce the number of𝑀 ′𝑠 program instructions taking into account
the number of instructions per unit of time that the processor
can execute. Thereby, if (1) 𝐷 ′𝑠 CPU is capable of executing 𝐼𝐷
program’s instructions in a time𝑇 1 and (2)𝑀 consumes 𝑋% of this
component capacity in 𝑇 1(𝑋𝑀𝐷

), then𝑀 executes 𝐼𝑀𝐷
program’s

instructions in a proportional way too:

𝐼𝑀𝐷
=
𝑋𝑀𝐷

𝐼𝐷

100
(3)

Then, in the context of another device𝐷2, it is possible to deduce
the percentage 𝑋𝑀𝐷2 of its CPU load if 𝑀 would be executed in,
based on the number of instructions 𝐼𝐷2 in 𝑇 1 that 𝐷2 can execute:

𝑋𝑀𝐷2 =
𝑋𝑀𝐷

𝐼𝐷

𝐼𝐷2
(4)

Finally, the energy that 𝐷2′𝑠 CPU would consume to process𝑀
𝐸𝑀𝐷2 can be calculated following the relation shown in equation 1;
but taking into account the proportions that we have just explained
in the last two paragraphs:

𝐸𝑀𝐷2 =
𝑋𝑀𝐷

𝐼𝐷𝐶𝐷2𝑉
2
𝐷2𝐹𝐷2𝑇

100𝐼𝐷2
(5)

Equation 5 allows obtaining from 𝐷 an estimation of the energy
that 𝐷2′𝑠 CPU would consume if it executes𝑀 . Thus, in a negotia-
tion process, this consumption can be analyzed before a migration
or duplication operation.

Finally, we are aware that other characteristics (DVFS, PCPF, etc)
have energy consumption repercussions; however, a mathematical
model considering them that takes these criteria into account will
be presented in a future work.

4.2 RAM
Studying RAM’s energy consumption from the viewpoint of run-
ning applications is a complex task. On one hand, RAM’s load does
not represent a highly relevant factor to energy consumption and

on the other hand, energy consumption by a number of operations
is not easily measurable[25]. For these reasons, we will interpret the
energy consumption of a device’s RAM 𝐸𝑅𝐴𝑀𝐷

as a constant power
value 𝑋𝐷 multiplied by the analysis time 𝑇 in seconds (watts/s).

𝐸𝑅𝐴𝑀𝐷
= 𝑋𝐷𝑇 (6)

4.2.1 Microservice’s energy consumption in terms of the RAM. Al-
though RAM’s load results in relatively small increases in memory
power consumption, some authors[22][33] study RAM energy con-
sumption by focusing on criteria such as the number of accesses
and operations the RAM performs in the context of a program exe-
cution. These criteria beyonds the scope of this work, since they
belong to the stage of application’s design and development[33]. On
the other hand, we have not found a way to model the energy con-
sumption of an already running microservice in terms of the load it
generates in the RAM. For this reason, for us it is important to eval-
uate the RAM consumption only to avoid overload situations since
this could have serious consequences for application’s performance
(due to increased disk latency) and energy consumption.

4.3 Network and disk devices
To model the energy consumption of device’s network interfaces
and disk units, it is necessary to consider their heterogeneity. In the
case of the network interfaces, different types of connection (i.e. eth-
ernet, WIFI and 2, 3, 4, 5G ,etc.) should be considered. Furthermore,
there are methodologies that allow finding the energy consumption
of a specific network card: (1) from its operating state (i.e. sleep, idle,
downlink, uplink)[7], taking into account its data sheets or using
external measuring devices[7]; or (2) by simulation[40][9]. Thereby,
many works perform their energy saving strategies in terms of
NICs, by scheduling the amount of data transmitted[26][14][54],
by making improvements on the network topology[34][2], or by
improving communication paths[53][29].

Although a general energy consumption model was not intro-
duced by the aforementioned approaches, we observe from them
that there is a direct relation between the power consumption of a
network card and the transmission rate it operates at.

