
HAL Id: hal-04510783
https://univ-pau.hal.science/hal-04510783

Submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Maude-Based Formal Approach to Control and
Analyze Time-Resource Aware Missioned

Systemsof-Systems
Charaf Eddine, Nabil Hameurlain, Faiza Belala

To cite this version:
Charaf Eddine, Nabil Hameurlain, Faiza Belala. A Maude-Based Formal Approach to Control and
Analyze Time-Resource Aware Missioned Systemsof-Systems. 31th IEEE International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2023), Dec 2023,
Saclay (92), France. �hal-04510783�

https://univ-pau.hal.science/hal-04510783
https://hal.archives-ouvertes.fr

A Maude-Based Formal Approach to Control and

Analyze Time-Resource Aware Missioned Systems-

of-Systems

Charaf Eddine1,2, Nabil HAMEURLAIN1, Faiza BELALA2

LIUPPA Laboratory, University of Pau, Pau, France
1{charaf-eddine.dridi, nabil.hameurlain}@univ-pau.fr

LIRE Laboratory, Constantine2 University-Abdelhamid Mehri, Constantine, Algeria
2{charafeddine.dridi, faiza.belala}@univ-constantine2.dz

Abstract— Systems-of-Systems (SoSs) are increasingly

utilized to integrate multiple Constituent-Systems (CSs) and

fulfill missions surpassing the capabilities of individual systems.

Successful mission execution relies on effective management of

time and resources. Time constraints denote the timeframes

within these missions must be completed, and resource

constraints involve the allocation of necessary resources for

execution. Addressing these dynamic behavior factors in SoSs

poses significant challenges and necessitates the adoption of

control strategies for efficient coordination and execution of

missions. To confront these challenges, this paper introduces a

novel hybrid approach, merging an MDA technique (TRC-MM:

Time-Resource Aware Control Meta-model) and Maude

language to formally specify and control missions. This

approach specifically incorporates time-resource aware

missions, resource dependencies, and control mechanisms in the

dedicated TRC-MM. Further, RT-Maude is utilized as the

formal specification language to develop an executable formal

model for the controller’s behavior in SoSs’ missions, offering a

powerful analysis method to express and verify behavioral

properties pertaining to time and resource constraints.

Keywords—SoS, Maude, Formal Method, Model-checking,

Timed mission, Control strategies.

I. INTRODUCTION

Systems-of-Systems (SoSs) have emerged as a prominent
solution to tackle the challenges posed by large-scale
integration and coordination of IT systems. SoSs involve the
seamless integration and execution of multiple Constituent-
Systems (CSs) to achieve missions that individual CSs cannot
accomplish alone [1]. The centralized control in these systems
ensures a cohesive and coordinated approach towards the
common goals of SoSs. The presence of a central authority
enables effective management, coordination, and alignment of
the CSs' towards the common goals of the system [1] [2].

Designing SoSs to address centralized control challenges
and ensure adherence to specified behavior is complex. This
process includes selecting the optimal functional chain to
achieve overall missions at the SoS level within time
constraints and implementing effective strategies, regulatory
mechanisms, and corrective actions at the CSs level.
Developing a corresponding formal model is also crucial to
analyze, simulate, and verify logical properties. To this end,
this paper proposes a systematic approach using a meta-
model, TRC-MM, designed to optimally arrange CSs to fulfill
mission objectives within time and resource constraints. TRC-
MM specifically addresses time aspects, resource
dependencies, and control mechanisms, allowing for dynamic
adjustment of behavior to changing runtime conditions.

Fig.1 describes the three main steps of our approach.
Firstly, it starts by introducing a generic TRC-MM that
captures the essential structural, behavioral, and quantitative

aspects. The TRC-MM serves as a support tool that enables the
creation of concrete models tailored to specific application
domains within SoSs. The adopted MDA technique ensures a
comprehensive representation of characteristics, including
temporal aspects and resource allocation. Secondly, we rely
on a formal execution semantic using a rewriting engine based
on RT-Maude and Strategy Language [3] [4] to control and
simulate the dynamic behavior of the proposed controller.
Lastly, we use model-checking tool of RT-Maude to verify the
satisfaction of some specific properties and constraints.

Fig. 1. The proposed approach.

