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Abstract— Systems-of-Systems (SoSs) are increasingly 

utilized to integrate multiple Constituent-Systems (CSs) and 

fulfill missions surpassing the capabilities of individual systems. 

Successful mission execution relies on effective management of 

time and resources. Time constraints denote the timeframes 

within these missions must be completed, and resource 

constraints involve the allocation of necessary resources for 

execution. Addressing these dynamic behavior factors in SoSs 

poses significant challenges and necessitates the adoption of 

control strategies for efficient coordination and execution of 

missions. To confront these challenges, this paper introduces a 

novel hybrid approach, merging an MDA technique (TRC-MM: 

Time-Resource Aware Control Meta-model) and Maude 

language to formally specify and control missions. This 

approach specifically incorporates time-resource aware 

missions, resource dependencies, and control mechanisms in the 

dedicated TRC-MM. Further, RT-Maude is utilized as the 

formal specification language to develop an executable formal 

model for the controller’s behavior in SoSs’ missions, offering a 

powerful analysis method to express and verify behavioral 

properties pertaining to time and resource constraints. 

Keywords—SoS, Maude, Formal Method, Model-checking, 

Timed mission, Control strategies. 

I. INTRODUCTION 

Systems-of-Systems (SoSs) have emerged as a prominent 
solution to tackle the challenges posed by large-scale 
integration and coordination of IT systems. SoSs involve the 
seamless integration and execution of multiple Constituent-
Systems (CSs) to achieve missions that individual CSs cannot 
accomplish alone [1]. The centralized control in these systems 
ensures a cohesive and coordinated approach towards the 
common goals of SoSs. The presence of a central authority 
enables effective management, coordination, and alignment of 
the CSs' towards the common goals of the system [1] [2]. 

Designing SoSs to address centralized control challenges 
and ensure adherence to specified behavior is complex. This 
process includes selecting the optimal functional chain to 
achieve overall missions at the SoS level within time 
constraints and implementing effective strategies, regulatory 
mechanisms, and corrective actions at the CSs level. 
Developing a corresponding formal model is also crucial to 
analyze, simulate, and verify logical properties. To this end, 
this paper proposes a systematic approach using a meta-
model, TRC-MM, designed to optimally arrange CSs to fulfill 
mission objectives within time and resource constraints. TRC-
MM specifically addresses time aspects, resource 
dependencies, and control mechanisms, allowing for dynamic 
adjustment of behavior to changing runtime conditions.  

Fig.1 describes the three main steps of our approach. 
Firstly, it starts by introducing a generic TRC-MM that 
captures the essential structural, behavioral, and quantitative 

aspects. The TRC-MM serves as a support tool that enables the 
creation of concrete models tailored to specific application 
domains within SoSs. The adopted MDA technique ensures a 
comprehensive representation of characteristics, including 
temporal aspects and resource allocation. Secondly, we rely 
on a formal execution semantic using a rewriting engine based 
on RT-Maude and Strategy Language [3] [4] to control and 
simulate the dynamic behavior of the proposed controller. 
Lastly, we use model-checking tool of RT-Maude to verify the 
satisfaction of some specific properties and constraints.  

 

Fig. 1. The proposed approach. 

II. MODELING TIME-RESOURCE AWARE MISSIONS IN SOS 

This section focuses on creating the TRC-MM, specifically 

designed for Time-Resource Aware Missions in SoSs.  

A. TRC-MM: Time-Resource Aware Control Meta Model 

The TRC-MM serves as a standardized set of basic classes 

that capture the essential aspects of missioned SoSs. It 

integrates into a systematic framework, encompassing 

structural, behavioral, control strategies, etc. In Part1 of Fig. 

2, we find classes that represent specific missions within the 

CSs. They are associated with MTemporalConstraints and 

States classes that capture the various states of a given 

mission. Readers are referred to [2] for more details. Part2:  

represents the entities or components required for executing 

missions within the SoS. It is associated with ResourceStates 

with PrvRes and PubRes for private and global resources that 

describe the various states, types or categories of resources. 

The ResPool class represents a centralized repository or pool 

of resources that can be shared and allocated among missions 

in the SoS. In the controlled time bound missions, the 

ResPool serves as a shared repository for spare or unused 

resources within CSs. When a CS has surplus or available 

resources that are not currently being utilized, it contributes 

those resources to the Resource Pool, allowing other CSs to 



utilize them. Part3 represents classes that are associated with 

MissionState and ResPool, serving as the knowledge base 

that stores information about the current state of missions and 

the availability of resources. 