In the same way, the power consumption produced by the hard
disk is also related to its transfer rate. In fact, many hard disk brands
specify the consumption of their products when they are in the
active state (read/write) and in the idle state[45][44].

For that reason, we define the power consumption for any of
these two components in the same way and they will be further
referenced as 𝑁𝐷 in this section. We relate their power consump-
tion at a given time 𝑇 with their transfer rate, which is the average
of its send/receive and idle states in 𝑇 . Thus, for a certain device
𝐷 , we established a𝑊𝑢 and𝑊𝑖 values which represent the power
consumption in watts when its 𝑁𝐷 is in an active or idle state re-
spectively. For a current transfer rate 𝐿 ,𝑊𝑢 will multiply 𝐿 relative
to its maximum transfer capacity 𝐿𝑀𝐴𝑋 . Then, the result will be
added to the idle state consumption. For this,𝑊𝑖 will multiply the
complement of ND’s load (i.e. 𝐿𝑀𝐴𝑋 −𝐿 ) relative to 𝐿𝑀𝐴𝑋 . Finally,
in order to obtain energy consumption in joules (watts/s), we take
into account 𝑇 in seconds, as indicated in equation 7.
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𝐸𝑁𝐷 = (𝑊𝑢
𝐿

𝐿𝑀𝐴𝑋
+𝑊𝑖

𝐿𝑀𝐴𝑋 − 𝐿

𝐿𝑀𝐴𝑋
)𝑇𝐷 (7)

4.3.1 Microservice’s energy consumption in terms of the NIC or Disk.
In order to model the energy consumption of a microservice𝑀 in
terms of its load generated in a device’s (𝐷) NIC or disk (𝑁𝐷), we
will use the last equation; but only taking into account the load
generated by𝑀 : 𝐿𝑀 ; and considering the idle state that𝑀 generates
proportionally in the same way that 𝐿𝑀 is for the current ND’s load
𝐿, as it is possible to see in equation 8.

𝐸𝑁𝐷𝑀
= (𝑊𝑢

𝐿𝑀

𝐿𝑀𝐴𝑋
+𝑊𝑖

𝐿𝑀𝐴𝑋 − 𝐿

𝐿𝑀𝐴𝑋
∗ 𝐿𝑀

𝐿
)𝑇𝐷 (8)

4.3.2 Microservice’s energy consumption in terms of an external NIC
or Disk. To model the power consumption that a microservice𝑀
would produce in terms of its load generated in another device we
use, once more, the previous logic; but considering 𝐷1′𝑠 𝑁𝐷 : (1)
Its maximum transfer capacity and (2) Its current load, as seen in
the equation 9:

𝐸𝑀𝐷1 = (𝑊𝑢𝐷1

𝐿𝑀𝐷

𝐿𝑀𝐴𝑋𝐷1
+𝑊𝑖𝐷1

𝐿𝑀𝐴𝑋𝐷1 − 𝐿𝐷1
𝐿𝑀𝐴𝑋𝐷1

∗
𝐿𝑀𝐷

𝐿𝐷1
)𝑇𝐷 (9)

So far, we have described the structure of our multidimensional
space and the value-energy consumption relation that each of its
axes has. In the following paragraphs, we will introduce how we
deploy this space in a P2P overlay which allows us to understand
a decentralized network as a multidimensional data structure. In
it, a device is able to find other peers according to their available
resources to migrate or duplicate microservices with the aim of
saving energy.

5 MULTIDIMENSIONAL P2P APPROACHES
As previously mentioned, this work seeks to take advantage of
some features offered by decentralized network environments in
order to manage microservices based deployments. Thereby, for
a device to find other peers, it is necessary that all the devices of
the network are organized in an intelligent way. For this reason,
there are several network overlay approaches that allow devices
searching for information or peers in a logarithmic number of hops
by abstracting the network as a data structure deployment such
as: (1) an ordered circular list iterated with hash techniques, whose
nodes and information are indexed through the same universe of
IDs[49][27], being Chord one of the best known techniques; (2)
a binary tree that can be explored through bit space and logical
operations like XOR[36]; or (3) a linked list of nodes that can search
for elements by making smart hops in the structure[35].

