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Abstract 13 

       In the recent decade, Machine Learning techniques have been widely deployed in solar 14 

systems due their high accuracy in predicting the performances without going through the 15 

physical modelling. In this work, the Artificial Neural Network (ANN) method is adopted to 16 

forecast the electrical and thermal efficiencies of a photovoltaic/thermal (PVT) air collector 17 

system. Indeed, two accurate modelling techniques have been used to generate the output 18 

results for training and validation. Both deployed electrical and thermal models have been 19 

validated experimentally and demonstrated high accuracy. Then, real climatic samples of one 20 

year with a 10 minute step of the Jordan valley location have been adopted to generate the 21 

electrical and thermal efficiencies. These latter are used in the training and validation of the 22 

developed ANN model under various combinations of the weather variables. The solar 23 

irradiance and the module temperature are the most important variables to consider as input in 24 

a NN-based model respectively. The developed ANN model shows MAE of 0.0078% and 25 

3.3607% in predicting the electrical and thermal efficiency respectively. The electrical 26 

efficiency can be predicted with higher accuracy than the thermal efficiency. Further, the 27 

results demonstrate that the ANN outperforms the LS-SVM in forecasting the PVT air 28 

collector performances.  29 
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 35 

1. Introduction  36 

Controlling global energy consumption over recent decades is becoming a central issue in 37 

discussions on climate change and the global task to reduce carbon emissions (Yilmaz et al., 38 

2019). Today, renewable energy systems and energy efficiency are acclaimed by the 39 

International Energy Agency (IEA) as a key driver of economic growth, reducing emissions 40 

and boosting the energy security of countries (IEA PVPS, 2019). More specifically, solar-41 

based energy systems demonstrated a good compromise between the investment cost and 42 

efficiency. According to the IEA, the electricity generation using solar energy systems 43 

achieved a remarkable growth in the last decade (IEA PVPS, 2019).  44 

One of the most effective solutions to reduce the consumption of electrical energy is the 45 

development and implementation of hybrid solar systems that can generate two useful 46 

products simultaneously. The PVT system is an interesting technology as it combines 47 

photovoltaic and thermal systems, generating electrical and thermal energy simultaneously 48 

(Rejeb et al., 2020). Most popular PVT systems are designed with a cooling fluid flowing in 49 

an open-loop (usually air) (Yang and Athienitis, 2014) or a closed-loop (usually water) (Yu et 50 

al., 2019), but there are also other PVT collectors using an hybrid cooling system of air and 51 

water (Su et al., 2016). Water-based PVT systems are more efficient than air-based PVT 52 

systems due to its high thermo-physical properties (Abdelrazik et al., 2018). 53 

Over the last years, a significant number of research projects on PVT technology have been 54 

carried-out and various synthesis papers on PVT systems have been published (Kumar et al., 55 

2015). Several authors have been interested in PVT air collectors due to their low-56 

manufacturing costs (Diwania et al., 2020). Air cooling system provides a simple and 57 

economical solution for cooling the photovoltaic modules. Air can be heated to various 58 

temperature levels and its circulation can be either forced (via a fan) or natural (Chaibi et al., 59 

2021). Forced circulation is required due to a better heat transfer by convection and 60 

conduction, however, the fan power consumption decreases the net electricity gain (Ibrahim et 61 

al., 2011). 62 

The development of physical models is necessary to analyze and study the electrical and 63 

thermal performances of PVT air systems (Kumar et al., 2015). In the literature, the electrical 64 

behavior of PVT air systems has been imitated using equivalent-circuit models. Waliullah et 65 

al. used the double-diode model to compute the output power of a PVT air system (Waliullah 66 



et al., 2015). The results are compared to the experiments and shown a remarkable 67 

disagreement, which is explained by the climatic data inaccuracy. Tarabsheh et al. adopted the 68 

single-diode configuration to evaluate the PVT air system performances under different 69 

ranges of temperature. The obtained results demonstrate the accuracy of this model by taking 70 

into account the temperature gradient overall the PV module surface, and it was reported that 71 

cooling PV cells enhances the electrical performances (Al Tarabsheh et al., 2016). Other 72 

configurations of electrical models have been adopted in PVT air systems (Babu and 73 

Ponnambalam, 2018) in order to forecast the electrical performances especially the electrical 74 

efficiency.  75 

A number of thermal models have been developed to study the thermal performance of PVT 76 

air systems (Touafek et al., 2013). Most of the models are generic or based on electrical 77 

analogy using thermal resistance to describe the heat transfers between the different layers 78 

constituting the system (Agrawal and Tiwari, 2013). Tonui et al. developed a physical model 79 

of an air PVT system using the analogy with the solar thermal collector model and 80 

experimental results. The model allows the calculation of the thermal and electrical 81 

efficiencies of the solar collector without requiring precise knowledge of its composition and 82 

without involving thermodynamic modelling (Tonui and Tripanagnostopoulos, 2008, 2007). 83 