II. MODELING TIME-RESOURCE AWARE MISSIONS IN SOS

This section focuses on creating the TRC-MM, specifically

designed for Time-Resource Aware Missions in SoSs.

A. TRC-MM: Time-Resource Aware Control Meta Model

The TRC-MM serves as a standardized set of basic classes

that capture the essential aspects of missioned SoSs. It

integrates into a systematic framework, encompassing

structural, behavioral, control strategies, etc. In Part1 of Fig.

2, we find classes that represent specific missions within the

CSs. They are associated with MTemporalConstraints and

States classes that capture the various states of a given

mission. Readers are referred to [2] for more details. Part2:

represents the entities or components required for executing

missions within the SoS. It is associated with ResourceStates

with PrvRes and PubRes for private and global resources that

describe the various states, types or categories of resources.

The ResPool class represents a centralized repository or pool

of resources that can be shared and allocated among missions

in the SoS. In the controlled time bound missions, the

ResPool serves as a shared repository for spare or unused

resources within CSs. When a CS has surplus or available

resources that are not currently being utilized, it contributes

those resources to the Resource Pool, allowing other CSs to

utilize them. Part3 represents classes that are associated with

MissionState and ResPool, serving as the knowledge base

that stores information about the current state of missions and

the availability of resources.

B. Running Example: French Emergency SoS

The case study highlights the logical architecture design of the
French Emergency SoS [7] [8]. The deduced model of FESoS
is based on TRC-MM and its logical architecture is designed
using Capella editor [18] as show in Fig. 3. The FESoS is
designed for emergency protection, it features interconnected
CSs and missions such as MonitoringSoS deploying UAVs1
and WSNCS2, CODIS3 overseeing operations, and SAMU4
for emergency medical services. The HospitalCS manages
patient reception and assessment, while medical treatments

1 Unmanned Aerial Vehicles
2 Wireless Sensor Net
3 Centre Opérationnel Départemental d'Incendie et de secours

and continuous monitoring are ensured. Civil Security is
crucial for coordination, ensuring information flow and
collaboration. SDIS64 5 and SDIS65 represent firefighting
efforts of two departments, deploying equipment and
firefighters. Search and Rescue Teams prioritize finding and
evacuating survivors, while the Fire and Rescue Services
handle fire control and hazardous materials. The study
underscores the integrated efforts of these CSs to safeguard
people and property. The FESoS model focuses on the
representation of multiple alternative paths or simultaneous
missions’ execution. In addition, parameter values offer a
comprehensive insight into the functional chains, aiding
designers in exploring and assessing various design options
and system behaviors, Fig. 4 capture a piece of the entire
figure which shows the description of the functional chains of
the FESoS behavior.

4 Service d'aide médicale urgente
5 Service Départemental d'Incendie et de Secours

Fig. 2. Time-Resource Aware Control Meta-Model for SoS.

 Fig. 3. Overview of the Logical Architecture model of FESoS.

Part3 Part2 Part1

M1

M2

M3

M4

M5

M10

M7

M9

M8

M11 M12

M13 M14

M15

M16

M17 M18
M20

M20
M20

M32

M31

M30

M34

Fig. 4. FESoS Functional Chain Description.

III. MAUDE-BASED FORMAL SPECIFICATION OF SOSS CONTROL

This section presents the specification of dynamic SoS

control mechanisms, emphasizing the SoS's global-level

controller, with the objective of optimizing functional chain

execution for efficient global mission attainment.

Simultaneously, at the mission and local CSs levels, the

controller oversees RT-regulation to reduce execution time.