However, there are circumstances in which a network needs to
be queried by more than one criterion (dimension). In our case,
for example, we query a p2p device network to obtain the best
candidate in terms of CPU, RAM, network and disk availability to
process a microservice. Some pre-existing approaches deploy mul-
tidimensional data structures such as Rtree[13], or KD Tree[17] in
a distributed network, keeping the parent-child relation of the tree
nodes in the network devices. These last approaches allow range
multidimensional querying in an efficient way; but the balancing
or restructuring operations when inserting or deleting nodes could

involve the participation of many devices in the network to perform
expensive and complex data movements.

On the other hand, other approaches seek to partition multidi-
mensional spaces into more independent structures. For example
MAAN[4] generalizes the Chord approach to deploy a multidi-
mensional space in as many circular device lists as the space has
dimensions. In the following paragraphs, we will explain in detail
how this technique works since, despite the positive characteris-
tics that other approaches may have, we have arbitrarily (since it
is not the objective of this work to demonstrate the advantages
and disadvantages of P2P overlays) chosen MAAN to deploy our
multidimensional space U described in section 3.

Before explaining the structure of MAAN, it is necessary to
understand the Chord structure. Chord[50] deploys an ordered
circular list of devices where they are organized in a clockwise
fashion according to their ID. Each one of them, as well as the
elements to look for (i.e. data, processes, etc.), are identified with
the same universe of identifier numbers.

In addition, each device (node) keeps a table of addresses called
finger table. This table has as many elements as the length of the
bit string that represents the highest ID of all elements. Then, each
index in the table will be defined by the id of each node added to 2𝑖 ,
where i goes from 0 to the length of the aforementioned bit string.
Every time an element 𝐸 is searched through a node 𝑁 , 𝑁 looks
for the 𝐸 ′𝑠 index successor in its finger table, that is, the highest
possible index that does not exceed 𝐸 ′𝑠 id. Thus, the data structure
used to search for elements is a consistent hashing table.

On the other hand, because Chord manages an ever changing
network of devices, nodes can join and leave at any time. Due to
this, it is important to understand the way each join/leave operation
achieve said dynamism:

The join operation: There are several operations a new node 𝑛𝑁
and other nodes in the network must perform in order for 𝑛𝑁 to
join the Chord network. First, the entering node 𝑛𝑁 gets assigned a
unique 𝐼𝐷 by using a SHA-1 function to hash it’s IP address. Then,
an external mechanism guarantees a connection between 𝑛𝑁 and
a Chord network pre-existent node which is found by executing
a query inside of the network to find a node representative of an
immediate successor of 𝑛𝑁 : 𝑛𝑁 1.

The knowledge of 𝑛𝑁1, consisting of a immediate circle prede-
cessor node reference and a finger table, is then used by 𝑛𝑁 to
assign its own circle predecessor reference to the one of 𝑛𝑁1 and
fill its own finger table by copying the one in 𝑛𝑁1. Finally, the
predecessor reference of 𝑛𝑁 1 is re-set to 𝑛𝑁 at this moment.

Once 𝑛𝑁 has been initialized, an update must be issued walking
counterclockwise along the circle to update previous nodes’ finger
tables, acknowledging 𝑛𝑁 ′𝑠 existence and preserving finger tables’
consistency. This is done by assigning 𝑛𝑁 ′𝑠 ID to the appropriate
finger table references inside of the circle predecessor node 𝑃 finger
table if both of the following conditions are met: (1) 𝑃 precedes 𝑛𝑁
by at least 2𝑖−1, where 𝑖 is delimited from 1 to𝑚 where𝑚 is the
length of finger tables and (2) the last finger entry of node 𝑃 succeeds
𝑛𝑁 . This update operation is sustained until a previous node 𝑃

