Theory of Mesophases of Triblock Comb-Shaped Copolymers: Effects of Dead Zones and Bridging

Ekaterina B Zhulina, Ivan V Mikhailov, Oleg V. Borisov

To cite this version:

Ekaterina B Zhulina, Ivan V Mikhailov, Oleg V. Borisov. Theory of Mesophases of Triblock CombShaped Copolymers: Effects of Dead Zones and Bridging. Macromolecules, 2022, 55 (14), pp. 6040 6055. 10.1021/acs.macromol.2c00418 . hal-04306895

HAL Id: hal-04306895

https://univ-pau.hal.science/hal-04306895
Submitted on 25 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Theory of Mesophases of Triblock Comb-Shaped Copolymers: Effects of Dead Zones and Bridging

${ }_{3}$ Ekaterina B. Zhulina, Ivan V. Mikhailov, and Oleg V. Borisov*

Cite This: https://doi.org/10.1021/acs.macromol.2c00418

Read Online

Abstract

4 ABSTRACT: A theory describing the equilibrium morphology and structural properties of 5 solvent-free mesophases of $A B A$ triblock copolymers comprised of comblike blocks is 6 developed using a strong-stretching self-consistent field (SS-SCF) analytical approach with 7 architecture-dependent parameters of the molecular potential. Morphological phase 8 diagrams are constructed by implementing a two-layer model of convex solvent-free brushes 9 which enables us to account for the effect of "dead zones" on binodals separating regions of thermodynamic stability of spherical, cylindrical, and lamellar mesophases. Fractions of the middle comblike B blocks forming bridges and loops between neighboring A domains are calculated for all of the morphologies as a function of the architectural parameters of the blocks. These analytical calculations are supplemented by numerical Scheutjens-Fleer selfconsistent field (SF-SCF) simulations of convex solvent-free brushes of comblike polymers that mimic the matrix in the $A B A$ triblock copolymer mesophases. The predicted domain sizes and interdomain distances are compared to experimental data.

1. INTRODUCTION

 decade. ${ }^{23-30}$ architectures. ${ }^{31-35}$Self-assembling block copolymers give rise to brushlike structures in melts and solutions. Solvated and dry brushes emerge, e.g., upon self-assembly of block copolymers with linear and branched blocks in selective solvents ${ }^{1-5}$ or in the melt state. ${ }^{6-15}$ Microphase-segregated bulk morphologies of block copolymers comprising branched blocks exhibit mechanical properties resembling biological tissues. ${ }^{16-19}$ Incorporation of comblike or bottlebrush blocks enables adjusting the properties of nanostructured materials through controlled variation of the grafting density or/and the polymerization degree of the grafts without changing their chemical nature. This control is assured by well-elaborated and robust techniques developed for the synthesis of comblike polymers and molecular brushes. Due to potential applications in (bio)engineering and nanomedicine, ${ }^{5,20-22}$ brushes of branched polymers with diverse topologies have become a subject of intense theoretical investigation during the past

The structural properties of brushes formed by end-tethered macromolecules with various branched architectures (e.g., regular dendrons, arm-tethered stars, macrocycle-containing polymers, etc.) can be described via analytical theories invoking architecture-dependent molecular potential. The pioneering study of Pickett ${ }^{23}$ demonstrated the parabolic nature of the self-consistent molecular potential acting in brushes formed by root-tethered regular dendrons and paved the way to extension of this approach to other molecular

Application of the parabolic potential framework to brushes of branched polymers has a number of evident advantages. It
allows for closed analytical expressions for polymer density 47 distributions in both undeformed and compressed brushes 48 under various solvent conditions ${ }^{34}$ and formulation of their 49 elastic response to deformation. ${ }^{35}$ It also specifies the free 50 energy for both solvated and solvent-free brushes that 51 facilitates the analysis of micellization in solutions ${ }^{33}$ and 52 microphase segregation in melts. ${ }^{36}$ On the other hand, the 53 parabolic potential framework has its drawbacks as it specifies 54 only the most probable state of the system and, importantly, 55 ignores the possible presence of dead zones (regions depleted 56 of chain free ends). The latter could arise for certain 57 architectures of the tethered chains in both planar and 58 nonplanar geometries and perturb the parabolic shape of the 59 molecular potential. In this case, the parabolic self-consistent 60 field (SCF) potential should be considered as an approx- 61 imation whose accuracy could be evaluated via alternative 62 methods, e.g., numerical SCF modeling accounting for dead 63 zones.

64
In our recent study, ${ }^{36}$ we applied the parabolic potential 65 framework (SS-SCF) to study microphase-segregated melts of 66 $A B$ diblock copolymers with comblike and bottlebrush blocks. 67 Comblike and bottlebrush polymers were distinguished based 68 on the conformational state of their backbones in melts. While

[^0]
(a)

(b)

(c)

Figure 1. Schematic of the $A B A$ block copolymer with a central comb-shaped block, and microphase-segregated structures in melts. Lamellar (a) and nonplanar (spherical, cylindrical) morphologies (b). Wigner-Seitz cell with half bridges attached to its boundary (c). Side chains of combshaped block are not shown.
comblike polymers with relatively loose grafts exhibit Gaussian statistics on all length scales in melts, the densely grafted side chains in bottlebrush polymers cause local stretching of the backbones. Using the asymptotic expressions for elasticity of branched polymers with long backbones, we examined three basic morphologies (spherical, cylindrical, and lamellar) of microphase-segregated melts in the strong segregation limit. Although the parabolic potential framework invokes the development of dead zones in convex brushes with nonplanar morphologies, ${ }^{37-41}$ their presence was ignored in our previous study ${ }^{36}$ due to conjecture that branching leads to a shrinkage of the dead zones ${ }^{24,43}$ and thus that their effect on the equilibrium parameters of superstructures is minor.
In this paper, we quantitatively evaluate the effect of dead zones on the structural properties of microphase-segregated melts by implementing the two-layer model that was originally formulated for solvated cylindrical and spherical brushes of linear polymers. ${ }^{41}$ We supplement the analytical model with the numerical Scheutjens-Fleer self-consistent field (SF-SCF) simulations of convex solvent-free brushes of comblike polymers with systematically varied lengths of side chains and spacers.
Using the two-layer model of dry brushes, we demonstrate that the effect of a dead zone could be noticeable in a spherical morphology, leading to smaller sizes of the domains and a mild shift in the binodal separating spherical and cylindrical superstructures to larger contents of a matrix-forming component.