B. Running Example: French Emergency SoS 

The case study highlights the logical architecture design of the 
French Emergency SoS [7] [8]. The deduced model of FESoS 
is based on TRC-MM and its logical architecture is designed 
using Capella editor [18] as show in Fig. 3. The FESoS is 
designed for emergency protection, it features interconnected 
CSs and missions such as MonitoringSoS deploying UAVs1 
and WSNCS2, CODIS3 overseeing operations, and SAMU4 
for emergency medical services. The HospitalCS manages 
patient reception and assessment, while medical treatments 

                                                           

1 Unmanned Aerial Vehicles 
2 Wireless Sensor Net  
3 Centre Opérationnel Départemental d'Incendie et de secours 

and continuous monitoring are ensured. Civil Security is 
crucial for coordination, ensuring information flow and 
collaboration. SDIS64 5  and SDIS65 represent firefighting 
efforts of two departments, deploying equipment and 
firefighters. Search and Rescue Teams prioritize finding and 
evacuating survivors, while the Fire and Rescue Services 
handle fire control and hazardous materials. The study 
underscores the integrated efforts of these CSs to safeguard 
people and property. The FESoS model focuses on the 
representation of multiple alternative paths or simultaneous 
missions’ execution. In addition, parameter values offer a 
comprehensive insight into the functional chains, aiding 
designers in exploring and assessing various design options 
and system behaviors, Fig. 4 capture a piece of the entire 
figure which shows the description of the functional chains of 
the FESoS behavior.  

4 Service d'aide médicale urgente 
5 Service Départemental d'Incendie et de Secours 

Fig. 2. Time-Resource Aware Control Meta-Model for SoS. 

     Fig. 3. Overview of the Logical Architecture model of FESoS. 
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Fig. 4. FESoS Functional Chain Description. 

III. MAUDE-BASED FORMAL SPECIFICATION OF SOSS CONTROL 

This section presents the specification of dynamic SoS 

control mechanisms, emphasizing the SoS's global-level 

controller, with the objective of optimizing functional chain 

execution for efficient global mission attainment. 

Simultaneously, at the mission and local CSs levels, the 

controller oversees RT-regulation to reduce execution time. 

A. RT-Maude and Strategy Language 

 By leveraging Maude's concurrent rewriting capabilities 
and equational structural axioms, we can logically deduce and 
reason about the behavior of the system[4]. In the context of 
temporal mission priorities and states, the modules in RT-
Maude denoted as a tuple R = (Σ, E ∪ A, R) provide a formal 
and structured representation of the system's behavior and 
transitions, incorporating temporal aspects. The equational 
theory part of the modules, represented by (Σ, E ∪ A), 
encompasses the signature Σ = (S, C, ≤, F, M), which includes 
sorts and subsorts S, class names C, a subclass relation ≤, and 
a set of functions and messages. The set E denotes equations 
and membership tests, some of which can be conditional, 
while A represents equational axioms associated with specific 
operators in the signature Σ. The tuple R consists of both 
conditional and nonconditional rewrite rules. In the context of 
Real-Time rewriting theory, (Σ, E ∪ A) includes an additional 
sub-theory (ΣTIME, ΣTIME) ⊆ (Σ, E ∪ A), specifically 
modeling time. The behavioral transitions are defined using 
rewrite rules of the form: crl[R]: {t} => {t'} in time u if 
(condition).  Using these rules, we can accurately model how 
time and the states of the system evolve, which is crucial for 
understanding and verifying the properties of RT and hybrid 
systems. RT-Maude extension is designed to decouple the 
rewrite rules, from their execution via strategies. The system 
module's definition evolves into (Σ, E∪A,S(R, SM)), where S 
characterizes the system’s behavior. i.e. S is delineated by two 
components: R, which comprises a set of potential conditional 
rewrite rules, and SM, the strategy module directing the 
rewriting procedure. Rewrite rules define transitions between 
the configurations. RT-Maude’ high-performance rewrite 
engine, allows simulation, analysis, and model-checking. 
Maude offers commands to explore system behaviors from 
an initial configuration, e.g. rewrite, srewrite, and tsearch. 