whose 𝑖𝑡ℎ finger precedes 𝑛𝑁 is reached. Finally, the responsibility
of corresponding keys gets delegated from 𝑛𝑁 1 to 𝑛𝑁 .
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The leave operation: To perform the leave operation, first a leav-
ing node 𝐿𝑁 informs its predecessor node 𝑝𝐿𝑁 that 𝐿𝑁 ′𝑠 immedi-
ate successor node in the circle, 𝐿𝑁 1, is now its immediate successor
in the circle. Then, the circle predecessor reference of 𝐿𝑁 1 is set to
𝑝𝐿𝑁 . An update operation similar to the one described for the join
operation is performed with the ID of the successor of 𝐿𝑁 . The goal
of this update operation is to keep the finger tables of nodes located
counterclock along the circle updated. Finally, the responsibility
for 𝐿𝑁 ′𝑠 keys is delegated to 𝐿𝑁 1 .

MAAN:. As mentioned above, MAAN[4] generalizes the Chord
approach to support n-dimensional queries as well as range queries.
To do this, It uses a SHA-1 hashing function in order to assign a
m-length bits identifier for each node and a locality preserving
hashing function (a function designed to output consecutive values
from related inputs) that, in contrast with the original Chord ap-
proach, is used to assign each attribute an identifier in the m-bit
space according to its value (the same space shared by the m-bits
node identifiers specified before). The latter is specifically important
because the SHA-1 function would destroy the locality of keys since
MAAN seeks to pair numerical attribute values to them instead
of objects’ names. Thereby, this allows the execution of 2 differ-
ent multi-attribute query resolution approaches that would not be
possible within Chord’s original system. These two approaches are:

• The iterative approach, which consists of a resource search
originated by a node 𝑁 and composed by a 𝑀 number of
following sub-queries according to the 𝑛 number of attribute
dimensions available. This approach returns a series of can-
didate lists that are later intersected in origin node 𝑁 with
the purpose of finding the fittest candidate.

• The single attribute dominated query resolution aims to find
appropriate candidates by performing a search fulfilling the
needs of a single dominating attribute, returning a candidate
set 𝑋 . Then, sub-queries for other attributes are applied on
𝑋 to obtain a single set of candidates whose members meet
the needs of other resources. Finally, origin node 𝑁 proceeds
with the selection of the fittest candidate by correlation. This
second approach may result inconvenient due to the amount
of candidates that can exist in set 𝑋 and do not fulfill the
needs of any other sub-queries.

In MAAN, join and leave operations are kept the same as the
original Chord system as it remains the core of MAAN.

6 IMPLEMENTING THE SPACE OF
RESOURCES U IN MAAN

As defined previously in section 3, device resources exist inside of
space 𝑈 based on the availability of their processing capabilities.
With these, we aim to efficiently find/index resources to perform
migration and duplication operations on microservices to achieve
energy savings, therefore, an appropriate system to efficiently store
and retrieve candidate host devices in 𝑈 is needed. Furthermore,
due to space 𝑈 consisting of 4 dimensions/axis of resources, this
system must support multidimensional indexing.

6.1 Resources to index
According to our previous definition of space U, 4 different dimen-
sions/axes are related to 4 different hardware resources: (1)CPU
frequency in GHz (2)RAM capacity in MB (3)network transfer rate
in Mbps and (4)Hard disk speed in MBps. Thereby, MAAN will
be used to index each device resource availability value on the
corresponding𝑈 axis.

6.2 Node join operation
When a device intends to join theMAANnetwork, 4 different logical
nodes are created in 4 different dimensions in accordance with the
axis of space 𝑈 . These nodes follow exactly the same operations
as the ones described above in Chord’s node join operations with
some technical differences. In our approach, we lack an IP address
identifier for each device. Therefore we created a locality preserving
formula that, for any dimension, transforms a numerical value
representing the availability of a resource into a corresponding ID
coherent to the ID space available. Formula 10 states a superior
limit for numerical entry values and a maximum number of nodes
supported. Thus, a numerical input value 𝑉 is multiplied by the
maximum number of supported (at any time) nodes 𝑁 and the
product divided by the maximum device’s resource limit value 𝑆𝐿,
where 𝑆𝐿 and 𝑁 values are relative to each dimension constraints.