In addition, the most of the physical models developed in the literature assume that the 84 

temperature is uniform at each layer of the system and does not vary according to the airflow 85 

direction (Barone et al., 2019). Such models are unable to predict the effects of the thermal 86 

gradient along each layer on the thermal performance of the system.  87 

In the last decades, predicting the performances of PVT systems by using artificial 88 

intelligence becomes a key solution to avoid simulating the mathematical models and to 89 

overcome their limitations. Accordingly, the advantages of reducing the computing time and 90 

to get high prediction accuracy are the main reasons to adopt the use of machine learning 91 

algorithms. In the literature, many studies have been conducted to forecast the electrical 92 

(Maria and Yassine, 2020); and thermal efficiencies of PVT systems (Mojumder et al., 2017). 93 

Caner et al. used 80 samples recorded of two solar air collectors to build an ANN-based 94 

model in order to predict the thermal efficiency. The results were satisfactory comparing to 95 

the experiments (Caner et al., 2011). In the same context, Varol et al. adopted the ANN, the 96 

Adapted-Network-Based Fuzzy Interference System (ANFIS) and the Support Vector 97 

Machine (SVM) methods to forecast the thermal performances of a phase change material in 98 

solar collectors. The results demonstrated the high performance of the SVM technique (Varol 99 



et al., 2010). Also, Ahmadi et al. proposed two models based on ANN and Least Squares 100 

SVM methods to predict the electrical and thermal efficiencies of a PVT system. The results 101 

shown that the LS-SVM represented the best performances (Ahmadi et al., 2019).  102 

Most of reported studies about forecasting the electrical and thermal efficiencies adopted a 103 

limited number of samples in the training and the validation processes, due to the 104 

unavailability of experimental samples. The main contribution of this paper is the 105 

implementing of an ANN based model to determine the electrical and thermal efficiencies of 106 

air collector PVT systems. In this work the novelty is represented by the development of a 107 

new and original accurate electrical model together with an original detailed transient thermal 108 

model of PVT air system, by which it is possible to determine the temperature evolution in 109 

each layer as a function of the system length. Further, the adopted data for the training and the 110 

validation processes refer to 1 year of real climatic conditions of Jordan valley location with a 111 

step of 30 minute. This overcome the limitation of previous studies, which used a limited 112 

number of samples to train and test the neural network. Different combinations of the weather 113 

variables were considered to assess the performance of the NN-based model to predict the 114 

electrical and thermal efficiencies, demonstrating  that the choice of the variables as input of 115 

the neural network is very important to perform a model with low error. The developed ANN 116 

model is also compared with the LS-SVM method in order to confirm the high accuracy in 117 

predicting the electrical and thermal efficiencies of the PVT air systems. 118 

This manuscript is arranged as follows: First, the followed methodology and the adopted data 119 

are described in section 2. Then, the experimental results of both the electrical and thermal 120 

models with the predicted efficiencies using the ANN are presented in section 3. Finally, 121 

some conclusions are provided in section 4.  122 

2. Methodology and data 123 

The main objective of this study is to present both thermal and electrical modeling process 124 

and successively to implement an Artificial Neural Network model, which is able to forecast 125 

the electrical and thermal efficiencies of air collector PVT systems. Then, real climatic data of 126 

one year are used as an input of the electrical and thermal models to compute corresponding 127 

efficiencies. These latter are adopted in the training and validation of the proposed ANN and 128 

LS-SVM models.  129 

2.1.  PVT air collector modeling  130 



The modeling procedure represents an important task to imitate the real electrical and 131 

thermal behaviors of PVT systems. Accordingly, two validated modelling techniques are 132 

developed to assess the electrical and thermal performances of the air collector PVT system. 133 

 134 

2.1.1. Electrical modeling 135 

Photovoltaic module is a group of cells connected in series to provide important levels of 136 

voltage and current, which vary according to the fluctuations of solar irradiance G and cell 137 

temperature Tc (Chaibi et al., 2019a). The electrical behavior of PV modules is represented by 138 

the equivalent-circuit models. In Fig.1, one of the most adopted configurations is presented, 139 

noted as the single-diode presentation. Here, two resistances called the shunt Rsh and the 140 

series resistance Rs are added to take in account the PV cell losses (Chaibi et al., 2018).  141 

 142 

Fig.1: PV cell single-diode equivalent circuit model 143 

The model in Fig.1 is employed to plot the current-voltage characteristics (I-V). The PV 144 

module output current Ipv is defined as follows (Villalva et al., 2009): 145 

I�� = I��� − I� 	exp  �
����� �V�� + I��R�� − 1�� − ����� !��

� "                     (1) 146 

where: 147 

a: diode ideality factor. 148 

Is:  saturation current of the PV module. 149 

Isol:  photo-generated current of the PV module. 150 

K:  Boltzmann constant. 151 

Nc:  number of cells in series. 152 

q:  electron charge. 153 

VPV:  output voltage of the PV module.  154 

From Eq.(1), the I-V curves nonlinearity could be assessed using the manufacturer datasheet 155 

and a numerical process to determine the unknown electrical parameters. An iterative process 156 

to extract the equivalent-circuit physical parameters is adopted (Chaibi et al., 2020). This 157 