A. RT-Maude and Strategy Language

 By leveraging Maude's concurrent rewriting capabilities
and equational structural axioms, we can logically deduce and
reason about the behavior of the system[4]. In the context of
temporal mission priorities and states, the modules in RT-
Maude denoted as a tuple R = (Σ, E ∪ A, R) provide a formal
and structured representation of the system's behavior and
transitions, incorporating temporal aspects. The equational
theory part of the modules, represented by (Σ, E ∪ A),
encompasses the signature Σ = (S, C, ≤, F, M), which includes
sorts and subsorts S, class names C, a subclass relation ≤, and
a set of functions and messages. The set E denotes equations
and membership tests, some of which can be conditional,
while A represents equational axioms associated with specific
operators in the signature Σ. The tuple R consists of both
conditional and nonconditional rewrite rules. In the context of
Real-Time rewriting theory, (Σ, E ∪ A) includes an additional
sub-theory (ΣTIME, ΣTIME) ⊆ (Σ, E ∪ A), specifically
modeling time. The behavioral transitions are defined using
rewrite rules of the form: crl[R]: {t} => {t'} in time u if
(condition). Using these rules, we can accurately model how
time and the states of the system evolve, which is crucial for
understanding and verifying the properties of RT and hybrid
systems. RT-Maude extension is designed to decouple the
rewrite rules, from their execution via strategies. The system
module's definition evolves into (Σ, E∪A,S(R, SM)), where S
characterizes the system’s behavior. i.e. S is delineated by two
components: R, which comprises a set of potential conditional
rewrite rules, and SM, the strategy module directing the
rewriting procedure. Rewrite rules define transitions between
the configurations. RT-Maude’ high-performance rewrite
engine, allows simulation, analysis, and model-checking.
Maude offers commands to explore system behaviors from
an initial configuration, e.g. rewrite, srewrite, and tsearch.

B. Maude-based Specification of TRC-MM Static Entities

 The TRC-MM entities can be mapped to a set of RT-
Maude concepts. Table.1 summarizes the operational
semantic of different static elements introduced in TRC-MM,
i.e. we enumerate all sorts and operators essential for
characterizing SoS. The primary classes defined are SoS, CS,
and Mission accompanied by their associated sorts and ops.

TABLE 1: RT-MAUDE SEMANTICS OF THE TRC-MM’s ELEMENTS.

Entities RT-Maude specification
SoS
CS
Mission
Role

class SoS | clock : Time, CSsSet : CSIdSet, , missionSet : GMIdSet
class CS | clock : Time, missionSet : MIdSet .
class Mission | localClock : Time, duration : Time, arrivalTime :
Time, quitTime : Time, delay : Time, deadline : Time,
missionState : MissionState resType : ResType, RAUT : Time .
class Resource | localClock : Time, resType : ResType,

CSs Queue
Mission Queue
Global Mission
resPool

sort CSIdSet .
subsort Oid < CSIdSet .
subsort Oid < MIdSet < GMIdSet .
subsort Resource < ResourcePool .

MissionState
ResType
ResState
Pool

ops arrived accomplished pending failed : -> MissionState .
ops shareable nonShareable limited renewable: -> ResType
op resType:_resState:_quantity:_ : ResType State Time ->
Resource [ctor] .
op emptyPool : -> ResourcePool [ctor] .
op ‘[Pool:_‘] : ResourcePool -> ResPool [ctor] .
op indeterminatedWF : funcChain -> Bool .

Conditions

eq calcState(DD, ED, DT) = if (DD > ED plus DT) then
accomplished else pending fi . eq calcQuitTime(ED, DT) …
eq calcQuitTime(ED, DT, ST) = ED plus DT plus ST .
eq calcRemainedResource(ST, D) = ST plus D .
eq indeterminatedWF(M2 M3 SecondoryM | PrioritizedM M1)
eq indeterminatedWF(M1 M2 SecondoryM | PrioritizedM) …

Corrective
actions

msg initSoS : Oid -> Msg .
msg finishAt : Oid Time -> Msg .
msg start2Start : Oid -> Msg .
msg start2Finish : Oid Time -> Msg .
msg finish2Start : Oid Time -> Msg .

C. Control Strategies Formal Semantics

In this section, we propose strategies for optimal
functional chain or mission’s workflow selection, exploring
their role in efficient global mission attainment by minimizing
execution time and optimizing resources. Table 2 aligns each
behavioral element of the TRC-MM with semantics,
specifying the mission’s workflow in three Maude modules:

(1) WF-DATA module: along with two other constants:
PrioritizedM represents a subset of missions that are given
priority in terms of short duration and resource constraints,
and SecondaryM denotes missions that are not prioritized for
scenario but still exist within the SoS and could be relevant in
future executions. The operator "Union" denoted by _|_
signifies the classification of missions designating the
secondary and prioritized missions that will be selected to
execute in the functional chain. The conditions specified in the
indeterminatedWF (Table. 1) outline the predicates under
which certain mission workflows (caused by gateways) are in
a nondeterminate states, making it challenging to predict or
control the exact sequence of missions for optimal outcomes.