𝐼𝐷 =

⌈
𝑉 ∗ 𝑁
𝑆𝐿

⌉
(10)

Thereby, in our approach, finger tables contain records in pairs
of m-bit space identifiers and node references. These elements grant
us the execution of n-dimensional queries by applying an iterative
approach like the one used in MAAN’s original proposal.

On the other hand, it’s important to say that nodes with a repet-
itive value for any attribute can join the network resulting in an
identical ID assignment as a pre-existing node in the network. This
would result in a collision causing any entering node to place itself
between a successor circle node and (if existent) a node identical
to itself, further referenced as 𝑡𝑤𝑖𝑛𝑛𝑜𝑑𝑒 . Due to this, we decided
to implement a technique inside our approach that manages nodes
involved in this phenomenon. When a twin node𝑇 tries to join the
network and finds a predecessor node 𝑟𝑁 (root node which has
assigned the same ID as 𝑇 ) counter clock along the circle, 𝑇 enters
a twin list of 𝑟𝑁 where each member has a twin list predecessor
node and twin list successor node references. This list keeps the
twin nodes of 𝑟𝑁 stored to execute node leave related operations
further explained below in section 6.4.

6.3 Querying for resources
In order to perform queries, we follow MAAN’s iterative approach
with a couple of new techniques applied on any candidate list 𝑋 .
First, we introduce a “candidate lock” meant to prevent resource
selection collisions. Resource selection collisions occur when the
same host candidate is selected as the fittest candidate by several
different query executions and simultaneous microservices migra-
tion/duplication operations occur towards this node, causing satura-
tion of the new host candidate due to newly received microservices
competing for resources and consequently inducing a higher power
consumption in the new host device. The candidate lock is applied
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on each member 𝑥 ∈ 𝑋 which means that devices can be candidates
to exclusively one query at a time.

Even though this candidate lock strategy is enough to prevent
selection collisions, another selection strategy had to be applied
inside of our querying approach to prevent a “circular saturation”
phenomenon. A circular saturation phenomenon occurs when a sat-
urated device finds a fit host device and migrates its microservices
but causes a final higher energy consumption by either: (1) causing
a high enough demand that triggers external device mechanisms
to mitigate thermal energy elevation such as a fan or (2) causing
the new host to initiate a migration strategy resulting in further
network strain. We prevent circular saturation by performing a cal-
culation inside the querying node that, for every 𝑥 ∈ 𝑋 , predicts the
future resources consumption. This is done by projecting the future
percentage of each resource consumption should the candidate mi-
croservice be hosted there, discarding hosts whose projection would
result equal or greater to a specific desired percentage threshold.

6.4 Node leave operation
The node leave operation is kept mostly the same as the one in the
original Chord’s proposal having the handling of twin nodes as an
added feature. For any twin list inside of any pre-existent parent
root node 𝑟𝑁 , if 𝑟𝑁 leaves the network, the first twin node TN of
the twin list inside 𝑟𝑁 gets assigned as the new 𝑟𝑁 by copying 𝑟𝑁 ′𝑠
elements, such as the counter clock circle predecessor reference
and its finger table. In the event that a twin node inside of 𝑟𝑁 ′𝑠
twin list leaves, all left to do is remove it from 𝑟𝑁 ′𝑠 twin list and
reset the references (previously mentioned above) of its twin list
predecessor and twin list successor to fill the gap between them.

6.5 Data frames
We decided to implement the concept of “data frames” inside of our
approach to recollect the change per resource availability in each
device allowing us to control the frequency with which nodes get
dynamically reindexed into MAAN. Data frames are, in essence, a
limited (to a deliberate amount) collection of resource availability
measurement values related to a single resource. This allows us
to perform the re-indexing process through a supervisory service
that makes the pertinent node leave and then join again if there is
a substantial change in its ID. The calculation deciding whether a
node must be re-indexed or not works the following way: (1) find
the average value in the data frame to (2) get an ID related to it
and, (3) if the ID is different to the currently indexed one, perform
a re-index operation on that node.