B. Maude-based Specification of TRC-MM Static Entities 

 The TRC-MM entities can be mapped to a set of RT-
Maude concepts. Table.1 summarizes the operational 
semantic of different static elements introduced in TRC-MM, 
i.e. we enumerate all sorts and operators essential for 
characterizing SoS. The primary classes defined are SoS, CS, 
and Mission accompanied by their associated sorts and ops. 

TABLE 1: RT-MAUDE SEMANTICS OF THE TRC-MM’s ELEMENTS. 

Entities RT-Maude specification 
SoS 
CS 
Mission 
Role 

class SoS | clock : Time, CSsSet : CSIdSet, , missionSet : GMIdSet  
class CS | clock : Time, missionSet : MIdSet . 
class Mission | localClock : Time, duration : Time, arrivalTime : 
Time, quitTime : Time, delay : Time, deadline : Time, 
missionState : MissionState resType : ResType, RAUT : Time . 
class Resource | localClock : Time, resType : ResType,  

CSs Queue 
Mission Queue 
Global Mission 
resPool 

sort CSIdSet . 
subsort Oid < CSIdSet . 
subsort Oid < MIdSet < GMIdSet . 
subsort Resource < ResourcePool . 

MissionState 
ResType 
ResState 
Pool 
 

ops arrived accomplished pending failed : -> MissionState . 
ops shareable nonShareable limited renewable: -> ResType  
op resType:_resState:_quantity:_ : ResType State Time -> 
Resource [ctor] . 
op emptyPool : -> ResourcePool [ctor] . 
op ‘[Pool:_‘] : ResourcePool -> ResPool [ctor] . 
op indeterminatedWF : funcChain -> Bool . 

Conditions  
 

eq calcState(DD, ED, DT) = if (DD > ED plus DT) then 
accomplished else pending fi . eq calcQuitTime(ED, DT) … 
eq calcQuitTime(ED, DT, ST) = ED plus DT plus ST .  
eq calcRemainedResource(ST, D) = ST plus D .  
eq indeterminatedWF(M2 M3 SecondoryM | PrioritizedM M1 )  
eq indeterminatedWF(M1 M2 SecondoryM | PrioritizedM ) … 

Corrective 
actions 

msg initSoS : Oid -> Msg . 
msg finishAt : Oid Time -> Msg . 
msg start2Start : Oid -> Msg . 
msg start2Finish : Oid Time -> Msg . 
msg finish2Start : Oid Time -> Msg . 

C. Control Strategies Formal Semantics 

In this section, we propose strategies for optimal 
functional chain or mission’s workflow selection, exploring 
their role in efficient global mission attainment by minimizing 
execution time and optimizing resources. Table 2 aligns each 
behavioral element of the TRC-MM with semantics, 
specifying the mission’s workflow in three Maude modules: 

(1) WF-DATA module: along with two other constants:  
PrioritizedM represents a subset of missions that are given 
priority in terms of short duration and resource constraints, 
and SecondaryM denotes missions that are not prioritized for 
scenario but still exist within the SoS and could be relevant in 
future executions. The operator "Union" denoted by _|_ 
signifies the classification of missions designating the 
secondary and prioritized missions that will be selected to 
execute in the functional chain. The conditions specified in the 
indeterminatedWF (Table. 1) outline the predicates under 
which certain mission workflows (caused by gateways) are in 
a nondeterminate states, making it challenging to predict or 
control the exact sequence of missions for optimal outcomes. 

TABLE 2 : MISSION PRIORITIZATION AND MANAGEMENT 

Rule  Condition Action Description 

standaloneM 
(M1) 

M1 without 
any order 

Move M1 to 
PrioritizedM 

A single mission M1, is promoted to 
the prioritized list. 

sequenced 
(M1,M2) 

M1, M2 
Are sequenced  

Move M1 
and M2 to 
PrioritizedM 

M1 and M2 are sequenced and both 
are promoted to the prioritized list.  

parallelM-
GW(M1,M2) 

M1, M2 are in 
parallel 

Move M1, 
and M2 to 
PrioritizedM 

M1 and M2 are concurrently 
promoted to the prioritized list.  

exclusiveM-
GW(M1, M2) 
/ 
inclusiveM-
GW(M1, M2) 