Isol Rsh

Rs

ID

VPV

IPV



method is based on the iteration of the shunt resistance until finding a good matching between 158 

computed and experimental power at the standard test conditions (STC).  159 

In order to compute the corresponding powers for each value of solar irradiance and 160 

temperature, Eq.(2) is used together with Eq.(1) to find the maximum power point (MPP) 161 

coordinates.  162 

#���
#��� = I�� + V�� #!��

#��� = 0 ⇒ I�� = �V�� − R�I��� 	 �
���&� I�exp  �

���&� �V�� + R�I���� +163 

1 R�'( �                                (2) 164 

Computed powers at MPP are provided to calculate the electrical module efficiency using the 165 

following equation (Chaibi et al., 2019b): 166 

η*+* = �,-
./0                           (3) 167 

Sm is the module surface.  168 

2.1.2. Thermal modeling 169 

       Fig.2 depicts the PVT hybrid collector scheme considered in this work. It is constituted 170 

of a photovoltaic module with three layers: tempered glass, PV cells covered by two-ethylene 171 

vinyl acetate (EVA) layers and Tedlar (Sarhaddi et al., 2010a).  172 

 173 

Fig.2: A cross-section picture of a PV/T air module 174 

To perform the energy balance for each layer of the PVT module, various assumptions have 175 

been applied: 176 

• unsteady state conditions; 177 

• air is an incompressible fluid; 178 

• EVA has a transmissivity of approximately 100%; 179 

• temperature of glass, cell, tedlar and air depends only on the longitudinal dimension in 180 

the flow direction; 181 



• heat loss is neglected as we consider the PV module to be well insulated. 182 

Fig.3 presents the corresponding equivalent thermal resistance circuit and the size of the 183 

control volume for airflow. 184 

 185 

(a) 186 

 187 

(b) 188 

Fig.3: Layout of thermal resistance system of a PVT air module (a), and basic length "dx" of a 189 

control volume (b) (Sarhaddi et al., 2010b) 190 

The thermal energy equations for various layers of the system are as follows: 191 

• Energy equation for glass  192 

( ) ( ) ( ) ( )
2

4 4

2

g g g

g g g g sky g c am g c gg

g

T T
c G T T h T T T T

t x

λ
ρ δ λ δ α σε

δ
∂ ∂

= + + − + − + −
∂ ∂

                               193 

(4) 194 

where, g
ρ is the density of the glass, g

c is the heat capacity of the glass, g
δ is the thickness of 195 

the glass, g
λ is the thermal conductivity of the glass, G is the solar radiation received by the 196 

glass, g
α is the absorptivity of the glass, Tam is the ambient temperature,σ and g

ε are Stefan 197 



Boltzmann constant and glass emissivity respectively. Swinbank (Sarhaddi et al., 2010a) 198 

expression is used to estimate the sky temperature Tsky: 199 

1.50.0552
sky am

T T=                                                                                                                                                200 

(5) 201 

McAdams correlation is adopted to determine the heat transfer coefficient between air and 202 

glass (Swinbank, 1963):  203 

5.7 3.8c windh V= +                                                                                                                                                204 

(6) 205 

where, Vwind is the wind speed.  206 

• Energy equation for PV cell 207 

( ) ( ) ( )
1 1

2

2

gc c c ted c
c c g c ted c c g pv pvc

g c ted c

T T
c T T T T G P

t x

δ δ δ δρ δ λ δ β τ α
λ λ λ λ

− −
   ∂ ∂= + + − + + − + −   ∂ ∂     

   208 

(7) 209 

The electricity produced by PV cell Ppv can be calculated using the following expression 210 

(Sellami et al., 2019): 211 

( )1pv g c o c refP G T Tτ β η β = − − 
                                                                                                212 

(8) 213 

where, β is the cell temperature coefficient, cβ is the packing factor, g
τ  is the glass 214 

transmittance, pv
α  is the absorptivity of the PV cells and oη is the reference electrical 215 

efficiency of PV panel for a reference temperature Tref.  216 

• Energy equation for Tedlar 217 

( ) ( ) ( )
1

2

2

ted ted ted c

ted ted f f ted c tedted

ted c

T T
c h T T T T

t x

δ δρ δ λ δ
λ λ

−
 ∂ ∂= + − + + − ∂ ∂  

                           (9)  218 

• Energy equation for air 219 

( ) ( )
2

2
.

f f f

f f f f f ted ff

T T T
c A c m A h W T T

t x x
ρ λ

∂ ∂ ∂
+ = + −
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&                                                              (10) 220 

where, f
m& is the mass flow rate of air and f

A  is the cross-sectional area of the fluid and W is 221 

the PVT width.  222 



The thermal ( thη ) and electrical efficiency ( eleη ) are calculated as (Evans, 1981): 223 

( ),

.