7 THE SCHEDULING ALGORITHM
Once a device is inserted into our MAAN’s network configuration
containing our space U deployed, it starts the continuous execu-
tion of a supervisor service[32]. The objectives of this service are
(1) to evaluate every certain time elapsed the load sustained by
each of the device’s hardware components, (2) to manage the set
of microservices that the device runs (i.e. start, stop, migrate or
duplicate); and (3) provide information about its device such as
hardware components load, hardware components capabilities and
working time; and information about the microservices it runs like

processing requirements, execution time and generated load. Fur-
thermore, it analyzes its device data frames to keep the resources
nodes updated. We use this service in such a way that, through
collaborative negotiations, the devices can reach an efficient load-
energy state. In order to achieve this, we propose an algorithm
based on the following premises:

• A device can find another peer to process a microservice
fulfilling its processing requirements with a lower energy
consumption.

• A device sustaining overload conditions in its CPU and/or
disk components can activate heat dissipating mechanisms
(such as a fan), which result in a higher energy consumption.

• There are situations in which it is possible to migrate mi-
croservices to turn off a device, saving energy.

• A device may migrate high/low consumption microservices.

These premises allow us to reach an initial pivot point in the
algorithm which involves two main scenarios:

(1) The device is saturated and migration operations need to be
performed.

(2) The device is not saturated but energy consumption can
be mitigated/reduced by reducing hardware load with the
migration of microservices.

For the first scenario, we decided that a device is saturated based
on previous behavioural observations of the algorithm when one
of the hardware resources available is being consumed at 85%. In
addition, a deliberate tax of an additional 20% power consumption
is applied on a saturated device in an effort to emphasize such a
situation. Once a saturation condition is met, the algorithm pro-
ceeds by selecting the heaviest microservice and then executes a
search for candidates that meet the requirements to host it. If there
are no available candidates, it proceeds to search again with the
requirements of the smallest microservice to finally migrate the
microservice in either of cases to a random fit candidate. For the sec-
ond scenario, a fan off and sleep strategies were included. The fan
off strategy consists of reducing the load of a device to a deliberate
80% or less, mitigating the deliberate extra 5% energy consumption
induced by the fan. The sleep strategy sends the device to sleep
reducing the energy cost of the device to a deliberate 5%.

8 EXPERIMENTS AND RESULTS
In order to test scenarios and perform our experiments, we used the
DRACeo[31] simulator to deploy devices specifying their resources
capabilities, microservices with their resources demands, and net-
work overlays through an API. In addition, DRACeo allows the
definition of the mathematical model that explains the hardware
component load-power consumption relation also through an API.

8.1 Methodology of testing
To perform our experiments, we considered a collection of metrics
to define devices’ capabilities and hardware consumption variables
gathered from several sources like data sheets and public hardware
benchmarks. The objective of this is to approximate results to real
scenarios, facilitating their interpretation.
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8.1.1 Defining devices capabilities. As previously mentioned, we
consider 4 different device’s hardware capabilities to study the rela-
tion between load, QoS and energy consumption: CPU frequency
(Ghz), RAM capacity (MB), disk data transfer rate (MB/s) and finally
NIC data transfer rate (Mb/s). For this work and further explained
test scenarios, a random delimited value for each resource shown
in table 1, establishing heterogeneity among devices.

These values are mostly considered by averaging data from pub-
licly available sources. For instance, the CPU and RAM possible
values were considered by analyzing publicly available hardware
benchmarks performed independently by millions of users[52][41],
providing an insight into hardware resources available in the mar-
ket, while NIC and disk valueswere based on hardware and software
specialized websites that perform independent test[51][23].

