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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Cobalt exposure reduces biomass and 
chlorophyll content in biofilms. 

• Cobalt exposure alters the meta- 
metabolomic fingerprint of biofilms. 

• Meta-metabolomic defense responses 
are characterized by biphasic trends. 

• Meta-metabolomic damage responses 
are characterized by monotonic trends. 

• Trend analysis of metabolite dose- 
response curves is a promising avenue 
for omics.  
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A B S T R A C T   

The response of the meta-metabolome is rarely used to characterize the effects of contaminants on a whole 
community. Here, the meta-metabolomic fingerprints of biofilms were examined after 1, 3 and 7 days of 
exposure to five concentrations of cobalt (from background concentration to 1 × 10− 5 M) in aquatic microcosms. 
The untargeted metabolomic data were processed using the DRomics tool to build dose-response models and to 
calculate benchmark-doses. This approach made it possible to use 100% of the chemical signal instead of being 
limited to the very few annotated metabolites (7%). These benchmark-doses were further aggregated into an 
empirical cumulative density function. A trend analysis of the untargeted meta-metabolomic feature dose- 
response curves after 7 days of exposure suggested the presence of a concentration range inducing defense re
sponses between 1.7 × 10− 9 and 2.7 × 10− 6 M, and of a concentration range inducing damage responses from 

Abbreviations: BMD, benchmark-dose; BMR, benchmark-response; CRIDaR, concentration range inducing damage responses; CRIDeR, concentration range 
inducing defense responses; ECx, effective concentration; ECDF, empirical cumulative density function; LC-HRMS, liquid chromatography-high resolution mass 
spectrometry. 
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2.7 × 10− 6 M and above. This distinction was in good agreement with changes in the other biological parameters 
studied (biomass and chlorophyll content). This study demonstrated that the molecular defense and damage 
responses can be related to contaminant concentrations and represents a promising approach for environmental 
risk assessment of metals.   

1. Introduction 

In aquatic ecosystems, biofilms grow on submerged substrata and 
form the basis of the aquatic food web, as they include a large proportion 
of primary producers (algae and cyanobacteria) as well as bacteria, fungi 
and meiofauna. These communities are well known to accumulate 
metals as a function of their ambient concentration and speciation 
[1–3]. Effects of metals on biofilms have been shown at all levels of 
biological organization, from subcellular [4,5] and cellular [6–9] levels 
to communities [4,5,10]. Among these effects, modification of metab
olite contents can be linked to stressors [11]. Metabolites are low 
molecular-weight molecules produced during metabolism with various 
cellular roles in basal functioning and defense mechanisms [11], such as 
in osmoregulation, antioxidant activities or metal chelation [12]. They 
can also be related to damages caused by stress such as lipid peroxida
tion [13] or hypoxia [14]. 

Examination of a whole metabolome is commonly referred to as 
metabolomic fingerprinting [15] and is often conducted using untar
geted Liquid Chromatography-High Resolution Mass Spectrometry 
(LC-HRMS) [16]. The strength of the untargeted meta-metabolomics 
approach is based on the absence of an a priori assumption for the 
type and function of molecules required prior to analysis, thus broad
ening the potential number of compounds that could be characterized. 
In this approach, both unannotated and annotated metabolites are 
considered; the annotation consisting of assigning a tentative metabolite 
candidate from a set number of identified compounds within a database 
on its mass, its retention time and its spectral fragmentation. However, 
metabolite annotation is database-dependent and to this date, only a 
small portion of the metabolomic fingerprint can be identified [17], 
typically only 4 to 5% [18]. Using only the annotated metabolites 
therefore results in the loss of a significant part of the chemical infor
mation acquired through untargeted analysis. The processing of 
metabolomics data is often restricted to multivariate statistical ap
proaches in order to distinguish control groups from groups exposed to 
contaminants [19]. Although less frequently used, dose-response curves 
can also be drawn using the metabolite response. As such, benchmark 
doses (BMDs) can be extracted, which correspond to the doses of the 
tested contaminants at which the response of the exposed organisms 
differs from the control group [15,20,21]. These BMDs can be further 
aggregated in an empirical cumulative density function (ECDF) to get 
the whole metabolome response as a function of the contaminant 
exposure concentration [15,22]. Building metabolite ECDFs for biofilms 
exposed to contaminants such as metals may therefore provide valuable 
information on their exposure and effects. 

Apart from ECDFs, dose-response curves for metabolomic response 
as a function of concentration may be further used by examining their 
trends. Indeed, one of our recent meta-analysis conducted on 2595 dose- 
response curves described by defense and damage biomarkers in 18 
phyla exposed to inorganic and organic contaminants demonstrated that 
defense biomarkers mainly describe biphasic responses (bell- and U- 
shaped trends) whereas damage biomarkers mainly follow monotonic 
responses (decreasing and increasing trends) [23]. As such, cellular 
defense mechanisms such as the activities of antioxidant enzymes [24, 
25], phytochelatins [26] or biotransformation enzymes and associated 
compounds [26] preferentially describe a bell-shaped or U-shaped 
trend. On the other hand, cellular damage mechanisms such as change in 
pigment content [24,25], reactive oxygen species [24] or malonalde
hyde levels [27] preferentially vary in a monotonical way via increasing 
or decreasing trends [23]. In other words, the induction of a defense 

mechanism, the role of which is to have a positive impact on the or
ganism, would begin following exposure to low-level stress up to a 
certain threshold of intensity from which the organisms’ defense 
mechanisms are overwhelmed. The concentrations of the metabolites 
involved in a defense response would then decrease [28], explaining a 
bell-shaped response. The U-shaped dose-response would follow the 
same biphasic response principle [28]. For damages linked metabolites, 
their induction would mainly be initiated once the defense mechanisms 
have been overcome and would result from the continuous degradation 
of cellular and sub-cellular compounds, hence their tendency to increase 
and decrease in proportion to the intensity of the stress [29]. 