Similarly to $A B$ diblocks, triblock copolymers $A B A$ with branched blocks give rise to spherical, cylindrical, and lamellar superstructures. More complex structures, e.g., a double gyroid, ${ }^{42}$ are also possible. The major difference between microphase-segregated melts of $A B$ and $A B A$ block copolymers arises due to formation of B bridges by central blocks of $A B A$ copolymers. In contrast to B loops returning to the same domains, B bridges connect neighboring domains giving rise to a physical network with architecture-dependent elasticity. While the presence of B bridges mildly affects the equilibrium dimensions of the domains and interdomain distances, the network elasticity is governed by both the fraction of bridges and the architecture of B blocks.
In our previous papers, ${ }^{45,47}$ we analyzed how the grafting density and length of the side chains affect the equilibrium fraction of B bridges in lamellar mesophases of $A B A$ block
copolymers with a comb-shaped B block. We demonstrated 114 that the equilibrium fraction of bridging chains in lamellae can 115 be estimated from the equilibrium parameters of brushes 116 formed by B subchains (i.e., loops cut in two equal parts) with 117 the middle points of bridges pinched at the symmetry plain 118 between grafting surfaces. This theoretical approach was 119 checked and supported by the numerical Scheutjens-Fleer 120 self-consistent field (SF-SCF) modeling. Note that while the 121 analytical strong-stretching self-consistent field (SS-SCF) 122 theory presumes a Gaussian elasticity of tethered macro- 123 molecules on all length scales and describes the set of chain 124 conformations via "trajectories" (that is, the most probable 125 positions of monomer units), numerical SF-SCF modeling 126 accounts properly for conformational degrees of freedom 127 irrespective of the extent of stretching of the brush-forming 128 macromolecules, including the nonlinear elasticity regime. 129 Using the SS-SCF and SF-SCF approaches, we demonstrated 130 that comblike branching of B blocks leads to the structural 131 organization of B layers resembling that of linear chains, that is, 132 loops occupy the presurface regions in the apposing brushes, 133 while the central part of the gap is filled with segments of 134 bridges with associated side chains. However, the equilibrium 135 fraction of bridges formed by comblike polymers noticeably 136 decreases compared to linear chains with the same DP.

The goal of this study is 2-fold: (i) we first investigate how 138 the fraction of bridging B chains connecting neighboring $A 139$ domains depends on the morphology of the microphase- 140 segregated state of the melt and on the architectural 141 parameters of the $A B A$ triblock copolymer, and (ii) we 142 examine how the presence of dead zones affects the 143 equilibrium parameters of microphase-segregated superstruc- 144 tures and the binodals separating ranges of thermodynamic 145 stability of different morphologies.

The rest of the paper is organized as follows. In section 2, we 147 consider solvent-free brushes formed by comblike macro- 148 molecules, introduce a two-layer model of dry convex brushes, 149 and compare the analytical predictions to the results of 150 numerical SF-SCF simulations. In section 3, the two-layer 151 model was applied to describe the matrix in the microphase- 152 segregated melt of the $A B A$ copolymer. In section 4, we 153 estimate the equilibrium fraction of the B bridges in 154 microphase-segregated melts of $A B A$ triblock copolymers 155 versus the morphology of the A domains. In section 5, we 156 examine the effect of dead zones on the equilibrium parameters 157

158 of the superstructures and the binodals separating the 159 spherical, cylindrical, and lamellar morphologies of copolymers 160 with comb-shaped blocks. In section 6, we compare the 161 theoretical predictions to experiments. In section 7 we 162 formulate the conclusions.

2. BRUSH OF COMB-SHAPED MACROMOLECULES: MODEL AND SS-SCF FORMALISM

206 the topological coefficient κ

207

$$
\begin{align*}
\kappa & =\frac{\pi}{2 N}\left(1+\frac{q n}{m}\right)^{1 / 2}=\frac{\pi}{2 M}\left(1+\frac{n q}{m}\right)^{-1 / 2}, \\
& M \gg(n m / q)^{1 / 2} \tag{3}
\end{align*}
$$

208 For linear chains with $q=0$ and $N=M$, the topological 209 coefficient $\kappa=\kappa_{\text {lin }}=\pi / 2 N$. To eliminate the molecular weight 210 dependence of κ, we introduce the topological ratio

$$
\begin{equation*}
\eta=\frac{\kappa}{\kappa_{\text {lin }}}=\frac{2 \kappa N}{\pi} \tag{4}
\end{equation*}
$$

which is approximated as

$$
\begin{equation*}
\eta_{\text {comblike }}=\left(1+\frac{q n}{m}\right)^{1 / 2}=(N / M)^{1 / 2} \tag{212}
\end{equation*}
$$

for comblike polymers with $M \gg(m n / q)^{1 / 2}$ (locally un- 214 extended backbones). In conventional comblike polymers, $q=215$ 1.

The topological ratio η for bottlebrush (bb) polymers with 217 locally extended backbones was also discussed earlier. ${ }^{36}$ The 218 onset of local backbone extension (i.e., the onset of the 219 bottlebrush regime for comb-shaped polymer) is governed by 220 dense packing of the backbone segment with associated side 221 chains in volume V with radius $r_{0}=(l b n)^{1 / 2}$ equal to the 222 Gaussian size of side chain, that is

$$
\begin{equation*}
V=\frac{4 \pi}{3} r_{0}^{3}=\frac{4 \pi}{3}(l b n)^{3 / 2}=v n\left(\frac{q n}{m_{*}}+1\right) \approx v \frac{q n^{2}}{m_{*}} \tag{6}
\end{equation*}
$$

to specify the threshold value m_{*} of spacer length as

$$
\begin{equation*}
m_{*} \approx \frac{3}{4 \pi} \frac{v}{(l b)^{3 / 2}} q n^{1 / 2} \tag{7}
\end{equation*}
$$

For comb-shaped polymers with $m \ll m_{*}$, the backbone is 227 locally stretched and the topological ratio for such macro- 228 molecules is given by

$$
\begin{equation*}
\eta_{\text {bottlebrush }}=\alpha \frac{(l b)^{3 / 4}}{v^{1 / 2}} n^{1 / 4} \tag{8}
\end{equation*}
$$

with the numerical coefficient $\alpha \simeq 1$. In this scenario, the 231 topological coefficient $\kappa=\pi \eta_{\text {bottlebrush }} /(2 N)$ in eq 2 should be 232 renormalized according to eq 8 .

Equations 8 and 5 indicate that the elastic free energy of 234 comb-shaped polymers in a brush is dominated by stretching 235 of their backbones while the side chains are weakly stretched 236 and retain almost unperturbed Gaussian conformations.
2.1. Dead Zone in Dry Convex Brush: Two-Layer 238 Model. In convex brushes of linear chains, the parabolic 239 molecular potential leads to a negative number density of the 240 free ends near the grafting surface, indicating the development 241 of dead zones. ${ }^{37}$ Dead zones emerge also for certain 242 architectures of branched chains in a planar geometry. ${ }^{48} 243$ Importantly, dead zones of any origin modify the parabolic 244 shape of the molecular potential, ${ }^{38,39}$ making its precise 245 calculation challenging.