Duration(M1) 
< 
Duration(M2) 
OR RAUT(M1) 
< RAUT( M2)  

Move M2 to 
PrioritizedM 

M1 is prioritized if it completes 
faster or uses resources more 
efficiently; otherwise, if neither 
condition is met, M1 is prioritized 
based on its shorter duration 

(2) FUNC-CHAIN module: it imports the previous module 
and it involves the possible executions of missions specified 
using rewriting rules (see Table 2). The first two rules are 
implemented to execute standalone and sequence missions, 
the other three rules are specified to execute the branching and 
merging nondeterministic behavior introduced by 
gateways(parallelM-GW, exclusiveM-GW and inclusiveM-



GW). These gateways might not always result in the most 
efficient execution because there are situations where the 
workflow can become indeterminate when using gateways. 

(3) CHAIN-STRAT module: It tackles the challenge of 
managing nondeterminism states in mission execution. To 
achieve this, we enforce strict control over gateway rules 
before initiating standalone and sequenced execution rules. 
This enforcement is accomplished through the specification of 
a set of strategies within this module. The strategy oneByOne 
applies either of the two execution rules (standaloneM or 
sequencedM), and the strategy prioritize applies any of the 
three gateway rules. The strategy oneByOne&prioritize 
applies either of two previous strategies based on the rules of 
FUNC-CHAIN, executing only if prioritize isn't an option. 
The selectedFuncCh strategy is recursive, continually 
repeating this process until the global mission is achieved. 
Meanwhile, selectedDecisionGW strategy is more selective, 
focusing on the outgoing branches (i.e., prioritized missions) 
and sidestepping all secondary mission paths. Example: 

sd selectedDecisionGW := (match SecondoryM | PrioritizedM M1 M2 M3) ? 

idle : (oneByOne&prioritize ; selectedDecisionGW) . 

sd selectedFuncCh := (match SecondoryM | G) ? idle : (oneByOne ; 

prioritize ; selectedFuncCh) . 

D. Local Control Mechanisms of Missions 

We present in this section a formal specification of the 
self-regulating of the SoS controller; it allows to monitor 
locally the functional chain execution, analyze temporal 
attributes and execute corrective actions adjusting missions of 
a given CS to guarantee timely completion. See Table 3.  

TABLE 3: TEMPORAL CONTROL MECHANISMS FOR SoS MISSIONS 

Mech Conditions Corrective Action Description E
arly A

rriv
al 

M1 arrives earlier 
than expected 

Start-2-Start (S2S) 
adjustment for M2 

Adjust the start 
time of M2 based 
on M1's arrival M1 arrives at time T 

( T < T ' ) 
M2 starts at time T 

M1 arrives earlier 
than expected 

Start-2-Finish (S2F) 
adjustment for M2 

Adjust the finish 
time of M2 based 
on M1's arrival M1 arrives at time T 

( T < T ' ) 
M2 finishes at time T 

L
ate C

o
m

p
letio

n
 

M1 takes longer to 
complete 

Finish-2-Start (F2S) 
adjustment for M2 

Adjust the start 
time of M2 based 
on M1's delay T < than initially 

anticipated 
M2 starts at time T 

M1 takes longer to 
complete 

Finish-2-Finish (F2F) 
adjustment for M2 

Adjust the finish 
time of M2 based 
on M1's delay T > than initially 

anticipated 
M2 finishes at time T 

N
o

 
N

eed
ed

 
No deviations or 
issues 

No corrective action 
required 

missions are 
proceeding as 
planned 

T: the expected time| T’: the actual time it arrives or finishes 

Conditions part in the table considers resource availability 
and time constraints. It utilizes equations to assess the 
accessibility of required resources within the specified 
constraints. Moreover, the specification leverages RT-
messages and operations to implement corrective actions in 
table such as start2start, ASAP, etc. This generates Regulating 
Mechanisms that address these temporal constraints, manages 
execution and facilitates corrective actions in response to 
changing conditions using rules. Table 3. explores the 
temporal control mechanisms seen in TRC-MM, highlighting 
their relevance in addressing early arrival, late completion, 
and no control needed scenarios. In the case of Early Arrival, 
if Mission M1 arrives earlier than expected (at time T, where 
T < T'), the Start-2-Start (S2S) corrective action is applied. 
This adjustment ensures that Mission M2 starts at the same 
time (T) as Mission M1, synchronizing their execution. The 
table's entries illustrate the corrective actions for each control 

mechanism, specifying the adjustments made to the starting 
and finishing times of the respective missions. These control 
mechanisms are related to the RT-Maude rules. For example, 
the Start-2-Start control mechanism can be represented as 
"crl[Start-2-Start]: {M1 starts at time T} => {M2 starts at 
time T} in time u if (T < T')". This rule signifies that if 
Mission M1 starts at time T and meets the condition of an 
early arrival (T < T'), then Mission M2 should also start at T. 