The objective of the present study was to couple the use of ECDFs 
constructed with BMDs with the analysis of dose-response trends. We 
aimed to develop a robust novel approach to assess metal effects on 
biofilms based on 100% of the measured untargeted metabolomic signal 
without restricting ourselves to limited pool of annotated metabolites. 
Our hypothesis, based on our aforementioned meta-analysis [23], is that 
the dose-response curve trends (biphasic or monotonic) of untargeted 
meta-metabolomic features allow us to determine the stress state (de
fense or damage) of organisms. 

Cobalt (Co) was selected as the metal of interest as it is considered an 
emerging contaminant due to the current energy transition from fossil 
fuels to decarbonized energy, which requires intensive use of Co- 
containing batteries [30,31]. Cobalt has recently been identified as a 
relevant substance to be monitored in France [32] and as a toxic sub
stance in Canada [33]. Its effects on microorganism communities has 
been poorly studied, which limits the capacity of environmental regu
lators to adequately conduct a thorough risk assessment [34–37]. 

In this work, mature river biofilms were exposed for 7 days to 
increasing Co concentrations in microcosms. Cobalt bioaccumulation, 
biomass, chlorophyll content and meta-metabolome response were 
determined. Both endogenous metabolites (contained within organisms 
or adsorbed on their surface) and exogenous metabolites (excreted by 
organisms) were included. The relevance of the calculated concentration 
range inducing defense responses (CRIDeR) and concentration range 
inducing damage responses (CRIDaR) based on the trends of untargeted 
meta-metabolomic feature dose-response curves (Fig. S1) was assessed 
by comparing their range of induction with biomass and chlorophyll 
content. 

2. Material and methods 

2.1. Biofilm colonization and exposure to Co in microcosms 

Biofilm colonization and exposure experiments were carried out at 
the outdoor TotalEnergies facility (pilot rivers) in Lacq (France). Four 
weeks before the start of the experiment, the mature biofilms were 
collected by natural colonization of glass slides (5 × 10 cm). A total of 15 
microcosms were filled with 15 L of river water (Gave de Pau, France); 
three for each of the five Co exposure conditions: 2 × 10− 9 M (river 
background Co concentration used as control), 1 × 10− 7, 1 × 10− 6, 5 ×
10− 6 and 1 × 10− 5 M Co. Cobalt (Standard solution, 1000 mg Co⋅L− 1, 
Supelco, Germany) was added to each microcosm and left to equilibrate 
for 24 h. The microcosms were placed in one of the artificial streams of 
the facility in order to maintain the water temperature at 13.5 ± 1.0 ◦C 
(Table S1). Seven mature biofilm slides were placed in each microcosm 
(105 in total). After one, three and seven days of exposure (D1, D3 and 
D7), two biofilm slides were collected from each microcosm, one for Co 
accumulation and one for meta-metabolomics. At D7, one additional 
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slide was sampled for the determination of chlorophyll content. The 
samples were stored in the dark at − 20 ◦C before analysis. The prepa
ration of exposure media is further described in the Supplementary 
material (Text S1). 

2.2. Water analysis and Co speciation 

At D− 1, D1, D3 and D7, triplicate samples (10 mL) of exposure 
medium were collected from each microcosm to determine metal con
centrations. Samples for cation, anion and dissolved organic carbon 
concentrations were collected at D− 1. The sampling and analysis pro
tocol of the different physicochemical parameters of the exposure media 
are presented in Text S2. 

2.3. Biofilm analysis 

Biofilm samples collected for the determination of Co accumulation, 
chlorophyll content and meta-metabolome analysis were freeze-dried 
(CRIOS-80, Cryotec, France) and weighed prior to further processing. 
These data were used to express the quantity of dry biomass (in g) per 
glass slide area (cm2), referred to as “biomass” in the remainder of the 
manuscript. To obtain total and intracellular Co concentrations, the 
freeze-dried biofilms were digested with 70% HNO3 acid and 30% H2O2 
before being mineralized (UltraWAVE™ oven, Milestone, Italy). To 
distinguish between total and intracellular Co content, biofilms were 
previously rinsed with 10 mM ethylenediaminetetraacetic (EDTA) for 
10 min in order to remove adsorbed metals on the biofilm surface [1, 
38]. Metal concentrations were measured by inductively coupled 
plasma mass spectrometry (model 7500, Agilent, CA, USA). The detailed 
protocol for the determination of bioaccumulated Co is provided in Text 
S3. Chlorophyll content was analyzed by spectrophotometry with 
different pigments (chlorophyll a, chlorophyll b and chlorophylls c1 and 
c2) quantified using the Jeffrey and Humphrey protocol [39], with 
further details presented in Text S4. Meta-metabolomic analyses were 
carried out at the Muséum national d′Histoire naturelle (Paris, France) 
following the method of Le Moigne et al. [40]. Briefly, freeze-dried 
biofilms (1 mg) were diluted in 10 µL of cold 75% methanol acidified 
with 0.1% formic acid and sonicated on ice for 30 s, at 80% of the 
maximum intensity (SONICS Vibra Cell, Newton, CT, USA; 130 Watts, 
20 kHz), with the homogenates then centrifuged at 4 ◦C (12,000 g: 10 
min). The supernatants were then collected and stored in the dark at 
− 20 ◦C. For the mass spectrometry analysis, 2 µL of the extracts were 
injected into an ultra-high-performance liquid chromatography instru
ment (ELUTE, Bruker, Bremen, Germany) equipped with a Polar 
Advance II 2.5 pore C18 (Thermo Fisher Scientific, Waltham, MA, USA) 
chromatographic column. The molecule separation was obtained with a 
flow rate of 300 µL⋅min− 1 under a linear gradient of acetonitrile (from 5 
to 90% in 15 min) acidified with 0.1% formic acid. Metabolite contents 
were then determined using an electrospray ionization hybrid quadru
pole time-of-flight high-resolution mass spectrometer (Compact, 
Brucker, Bremen, Germany) in the range of 50–1500 m/z. The global 
feature contents were extracted from raw data with Metaboscape 4.0 
(Bruker) and annotation was attempted by molecular network approach 
performed with MetGem 1.3.6. The analysis method and annotation 
protocol are detailed in Text S5. Raw LC-HRMS data are available at the 
National Institutes of Health Common Fund’s National Repository 
website and the Metabolomics Workbench [41] (https://www.metabolo 
micsworkbench.org) with the assigned Project ID PR001754. The data 
can be accessed directly via its Project DOI: https://doi.org/10.2122 
8/M8071P. 