A simplified two-layer model accounting for dead zones in 247 solvated convex brushes of linear chains ${ }^{41}$ combined the power 248 law decay in polymer density inside the dead zone with the 249 planar-like distribution of chain segments in the brush 250 peripheral region. Matching the polymer density profiles in 251 the spherical (or cylindrical) dead zone and the planar-like 252 peripheral layer, supplemented with length conservation of 253 chain segments in both layers, relates the dead zone width, $z_{0}, 254$ to the curvature of the grafting surface. It was demonstrated ${ }^{41} 255$ and confirmed by more accurate calculations ${ }^{39}$ that an inferior 256 solvent strength leads to the increased relative extension of the 257 dead zone, suggesting that dead zones could occupy a 258 significant part of strongly curved solvent-free brushes of 259 comb-shaped polymers.

$$
\begin{equation*}
\frac{i N v}{s_{i} R_{i}}=\left(1+\frac{D_{i}}{R_{i}}\right)^{i}-1 \tag{9}
\end{equation*}
$$

277 The brush is divided into 2 layers: a dead zone with thickness $278 z_{0}$ near the surface and a peripheral layer with thickness $\left(D_{i}-\right.$ $279 z_{0}$). The dead zone contains equally stretched segments of 280 backbones, while the remaining backbone segments distribute 281 free ends all over the planar-like peripheral layer. Introduction 282 of the reduced variables

283

$$
\begin{equation*}
\omega_{i}=\frac{D_{i}}{R_{i}} ; \quad y_{i}=\frac{z_{0}}{D_{i}} \tag{10}
\end{equation*}
$$

284 and balance of the average elastic tensions at the boundary 285 between the two layers $\left(z=z_{0}\right)$ allow for equations for reduced 286 width y_{i} of the dead zone in spherical $(i=3)$ and cylindrical (i $287=2$) geometries

$$
\begin{align*}
y_{3}= & \frac{z_{0}}{D_{3}} \\
= & {\left[\frac{1}{2}\left(\frac{\omega_{3}}{3}+1-\frac{\pi^{2}}{4}\right)\right.} \\
& \left.+\sqrt{\frac{1}{4}\left(\frac{\omega_{3}}{3}+1-\frac{\pi^{2}}{4}\right)^{2}+\left(\frac{\pi^{2}}{8}-\frac{1}{3}\right)\left(\frac{\omega_{3}^{2}}{3}+\omega_{3}+1-\frac{\pi^{2}}{8}\right)}\right] \\
& \div\left[\omega_{3}\left(\frac{\pi^{2}}{8}-\frac{1}{3}\right)\right] \tag{11}
\end{align*}
$$

288
289 and

$$
\begin{equation*}
y_{2}=\frac{z_{0}}{D_{2}}=\frac{2+\omega_{2}-\frac{\pi^{2}}{4}}{\omega_{2}\left(\frac{\pi^{2}}{4}-1\right)} \tag{12}
\end{equation*}
$$

291 The dead zone disappears (i.e., $y_{i}=0$) if

$$
\begin{align*}
& \omega_{i}<\omega_{i, 0}=\left(\frac{D_{i}}{R_{i}}\right)_{0} \\
&= \begin{cases}-\frac{3}{2}+\sqrt{\frac{3 \pi^{2}}{8}-\frac{3}{4}} \approx 0.218 & i=3 \\
\frac{\pi^{2}}{4}-2 \approx 0.467 & i=2\end{cases} \tag{13}
\end{align*}
$$

293 while its maximal relative width $y_{i}\left(\omega_{i} \rightarrow \infty\right)$ is given by

$$
y_{i, \max }=\left\{\begin{array}{l}
\frac{1}{\pi^{2} / 4-1} \approx 0.681 \quad i=2 \tag{14}\\
\frac{1 / 6+\sqrt{1 / 36+\left(\pi^{2} / 8-1 / 3\right) / 3}}{\pi^{2} / 8-1 / 3} \approx 0.821 \\
i=3
\end{array}\right.
$$

Notably, eq 10 does not comprise the architectural parameters 295 of comb-shaped polymers and is applicable to linear polymers 296 as well.

In Figure 2, we present the reduced width of the dead zone, 298 f 2 $y_{i}=z_{0} / D_{i}$, in spherical $(i=3)$ and cylindrical $(i=2)$ dry 299

Figure 2. Relative extension of the curvature-induced dead zone, z_{0} / D_{i}, in a convex dry brush with thickness D_{i}, formed by linear chains with DP N, tethered to a convex surface with radius R_{i} and grafting area s_{i} per chain. $D_{0, i}=N v / s_{i}$ is the thickness of a planar brush with grafting area s_{i} per chain. Lines with symbols show z_{0} / D_{i} calculated with the two-layer model. Solid black curves are exact z_{0} / D_{i} according to ref 39 .
brushes (lines with symbols calculated according to eqs 11 and 300 12) as a function of the reduced curvature

$$
\begin{equation*}
\frac{R_{i}}{D_{0}}=\frac{R_{i} s_{i}}{N v}=\frac{i}{\left(1+\omega_{i}\right)^{i}-1} \tag{15}
\end{equation*}
$$

Here, $D_{0}=\mathrm{Nv} / \mathrm{s}_{i}$ is the thickness of the planar solvent-free 303 layer with grafting area s_{i} per chain. As it is seen in Figure 2, at 304 strong curvature of a spherical surface, $R_{3} / D_{0} \lesssim 2$, the ratio $z_{0} / 305$ D_{3} is rather close to the exact dependence ${ }^{39}$ calculated for 306 linear chains (shown by the upper solid lines in Figure 2). The 307 correspondence between the approximate and the exact values 308 of z_{0} / D_{2} (lower solid line) at strong curvatures for a cylindrical 309 geometry is reasonable as well. The maximal extensions of 310 dead zones, $y_{3, \text { max }} \approx 0.82$ and $y_{2, \max } \approx 0.68$, are close to the 311 exact values, 0.71 and 0.63 , respectively. ${ }^{39}$ However, at weak 312 curvatures $\left(\omega_{i}<\omega_{i, 0}\right)$, in contrast to the predicted exponential 313 decay, ${ }^{39} z_{0}$ exactly equals zero in the two-layer model.