f f f f in

th

pv

m c T T

G A
η

−
=

&

                                                                                                                       (11) 224 

( )( )1 0.0045 298.15ele ref c cTη η β= − −                                                                                              (12) 225 

where, cT  is the average temperature of the PV cell and f
T  is the average temperature of the 226 

fluid (Rejeb et al., 2020). In this work the reference efficiency ref
η  is assumed to be 12%, 227 

which is in the range of the efficiency of common PV modules (Hazami et al., 2016). 228 

The overall energy efficiency of the PVT module is calculated using the following expression 229 

(Good, 2016): 230 

ele
g th

F
C

ηη η= +                                                                                                                                     (13) 231 

The electrical energy conversion factor 
F

C ranges from 0.35 to 0.40 and is generally used for 232 

PVT systems (Patankar, 1980). 233 

A fully implicit finite volume method was used to solve the energy equations system. The 234 

first-order upwind scheme was applied to address convective terms, and diffusion terms are 235 

discretized using the second order of the central differential scheme. In this paper, the 236 

discretized equations were solved iteratively by using a Tridiagonal Matrix Algorithm 237 

(TDMA) method (Patankar, 1980). The computation procedure was carried out using Fortan 238 

90. The specified iteration in each time interval was considered convergent when the 239 

maximum relative residual of Tg, Tc, Tted and Tf  was less than 10-4. 240 

2.2. Machine learning based methods 241 

This section introduces the supervisor machine learning techniques as the Artificial 242 

Neural Network and the Least Squares Support Vector Machines adopted to predict both 243 

electrical and thermal performance of a photovoltaic-thermal air collector system. 244 

2.2.1. Artificial Neural Network   245 

Artificial neural network includes an input layer, an output layer and one or more hidden 246 

layers. Each layer consists of neurons connected between them. The outputs of each layer are 247 

the input for the next layer, get by a transfer (activation) function 1 as follows: 248 

Y3 = f�∑ w7X37 + b�            (14) 249 



where, :; represents the output for the i-th layer based on the input <; the connection weights 250 

=> and b is the bias (Haykin, 2007). A common scheme of a multi-layer NN is shown in 251 

Fig.4. 252 

 253 

Fig.4: Common multi-layer neural network 254 

The neural networks can be classified into feed-forward and feed-back networks. A feed-255 

forward network is a non-recurrent network where the output is determined by the activation 256 

of the neurons starting from input through all the layers in one direction. Unlike a feed-back 257 

network can adopt a loop, so the neuron connections can be in more directions (Schmidhuber, 258 

2015). 259 

In common applications, fit a neural network means use a training dataset to set the 260 

connection between the neurons (weights) in order to map the inputs and the outputs in the 261 

best way possible. So, the training of a feedforward neural network phase consists of an 262 

optimization algorithm based on the back-propagation learning algorithm. It includes forward 263 

phase and backward phase (De Giorgi et al., 2013). In the Forward phase, the error is obtained 264 

as the difference between the target and the actual output with parameters of the network 265 

fixed. the Backward phase the weights are adjusted to minimize the error. 266 

The Levenberg–Marquardt algorithm is one of the most popular training algorithm for neural 267 

network that adopts the gradient descent approach, by which the training can be considered as 268 

completed when the performance is minimized to the goal. A description of the Levenberg-269 

Marquardt algorithm for neural network application can be found (Rojas, 1996). 270 

2.2.2. Least Squares Support Vector Machines  271 

       The Least Squares Support Vector Machines represents a noteworthy learning technique 272 

with several applications to overcome the overfitting problem successfully. The LS-SVM 273 

maps the outputs ?;	by using a regression function A,	applied to the inputs C;	as follows: 274 



y3 = wφ�x3� + b					i = 1…N          (15) 275 

where,	=	is the weight vector, I	is the bias and N is the size of the training dataset. The 276 

Lagrange function given by: 277 

L�w, b, e, α� = L�w, e� − ∑ α3My3Nwφ�x3� + bO − 1 + e3P�3QR 					i = 1…N         (16) 278 

It is introduced to solve the optimization problem and to minimize the cost function. 279 

mixT,U L �w, e� = R
Vw�w+ W

V∑ e3V					i = 1…N�3         (17) 280 

With X; and Y; are unknown variables and Z is the regularization factor. The Mercer’s 281 

theorem introduces a kernel function K and claims that:  282 

 φ��x3�φ[x7\ = K[x3, x7\					i, j = 1…N         (18) 283 

It assumes the Radial Basis Function (RBF) as the kernel function given by: 284 

K[x&, x7\ = exp_− `abc	ad`eefe g          (19) 285 

with σ the tuning parameter. So, an approximation of y is given by: 286 

y�x� = ∑ α3�3QR K�x, x3� + b           (20) 287 

2.3.3 Accuracy assessment 288 

The performance of the prediction models is evaluated by: 289 

• Pearson correlation coefficient (R)  290 

R = i∑ �aj∗	alm �c�∑ �aj�∗no ∑ �	alm �no �	no
p�i∑ ajec�∑ ajno �e�∗�i∑ alm ec�∑ almno �e�nono