2.4. Construction of dose-response models and ECDF 

Dose-response curves were built based on the biofilm meta- 
metabolomic response to Co2+ concentrations at D7 using the DRo
mics package in R software following the recommendations of the 

European Food Safety Authority Scientific Committee and those of 
Larras et al. [20,21]. Pre-processing was performed on the raw LC-HRMS 
data. First, the half-minimum method was applied for missing values. 
The data set was then log-2 transformed and the significantly responding 
untargeted meta-metabolomic features were selected using an ANOVA 
with a false discovery rate of 0.05. For each selected untargeted 
meta-metabolomic feature, dose-response models (linear, Hill, expo
nential, Gauss-probit or log-Gauss-probit) were then fitted by non-linear 
regression. The model with the lowest second-order Akaike information 
criterion value was chosen. When dose-response curves could not be 
reliably fitted, the untargeted meta-metabolomic feature was removed 
from the analysis. The models were further characterized according to 
their trends (bell-shaped, decreasing, increasing and U-shaped) of the 
fitted dose-response curves. 

Once the best dose-response models were constructed for each 
untargeted meta-metabolomic feature previously selected, a BMD− 1SD 
was calculated from a benchmark-response (BMR− 1SD) using the 
following equation (Fig. 1): 

BMR− zSD = y0 ± z × SD  

where y0 is the mean control response (average concentration of the 
untargeted meta-metabolomic feature detected in the biofilms of the 
control group), SD is the residual standard deviation of the considered 
model, i.e., 95% confidence interval and z is the factor of SD (z fixed at 1, 
a value proposed by the European Food Safety Authority) [15]. In other 
terms, BMR− 1SD defines the first value of the response of exposed bio
films that differs from that of control biofilms, and BMD− 1SD is the Co 
concentration at which this BMR− 1SD occurs. When the calculated 
BMR− 1SD was within the range of response values defined by the model 
but the corresponding BMD− 1SD value was calculated to be outside the 
range of the tested Co concentrations, the untargeted meta-metabolomic 
feature was not taken into account (Fig. 1). The confidence interval on 
the BMD− 1SD values were calculated by bootstrapping (1000 iterations). 
After this step, models were removed when one of the bounds of their 
95% confidence interval could not be computed. Such a result could be 
obtained when bootstrapped BMD− 1SD values were not reachable due to 
model asymptotes or to calculated values outside the range of tested 
doses. 

Finally, the distribution of all BMDs− 1SD was compiled into an 
empirical cumulative density function (ECDF) also built with the DRo
mics R package to obtain an integrative response of biofilm exposure. 
The ECDF is a step function that jumps up by 1/N at each of the N data 
points from the untargeted meta-metabolomic with the lowest BMD− 1SD 
to the untargeted meta-metabolomic feature with the highest BMD− 1SD. 
Additional ECDFs were further constructed as a function of the dose- 
response curve trends. 

2.5. Statistical treatments 

The significance of Co exposure on Co bioaccumulation, biomass and 
chlorophyll content was assessed according to Dunn’s post-hoc test after 
Kruskal-Wallis non-parametric tests on R software. Analyses of unan
notated and annotated metabolites were performed on MetaboAnalyst 
5.0, including matrix normalization (Pareto), partial least square 
discriminant analysis and ANOVA (analysis of variance). 

3. Results 

3.1. Characterization of the Co concentration in the exposure media 

The river water used for exposure media preparation, had back
ground total dissolved concentrations of 1.7 ± 0.2 × 10− 9 M Co, 4.1 
± 0.1 × 10− 5 M Ca, 2.9 ± 0.1 × 10− 6 M Mg, 1.2 ± 0.3 mg C⋅L− 1 and a 
mean pH of 7.90 ± 0.02 (Table S2). Cobalt was predicted to be mainly 
present in its free form Co2+ (65%), and the remaining species being 
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mostly present as carbonato-complexes, CoCO3. A small percentage of 
the total Co (< 0.01%) was calculated to be bound by fulvic acid. The 
average total dissolved Co concentration, taking into account the three 
sampling days (D1, D3 and D7) for each exposure condition were 3.1 
± 1.8 × 10− 9, 1.4 ± 0.8 × 10− 7, 1.6 ± 0.8 × 10− 6, 8.6 ± 3.7 × 10− 6 

and 1.6 ± 0.7 × 10− 5 M, respectively (Table S1). The corresponding 
calculated average Co2+ concentrations were 1.5 ± 0.9 × 10− 9, 0.7 
± 0.6 × 10− 7, 0.7 ± 0.5 × 10− 6, 4.0 ± 0.9 × 10− 6 and 0.8 
± 0.2 × 10− 5 M, respectively (Table S1). 