In the two-layer model, the elastic free energy $F_{\text {el }}$ per chain 315 in a convex brush of comb-shaped polymers comprises the 316 elastic contributions due to the dead zone region $\left(F_{\text {el,in }}\right)$ and 317 the planar-like peripheral layer $\left(F_{\text {el,out }}\right)$

$$
\begin{equation*}
F_{\mathrm{el}}=F_{\mathrm{el}, \text { in }}+F_{\mathrm{el}, \text { out }} \tag{16}
\end{equation*}
$$

The elastic free energy $F_{\text {el }}$ per molecule is calculated in the SI 320 and is given by

Figure 3. Fraction $g(z)$ of middle points in the spherical $(i=3)$ brush of loops formed by comblike polymer with fixed $\mathrm{DP} N=M(1+n / m)=1000$ as a function of distance z from the surface. $m=2$ values of other parameters (σ, R, D, n) are indicated in the plots. Theoretical thickness z_{0} of the dead zone is indicated by cross on the z axis.

$$
\frac{F_{\mathrm{el}}}{k_{\mathrm{B}} T}=\frac{v \eta^{2}}{l b} \frac{R_{i}}{s_{i}} \times \begin{cases}\frac{3}{2} \frac{y_{i}}{y_{i}+\omega_{i}}+\frac{27 \pi^{2}}{8} \frac{\omega_{3}^{3}\left(1-y_{3}\right)^{3}\left[\left(1+y_{3} \omega_{3}\right)^{2} / 3+\omega_{3}\left(1+y_{3} \omega_{3}\right)\left(1-y_{3}\right) / 2+\omega_{3}^{2}\left(1-y_{3}\right)^{2} / 5\right]}{\left[\left(1+\omega_{3}\right)^{3}-\left(1+\omega_{3} y_{3}\right)^{3}\right]^{2}} & i=3 \\ \frac{3}{2} \ln \left(\frac{y_{i}+\omega_{i}}{y_{i}}\right)+\frac{3 \pi^{2}}{2} \frac{\omega_{2}^{3}\left(1-y_{2}\right)^{3}\left[\left(1+y_{2} \omega_{2}\right) / 3+\omega_{2}\left(1-y_{2}\right) / 4\right]}{\left[\left(1+\omega_{2}\right)^{2}-\left(1+\omega_{2} y_{2}\right)^{2}\right]^{2}} & i=2\end{cases}
$$ 331 numerical scf modeling and computer DPD simulations of

ts D , z_{0}
2.2. SF-SCF Modeling of Convex Solvent-Free Brushes of Comb-Shaped Polymers. The details of the SF-SCF method have been described in detail in our previous publications. ${ }^{45,47}$ Here, we present the scf data to merely confront the relevant analytical predictions. As before, we implement monomer size a as the unit length to make R, D, z_{0}, and grafting density $\sigma=s^{-1}$ dimensionless. More results of the
microphase-segregated melts of comb-shaped polymers will be 332 presented in a subsequent publication.

In Figure 3, we illustrate the development of a dead zone in 334 f 3 a spherical $(i=3)$ solvent-free brush formed by loops of comb- 335 shaped polymer. In the SF-SCF approach, a brush of loops 336 with backbone DP M and grafting density σ is equivalent to the 337 brush of linear chains with DP $M / 2$ and grafting density 2σ. In 338 Figure 3, the normalized to unity fraction $g(z)$ of middle points 339 of the loops is presented as a function of distance z from the 340

Figure 4. Normalized fraction $g(z) D_{3}$ of middle points in the brush of loops with fixed DP $N=1000$ as a function of reduced distance z / D_{3} from the surface of the spherical substrate with radius $R_{3}=15$ at different grafting densities σ. DP of the side chain $n=0$ (a), 3 (b), and 8 (c).

Figure 5. Free energy $F_{e l}$ per molecule (in $k_{\mathrm{B}} T$ units) in the cylindrical ($i=2$, left) and spherical ($i=3$, right) solvent-free brushes of loops formed by comblike polymer as a function of ratio R_{i} / D_{i}. Solid and dashed lines indicate scf data and analytical predictions calculated according to eq 20 (two-layer model), respectively. In both plots backbone DP $M=400$, grafting density of loops $\sigma=0.1, m=2$, and $n=1,3,5,8,10,12,15$, and 20 (curves indicated by different colors with n increasing from bottom to top).

341 surface at a fixed loop DP $N=1000, m=2, R_{3} \approx 15$, and varied 342 system parameters (indicated in the plots with subscript 3 343 omitted to avoid crowding). The theoretical thickness z_{0} (eq 344 345 346 of polymer backbones with DP $\mathrm{M}=N(1+n / m)$, the 347 concomitant development of the maximum in $g(z)$ depend348 ence, and the extension of the dead zone. A similar effect is 349 invoked by the increase in the grafting density σ.
350 According to the two-layer model, the relative width of the 351 outer (planar-like) sublayer depends only on the ratio R_{i} / D_{i}, 352 and therefore, at a fixed surface radius, $R_{i}=$ const, the 353 distribution $g(z)$ of loop middle points (end points of the 354 equivalent linear chains) depends only on the reduced distance $355 z / D_{i}$. Therefore, the two-layer model predicts a universal shape 356 of the normalized distribution $g(z) D_{i}$ as a function of z / D_{i} with
a maximum at the external boundary of the brush, $z / D_{i}=1$. In 357 Figure 4, we present $g(z) D_{3}$ as a function of z / D_{3} in a spherical 358 ft brush ($i=3$) for comb-shaped polymer DP $N=1000$ and 359 varied lengths of the side chains, $n=0$ (Figure 4a), $n=3360$ (Figure 4b), and $n=8$ (Figure 4c). An increase in n and the 361 concomitant decrease in $M=N /(1+n / m)$ lead to localization 362 of the normalized distribution $g(z) D_{3}$ around the same 363 maximum (consistent with the analytical model). However, 364 in contrast to the theoretical predictions, the position of the 365 maximum in $g(z) D_{3}$ is shifted to smaller values of $z / D_{3} \approx 0.8<366$ 1. This shift could be rationalized as follows. In the case of 367 comb-shaped polymers, the maximum in $g(z) D_{3}$ dependence is 368 expected to shift to the left due to accommodation of the side 369 chains that ensure dense packing of monomer units in the 370 vicinity of the brush external boundary. This feature of comb- 371 shaped polymers is not accounted for in the analytical model 372
3. MICROPHASE-SEGREGATED MELT OF ABA COPOLYMER: TWO-LAYER MODEL OF THE MATRIX
9 Let triblock copolymer $A B A$ have DP N_{A} of blocks A and DP $4002 N_{B}$ of the central block B. The structural parameters v_{j}, l_{j} of 401 the monomer units in the blocks and Kuhn segments $b_{j}(j=A$, $402 \mathrm{~B})$, specify the ratio ${ }^{36}$

$$
\begin{equation*}
\beta=\frac{l_{A} b_{A} v_{B}}{l_{B} b_{B} v_{A}} \tag{18}
\end{equation*}
$$