TABLE 2 : MISSION PRIORITIZATION AND MANAGEMENT

Rule Condition Action Description

standaloneM
(M1)

M1 without
any order

Move M1 to
PrioritizedM

A single mission M1, is promoted to
the prioritized list.

sequenced
(M1,M2)

M1, M2
Are sequenced

Move M1
and M2 to
PrioritizedM

M1 and M2 are sequenced and both
are promoted to the prioritized list.

parallelM-
GW(M1,M2)

M1, M2 are in
parallel

Move M1,
and M2 to
PrioritizedM

M1 and M2 are concurrently
promoted to the prioritized list.

exclusiveM-
GW(M1, M2)
/
inclusiveM-
GW(M1, M2)

Duration(M1)
<
Duration(M2)
OR RAUT(M1)
< RAUT(M2)

Move M2 to
PrioritizedM

M1 is prioritized if it completes
faster or uses resources more
efficiently; otherwise, if neither
condition is met, M1 is prioritized
based on its shorter duration

(2) FUNC-CHAIN module: it imports the previous module
and it involves the possible executions of missions specified
using rewriting rules (see Table 2). The first two rules are
implemented to execute standalone and sequence missions,
the other three rules are specified to execute the branching and
merging nondeterministic behavior introduced by
gateways(parallelM-GW, exclusiveM-GW and inclusiveM-

GW). These gateways might not always result in the most
efficient execution because there are situations where the
workflow can become indeterminate when using gateways.

(3) CHAIN-STRAT module: It tackles the challenge of
managing nondeterminism states in mission execution. To
achieve this, we enforce strict control over gateway rules
before initiating standalone and sequenced execution rules.
This enforcement is accomplished through the specification of
a set of strategies within this module. The strategy oneByOne
applies either of the two execution rules (standaloneM or
sequencedM), and the strategy prioritize applies any of the
three gateway rules. The strategy oneByOne&prioritize
applies either of two previous strategies based on the rules of
FUNC-CHAIN, executing only if prioritize isn't an option.
The selectedFuncCh strategy is recursive, continually
repeating this process until the global mission is achieved.
Meanwhile, selectedDecisionGW strategy is more selective,
focusing on the outgoing branches (i.e., prioritized missions)
and sidestepping all secondary mission paths. Example:

sd selectedDecisionGW := (match SecondoryM | PrioritizedM M1 M2 M3) ?

idle : (oneByOne&prioritize ; selectedDecisionGW) .

sd selectedFuncCh := (match SecondoryM | G) ? idle : (oneByOne ;

prioritize ; selectedFuncCh) .

D. Local Control Mechanisms of Missions

We present in this section a formal specification of the
self-regulating of the SoS controller; it allows to monitor
locally the functional chain execution, analyze temporal
attributes and execute corrective actions adjusting missions of
a given CS to guarantee timely completion. See Table 3.