3.2. Metal bioaccumulation 

Mature biofilms naturally contained 1.3 ± 0.1 × 10− 7 mol⋅g− 1 Co 
(Table S3). Cobalt intracellular contents significantly increased with 
exposure concentrations (Fig. 2A and Table S3) at each sampling time 
(D1, D3 and D7). After D7, the majority of accumulated Co by biofilms 
was found to be intracellular (70 ± 20%; n = 15). Background intra
cellular Co concentration was 1.23 ± 0.08 × 10− 7 mol⋅g− 1. Both total 
and intracellular Co accumulation were significantly correlated with 
total dissolved Co and free Co2+ concentrations in the exposure media 
(Fig. S2 and Table S3). The description of the obtained correlations 
between Co concentrations in exposure media and accumulated by 
biofilms are presented in Text S6. The accumulation of other metals (Li, 
Ni, Cu, Zn, Pb, As and Cd) naturally present in the exposure media was 
not impacted by exposure to Co (Table S3). 

3.3. Biomass 

Biofilms exposed to natural background concentrations of Co and 
exposed to 1 × 10− 7 and 1 × 10− 6 M Co presented similar biomass 
throughout the whole duration of the experiment (Fig. 2B). In contrast, 
biofilm biomass significantly decreased from D3 when they were 
exposed to 5 × 10− 6 M Co. This decrease was accentuated at D7 for 
biofilms exposed to the highest Co concentrations (5 × 10− 6 and 1 ×

10− 5 M). The greatest effect was observed at the concentrations of 
5 × 10− 6 and 1 × 10− 5 M Co, concentrations at which the biomass 

decreased by 83% (from 80 to 13 mg⋅cm− 2) and 69% (77 to 
24 mg⋅cm− 2), respectively. 

3.4. Chlorophyll content 

Lower chlorophyll a, b and c1 + c2 contents at D7 were observed with 
increasing Co concentrations (Fig. 2C). At the end of the experiment, 
biofilms exposed to natural Co concentrations had a total chlorophyll 
content of 0.73 µg⋅cm− 2, while those exposed to the two highest con
centrations had 0.10 and 0.15 µg⋅cm− 2 of chlorophyll, respectively. 
After a week of exposure, the highest Co concentrations (5 × 10− 6 and 
1 × 10− 5 M) led to a decrease in chlorophyll content of up to 85%. 

At D7, the relative composition of the different chlorophyll pigments 
was significantly different at the highest Co concentration compared to 
the control, 1 × 10− 7 and 1 × 10− 6 M Co exposure conditions (Fig. 2D). 
Although the relative contents of chlorophylls a and c1 + c2 were not 
significantly modified in biofilms exposed to 1 × 10− 5 M, with respect to 
the control, the relative content of chlorophyll b was 5.5-fold higher. 

3.5. Meta-metabolomic response 

In total, 2117 untargeted meta-metabolomic features were observed 
(Table S4) among all samples and 159 of them were annotated, repre
senting 7.5% of the whole metabolomic fingerprint. Attempts were 
made to identify different families of molecules, including several lipids 
or lipid precursors (lyso-diacylglyceryltrimethylhomoserine, sterol, 
phosphatidylethanolamine, lysophosphatidylcholine, sphingosines) 
(Fig. 3 and Fig. S3). The biofilm meta-metabolomic response was 
examined by comparing the samples at each exposure Co concentration 
and each exposure time, first for the whole 2117 untargeted meta- 
metabolomic features and second using the 159-annotated metabolite 
datasets. 

3.5.1. Using all untargeted meta-metabolomic features 
Cobalt concentrations in the exposure media significantly impacted 

the levels of 489 untargeted meta-metabolomic features and the 

Fig. 1. Schematic illustration of a benchmark-dose calculation for one studied untargeted meta-metabolomic feature. The black dots represent measured MS peak 
intensities of the studied untargeted meta-metabolomic feature after pre-processing. The orange line is the constructed dose-response curve (model) from the 
measured peak intensities as a function of exposure Co concentrations. The blue area represents the 95% confidence intervals of the model (or the residual standard 
deviations of the model, SD). The mean control response is y0 and is used with the standard deviation (SD) to define the benchmark-response (BMR). The Benchmark- 
Dose (BMD) is then calculated from the BMR. 
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exposure time affected 522 untargeted meta-metabolomic features. The 
interaction of the two factors induced the modification of 502 untar
geted meta-metabolomic features (two-way ANOVA; p < 0.05). In total, 
out of 2117 untargeted meta-metabolomic features observed, 1513 of 
them show relative content variations (Fig. S4), which represents more 
than 71% of the whole meta-metabolome that could be detected. 

The effects of Co and exposure time on meta-metabolomic response 
were investigated using supervised partial least-squares discriminate 
analysis. These showed significant R2 cumulative, Q2 cumulative 
(Table S5) and permutation scores (0/2000 permutations; p < 0.0005). 
The meta-metabolomic response of the control biofilms did not vary 
between D1 and D3 (Fig. 4A). However, at D7, a significant difference 
was observed compared to D1 and D3 (PERMANOVA; p < 0.05) 
(Fig. 4A). At D1, the global meta-metabolomic signature was only 
different between biofilms exposed to 1 × 10− 7 and 1 × 10− 5 M Co 
(PERMANOVA; p < 0.05) (Fig. 4B). At D3, the meta-metabolomic 
signature between control biofilms was different from those of bio
films exposed to 5 × 10− 6 and 1 × 10− 5 M Co (PERMANOVA; p < 0.05). 