Transformation of the $A B A$ triblock copolymer in two diblock 404 copolymer molecules $A B$ with DP N_{B} of block B does not 405 significantly change the equilibrium parameters of the $A 406$ domains and B matrix in the strong segregation limit as the 407 account of bridging invokes only minor correction to the free 408 energy of the B block. For example, in a planar case $(i=1)$, the 409 relative increase in the elastic free energy of the B block due to 410 the presence of $X_{B, 1}$ bridges per grafting area s_{1} is estimated as 411 $O\left(X_{B, 1}^{4}\right)<1 \%$ at the maximal value of $X_{B, 1}=0.5$. ${ }^{45}$ However, 412 the development of dead zones in cylindrical and spherical 413 morphologies might more strongly affect the elastic free energy 414 of B blocks (as well as the sizes of A domains), and we adopt 415 the two-layer model of convex brushes to describe the $B 416$ matrix.
3.1. Elastic Free Energy of Comb-Shaped Block B. If $N 418$ and R_{i} introduced in the previous section are assimilated to DP 419 N_{B} of block B in the $A B$ diblock copolymer and radius of the $A 420$ domain then the grafting area s_{i} per chain is related to the 421 domain radius R_{i} as

$$
\begin{equation*}
s_{i}=i N_{A} v_{A} / R_{i} \tag{19}
\end{equation*}
$$

and the total elastic free energy of the B block in the two-layer 424 model is formulated as

425

$$
\begin{equation*}
\frac{F_{B, i}}{k_{\mathrm{B}} T}=\frac{R_{i}^{2}}{l_{A} b_{A} N_{A}} \beta \eta_{B}^{2} c_{i}\left(\omega_{i}, y_{i}\right) \tag{20}
\end{equation*}
$$

with
427

$$
c_{3}\left(\omega_{3}, y_{3}\right)= \begin{cases}\frac{1}{2} \frac{\omega_{3} y_{3}}{1+\omega_{3} y_{3}}+\frac{9 \pi^{2}}{8} \omega_{3}^{3}\left(1-y_{3}\right)^{3} \frac{\left[\left(1+y_{3} \omega_{3}\right)^{2} / 3+\omega_{3}\left(1+y_{3} \omega_{3}\right)\left(1-y_{3}\right) / 2+\omega_{3}^{2}\left(1-y_{3}\right)^{2} / 5\right]}{\left[\left(1+\omega_{3}\right)^{3}-\left(1+\omega_{3} y_{3}\right)^{3}\right]^{2}} & \omega_{3}>\omega_{3,0} \tag{21}\\ \frac{9 \pi^{2}}{8} \omega_{3}^{3} \frac{\left[1 / 3+\omega_{3} / 2+\omega_{3}^{2} / 5\right]}{\left[\left(1+\omega_{3}\right)^{3}-1\right]^{2}} & \omega_{3}<\omega_{3,0}\end{cases}
$$

428 429 430

434 Here, y_{i} is related to ω_{i} via eqs 11 and 12 and $\omega_{i, 0}$ is specified in

435 eq 13

3.2. Free Energy per $A B$ Block Copolymer Molecule.

 436Compared to the free energy of the diblock copolymer 437 calculated in the SS-SCF approximation, ${ }^{36}$ the free energy F_{i} 438
per diblock $A B$ copolymer in the two-layer model of the B 439 440 matrix is reformulated as
eq 13

8

$$
c_{2}\left(\omega_{2}, y_{2}\right)= \begin{cases}\frac{3}{4} \ln \left(1+\omega_{2} y_{2}\right)+\frac{3 \pi^{2}}{4} \omega_{2}^{3}\left(1-y_{2}\right)^{3} \frac{\left[\left(1+y_{2} \omega_{2}\right) / 3+\omega_{2}\left(1-y_{2}\right) / 4\right]}{\left[\left(1+\omega_{2}\right)^{2}-\left(1+\omega_{2} y_{2}\right)^{2}\right]^{2}} & \omega_{2}>\omega_{2,0} \tag{22}\\ \frac{3 \pi^{2}}{4} \omega_{2}^{3} \frac{\left[1 / 3+\omega_{2} / 4\right]}{\left[\left(1+\omega_{2}\right)^{2}-1\right]^{2}} & \omega_{2}<\omega_{2,0}\end{cases}
$$

and

$$
\begin{align*}
\frac{F_{i}}{k_{\mathrm{B}} T} & =\frac{F_{A / B}}{k_{\mathrm{B}} T}+\frac{F_{A, i}}{k_{\mathrm{B}} T}+\frac{F_{B, i}}{k_{\mathrm{B}} T} \\
& =\frac{i \gamma N_{\mathrm{A}} v_{A}}{l_{A}^{2} R_{i}}+\frac{R_{i}^{2}}{l_{A} b_{A} N_{A}}\left[\mathrm{~b}_{i} \eta_{A}^{2}+\beta \eta_{B}^{2} c_{i}\left(\omega_{i}, y_{i}\right)\right] \tag{23}
\end{align*}
$$

444 and functions c_{i} specified by eqs 21 and 22 . Here, the surface 445 free energy $F_{A / B}$ and the elastic free energy $F_{A, i}$ of the domain446 forming block A are not changed, while $F_{B, i}$ is modified to 447 account for the dead zone.

$$
\begin{equation*}
x=\frac{V_{B}}{V_{A}}=\frac{v_{B} N_{B}}{v_{A} N_{A}} \tag{25}
\end{equation*}
$$

relates x to ω_{i} as

$$
\begin{equation*}
\omega_{i}(x)=(1+x)^{1 / i}-1 \tag{26}
\end{equation*}
$$

and $y_{i}\left(\omega_{i}\right)$ and $c_{i}\left(\omega_{i}, y_{i}\right)$ in eqs 21 and 22 become functions of $x 452$ as 453

$$
\begin{equation*}
y_{i}\left(\omega_{i}\right) \rightarrow y_{i}(x) \text { and } c_{i}\left(\omega_{i}, y_{i}\right)=G_{i}(x) \tag{27}
\end{equation*}
$$

At a small curvature of A domains ($\omega_{i}<\omega_{i, 0}$, no dead zones 455 in the B matrix), functions $G_{i}(x)$ coincide with the 456 morphology-dependent functions $g_{i}(x)$ calculated in the 457 parabolic potential framework ${ }^{36}$

$$
G_{i}(x)=g_{i}(x)=\frac{\pi^{2}}{8} \begin{cases}x, & i=1 \tag{28}\\ 6 x^{-2}\left[(1+x)^{1 / 2}-1\right]^{4}\left[\frac{1}{4}+\frac{1}{3}\left[(1+x)^{1 / 2}-1\right]^{-1}\right], & i=2 \\ 9 x^{-2}\left[(1+x)^{1 / 3}-1\right]^{5}\left[\frac{1}{5}+\frac{1}{2}\left[(1+x)^{1 / 3}-1\right]^{-1}+\frac{1}{3}\left[(1+x)^{1 / 3}-1\right]^{-2}\right], & i=3\end{cases}
$$

461 while at a large curvature of A domains (i.e., at $\omega_{i}>\omega_{i, 0}$) functions $G_{i}(x)$ are specified by eqs $26,12,11,22,21$, and 27 . Notably, due to the absence of a curvature-induced dead zone 4 in a planar morphology $(i=1), G_{1}(x) \equiv g_{1}(x)$ at any x.