rl [finish2start] : finish2start(M1, M2, ST) < M1 : Mission | loClock 

: D, duration : ED, arrivalTime : AT, quitTime : AT, delay : DT, 

deadline : DD, missionState : arrived, raut : RA > 

< M2 : Mission | loClock : D', duration : ED', arrivalTime : AT', 

quitTime : AT', delay : DT', deadline : DD', missionState : arrived, 

raut : RA >  => 

< M1 : Mission | loClock : R, duration : ED, arrivalTime : ST plus R, 

quitTime : calcQuitTime(ED, DT, ST), delay : DT, deadline : DD, 

missionState : calcState(DD, ED, DT), raut : RA >  

< M2 : Mission | loClock : R, duration : ED', arrivalTime : 

calcQuitTime(ED, DT, ST), quitTime : calcQuitTime(ED, DT, ST) plus 

DT' plus ED', delay : DT', deadline : DD', missionState : arrived… 

IV. VALIDATION THROUGH FESOS CASE STUDY 
In this section, we aim to assess the controller's efficacy 

and verify model adherence to specific properties, focusing on 
Maude's model-checking and invariant. The approach 
involves a breadth-first search of states to confirm crucial SoS 
properties, validating invariants. If certain outcomes, the 
inverse of the invariant, are unattainable and the invariant is 
deemed true. If search init =>* C: Configuration such that 
not I(C:Configuration) yields no result, the invariant is valid. 

A. Controlling FESoS with strategies 

Fig. 3 illustrates various functional chains that have the 
potential to achieve global mission M34. These missions are 
designated as M1, M2, M3,...,Mn for simplicity. Using Maude 
Strategy Language, these specifications can be immediately 
executed. The 'search' command is particularly handy for this 
purpose, enabling exploration of all potential functional chain 
rules and identifying terms that correspond with a set target. 

 
Even if the desired state can be achieved, there's always a 

certain degree of indeterminism regarding whether it adheres 
to the module's rules. Indeed, the path the search command 
followed to arrive at the global Mission M34 involves 
navigating through indeterminatedWF states. This can be 
validated by employing the show path command: 

 
Now, we can check whether the M34 for instance can be 

reached by evaluating selectedDecisionGW from the initial 
state with the srewrite command. The answer is positive as 
shown in the following Maude code: 

 

B. Execution and Simulation 

In FESoS model, missions on-siteTreatment, transporting, 
and medicalSupport are outlined, as visualized in Fig.5. These 
missions use specific resources, like Ambulance and 
MedicalPersonnel. The on-siteTreatment mission finishes 
before the other two missions which start simultaneously. 

Maude> search initial =>* SecondoryM M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 …| PrioritizedM . 

Solution 1 (state 54) 

states: 75 rewrites: 640 

empty substitution 

No more solutions. 

states: 80 

Maude> show path 10 . 

state 0, M0: PrioritizedM  | SecondoryM M1 M2 M3 M4 M5 M6 M7  

===[ rl ... [sequencedM] . ]===> 

state 2, M1: SecondoryM M0 | PrioritizedM M2 M3 M4 M5 M6 M7 

===[ rl ... [sequencedM] . ]===> 

state 10, M2: PrioritizedM  M0 M1  | SecondoryM M3 M4 M5 M6 M7 

... 

Maude> srew initial using selectedFuncCh . 