In addition, the signature of biofilms exposed to 1 × 10− 7 M Co differed 
from that of biofilms exposed to 1 × 10− 5 M, but not to those of biofilms 
exposed to the other studied concentrations (PERMANOVA; p < 0.05). 
The metabolic profile of biofilms exposed to 5 × 10− 6 M Co was also 
different from biofilms exposed to 1 × 10− 5 M (PERMANOVA; p < 0.01) 
(Fig. 4C). At D7, the meta-metabolomic response was different among 
all the studied exposure concentrations, except for the control biofilms 
and those exposed to 1 × 10− 7 M Co (PERMANOVA; p < 0.05) (Fig. 4D). 
Finally, for each exposure condition, the meta-metabolomic signature of 
the biofilms was different between D1 and D7 (PERMANOVA; p < 0.05). 
The differences and the similarities in the biofilm meta-metabolomic 
profiles can also be observed on a heatmap with hierarchical classifi
cation representation (Euclidean distance, Fig. 4E). The profiles of the 
control biofilms (at each time step), and those of the biofilms exposed to 
the lowest Co concentration at D1 are gathered in the same group. The 
meta-metabolomic profiles of the biofilms exposed to the two highest Co 
concentrations at D7 were also grouped together. 

Fig. 2. Accumulation and effects of Co on biomass and chlorophyll contents of river biofilms. (A) Intracellular Co content (mol⋅g− 1) as a function of total Co 
concentration in the exposure medium (M) over time (in days). (B) Biofilm biomass (mg⋅cm− 2) over time (in days) according to Co exposure concentrations (M). (C) 
Chlorophyll contents (µg⋅cm− 2) after 7 days of exposure as a function of exposure concentration Co (M). (D) Mean relative percentage of pigment composition in 
chlorophylls of biofilms exposed for 7 days to different Co concentrations. The lower-case letters correspond to the significative groups defined by a Dunn’s post-hoc 
test (p < 0.05) performed after Kruskal-Wallis non-parametric tests among Co exposure concentrations at each exposure time and the capital letters correspond to the 
significant groups defined by a Dunn’s post-hoc test (p < 0.05) performed after Kruskal-Wallis non-parametric tests among the exposure times for each exposure 
concentration. 
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3.5.2. Using only annotated metabolites 
Similar results were observed for the annotated metabolites (159 

untargeted meta-metabolomic features) whose detailed analysis is pre
sented in Text S7, Fig. 3 and Fig. S3. Cobalt concentrations in the 
exposure media significantly induced a change in the production of 39 
annotated metabolites. Over the exposure time, the content of 25 an
notated metabolites were disrupted whereas the interaction of the two 
factors impacted the content of 33 metabolites (two-way ANOVA; 
p < 0.05). Overall, 61% of the biofilm metabolites were disturbed by the 
experimental treatments. A closer look at the meta-metabolomic profiles 
(Fig. S3G and Fig. S3H) showed that exposure to Co caused a modifi
cation in the production of certain nucleic acids and amino acids, and in 
particular a greater production of lipid and lipid precursors as well as a 
decrease in the flavonoid content. 

3.5.3. Dose-response models 
Dose-response curves were constructed to illustrate meta- 

metabolome response as a function of Co concentrations at D7. Out of 
2117 untargeted meta-metabolomic features, 892 untargeted meta- 
metabolomic features were selected using an ANOVA with a false dis
covery rate of 0.05. Using the Akaike information criterion to select the 
best fit models, 236 dose-response curves out of these 892 curves were 
removed as no model could be reliably fitted. From the remaining 
modelled dose-response curves, three BMD− 1SD values could not be 
calculated as the BMR stands within the range of response values defined 
by the model but outside the range of tested doses. Also, bootstrap 
confidence interval computation failed on eight untargeted meta- 
metabolomic features due to the lack of convergence of the model fit 
for a fraction of the bootstrapped sampled greater than 0.5. 

Benchmark-doses (BMDs− 1SD) calculated from each fitted dose- 
response curve were grouped together via ECDF (Fig. 5A and 
Table S6). Out of 656 BMD− 1SD values, 167 were removed because at 
least one bound of the 95% confidence interval could not be computed 
due to bootstrapped BMD− 1SD values which could not be reached. With 
respect to control conditions, 2% of the untargeted meta-metabolomic 
features were impacted at 1 × 10− 7 M Co, an additional 15% at 
1 × 10− 6 M, another 78% at 5 × 10− 6 M, while the remaining 5% of 
untargeted meta-metabolomic features were impacted at the highest Co 

concentration tested (1 × 10− 5 M). 
The models were further classified into four different categories as a 