TABLE 3: TEMPORAL CONTROL MECHANISMS FOR SoS MISSIONS

Mech Conditions Corrective Action Description E
arly A

rriv
al

M1 arrives earlier
than expected

Start-2-Start (S2S)
adjustment for M2

Adjust the start
time of M2 based
on M1's arrival M1 arrives at time T

(T < T ')
M2 starts at time T

M1 arrives earlier
than expected

Start-2-Finish (S2F)
adjustment for M2

Adjust the finish
time of M2 based
on M1's arrival M1 arrives at time T

(T < T ')
M2 finishes at time T

L
ate C

o
m

p
letio

n

M1 takes longer to
complete

Finish-2-Start (F2S)
adjustment for M2

Adjust the start
time of M2 based
on M1's delay T < than initially

anticipated
M2 starts at time T

M1 takes longer to
complete

Finish-2-Finish (F2F)
adjustment for M2

Adjust the finish
time of M2 based
on M1's delay T > than initially

anticipated
M2 finishes at time T

N
o

N

eed
ed

No deviations or
issues

No corrective action
required

missions are
proceeding as
planned

T: the expected time| T’: the actual time it arrives or finishes

Conditions part in the table considers resource availability
and time constraints. It utilizes equations to assess the
accessibility of required resources within the specified
constraints. Moreover, the specification leverages RT-
messages and operations to implement corrective actions in
table such as start2start, ASAP, etc. This generates Regulating
Mechanisms that address these temporal constraints, manages
execution and facilitates corrective actions in response to
changing conditions using rules. Table 3. explores the
temporal control mechanisms seen in TRC-MM, highlighting
their relevance in addressing early arrival, late completion,
and no control needed scenarios. In the case of Early Arrival,
if Mission M1 arrives earlier than expected (at time T, where
T < T'), the Start-2-Start (S2S) corrective action is applied.
This adjustment ensures that Mission M2 starts at the same
time (T) as Mission M1, synchronizing their execution. The
table's entries illustrate the corrective actions for each control

mechanism, specifying the adjustments made to the starting
and finishing times of the respective missions. These control
mechanisms are related to the RT-Maude rules. For example,
the Start-2-Start control mechanism can be represented as
"crl[Start-2-Start]: {M1 starts at time T} => {M2 starts at
time T} in time u if (T < T')". This rule signifies that if
Mission M1 starts at time T and meets the condition of an
early arrival (T < T'), then Mission M2 should also start at T.

rl [finish2start] : finish2start(M1, M2, ST) < M1 : Mission | loClock

: D, duration : ED, arrivalTime : AT, quitTime : AT, delay : DT,

deadline : DD, missionState : arrived, raut : RA >

< M2 : Mission | loClock : D', duration : ED', arrivalTime : AT',

quitTime : AT', delay : DT', deadline : DD', missionState : arrived,

raut : RA > =>

< M1 : Mission | loClock : R, duration : ED, arrivalTime : ST plus R,

quitTime : calcQuitTime(ED, DT, ST), delay : DT, deadline : DD,

missionState : calcState(DD, ED, DT), raut : RA >

< M2 : Mission | loClock : R, duration : ED', arrivalTime :

calcQuitTime(ED, DT, ST), quitTime : calcQuitTime(ED, DT, ST) plus

DT' plus ED', delay : DT', deadline : DD', missionState : arrived…

IV. VALIDATION THROUGH FESOS CASE STUDY
In this section, we aim to assess the controller's efficacy

and verify model adherence to specific properties, focusing on
Maude's model-checking and invariant. The approach
involves a breadth-first search of states to confirm crucial SoS
properties, validating invariants. If certain outcomes, the
inverse of the invariant, are unattainable and the invariant is
deemed true. If search init =>* C: Configuration such that
not I(C:Configuration) yields no result, the invariant is valid.

A. Controlling FESoS with strategies

Fig. 3 illustrates various functional chains that have the
potential to achieve global mission M34. These missions are
designated as M1, M2, M3,...,Mn for simplicity. Using Maude
Strategy Language, these specifications can be immediately
executed. The 'search' command is particularly handy for this
purpose, enabling exploration of all potential functional chain
rules and identifying terms that correspond with a set target.

Even if the desired state can be achieved, there's always a

certain degree of indeterminism regarding whether it adheres
to the module's rules. Indeed, the path the search command
followed to arrive at the global Mission M34 involves
navigating through indeterminatedWF states. This can be
validated by employing the show path command:

Now, we can check whether the M34 for instance can be

reached by evaluating selectedDecisionGW from the initial
state with the srewrite command. The answer is positive as
shown in the following Maude code:

B. Execution and Simulation

In FESoS model, missions on-siteTreatment, transporting,
and medicalSupport are outlined, as visualized in Fig.5. These
missions use specific resources, like Ambulance and
MedicalPersonnel. The on-siteTreatment mission finishes
before the other two missions which start simultaneously.

Maude> search initial =>* SecondoryM M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 …| PrioritizedM .

Solution 1 (state 54)

states: 75 rewrites: 640

empty substitution

No more solutions.

states: 80

Maude> show path 10 .

state 0, M0: PrioritizedM | SecondoryM M1 M2 M3 M4 M5 M6 M7

===[rl ... [sequencedM] .]===>

state 2, M1: SecondoryM M0 | PrioritizedM M2 M3 M4 M5 M6 M7

===[rl ... [sequencedM] .]===>

state 10, M2: PrioritizedM M0 M1 | SecondoryM M3 M4 M5 M6 M7

...