         (21) 291 

• Root Mean Square Error (RMSE)  292 

RMSE = pR
i ⋅ ∑ �x3 −	xum�ViR             (22) 293 

• Mean absolute Error (MAE)  294 

MAE = R
i ⋅ ∑ �x3 −	xum�iR             (23) 295 

with Cwm  outputs, C; 	targets and n is the size of the testing dataset. Low MAE implies good 296 

fitting between actual outputs and targets. R value is closed to 1 mean a good relationship 297 

among actual data and predicted one. 298 



3. Results and discussion  299 

In this section, the experimental validation of both electrical and thermal models is 300 

assessed. Then, the obtained results of the ANN-based model are presented and compared to 301 

the  302 

LS-SVM model.  303 

3.1. Data description  304 

In this study,  the input climatic data (Dalala et al., 2020) are the real measurements of 305 

solar irradiance, module temperature, humidity and wind recorded in a weather station located 306 

at Jordan valley site (Hashemite Kingdome of Jordan) for the 2017 year. More details are 307 

reported in (Dalala et al., 2020). The monitored data every 30 minutes, for 12.238 samples 308 

overall, are used as input of the developed electrical and thermal models. The test dataset of 309 

3456 samples are plotted in Fig.5. 310 

  311 

Fig.5: Test weather data and efficiency related to 2017 year. 312 

The horizontal solar irradiance varies between 0 and 1093.06 W/m2 with the mean value is 313 

229.52 W/m2. The module temperature is in the range 4.72 °C ÷ 51.82 °C with the lowest 314 

value in January, the highest value in June and a mean value of 24.13°C. The humidity is 315 

11.33% in September, 99.81% in March and 54.12% on annual average. The highest wind 316 

value is recorded of 19.4 m/s with a mean of 1.1 m/s. The highest electrical and thermal 317 
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efficiencies are 12.7% in January and 44.66% in June with a mean of 5.27% and 6.98% 318 

respectively.  319 

  320 

Fig.6: Variables Distribution Histograms 321 

The distribution histograms of the used data are plotted in Fig.6. The solar irradiance and the 322 

wind show a distribution that “leans” to the left (positive skewness) that means the lack of 323 

symmetry with respect to the mean, unlike by the module temperature and humidity which 324 

present a distribution similar to the uniform one. It is noted that the electrical and thermal 325 

efficiencies show the same distribution as the solar irradiance and wind.  326 
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 328 

Fig.7: Scatter matrix of the variables 329 

The Fig.7 shows the correlation between the input climatic data and the efficiencies (electrical 330 

and thermal). In very few cases it is possible to see a correlation between the variables. An 331 

increase/decrease pattern exists between irradiance, module temperature, electrical and 332 

thermal efficiency. 333 

 334 

Fig.8: Pearson Correlation Coefficients 335 
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In fact, as shown in Fig. 8, the Pearson correlation coefficient is close to 1, or however higher 336 

than 0.6 in very few cases. Sometimes we can see also negative correlations. The electrical 337 

and thermal efficiencies present a correlation of 0.78 and 0.53 with irradiance respectively; of 338 

0.49 and 0.62 with the module temperature. The remain variables such as humidity and wind 339 

show a correlation very closed to 0 or even negative correlation. 340 

Such analysis will be considered in the development of the ANN model. In particular, the 341 

correlations will represent the criteria by which the variables will be chosen as input for the 342 

ANN. 343 

3.2.Validation of the electrical and thermal models  344 

3.2.1. Electrical model 345 

To assess the accuracy of the electrical PV modeling, datasheet values of the SP75 PV 346 

module (See Table 1) are used to compute the electrical parameters using the iterative process 347 

reported in (Chaibi et al., 2020). The founded parameters are summarized in Table 2.  348 

Table. 1: Specifications of the used PVT air collector system (Sarhaddi et al., 2010a) 349 