function of their respective curve trend: 151 exhibited a bell-shaped 
curve, 92 an increasing trend, 121 a decreasing trend and 117 a U- 
shaped curve (Fig. 5B and Table S6). Using the ECDF curve, two main Co 
concentration ranges of meta-metabolomic response could be distin
guished based on the inflection point (point where the second derivative 
of the ECDF has changed sign) of the BMDs-1 SD distribution: the first one 
ranging from 1.7 × 10− 9 to 2.7 × 10− 6 M of added Co2+ and the second 
from 2.7 × 10− 6 M of added Co2+ to the highest concentration (Fig. 5A). 
In the first concentration range, 99% of untargeted meta-metabolomic 
features describing a bell-shaped response curve were present and 1% 
in the second concentration range. For those describing a U-shaped 
response curve, 97% were present in the first concentration range and 
3% in the second concentration range. Regarding the untargeted meta- 
metabolomic features with an increasing response curve, they were 
equally distributed (50/50) among both concentration ranges. Finally, 
40% of the untargeted meta-metabolomic features with a decreasing 
response curve were present in the first concentration range, and 60% in 
the second range. (Fig. 5 and Table S6). The proportion of untargeted 
meta-metabolomic features with a biphasic trend (bell-shaped and U- 
shaped dose-response trends) was significantly greater in the first con
centration range than in the second (Pearson’s χ2 test with Yates’ con
tinuity correction: χ2 = 171.6, d.f. = 1, p = 3.3 × 10− 39). Conversely, 
the proportion of untargeted meta-metabolomic features with a mono
tonic trend (increasing and decreasing dose-response trends) was 
significantly greater in the second range than in the first range (Pear
son’s χ2 test with Yates’ continuity correction: χ2 = 171.6, d.f. = 1, 
p = 3.3 × 10− 39). 

Dose-response curves were also constructed to illustrate meta- 
metabolome response as a function of Co concentrations at D1 and D3 
(Text S8). At D1, no concentration ranges of meta-metabolomic response 
could be distinguished, mostly due to the lower number of modelled 
metabolite response (20 as compare to 481 at D7) (Fig. S5). In contrast, 
similar concentration ranges were found at D3 as D7 (Fig. S6B). The first 
concentration range was between 3.1 × 10− 8 and 2.1 × 10− 6 M of 
added Co2+ and the second from 2.1 × 10− 6 M of added Co2+ to the 
highest concentration at D3. 

4. Discussion 

4.1. Effect of Co concentration and exposure time on untargeted meta- 
metabolome response 

Bioaccumulation must first occur before an effect can be observed. 
As expected, Co accumulation increased linearly as a function of the 
calculated free ion concentration of Co2+ (Fig. S2). Published laboratory 
and field data on Cu, Zn, Cd and Ni accumulation in biofilms have shown 
similar linear correlations [1–3,42]. Such net metal accumulation, 
visible from day 1, results from uptake and release processes [1]. 

Although Co contents were significantly higher in Co-exposed bio
films than in control biofilms at D1, no statistical difference was 
observed within their meta-metabolome (Fig. 2A and Fig. 4B). Changes 
to metabolites have been reported to occur within minutes after a 
contaminant exposure, with individual compounds identified from 
detoxification and damage processes [43,44]. For example, microalgae 
exposed to Cu, Cd and Pb enzymatically produced metal-binding phy
tochelatins within the first 15 min of exposure [45,46]. Using targeted 
metabolomic fingerprints, microalgae exposed to silver nanoparticles 
(97 metabolites studied) [47] and Hg (93 metabolites studied) [48] were 
shown to respond within 2 h. Changes in the untargeted 
meta-metabolome (2117 untargeted meta-metabolomic features studied 
in this experiment) over time in a whole microbial community, such as 
freshwater biofilms, has so far received little attention. A set of metab
olites inherently describes a greater diversity in terms of toxicological 
response typology and intensity than for a single metabolite. Measuring 

Fig. 3. T-SNE molecular network generated with Metgem 1.3.6 based on LC- 
MSMS dataset obtained for all samples. The various colors show the different 
molecular families that constitute the different annotated clusters according to 
molecular fragment similarities with standards available in public database 
(GNPS, HMDB, NIH and EMBL). 
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Fig. 4. Meta-metabolomics response of biofilms according to time and concentrations of exposure to Co. (A) Individual score plot generated from partial least- 
squares discriminate analysis performed with 2117 variables to components 1 and 2 with all conditions grouped together, after one (B), three (C) and seven (D) 
days of exposure. (E) Heatmap with hierarchical classification representation of concentration class averages (Ward clustering according to Euclidian distances) 
performed from relative intensities of the dysregulated analytes with a variable importance in projection score > 1 for component 1. 
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a significant effect implies that i) a large number of metabolites are 
affected and/or ii) the effect is greater than the control. Despite these 
challenges, a recent study successfully demonstrated a shift in biofilm 
meta-metabolome after only 15 min of exposure to 5 and 50 μg⋅L− 1 

diuron, an herbicide inhibiting the algal photosystem II [15]. The shift 
was shown to be concentration-dependent, with a higher number of 
metabolites affected at higher concentrations. The lack of a significant 
difference in the meta-metabolome response at D1 in our study might 
therefore be due to an exposure concentration to an essential metal that 
was too low to trigger a significant response in that short time scale. 
Statistical differences were, however, measured at D3 between the 
control and the two highest exposure concentrations. This is also the 
case at D7 between almost all treatments. Indeed, at that exposure time, 

a clear pattern was observed with an effect on meta-metabolome 
intensifying with increasing Co concentrations. All these responses 
were statistically different, except for the control and at 1 × 10− 7 M Co. 
The change in the meta-metabolomic fingerprint of the biofilms depends 
thus both on the concentrations tested and the exposure time. 