Maude> srew initial using selectedFuncCh .

Solution 1

rewrites: 74

result selectedFuncCh: SecondoryM | PrioritizedM M1 M2 M3 M3 M6 M7 M8 M9 M M10 M11 M12

M14 M16 M18 M20 M21 M31 M34

No more solutions.

rewrites: 74

Designers, during the design phase, set parameters for each
mission; for example, on-siteTreatment has a duration of 90
units, arrival time at 50 units, a delay of 20 units, and a
resource usage time of 10 units. However, these inputs,
grounded in available data and assumptions, don't fully factor
in FESoS's dynamic nature or possible runtime changes. For
instance, even if on-siteTreatment finishes punctually without
delays, the following missions still wait for the preset 20 unit
delay (as seen in Fig.5. Design Time). This delay essentially
pushes their start to the 160-unit mark, potentially affecting
their completion within the anticipated 300-unit timeframe.

Fig. 5. Time laps during Design/Runtime of the three missions.

The gap between anticipated and realized outcomes shows
a design flaw. By implementing controlled mechanisms and
adaptive actions, the FESoS allows for addressing issues
identified during the design phase. These corrections ensure
that the three missions can be successfully accomplished
within the specified time frame 300 units, Fig.5 runtime.

Fig. 6. Runtime execution and control.

The initial state of FESoS depicts three key missions
connected to their associated CSs (SAMU and CivilSecurity)
and requisite resources (Ambulance, MedicalEquipments, and
MedicalPersonnel). This state also integrates the
FESoSResPool, representing FESoS's current resources.
While the initial design may have accounted for potential
delays in the on-siteTreatment mission, it didn't cater to the
scenario where this mission could conclude faster than
expected. This oversight causes the subsequent missions to
stick to a pre-established delay. In the runtime phase (Fig. 6),
if on-siteTreatment completes without delays, its delay is
recalibrated from 10 units to zero. This nimble adjustment
signifies the system's responsiveness to real-time
circumstances. Consequently, the on-siteTreatment concludes
by 140, the transporting mission wraps up at 260, and
medicalSupport ends at 290. Simultaneously, the resource
pool's capacity swells to 430 units, with resource allocation
being 10 units for on-siteTreatment, 30 for transporting, and
60 for medicalSupport. This guarantees adequate resource
provision for each mission. Excess resources, 10 units from
transporting and 30 from medicalSupport, flow back to the
resource pool, bolstering its capacity to 460 units. The
successful execution of this piece of code demonstrates how

the control enables a centralized control, ensuring that the
missions are done within the specified time.

C. Formal Verification

 Thanks to tsearch command, we define additional RT-
Maude modules to check some local/global proprieties. Due
to the limited pages we are interested in checking these
proprieties: (1)isDeadlineViolated: in the FESoS, timing
planning ensures missions synchronize with operational
schedules and resource requirements. Precise deadlines,
combining expected mission duration and WCET, guarantee
mission punctuality within the scenario. (2)mutualExclusion:
resource constraints enforce exclusive resource use,
preventing concurrent resource sharing between missions. e.g.
it ensures that different CSs' Transporting missions don't
access the same ambulance simultaneously. While missions
can contribute resources, they only access them when not in
use elsewhere. and(3) overallMissionDuration: the entire SoS
aspires to achieve its global mission within a specified
timeframe. This global mission duration ensures efficient SoS
operation, meeting objectives promptly. The properties
reflecting SoS designers' are formalized using invariants
within. For example, the timed tsearch command indicates
that no state where isDeadlineViolated (transporting) falls
within the time frame of 240 to 260 (Fig.7) this results in a No
solution outcome. This means the "isDeadlineViolated"
property isn't met, and thanks to control mechanisms, any
runtime delays are managed and missions are executed before
their deadlines, aligning with the initial design phase.

(tsearch[1]{isDeadlineViolated(transporting)}=>*{isDeadlin

eViolated(transporting)} in time-interval between >= 240 and

< 260 .)