Table 1: Devices capabilities

CPU (Ghz) RAM (MB) NIC (Mb/s) Disk (MB/s)

1.2-4.8 2000-32000 101.0-1000 SSD: 101.0-800
HDD: 80-160

8.1.2 Defining power consumption variables. Having defined above
the capacity for each resource, we defined variables to model power
consumption by interpreting information gathered into possible
magnitudes of values shown in table 2. For instance, we selected
CPU consumption values following CPU data sheets[21] and CPU
overclocking techniques[20] involving voltage among others[10].
RAM and disk values were simple to define as hardwaremanufactur-
ers have previously justified a delimited estimated consumption[45]
[44]. On the other hand, we deliberated NIC consumption variables
by averaging a recollection of several NIC hardware specifications[7].

Table 2: Components power variables

CPU RAM NIC Disk (SSD/HDD)

Capacitance:10pF
Voltage:1.2v 3-5W

Idle:0.4944W
Active:
1.1349W

Idle:0.05/5.4W
Active:2.2/8.0W

8.2 Tests definition
8.2.1 Scalability test. The objective of this test was to challenge the
scheduling algorithm and energy saving strategies with increasing
numbers of microservices and devices through time. The test begins
with 20 heterogeneous devices and 40 heterogeneous microservices
(MS.) varying among 3 different types with diverse resource de-
mands shown in table 3, where the microservice size is the data
size to be duplicated/ migrated during scheduling.

The duration of the experiment consists of 100 seconds and a
deployment of 10 random microservices and 10 random devices
each 10 seconds for the first 80 seconds, leaving 20 final seconds
to the scheduling algorithm for stabilizing. This experiment was
performed 100 times in order to ensure repeatability of testing and
consistency of the results.

Table 3: Microservices Requirements

Resources GUI MS. Control MS. DB. MS.
CPU (Ghz) 1.2 1.8 0.8
RAM (MB) 200 100 150
Network (MB) 0 0 0
Disk (MB) 0.1 50 50
Microservice size (MB) 50 50 50

8.2.2 Stress test. The objective of this experiment was to prove
resilience of the scheduling algorithm when faced against a con-
stant change in microservices execution. This test consisted of 250
random microservices of the same types as the ones in the previous
experiment randomly deployed among 50 heterogeneous devices.
Furthermore, we introduced a time constraint feature inside of mi-
croservices which gave them a specific “time to finish” ranging
from 5 to 30 seconds for a whole text duration of 100 seconds. This
meant that each microservice had a temporal operational impact
before being removed from the network and redeploying another
random one. In this experiment, the sheer amount of microser-
vices is guaranteed to stress the whole network inducing constant
scheduling and, while introducing a “time to finish” would relief
it, we decided to keep a varying (due to the randomness of the de-
ployment and type of microservice) constant stress by deploying a
microservice each time one microservice finished. This experiment
was also performed 100 times in order to ensure repeatability of
testing and consistency of the results.

8.3 Tests metrics definition
In order to evaluate the performance of our approach, we considered
to analyze 5 variables during the 2 experiments performed:

• The energy consumed by the entire network (Joules).
• The QoS achieved on average by all microservices that are
executed in the network.

• The average number of migrations performed.
• The data transferred by microservices movements (MB).
• Energy cost of microservices movements (Joules).