4.2. Effect of Co on annotated metabolites 

Only a small part of the metabolomic fingerprint (7.5%) could be 
annotated, which is in line with the literature [18]. The use of the an
notated metabolites provided similar results as a function of Co con
centration and exposure time as those observed in the whole 
meta-metabolome analysis. Nevertheless, the annotated metabolites 

Fig. 5. Meta-metabolomics dose-response models of biofilms after 7 days of exposure to Co. (A) Distribution of BMDs− 1SD as an ECDF (Empirical Cumulative Density 
Function) with 95% confidence intervals of each BMD− 1SD (M) in blue. (B) Distribution of BMDs− 1SD as an ECDF split by trend of dose-response curves (bell: bell- 
shaped trend, dec: decreasing trend, inc: increasing trend and U: U-shaped trend) with 95% confidence intervals of each BMD− 1SD (M) in blue. The red lines 
correspond to the concentrations delimiting the suspected concentration ranges inducing defense and damage responses (CRIDeR and CRIDaR). 
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provided insights on the cellular mechanisms modified by Co. The most 
noticeable effect observed on the annotated metabolites was the modi
fication of the lipid contents (Fig. S3G and Fig. S3H). Specifically, 
increased levels of lipids and lipid precursors were observed. Several 
processes may explain these modifications: the formation of vacuoles 
made of lipid bilayers for metal sequestration [49], the repair of po
tential membrane damages caused by indirect oxidative stress [50], and 
the need for an additional internal source of energy in order to offset 
cellular and subcellular damage [51]. Finally, modifications of lipid 
profiles may also be due to a shift in microorganism community, as the 
variation in the meta-metabolome over time and the changes in pigment 
compositions might suggest (Fig. 2D) [52]. Recent studies combining 
the analysis of metagenomics and meta-metabolomics have demon
strated a change in the lipid profiles and taxa composition of stressed 
biofilms exposed to erythromycin and silver nanoparticles, although the 
biofilm microbial diversity was not altered [16,53]. Overall, our results 
add up to those highlighting the modification of the biofilm lipid con
tents when exposed to contaminants [15,16,54]. 

4.3. Comparison of meta-metabolomic response using the BMD− 1SD 
approach with the other measured biological parameters 

In order to make full use of our chemical signal analysis without 
being limited by the annotation step, BMDs− 1SD were derived from the 
dose-response curves constructed for each selected untargeted meta- 
metabolomic feature (Fig. 1). Within the range of tested Co concentra
tions, the use of BMDs-1 SD highlighted that 78% of the untargeted meta- 
metabolomic features had their response modified between 1 × 10− 6 

and 5 × 10− 6 M Co at D7 (Fig. 5A). Effects on chlorophyll pigments and 
biomass were in good agreement with this result. Indeed, Co effect was 
also observed to intensify between 1 × 10− 6 and 5 × 10− 6 M for both 
biological parameters (Fig. 2B and Fig. 2C). At D3, 53% of untargeted 
meta-metabolomic features already had their response modified be
tween 1 × 10− 6 and 5 × 10− 6 M (Fig. S6). At the first sampling time, 
untargeted meta-metabolomic feature responses are statistically less 
numerous, as they are less significant. The accumulation of each 
untargeted meta-metabolomic feature response over time means that 
these significance thresholds are exceeded after D3 and even more so 
after D7. 

The approach for detecting the effects of stressor via the use of BMDs 
was first used in toxicology to address the limits of predictors such as the 
effective concentration (ECx), no observed adverse effect level or the 
lowest-observed adverse effect level, and to harmonise these predictive 
models of critical dose [55,56]. The BMDs approach is also gaining in
terest in ecotoxicology [57]. Indeed, the use of BMDs offer several ad
vantages [58–60], e.g., they (i) take into account the uncertainty related 
to the experiment and the inter-individual variability; (ii) consider the 
entire dose-response relationship; (iii) have a high precautionary prin
ciple; and (iv) associate a risk with each dose tested. In the present study, 
the results observed via the use of BMDs− 1SD (Fig. 5A) are in good 
agreement with other biological parameters (biomass and chlorophyll 
content) despite being retrieved from predictive models (Fig. 2B and 
Fig. 2C). 

A freshwater species sensitivity distribution for chronic Co exposure 
provided median hazardous concentrations for 5% of the community of 
3.1 × 10− 8 M based on EC10 values and 1.2 × 10− 7 M using EC20 values 
[61]. In our study, for both values, no effect on the biomass and the 
chlorophyll contents were observed in biofilms (Fig. 2B, Fig. 2C and 
Fig. 2D) and the biofilm meta-metabolomic fingerprints were similar to 
those of the control at 10− 7 M (Fig. 4 and Fig. S3). The 5% hazardous 
concentration based on the ECDF of biofilm untargeted 
meta-metabolomic features was 1.1 × 10− 7 M at D3 and 4.1 × 10− 7 M 
at D7, suggesting that our results are in line with those of Stubblefield 
et al. [61]. 

4.4. Using trends of dose-response curves to identify biofilm response to 
Co 

The analysis of Co effect on biofilm meta-metabolome via the 
calculation of BMDs− 1SD and the use of ECDF made it possible to 
distinguish, based on its inflection point, two distinct Co concentration 
ranges according to the meta-metabolomic dose-response at D7 
(Fig. 5B). Range 1 (1.7 × 10− 9 to 2.7 × 10− 6 M of added Co2+) was 
comprised mainly of untargeted meta-metabolomic features describing 
bell- or U-shaped dose-response models. In other studies, both bell- or U- 
shaped trends correspond to those of well-known defense biomarkers 
[23] such as antioxidant enzymes [24,62–64]. For example, in micro
algae, catalase and superoxide dismutase activities were found to 
respond to Cd exposure in a bell-shaped manner [24]. Within range 1, 
the microorganisms would set up their defense mechanisms in order to 
counter the increase in intracellular Co content and its potential harmful 
effects (Fig. 2A and Fig. S2). We have defined this process as CRIDeR. 
Within range 2 (concentrations above 2.7 × 10− 6 M of added Co2+), the 
untargeted meta-metabolomic features presenting significant response 
exhibited mainly increasing or decreasing trends. These trends would 
thus describe the microorganism cellular state when defense mecha
nisms are overwhelmed and molecular or cellular damages are occurring 
[23]. In that range, damage biomarkers are commonly observed [24, 
65–68]. For example, malondialdehyde contents resulting from lipid 
peroxidation increase proportionally to Cu, Zn and Cd concentrations in 
microalgae [27,69]. Conversely, the contents of photosynthetic pig
ments decreased proportionally with Cr and Cd concentrations [69,70]. 
We have defined this process as CRIDaR. For Co, the identified threshold 
value of 2.7 × 10− 6 M, which might separate CRIDeR and CRIDaR, is 
coherent with the changes observed using the traditional biological 
parameters studied here. Indeed, biofilm biomass decreased slightly at 
1 × 10− 6 M and much more significantly at 5 × 10− 6 and 1 × 10− 5 M 
(Fig. 2B). The effect of Co on the chlorophyll content strongly changed 
between 1 × 10− 6 and 5 × 10− 6 M (Fig. 2C). This CRIDaR threshold of 
2.7 × 10− 6 M is in good agreement with studies highlighting the 
harmful effects of Co on microalgae at the µM level [71,72]. The CRIDeR 
threshold was similar at D3, with a value of 2.1 × 10− 6 M of added Co2+