Solar PVT air module parameters Value 

PV module type Siemens SP75, monocrystalline silicon 

The number of cells in series, Nc 36 

The maximum power of PV module at STC, Ppv,MPP 75 W 

The maximum voltage of PV module at STC, Vpv,MPP 17 V 

The maximum current of PV module at STC, Ipv,MPP 4.4 A 

The short-circuit current of PV module at STC, Isc 4.8 A 

The open-circuit voltage of PV module at STC,Voc 21.7 V 

The temperature coefficient of Isc, Ki 2.06 mA/°C 

The length of PV module, L 1.2 m 

The width of PV module, W 0.527 m 

The area of PV module, Sm 0.632 m2 

The electrical efficiency at the reference conditions, ,ele ref
η  0.12 

The density of glass cover, g
ρ  2450 kg.m-3 

The specific heat capacity of glass cover, g
c  500 J.kg-1.K-1 

The thickness of glass cover, g
δ  0.003 m 

The conductivity of glass cover, g
λ  1 W.m-1.K-1 

The transmissivity of glass cover, g
τ  0.95 

The conductivity of solar cell, 
c

λ  130 W.m-1.K-1 

The specific heat capacity of solar cell, 
c

c  677 J.kg-1.K-1 

The density of solar cell, 
c

ρ  2330 kg.m-3 

The absorptivity of solar cell, 
c

α  0.85 

The thickness of solar cell, 
c

δ  0.0003 m 



The conductivity of solar cell, 
c

λ  0.036 W. m-1.K-1 

The thickness of tedlar, 
t e d

δ  0.0005 m 

The conductivity of tedlar, 
t e d

λ  0.033 W. m-1.K-1 

The specific heat capacity of tedlar, 
t e d

c  1250 J.kg-1.K-1 

The density of tedlar, 
t e d

ρ  1200 kg.m-3 

 350 

Table. 2:  Extracted parameters of the Siemens SP75 PV module at the STC (Chaibi et al., 2020) 351 

Parameters Value 

Photo-generated current 4.8 A 

Saturation current 1.1e-06 A 

Ideality factor 1.5352 

Series resistance 0.2616 Ω 

Shunt resistance 2670 Ω 

The parameters in Table 2 are adopted to generate the I-V curves of the SP75 PV module. 352 

Then, these characteristics are compared to the experimental curves for various level of solar 353 

irradiance and temperature. These I-V curves are presented in Fig.9, with a variation of solar 354 

irradiance and fixed temperature at 25 °C (Fig.9-a), and variation of temperature with a fixed 355 

irradiance at 1000 W/m2 (Fig.9-b). It is clear from these curves that the adopted modeling 356 

method exhibits high accuracy for different variations of solar irradiance and temperature. 357 

Besides, a little disagreement is remarked for irradiances below 400 W/m2, but it will not 358 

affect the performances of the electrical model since it does not exceed 2% of difference 359 

compared to experimental data. 360 

  361 

   (a)               (b) 362 

Fig.9: Experimental and simulated I-V characteristics of the SP75 PV module: irradiance varies and 363 

fixed temperature (T=25°C) (a), temperature varies and fixed irradiance (G=1000 W/m2) (b) 364 

3.2.2. Thermal model 365 
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Numerical results obtained by the thermal model are compared to the experimental results 366 

reported by Joshi et al. (Joshi et al., 2009). Solar irradiance, ambient temperature, air 367 

temperature at the inlet and outlet of the PVT, and PV cell temperature are some of the 368 

parameters that Joshi et al. (Joshi et al., 2009) have measured. The design parameters and 369 

thermophysical properties of the PVT air collector are presented in Table 1 (Sarhaddi et al., 370 

2010a). Fig.10 indicates the experimental day's variations in solar radiation intensity, ambient 371 

temperature and inlet air temperature. Fig.11 illustrates the variation versus time of the air 372 

temperature at the output of the PVT module, the average PV cell temperature and the related 373 

experimental data.  Based on this figure, there is generally a good correspondence between 374 

experimental and numerical results. The thermal and electrical efficiencies of the PVT air 375 

system are illustrated in Fig.12. Here, it can be seen that there is a reasonable agreement 376 

between experimental and calculated values of these efficiencies. The slight difference 377 

between the experimental and calculated efficiencies can be explained as follows:  378 

• Wind speed is considered constant. However, in practice this velocity is not constant and 379 

has a direct effect on the heat loss through the system; 380 

• The absorption and transmission coefficients were considered constant while they vary 381 

over the day as solar incidence angle on the PVT system surface changes. 382 

 383 

Fig.10: The hourly variation of G, Tam and Tair,inlet 384 

 385 



  386 
(a)                                                                                     (b) 387 

Fig.11: Numerical and experimental results: Outlet air temperature (a), and average cell  388 

temperature (b) 389 

 390 

 391 
(a)                                                                          (b) 392 

Fig.12: Efficiencies of the PV/T air versus time: Electrical efficiency (a),  and thermal efficiency (b) 393 

3.3. ANN-based model results  394 

In the present work a Multilayer Perceptron (MLP) feedforward neural network of 4 395 

layers is design with 1 input node and 1 output neuron, 1 hidden layers 10 nodes and 1 output 396 

layer. The two-layer feedforward network consists of sigmoid hidden neurons and linear 397 

output neurons as shown in Fig.13.  398 



 399 

 400 

Fig.13: Network Architecture 401 

The sigmoid function used in the ANN hidden layer is defined as (Kang, 2017): 402 

1�C� = R
R�	*xyz              (24) 403 

The linear function is given by: 404 

{�C� = |C + I             (25) 405 

They are shown in Fig.13. The MLP feedforward neural network implements the Back-406 

Propagation (BP) learning in Batch mode during the BP training, in which the weights are 407 

adjusted through epoch-by-epoch that means, the whole dataset is use to training.  408 

The Table. 3 includes several combinations of the weather variables as the potential input of 409 

the neural network. They were chosen on the base of the results regarding the Pearson 410 