8.4 Definition of success
In order to properly interpret the data collected as a success, we
compared the performance results of our algorithm in the tests
previously mentioned against the performance results of Kaligreen
algorithm and no algorithm in the same tests under the same con-
ditions and number of experiment repetitions. Kaligreen algorithm
gets executed when a supervisor microservice in a device detects a
resource consumption level surpassing a deliberate threshold. Once
this saturation is detected, the supervisor microservice selects the
heaviest microservice currently hosted in the device and migrates
it to the freest available neighbor peer. Finally, the performance of
our algorithm should be catalogued as a success if, after analyzing
the performance results, energy consumption is lowered or kept
the same and there is an increase on QoS, or, QoS is bettered at the
expense of slightly more energy consumption.
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8.5 Scalability test results
As shown in table 4, our scheduling algorithm proved to consume
a total average of 27% less energy (692020.73 joules) against the ex-
periments with no algorithm (95452.72 joules) , and 11% less energy
against the naive algorithm (78570.94 joules) experiments. Further-
more, the average QoS sustained by our algorithm was greater than
the one kept by both of the alternative experiments, where our
algorithm scored an average of 99.24% of QoS against 94.04% of
the no-algorithm experiments and 99.21% of the naive algorithm.
Even though an observable difference in number of movements
performed by our algorithm against the naive algorithm, having
55.70 and 50.35 respectively, and an observable higher average data
transfer is present, having 850.29 MB against 775.83 MB respec-
tively, the amount of total energy saved is well worth it even after
considering the energetic cost of movements done, having 0.002
joules against 0.001 joules consumed by the naive algorithm. After
the evaluation of these results, we can consider our experiment a
success, stating that our algorithm is scalable and stable.

Table 4: Scalability test results

Average of: Algorithm No algorithm Dummy
Total energy 69202.7337 95452.72 78570.94
QoS 99.2414925 94.04 99.21
Movements 55.7014925 0 50.35
Data transfer 850.298507 0 775.83
Movements’
Energy
consumption

0.00210982 0 0.00176535

8.6 Stress test results
This experiment revealed an interesting behaviour against the other
alternatives. As it is possible to see in table 5, our algorithm con-
sumed a total average of 69% more energy (578315.4 joules) against
the no-algorithm experiments (340372.9 joules) and 4% less energy
than the naive algorithm (598737.0 joules). In addition, the most
revealing information shown by this test was the average QoS sus-
tained by each scheduling algorithm or lack of. Our scheduling
algorithm scored an average of 92.71% of QoS against the average
87.61% sustained by the naive algorithm and 87.05% sustained when
no algorithm was applied. This demonstrates that the movements
performed by our algorithm did not only save energy compared
against the naive algorithm, they were also wiser, keeping the QoS
level as high as possible under heavy load. On the other hand, the
amount of these movements is higher when compared with the
naive algorithm, having an average of 912.6 movements against
798.5 respectively. Even though this results in a higher average data
transfered of 12610.29 MB and 13243.3 MB respectively the differ-
ence is intranscendental considering they consumed 0.030 joules
against 0.031 joules consumed by the naive algorithm. This is easily
explained by taking into consideration that, under heavy network
resources load, mostly small microservices are moved. Overall, our
algorithm proved to be resilient under heavy loads, keeping energy
as low as possible and, in an inverse way, QoS as high as possible.

Table 5: Stress test results

Average of: Algorithm No algorithm Dummy
Total energy 578315.444 340372.995 598737.071
QoS 92.7182353 87.05 87.6183333
Movements 912.647059 0 798.583333
Data transfer 12610.2941 0 13243.3333
Movements’
Energy
consumption

0.03020178 0 0.03184407

9 CONCLUSIONS AND FUTUREWORKS
In this article, we have shown that it is possible to save energy by
running microservices on "ideal" devices. To do this, we have eval-
uated the device load and microservices execution requirements
using a P2P overlay called MAAN which is based on a multidi-
mensional data approach and offers stability, efficiency and inde-
pendence of operations. This structure allows a device to find in a
logarithmic number of hops another peer with sufficient and opti-
mal capacities in order to negotiate and then execute the migration
or duplication of a microservice. The negotiation criterion handled
by each device is managed by its scheduling algorithm.

To test our approach, we used DRACeo as a tool for simulating
our scheduling algorithm in MAAN-based P2P environments. Our
two experiments were aimed at evaluating energy consumption
in situations of scalability and stress, obtaining good results in
both cases: saving up to 27% of energy in the first experiment and
ensuring an optimal level of 93% of QoS in the second.

On the other hand, we are aware that it is necessary to evalu-
ate this technique in more realistic architectures where important
criteria typical of the software production stage are taken into ac-
count, such as microservices discovery, replication restrictions, load
balancing, etc. We will develop these analysis in future work.
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