(tsearch [1] {mutualExclusion (transportingSAMU,

transportingCS, ambulance)} =>* {mutualExclusion (

transportingSAMU, transportingCS, ambulance)} in time-

interval between >= 240 and < 260 .)

Fig. 7. Search results of Transporting mission.

V. RELATED WORK

In this section, we review relevant approaches to our
paper's proposals. In [5], the authors have employed Maude
rewriting logic framework to create an executable
specification that incorporates quantitative data and resource
constraints. This technique allows for comparisons of
provisioning strategies to enhance process efficiency. While it
provides a systematic way to optimize performance through
quantitative analysis, it focuses primarily on provisioning
strategy comparisons and may overlook other factors
impacting efficiency, like organizational structure and
external temporal dependencies. Additionally, it assumes
BPMN models conform to an extension with quantitative data,
which may not always hold in real-world scenarios. In [6], the
authors showcase the practical application of RT-Maude tool
in specifying and analyzing the CASH scheduling algorithm.
Utilizing RT-Maude, they define, analyze, and assess different
design alterations to the algorithm. Notably, this analysis
uncovers intricate behaviors within the modifications that can
result in missed deadlines and aims to enhance overall system
performance and meet critical activity deadlines. However, it's
essential to note that the resource allocation strategy of this
algorithm may not be suitable for all types of RT-systems.

In the paper [7], an approach is introduced to aid SoS
architects in constructing models for SoS configurations. This
approach involves adapting UPDM views and employing
SysML notations to define boundaries, detail activities,
organize constituents, and design configurations. It offers a
systematic method for architects to design SoS configurations
effectively, ensuring that the models accurately represent the
configuration objectives in an SoS. In a subsequent work [8],
the authors expand upon this framework by introducing
reconfiguration patterns and processes. They emphasize the
importance of defining constraints, employing a transition
architecture, and creating iterative and recursive
reconfiguration scripts. While this process provides a strong
foundation, it also limits the autonomous executability and
manageability of the process to specific characteristics when
compared to our approach. The Dynamic-SoS approach [9]
focuses on predicting and assessing the dynamic behavior of
SoS architectures during the design phase, offering tools to
characterize architectural changes and validate them through
case studies. However, it lacks specific runtime control
capabilities, missing the opportunity to employ quantitative
controllers for optimizing SoS behavior during operations. On
the other hand, SosADL [10] [11] presents an architectural
description language based on π-Calculus with Concurrent
Constraints, tailored for SoS architectures. It supports
evolutionary architectures and automated verification but may
benefit from further development in incorporating quantitative
properties for real-world applications.

Studies [12] and [13] have introduced a core ontology for
missions and capabilities in CSs, emphasizing resource-
related aspects. This ontology covers a range of concept types,
including physical objects, people, information, and their
interactions, aiming to enhance the understanding of resource
dynamics within SoSs. However, it lacks an executable
environment and temporal information, limiting its capability
to accurately model and analyze complex SoS interactions. In
contrast, our previous work [2] proposed a comprehensive
approach that leverages Maude to specify and model various
missions in SoSs. This approach demonstrated Maude's robust
tool support and expressive capabilities, showcasing how it
can easily handle components like Missions, Resources,
Roles, and their interactions with SoS management in a Direct
SoS setting. The paper [14] has presented a formal model
based on Maude Strategy language to handle dynamic
reconfiguration in Smart SoS. The model enables the
execution and analysis of Smart SoS. Maude strategies are
utilized to specify dynamic reconfiguration, and their
execution showcases the application of multiple crisis
scenarios to achieve SoS missions. This work, although it
focuses on modeling and managing SoSs and addresses same
domains, it specifically don’t consider the quantitative aspects
of SoSs and their controlled mechanisms. The papers
[15][16][17][19] have presented models to handle conflicts
arising from resource consumption in SoSs. However, these
models focused solely on resource consumption and did not
address the production of resources at runtime.