(Fig. S6). Characterizing CRIDeR and CRIDaR can therefore determine 
the stress condition of the biofilm exposed to Co. 

5. Conclusion 

In this study, we have proposed a new approach to assessing the 
effects of metals on river biofilms. This is based on the use of the meta- 
metabolomic fingerprint obtained through an untargeted metabolomics 
analysis, which has the advantage of not having any initial a priori on 
the type of molecules (family or function) involved. This broadens the 
number of compounds potentially affected, compared with a targeted 
metabolomics approach (Fig. S1). In order to be able to use the entire 
chemical signal obtained with untargeted metabolomics and the infor
mation it contains, we have built dose-response models for each untar
geted meta-metabolomic feature to extract BMDs− 1SD, subsequently 
aggregated in an ECDF. This ECDF highlighted two major concentration 
ranges in the metabolic response of biofilms based on dose-response 
curve trends: a CRIDeR and a CRIDaR. We then postulated that, from 
2.7 × 10− 6 M of added Co2+, biofilm defense mechanisms were over
come and damage responses appeared. These results were in agreement 
with those obtained for biomass and chlorophyll a content. This prom
ising, holistic approach nevertheless requires further development and 
validation, in particular to determine the influence of the choice of 
tested concentrations on the modeling of the distribution of the response 
of untargeted meta-metabolomic features and the characterization of 
curve trends. 

The interpretation of trends for untargeted meta-metabolomic fea
tures dose-response models made it thus possible to identify and 
differentiate a CRIDeR and a CRIDaR, providing information on the level 
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of biofilm responses to a stress induced by Co. We have chosen to give 
these general terms of concentration ranges inducing defense or damage 
responses and not be specific to metabolites to leave open the possibility 
of testing this concept with other omics studies (transcriptomics, pro
teomics, etc.). It would also be possible to test this interpretation with 
the effect of exposure time and verify whether the time range inducing 
defense responses and time range inducing damage responses concept 
would also be applicable. Today, as ecotoxicologists, it seems important 
and necessary to try to make use of the entire set of metabolites available 
in the community. This novel approach is a promising avenue to 
improve the ecological risk assessment of contaminants and will 
generate new knowledge to go beyond using only one specific molecular 
biomarker at a time in ecotoxicological studies. 

Associated content 

Description of the biofilm colonization and the Co exposure in mi
crocosms, the water analyses, Co speciation, total and intracellular Co 
concentrations, chlorophyll contents and meta-metabolomics analyses, 
and the detailed results of the physicochemical parameters of the river 
water and microcosms, the metal bioaccumulation, the effect of Co on 
annotated metabolites and the different parameters of the ECDF. 

Environmental implication 

Assessing the level of stress induced by a contaminant on a micro
organism community is a challenging task compared to studies involving 
a single species. Here, we propose an original approach based on 
untargeted metabolomic response that includes both annotated and 
unannotated metabolites. This novel data processing method uses the 
trends of untargeted meta-metabolite dose-response curves to identify 
concentration ranges of defense and damage responses of biofilms 
exposed to cobalt. These results open up a new way of interpreting omics 
data using the whole chemical signal without being restricted by 
annotation and a new tool for environmental risk assessment. 
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Environnement, Québec, Canada) for his language assistance. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.jhazmat.2024.134099. 

References 

[1] Meylan, S., Behra, R., Sigg, L., 2003. Accumulation of copper and zinc in 
periphyton in response to dynamic variations of metal speciation in freshwater. 
Environ Sci Technol 37, 5204–5212. https://doi.org/10.1021/es034566+. 

[2] Lavoie, I., Lavoie, M., Fortin, C., 2012. A mine of information: benthic algal 
communities as biomonitors of metal contamination from abandoned tailings. Sci 
Total Environ 425, 231–241. https://doi.org/10.1016/j.scitotenv.2012.02.057. 

[3] Laderriere, V., Paris, L.-E., Fortin, C., 2020. Proton competition and free ion 
activities drive cadmium, copper, and nickel accumulation in river biofilms in a 
nordic ecosystem. Environments 7, 112. https://doi.org/10.3390/ 
environments7120112. 

[4] Barranguet, C., Greijdanus, M., Sinke, J.J., Admiraal, W., 2003. Copper-induced 
modifications of the modifications of the trophic relations in riverine algal- 
bacterial biofilms. Environ Toxicol Chem 22, 1340–1349. https://doi.org/ 
10.1002/etc.5620220622. 
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