Correlation Coefficients. So, the variables which exhibited high correlations with the output 411 

variables (electrical and thermal efficiencies) were considered to define the cases as presented 412 

in the Table 3. Further, 2 combinations (case 6 and case 8) of the input variables with low 413 

correlations were also considered to analyze their impact on the neural network performance.  414 

Table. 3:  Several combinations of the weather variables as the potential input of the neural network 415 

 Solar Irradiance Module Temperature Humidity Wind 

Case 1 √ √ √ √ 

Case 2 √    

Case 3 √ √   

Case 4 √ √  √ 

Case 5 √ √ √  

Case 6  √ √ √ 

Case 7 √   √ 



Case 8  √ √  

For each case, different neural networks were trained and tested by varying the number of 416 

hidden layer neurons. The RMSE as defined by Eq.(22) is used to assess the performance of 417 

the network. The number of hidden layer neurons with lower RMSE was chosen to get the 418 

network with higher performance. Fig. 14 shows the performance in term of RMSEs related 419 

to neural networks implemented to predict the electrical and thermal efficiencies respectively 420 

for each case. Steady RMSEs were observed within 30 as number of hidden layer neurons. 421 

This was established as the maximum number of hidden layer neurons to apply in the 422 

performance assessment.  423 

 424 

 425 

Fig.14: Performance of different neural networks by varying the number of hidden layer neurons 426 

In Fig 14, it is clear that the RMSE related to the electric efficiency is lower than 1% 427 

excepted for case 6 and 8 in which it varies between 4% and 5%. The case 3 and 5 result more 428 

performing with a number of hidden layer neurons starting from 6. The RMSEs of the thermal 429 

efficiency are in the range [5.5%, 10.5%]. The best and the worst perform were for the case 5 430 

and the case 7 respectively. 431 

Table 4: Summary of number of hidden layer neurons and R for 8 cases 432 



 

Electrical Efficiency Thermal Efficiency 

Number of hidden 

layer neurons 
R 

Number of hidden 

layer neurons 
R 

Case 1 6 0.99998 25 0.85879 

Case 2 7 0.99699 16 0.61297 

Case 3 8 0.99998 15 0.82186 

Case 4 28 0.99997 12 0.81293 

Case 5 16 0.99997 29 0.86836 

Case 6 7 0.51172 22 0.76551 

Case 7 18 0.99783 2 0.58601 

Case 8 11 0.51186 10 0.75414 

The best number of hidden layer neurons for each case is summarized in Table 4. Generally, 433 

it can be observed that the neural network to predict the electrical efficiency performs well for 434 

low number of hidden layer neurons, unlike the neural network to model the thermal 435 

efficiency that shows high accuracy for high number of hidden layer neurons. The best 436 

number of hidden layer neurons for each case were adopted for the performance assessment in 437 

the following sections. 438 

  439 

Fig.15: Target VS predicted values of the electrical efficiency.  440 

Fig.15 plots the actual values (target) and the predicted values of the electrical efficiency. For 441 

each case, the neural network’s response is quite similar to the expected value, excepted for 442 

case 6 and 8 which represent the weather variables combinations without the solar irradiance. 443 
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445 

 446 

Fig.16: Regression plot for electrical efficiency 447 

Fig. 16 presents regression plots for electrical efficiency. Mainly the R value is 0.99 excepted 448 

0.51 for case 6 and 8. 449 
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  450 

Fig.17: Electrical efficiency error 451 

 452 

Fig.18: Electrical efficiency error histograms 453 

 454 
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In Fig. 17 the errors generally are very low, exhibiting good compliance between target and 455 

output, but evident spikes can be observed between -10% and 10% in case 6 and 8. In fact the 456 

error histograms (Fig. 18) demonstrate that the error distribution is mainly peaked and 457 

centered to zero, unlike it is flat for case 6 and it is very flat for case 8. 458 

 459 

Fig.19: Target and predicted values of the thermal efficiency  460 

 461 

 462 
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 470 

 471 

Fig.20: Regression plot for thermal efficiency 472 

 473 

The target and the predicted value of the thermal efficiency are presented in Fig.19. The 474 

implemented neural networks show different responses of the thermal efficiency for the 8 475 

cases. The regression plots (Fig.20) illustrate R values up to 0.86 (case 5) and 0.85 (case 1). 476 

The worst R value (0.58) is for case 7 that does not consider the module temperature as input 477 

of the neural network (see Table 3). 478 

 479 

O
u

tp
u

t 
~

=
 0

.7
7

*T
a

rg
e

t 
+

 1
.6

O
u
tp

u
t 
~

=
 0

.4
2
*T

a
rg

e
t 
+

 5
.3

O
u

tp
u

t 
~

=
 0

.6
6

*T
a

rg
e

t 
+

 2
.2

O
u
tp

u
t 
~

=
 0

.6
7
*T

a
rg

e
t 
+

 2
.1

O
u
tp

u
t 
~

=
 0

.7
4
*T

a
rg

e
t 
+

 1
.9

O
u

tp
u

t 
~

=
 0

.5
8

*T
a

rg
e

t 
+

 2
.2

O
u
tp

u
t 
~

=
 0

.4
3
*T

a
rg

e
t 
+

 5
.5

O
u
tp

u
t 
~

=
 0

.5
7
*T

a
rg

e
t 
+

 2
.6



 480 

Fig.21: Thermal efficiency error 481 

 482 

 483 

Fig.22: Thermal efficiency error histograms 484 
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Fig.21 depicts the errors and confirms that the case 7 presents low error, the remain cases are 485 

affected by evident spikes. The thermal efficiency error histograms (Fig.22) are left shift: 486 