Solution 1 

rewrites: 74 

result selectedFuncCh: SecondoryM | PrioritizedM M1 M2 M3 M3 M6 M7 M8 M9 M M10 M11 M12 

M14 M16 M18 M20 M21 M31 M34 

No more solutions. 

rewrites: 74 



Designers, during the design phase, set parameters for each 
mission; for example, on-siteTreatment has a duration of 90 
units, arrival time at 50 units, a delay of 20 units, and a 
resource usage time of 10 units. However, these inputs, 
grounded in available data and assumptions, don't fully factor 
in FESoS's dynamic nature or possible runtime changes. For 
instance, even if on-siteTreatment finishes punctually without 
delays, the following missions still wait for the preset 20 unit 
delay (as seen in Fig.5. Design Time). This delay essentially 
pushes their start to the 160-unit mark, potentially affecting 
their completion within the anticipated 300-unit timeframe.  

 

Fig. 5. Time laps during Design/Runtime of the three missions. 

The gap between anticipated and realized outcomes shows 
a design flaw. By implementing controlled mechanisms and 
adaptive actions, the FESoS allows for addressing issues 
identified during the design phase. These corrections ensure 
that the three missions can be successfully accomplished 
within the specified time frame 300 units, Fig.5 runtime.  

 

Fig. 6. Runtime execution and control. 

The initial state of FESoS depicts three key missions 
connected to their associated CSs (SAMU and CivilSecurity) 
and requisite resources (Ambulance, MedicalEquipments, and 
MedicalPersonnel). This state also integrates the 
FESoSResPool, representing FESoS's current resources. 
While the initial design may have accounted for potential 
delays in the on-siteTreatment mission, it didn't cater to the 
scenario where this mission could conclude faster than 
expected. This oversight causes the subsequent missions to 
stick to a pre-established delay. In the runtime phase (Fig. 6), 
if on-siteTreatment completes without delays, its delay is 
recalibrated from 10 units to zero. This nimble adjustment 
signifies the system's responsiveness to real-time 
circumstances. Consequently, the on-siteTreatment concludes 
by 140, the transporting mission wraps up at 260, and 
medicalSupport ends at 290. Simultaneously, the resource 
pool's capacity swells to 430 units, with resource allocation 
being 10 units for on-siteTreatment, 30 for transporting, and 
60 for medicalSupport. This guarantees adequate resource 
provision for each mission. Excess resources, 10 units from 
transporting and 30 from medicalSupport, flow back to the 
resource pool, bolstering its capacity to 460 units. The 
successful execution of this piece of code demonstrates how 

the control enables a centralized control, ensuring that the 
missions are done within the specified time.  

C. Formal Verification 

 Thanks to tsearch command, we define additional RT-
Maude modules to check some local/global proprieties. Due 
to the limited pages we are interested in checking these 
proprieties: (1)isDeadlineViolated: in the FESoS, timing 
planning ensures missions synchronize with operational 
schedules and resource requirements. Precise deadlines, 
combining expected mission duration and WCET, guarantee 
mission punctuality within the scenario. (2)mutualExclusion: 
resource constraints enforce exclusive resource use, 
preventing concurrent resource sharing between missions. e.g. 
it ensures that different CSs' Transporting missions don't 
access the same ambulance simultaneously. While missions 
can contribute resources, they only access them when not in 
use elsewhere. and(3) overallMissionDuration: the entire SoS 
aspires to achieve its global mission within a specified 
timeframe. This global mission duration ensures efficient SoS 
operation, meeting objectives promptly. The properties 
reflecting SoS designers' are formalized using invariants 
within. For example, the timed tsearch command indicates 
that no state where isDeadlineViolated (transporting) falls 
within the time frame of 240 to 260 (Fig.7) this results in a No 
solution outcome. This means the "isDeadlineViolated" 
property isn't met, and thanks to control mechanisms, any 
runtime delays are managed and missions are executed before 
their deadlines, aligning with the initial design phase.  

(tsearch[1]{isDeadlineViolated(transporting)}=>*{isDeadlin

eViolated(transporting)} in time-interval between >= 240 and 

< 260 .) 

(tsearch [1] {mutualExclusion (transportingSAMU, 

transportingCS, ambulance)} =>* {mutualExclusion ( 

transportingSAMU, transportingCS, ambulance)} in time-

interval between >= 240 and < 260 .) 

 

Fig. 7. Search results of Transporting mission. 