Minimization of F_{i} with respect to R_{i} in eq 23 gives

$$
\begin{equation*}
R_{i}=\left(\frac{i \gamma N_{A}^{2} v_{A} b_{A}}{2 \Phi_{i}(x) l_{A}}\right)^{1 / 3} ; D_{i}=R_{i}\left[(1+x)^{1 / i}-1\right], i=1,2,3 \tag{29}
\end{equation*}
$$

466
467 and

$$
\begin{equation*}
\frac{F_{i}}{k_{\mathrm{B}} T}=3\left(\frac{i}{2}\right)^{2 / 3} N_{A}^{1 / 3} \Phi_{i}(x)^{1 / 3}\left(\frac{\gamma^{2 / 3} v_{A}^{2 / 3}}{l_{A}^{5 / 3} b_{A}^{1 / 3}}\right) \tag{30}
\end{equation*}
$$

469 with

$$
\begin{equation*}
\Phi_{i}(x)=b_{i} \eta_{A}^{2}+\beta \eta_{B}^{2} G_{i}(x) \tag{31}
\end{equation*}
$$

4. FRACTION OF BRIDGES IN MESOPHASES OF ABA BLOCK COPOLYMER

472 To estimate the equilibrium fraction $X_{B, i}$ of bridging comb473 shaped B blocks in spherical $(i=3)$ and cylindrical $(i=2)$ 474 morphologies, we use the previously implemented approach ${ }^{47}$ 475 to calculate fraction $X_{B, 1}$ of the bridges in lamellae $(i=1)$. As 476 we demonstrated earlier, ${ }^{47}$ the equilibrium fraction of bridges 477 formed by blocks B in a planar geometry $(i=1)$ is related to 478 the elastic free energy $F_{B, 1}(x)$ of B subchains (that is, loops cut 479 into two equal parts) as

480

$$
\begin{equation*}
X_{B, 1} \approx \frac{1}{1+\left(1+\frac{72}{\pi^{4}} \frac{F_{B, 1}(x)}{k_{B} T}\right)^{1 / 3}} \tag{32}
\end{equation*}
$$

Here, the elastic free energy per B subchain with DP N_{B} is specified as ${ }^{36}$

$$
\begin{align*}
& \frac{F_{B, 1}(x)}{k_{B} T}=\frac{\pi^{2}}{8} \eta_{B}^{2} \frac{D_{1}^{2}}{l_{B} b_{B} N_{B}}=\frac{\pi^{2}}{8} x \beta \eta_{B}^{2} \frac{R_{1}^{2}}{l_{A} b_{A} N_{A}}= \\
& \frac{\pi^{2}}{8} x \beta \eta_{B}^{2} N_{A}^{1 / 3} \frac{1}{2^{2 / 3}}\left(\frac{\gamma^{2 / 3} v_{A}^{2 / 3}}{l_{A}^{1 / 3} b_{A}^{5 / 3}}\right)\left(\frac{\pi^{2}}{8}+\frac{\pi^{2}}{8} \beta \eta_{B}^{2} x\right)^{-2 / 3} \tag{483}
\end{align*}
$$

In contrast to lamellae, the free ends of B subchains in 484 nonplanar morphologies are distributed only in the peripheral 485 layers while the segments of B subchains in dead zones are 486 stretched equally. Therefore, the difference in the elastic free 487 energies of loops and bridges is associated merely with the 488 difference in the free energies of segments of B subchains with 489 free and pinched end points at the outer boundary of the 490 peripheral layer (edge of the Wigner-Seitz cell).

In the two-layer model, the peripheral layers in spherical ($i=492$ 3) and cylindrical $(i=2)$ morphologies are assimilated to 493 planar brushes of subchains with DP $N_{\mathrm{B}, \text { out }}$ 494

$$
\begin{equation*}
N_{B, \text { out }}=\left[\left(1+\frac{D_{i}}{R_{i}}\right)^{i}-\left(1+\frac{z_{0}}{R_{i}}\right)^{i}\right] \frac{s_{i} R_{i}}{i v} \tag{34}
\end{equation*}
$$

tethered with area $s_{\text {eff }}=\frac{\pi^{2}}{8} s_{i}\left(1+z_{0} / R_{i}\right)^{i-1}$. The elastic free 496 energy $\Delta F_{B, i}(x)$ of chain segments in the peripheral layer with 497 thickness $\left(D_{i}-z_{0}\right)$ is formulated (see SI) as 498

$$
\begin{align*}
& \frac{\Delta F_{B, i}(x)}{k_{\mathrm{B}} T}=\frac{\pi^{2}}{8} \eta_{B}^{2} \frac{\left(D_{i}-z_{0}\right)^{2}}{l_{B} b_{B} N_{B, \text { out }}}=\frac{\pi^{2}}{8} \eta_{B}^{2} \frac{\left(D_{i}-z_{0}\right) v_{B}}{l_{B} b_{B} s_{\text {eff }}}= \\
& \eta_{B}^{2} \frac{\left(D_{i}-z_{0}\right) v_{B}}{l_{B} b_{B} s_{i}\left(1+z_{0} / R_{i}\right)^{i-1}} \tag{35}
\end{align*}
$$

Using eq 19 for surface area s_{i} per molecule in morphology $i 500$ and eq 29 one finds

504 The equilibrium fraction $X_{B, i}$ of bridges in spherical $(i=3)$ and 505 cylindrical $(i=2)$ morphologies of the ABA copolymer is then

506 evaluated as

$$
\begin{equation*}
X_{B, i} \approx \frac{1}{1+\left(1+\frac{72}{\pi^{4}} \frac{\Delta F_{B, i}(x)}{k_{\mathrm{B}} T}\right)^{1 / 3}}, i=2,3 \tag{37}
\end{equation*}
$$

$$
\frac{\Delta F_{B, i}(x)}{k_{\mathrm{B}} T}=\beta \eta_{B}^{2}\left(\frac{\gamma^{2 / 3} v_{A}^{2 / 3}}{b_{A}^{5 / 3} l_{A}^{1 / 3}}\right) N_{A}^{1 / 3}\left\{\begin{array}{l}
\frac{\omega_{2}\left(1-y_{2}\right)}{2\left[1+\omega_{2}(x) y_{2}(x)\right]}\left[\frac{\pi^{2}}{16}+\beta n_{B}^{2} G_{2}(x)\right]^{-2 / 3} \tag{36}\\
\frac{\omega_{3}\left(1-y_{3}\right)}{(12)^{1 / 3}\left[1+\omega_{3}(x) y_{3}(x)\right]^{2}}\left[\frac{3 \pi^{2}}{80}+\beta n_{B}^{2} G_{3}(x)\right]^{-2 / 3} \\
i=3
\end{array}\right.
$$