This means that it is more probable to underestimate the thermal efficiency than to 487 

overestimate it. Furthermore, the histograms are low with not evident peaks, so positive and 488 

negative errors occur with comparable probability. 489 

 490 

Fig.23: MAE for electrical and thermal efficiency for 8 cases 491 

The MAEs of each case, calculated by Eq.(23), are plotted in Fig. 23. Regarding the electrical 492 

efficiency, the case 1, 3, 4 and 5 show the best performances in term of MAE closed to zero. 493 

For such cases, solar irradiance and module temperature are the common variables, so 494 

humidity and wind variables are not essential to obtain high accuracy. High MAEs (up to 495 

3.5%) are remarked in the case 6 and 8 which not consider the solar irradiance as input of the 496 

neural network. MAEs of 3.2% can be obtained for thermal efficiency in case 1 and 5 which 497 

include the solar irradiance, module temperature and humidity as input. High MAEs (5.9 %) 498 

are reported for the cases 2 and 7 which not include module temperature. Such results are in 499 

accord with the correlations shown in Fig.8, where the electrical efficiency is strictly 500 

correlated with the irradiance, the thermal efficiency is correlated with the module 501 

temperature. 502 
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 503 

(a)  504 

 505 

                         (b)                  (c) 506 

Fig.24: Actual VS predicted (a) R (b) and Error histograms (c) of the electrical efficiency by LSSVM. 507 

In order to demonstrate the high performance of the discussed neural network-based model, a 508 

comparison with the LS-SVM technique is illustrated. Solar irradiance, module temperature, 509 

humidity and wind (case 1) were used as input for the LS-SVM model. Fig.24.a plot the 510 

electrical efficiency targets and outputs. It is evident that the response of the LS-SVM model 511 

is very spread if it is compared with the actual electrical efficiency as the R value of 0.80214 512 

confirms (Fig.24.b). The error distribution is left shift (Fig.24.c) that means most of all the 513 

predicted values underestimate the actual electrical efficiency. 514 
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 516 
(a) 517 

  518 
(b)        (c) 519 

Fig.25: Actual and predicted values of the thermal efficiency by LS-SVM (a) R value (b) and Error 520 

histograms (c) of the thermal efficiency by LS-SVM 521 

The actual and predicted thermal efficiency by LS-SVM is illustrated in Fig.25.a. 522 

Furthermore, the low R coefficient (0.71477) confirms that exists a not strong correlation 523 

(Fig. 25.b) and a quite similar probability to underestimate and overestimate the thermal 524 

efficiency as seen by the symmetric error distribution (Fig.25.c). 525 

Table 5: ANN vs LS-SVM  526 

 

ANN LS-SVM 

Electrical 

Efficiency 

Thermal 

Efficiency 

Electrical 

Efficiency 

Thermal 

Efficiency 

MAE (%) 0.0078 3.3607  2.6936  6.1546 

 527 

The Table 5 summarizes the MAE for ANN and LS-SVM using the prediction models for 528 

both electrical and thermal efficiency. The results of the case 1 were adopted to compare the 529 

performance of the NN-based model. It can see that the ANN outperforms the LS-SVM 530 

showing very low MAE values for both efficiencies. The accuracy assessment confirms that 531 

the electrical and thermal efficiency of a PVT air system can be predicted with higher 532 
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performance by using an ANN than LS-SVM based-model, with a reducing up to 2.7% for 533 

electrical efficiency and up to 2.8% for the thermal efficiency. 534 

Conclusion 535 

The study presents the results of an ANN model to predict the electrical and thermal 536 

efficiencies of PVT air systems. The first part of the paper introduces a method to model the 537 

electrical and the thermal efficiencies. Such method is evaluated by using actual 538 

measurements of weather conditions. Then the efficiency modeled values are applied to train 539 

and test a predictive model based on ANN using the weather data as an input for the neural 540 

networks. Different combinations of the weather variables were considered to assess the 541 

performance of the ANN- based model. The results are presented, and an accuracy analysis is 542 

performed by RMSE, R coefficient and MAE. The outcomes demonstrate that the choice of 543 

the variables as input of the neural network is very important to perform a model with low 544 

error. Furthermore, the solar irradiance and the module temperature are the most important 545 

variables to consider as input in a NN-based model respectively. The results also demonstrate 546 

higher performance of the ANN than LS-SVM. Furthermore, the electrical efficiency can be 547 

predicted with higher accuracy than the thermal efficiency. 548 
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