V. RELATED WORK 

In this section, we review relevant approaches to our 
paper's proposals. In [5], the authors have employed Maude 
rewriting logic framework to create an executable 
specification that incorporates quantitative data and resource 
constraints. This technique allows for comparisons of 
provisioning strategies to enhance process efficiency. While it 
provides a systematic way to optimize performance through 
quantitative analysis, it focuses primarily on provisioning 
strategy comparisons and may overlook other factors 
impacting efficiency, like organizational structure and 
external temporal dependencies. Additionally, it assumes 
BPMN models conform to an extension with quantitative data, 
which may not always hold in real-world scenarios. In [6], the 
authors showcase the practical application of RT-Maude tool 
in specifying and analyzing the CASH scheduling algorithm. 
Utilizing RT-Maude, they define, analyze, and assess different 
design alterations to the algorithm. Notably, this analysis 
uncovers intricate behaviors within the modifications that can 
result in missed deadlines and aims to enhance overall system 
performance and meet critical activity deadlines. However, it's 
essential to note that the resource allocation strategy of this 
algorithm may not be suitable for all types of RT-systems.  



In the paper [7], an approach is introduced to aid SoS 
architects in constructing models for SoS configurations. This 
approach involves adapting UPDM views and employing 
SysML notations to define boundaries, detail activities, 
organize constituents, and design configurations. It offers a 
systematic method for architects to design SoS configurations 
effectively, ensuring that the models accurately represent the 
configuration objectives in an SoS. In a subsequent work [8], 
the authors expand upon this framework by introducing 
reconfiguration patterns and processes. They emphasize the 
importance of defining constraints, employing a transition 
architecture, and creating iterative and recursive 
reconfiguration scripts. While this process provides a strong 
foundation, it also limits the autonomous executability and 
manageability of the process to specific characteristics when 
compared to our approach. The Dynamic-SoS approach [9] 
focuses on predicting and assessing the dynamic behavior of 
SoS architectures during the design phase, offering tools to 
characterize architectural changes and validate them through 
case studies. However, it lacks specific runtime control 
capabilities, missing the opportunity to employ quantitative 
controllers for optimizing SoS behavior during operations. On 
the other hand, SosADL [10] [11] presents an architectural 
description language based on π-Calculus with Concurrent 
Constraints, tailored for SoS architectures. It supports 
evolutionary architectures and automated verification but may 
benefit from further development in incorporating quantitative 
properties for real-world applications. 

Studies [12] and [13] have introduced a core ontology for 
missions and capabilities in CSs, emphasizing resource-
related aspects. This ontology covers a range of concept types, 
including physical objects, people, information, and their 
interactions, aiming to enhance the understanding of resource 
dynamics within SoSs. However, it lacks an executable 
environment and temporal information, limiting its capability 
to accurately model and analyze complex SoS interactions. In 
contrast, our previous work [2] proposed a comprehensive 
approach that leverages Maude to specify and model various 
missions in SoSs. This approach demonstrated Maude's robust 
tool support and expressive capabilities, showcasing how it 
can easily handle components like Missions, Resources, 
Roles, and their interactions with SoS management in a Direct 
SoS setting.  The paper [14] has presented a formal model 
based on Maude Strategy language to handle dynamic 
reconfiguration in Smart SoS. The model enables the 
execution and analysis of Smart SoS. Maude strategies are 
utilized to specify dynamic reconfiguration, and their 
execution showcases the application of multiple crisis 
scenarios to achieve SoS missions. This work, although it 
focuses on modeling and managing SoSs and addresses same 
domains, it specifically don’t consider the quantitative aspects 
of SoSs and their controlled mechanisms. The papers 
[15][16][17][19] have presented models to handle conflicts 
arising from resource consumption in SoSs. However, these 
models focused solely on resource consumption and did not 
address the production of resources at runtime. 

VI. CONCLUSION 

This paper presented a formal approach for analyzing and 
specifying temporal aspects and resource allocation in SoSs 
with a specific focus on their control. Firstly, the approach 
starts by leveraging the selecting Time-Resource strategies to 
select the best path that can reach the global goal of SoS. 
Secondly, it enables dynamic changes related to time bound 

missions and resource allocation, enhancing system 
performance and control. Lastly, the use of Maude's formal 
analysis language and tools adds rigor to the evaluation of 
model specifications, ensuring their compliance with desired 
properties and enabling the model checking of potential 
issues. Overall, the proposed approach contributed to improve 
the mission execution and system performance in dynamic 
and complex environments.  
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