When the dead zone is absent (i.e., $\left.z_{0}=0\right), \Delta F_{B, i}(x)$ reduces ${ }_{508}$ to the elastic free energy of B subchains in a planar layer with effective grafting area $s_{\text {eff }}=s_{i}\left(\pi^{2} / 8\right)$ for $i=2,3$ and $s_{\text {eff }}=s_{1}$ for $i{ }_{510}$ $=1$, calculated in the parabolic potential framework
with $g_{i}(x)$ specified in eq 28.
Using eq 37 with $\Delta F_{B, i}(x)$ formulated in eq 36 for $z_{0}>0$ or eq 38 for $z_{0}=0$, one finds the equilibrium fraction $X_{B, i}$ of B bridges in planar, cylindrical, and spherical morphologies. The latter is an important factor in the mechanical properties of microphase-segregated melts. Notably, in all three morphologies, the two-layer model predicts a larger elastic free energy of bridges compared to loops, making $X_{B, i}<0.5$.
In Figure 6, we present the equilibrium fraction $X_{B, i}$ of B bridges as a function of the volume fraction f_{B} of the B component for two values of N_{A}. Triangles indicate a spherical morphology and squares a cylindrical one. In the absence of a dead zone (to the left of f_{B} indicated by arrow), an increase in f_{B} leads to the decrease in fractions of bridges, $X_{B, 2}$ and $X_{B, 3}$. The onset of the dead zone in a spherical morphology (indicated by arrow), and further increase in the extension of the dead zone with increasing f_{B} leads to the increase in $X_{B, 3}$ due to progressive accumulation of the free ends of B subchains closer to the boundaries of Wigner-Seitz cells. Therefore, according to the two-layer model, the equilibrium fraction $X_{B, i}$ of bridges in cylindrical $(i=2)$ and spherical $(i=$ 3) geometries passes through a minimum upon the onset of a dead zone. Notably, a kink in $X_{B, i}$ at the onset of a dead zone is related to approximations imposed in the two-layer model to find z_{0}. We anticipate that rigorously calculated z_{0} would smooth the kink while preserving the minimum in $X_{B, i}\left(f_{B}\right)$ dependence.
In Figure 7, the equilibrium fraction of bridges $X_{B, i}$ is presented as a function of f_{B} for triblock copolymers with $N_{A}=$ 100 and different topological ratios for B blocks, $\eta_{B}=2$ (Figure 7 a) and $\eta_{B}=5$ (Figure 7b). Transitions between morphologies 545 are accompanied by jumps in $X_{B, i}$. As shown in Figures 6 and 7,
according to the two-layer model, fraction $X_{B, 3}$ of bridges 546 approaches 0.5 at $f_{B} \rightarrow 1$ and weakly depends of η_{B}.

The predicted trends in the behavior of $X_{B, 3}$ are consistent 548 with MD simulations ${ }^{50,51}$ of self-assembling $A B A$ networks 549 with spherical domains. Both the simulations and the two-layer 550 model predict the decrease in $X_{B, 3}$ upon increasing N_{A} and the 551 increase in fraction $X_{B, 3}$ of bridges upon increasing $f_{B} \approx N_{B}=552$ $M_{B}\left(1+n_{B} / m_{B}\right)$. However, MD simulations of dry networks ${ }^{50}{ }_{553}$ revealed the values of $X_{B, 3}>0.5$, pointing at a smaller elastic 554 free energy of bridges compared to loops, while the two-layer 555 model predicts $X_{B, 3}<0.5$. The discrepancy could arise due to 556 relatively short copolymer blocks in MD simulations. ${ }^{50}$ The 557 short backbones in microphase-segregated structures are more 558 stretched than long ones, decreasing the difference between 559 the elastic free energies of loops and bridges. The filling 560 constraints ($\varphi_{B}=1$ everywhere in B matrix) and penalties due 561 to backward turns in the stretched loops might favor a bridging 562 conformation of the B block, leading to $X_{B, 3}>0.5$. However, 563 the MD simulations of self-assembling $A B A$ networks with 564 swollen in solvent B blocks ${ }^{51}$ indicated $X_{B, 3}<0.5$ and were also 565 consistent with the predicted increase in fraction $X_{B, 3}$ of 566 bridges upon increasing f_{B}.

5. BINODALS IN THE TWO-LAYER MODEL OF THE B MATRIX

In the cylindrical geometry $(i=2)$, the dead zone in the B layer 569 emerges at $x=x_{0,2} \approx 1.153$ (or equivalently at $f_{B}=f_{2,0} \approx 570$ $0.536)$, while for spheres $(i=3)$, the onset of the dead zone is 571 shifted to $x_{0,3} \approx 0.806$ (or $f_{B}=f_{0,3} \approx 0.446$). Therefore, 572 depending on the ratio $x=V_{B} / V_{A}$, equations for binodals $Y_{\mathrm{LC}} 573$ and Y_{CS} (specified, respectively, as $F_{1}=F_{2}$ and $F_{2}=F_{3}$) are 574 modified in the two-layer model as

Figure 6. Equilibrium fraction $X_{B, i}$ of B bridges in cylindrical (C) and spherical (S) morphologies formed by $A B A$ triblock copolymer with linear A and comb-shaped B blocks as a function of volume fraction f_{B} of the B component for two values of N_{A} (indicated near the curves). $\eta_{B}=5, \eta_{A}=1$. Squares correspond to cylinders $(i=2)$ and triangles to spheres $(i=3)$. Onset of dead zone occurs in spherical morphology at $f_{B}=f_{0,3}=0.446$ shown by arrow. In shaded area, chain segments in the peripheral layer loose stretching.

$$
\begin{align*}
Y_{L C} & =\beta^{1 / 2}\left(\frac{\eta_{B}}{\eta_{A}}\right)_{\mathrm{LC}} \\
& =\sqrt{4 \mathrm{~b}_{2}-\mathrm{b}_{1}} \cdot \begin{cases}1 / \sqrt{g_{1}(x)-4 g_{2}(x)} & x<x_{0,2}=1.153 \\
1 / \sqrt{g_{1}(x)-4 G_{2}(x)} & x>x_{0,2}\end{cases} \tag{39}
\end{align*}
$$

$$
\begin{align*}
Y_{C S} & =\beta^{1 / 2}\left(\frac{\eta_{B}}{\eta_{A}}\right)_{\mathrm{CS}} \\
& =\sqrt{9 b_{3}-4 b_{2}} \cdot \begin{cases}1 / \sqrt{4 g_{2}(x)-9 g_{3}(x)} & x<x_{0,3}=0.806 \\
1 / \sqrt{4 g_{2}(x)-9 G_{3}(x)} & x_{0,2}>x>x_{0,3} \\
1 / \sqrt{4 G_{2}(x)-9 G_{3}(x)} & x>x_{0,2}\end{cases} \tag{40}
\end{align*}
$$ ${ }_{595} f_{\mathrm{CS}} \approx 0.886$) and Semenov's model ${ }^{37}$ ($f_{\mathrm{LC}} \approx 0.717, f_{\mathrm{CS}} \approx$ $5960.874)$. The latter model allows for distribution of the free end