VI. CONCLUSION

This paper presented a formal approach for analyzing and
specifying temporal aspects and resource allocation in SoSs
with a specific focus on their control. Firstly, the approach
starts by leveraging the selecting Time-Resource strategies to
select the best path that can reach the global goal of SoS.
Secondly, it enables dynamic changes related to time bound

missions and resource allocation, enhancing system
performance and control. Lastly, the use of Maude's formal
analysis language and tools adds rigor to the evaluation of
model specifications, ensuring their compliance with desired
properties and enabling the model checking of potential
issues. Overall, the proposed approach contributed to improve
the mission execution and system performance in dynamic
and complex environments.

REFERENCES

[1] Maier, M. W. (1998). Architecting principles for systems‐of‐

systems. Systems Engineering: The Journal of the International

Council on Systems Engineering, 1(4), 267-284.

[2] Dridi, C. E., Hameurlain, N., & Belala, F. (2022, November). A

Maude-Based Rewriting Approach to Model and Control System-

of-Systems’ Resources Allocation. In International Conference on

Model and Data Engineering. Cham: Springer Nature Switzerland.

[3] Ölveczky, P. C. (2004). Real-time maude 2.3 manual. Research

report http://urn. nb. no/URN: NBN: no-35645.

[4] Rubio, R., Martí-Oliet, N., Pita, I., & Verdejo, A. (2021).

Strategies, model checking and branching-time properties in Maude.

Journal of Logical and Algebraic Methods in Programming, 123.

[5] Durán, F., Rocha, C., & Salaün, G. (2021). Resource

provisioning strategies for BPMN processes: specification and

analysis using Maude. Journal of Logical and Algebraic Methods in.

[6] Ölveczky, P. C., & Caccamo, M. (2006, March). Formal

simulation and analysis of the CASH scheduling algorithm in Real-

Time Maude. In FASE (Vol. 6, pp. 357-372).

[7] Petitdemange, F., Borne, I., & Buisson, J. (2018, June).

Modeling system of systems configurations. In 2018 13th Annual

Conference on System of Systems Engineering (SoSE). IEEE.

[8] Petitdemange, F., Borne, I., & Buisson, J. (2021). Design process

for system of systems reconfigurations. Systems Engineering, 24(2).

[9] Manzano, W., Graciano Neto, V. V., & Nakagawa, E. Y. (2020).

Dynamic-sos: An approach for the simulation of systems-of-systems

dynamic architectures. The Computer Journal, 63(5), 709.

[10] Oquendo, F. (2016, June). Formally describing the software

architecture of systems-of-systems with SosADL. In 2016 11th

system of systems engineering conference (SoSE) (pp. 1-6). IEEE.

[11] Oquendo, F. (2016, November). Formally describing the

architectural behavior of software-intensive systems-of-systems

with SosADL. In 2016 21st International Conference on

Engineering of Complex Computer Systems (ICECCS) . IEEE.

[12] Martin, J., Axelsson, J., Carlson, J., & Suryadevara, J. Towards

a Core Ontology for Missions and Capabilities in SoSs.

[13] Feng, Y., Zou, Q., Zhou, C., Liu, Y., & Peng, Q. (2023).

Ontology-Based Architecture Process of System-of-Systems: From

Capability Development to Operational Modeling.

[14] Seghiri, A., Belala, F., Hameurlain, N. (2022, April). Modeling

the dynamic reconfiguration in smart crisis response systems. In

17th International Conference on Evaluation of Novel Approaches

to Software Engineering. SCITEPRESS-Science and Technology

[15] Halima, R. B., Klai, K., Sellami, M., & Maamar, Z. (2021,

September). Formal Modeling and Verification of Property-based

Resource Consumption Cycles. In 2021 IEEE International

Conference on Services Computing (SCC) (pp. 370-375). IEEE.

[16] Maamar, Z., Faci, N., Sakr, S., Boukhebouze, M., & Barnawi,

A. (2016). Network-based social coordination of business processes.

Information Systems, 58, 56-74.

[17] Graiet, M., Mammar, A., Boubaker, S., & Gaaloul, W. (2016).

Towards correct cloud resource allocation in business processes.

IEEE Transactions on Services Computing.

[18] Roques, P. (2018). Modélisation architecturale des systèmes

avec la méthode Arcadia: guide pratique de Capella. ISTE Group.

[19] Cheikhrouhou, Saoussen, et al. "The temporal perspective in

business process modeling: a survey and research challenges."

Service Oriented Computing and Applications 9 (2015): 75-8