Figure 7. Equilibrium fraction $X_{B, i}$ of B bridges in lamellar (L), cylindrical (C), and spherical (S) morphologies formed by triblock $A B A$ copolymer with linear A and comblike B blocks as a function of volume fraction f_{B} of the B component for $\eta_{B}=2(\mathrm{a})$ and $\eta_{B}=5$ (b), $\eta_{A}=1$. Diamonds correspond to lamellae $(i=1)$, squares to cylinders $(i=2)$, and triangles to spheres $(i=3)$. Onsets of dead zone $f_{B}=f_{0,2}$ $=0.54$ for $i=2$ and $f_{B}=f_{0,3}=0.45$ for $i=3$ are shown by arrows. Transitions between morphologies are accompanied by jumps in $X_{B, i}$.
points of linear B blocks in lamellae and fixed end points of $B 597$ blocks in cylindrical and spherical morphologies. In the case of 598 fixed end points of linear B blocks in lamellae, f_{LC} decreases to 599 $f_{\mathrm{LC}} \approx 0.615$. 600
Branching of B blocks and an increase in η_{B} lead to 601 progressive deviations of $Y_{\mathrm{LC}}^{\prime}, Y_{\mathrm{LC}}^{\prime \prime}$ from $Y_{\mathrm{LC}, \mathrm{par}}$ and Y_{CS}^{\prime} from 602 $Y_{\mathrm{CS}, \text { par }}$. If the end points of the B backbones in the lamellar 603 morphology remain free, the $\mathrm{L}-\mathrm{C}$ binodal $Y_{L C}^{\prime \prime}$ intersects $Y_{C S}^{\prime}$ at 604 $\eta_{B} \approx 3$, indicating destabilization of the cylindrical morphol- 605 ogy. This discrepancy is directly related to different 606 approximations for end-point distributions of backbones in 607 planar $(i=1)$ and nonplanar $(i=2,3)$ morphologies. If the 608 end points of backbones in the B layers are fixed at the outer 609 boundaries of the Wigner-Seitz cells in all of the geometries 610 (including lamellae) then the $\mathrm{L}-\mathrm{C}$ binodal Y_{LC}^{\prime} is located 611 below $Y_{\mathrm{LC}, \text { par }}$, providing the corridor of stability for the 612 cylindrical morphology.

613
Clearly, the L-C binodal Y_{LC} calculated with the two-layer 614 model of the B matrix must be located between $Y_{\mathrm{LC}, \text { par }}$ (no 615 dead zone, $z_{0}=0$) and $Y_{\mathrm{LC}}^{\prime \prime}$ (dead zone extends to the whole B_{616} layer, $z_{0}=D_{2}$), being closer to $Y_{\mathrm{LC}}^{\prime \prime}$ at $f_{B} \lesssim f_{C L} \approx 0.717$ and 617 approaching $Y_{\mathrm{LC}, \text { par }}$ upon decreasing f_{B} (and concomitant 618

Figure 8. Binodals $Y=\beta^{1 / 2} \eta_{B} / \eta_{A}$ separating spherical (S), cylindrical (C), and lamellar (L) morphologies as a function of $f_{B}=V_{B} /\left(V_{A}+\right.$ $\left.V_{B}\right)$, calculated with a parabolic potential framework $\left(Y_{\mathrm{CS}, \mathrm{par}}, Y_{\mathrm{LC}, \mathrm{par}}\right.$, shown by solid lines) and an extended Semenov model ($Y_{\mathrm{CS}}^{\prime}, Y_{\mathrm{LC}}^{\prime}$, shown by triangles). $Y_{\text {LC }}^{\prime \prime}$ (line with unfilled circles) indicates binodal between lamellae with unrestricted free ends of B backbones and cylinders with ends of B backbones fixed at the outer boundary of the Wigner-Zeit cell. Intersections of binodals with the black line $\beta^{1 / 2} \eta_{B} /$ $\eta_{A}=1$ correspond to morphological transitions in topologically symmetrical (including linear-linear) block copolymers. Binodals for inverted structures (B domains in the A matrix) are not shown.
decrease in z_{0}), that is, Y_{LC} should shift to the right of $Y_{\mathrm{LC}, \text { par }}$ due to the presence of a dead zone. A similar shift to the right of $Y_{\mathrm{CS}, \mathrm{par}}$ is expected for $\mathrm{C}-\mathrm{S}$ binodal $Y_{C S}$ due to larger extension of the dead zone in the spherical morphology.
In Figure 9, we present $\mathrm{L}-\mathrm{C}$ and $\mathrm{C}-\mathrm{S}$ binodals as a function of volume fraction $f_{B}=V_{B} /\left(V_{A}+V_{B}\right)$ of the B component, calculated with the two-layer model of the B matrix (eqs 39 and 40). Solid lines indicate binodals $Y_{\mathrm{LC} \text { par }}$ and $Y_{\mathrm{CS}, \text { par }}$ obtained in the parabolic potential framework ${ }^{36}$ (first lines in eqs 39 and 40 , extended to all \boldsymbol{x}). Symbols (crosses) indicate sections of binodals $Y_{L C}$ and $Y_{C S}$ corrected for dead zones, i.e., emerging at $f_{B}>f_{0,2} \approx 0.536$ for $i=2$ (the second line in eq 39), and $f_{B}>f_{0,3} \approx 0.446$ for $i=3$ (the second and third lines in eq 40). The values of $f_{0,2}$ and $f_{0,3}$ do not depend on the modes of branching of the B blocks (i.e., do not depend on η_{B}) and are shown by arrows. Clearly, deviations of corrected binodals from $Y_{L C \text { par }}$ and $Y_{\mathrm{CS}, \text { par }}$ are small (numerical estimates are presented in the SI). Although the two-layer model ignores the presence of a curvature-induced dead zone at $f_{B}<f_{0,2}$ and $f_{B}<f_{0,3}$, we believe that corrections to $Y_{\mathrm{LC}, \text { par }}$ and $Y_{C S, \text { par }}$ remain small there as well due to an exponential decrease ${ }^{39}$ in the width of the dead zone at small curvatures. morphologies, respectively, as a function of $f_{B}=x /(1+x)=$ $v_{B} N_{B} /\left(v_{A} N_{A}+v_{B} N_{B}\right)$. As shown in Figure 11, the two-layer model predicts almost no affect of dead zone on r_{2} in the range of stability of cylindrical domains: $R_{2 \text {,par }}$ exceeds R_{2} by less than 1%. The effect of dead zones on R_{3} is stronger. An increase in indicates the decrease in R_{3} by less than $\sim 2 \%$. At larger $f_{B}>$ 0.9 , the radius of the A domain R_{3} declines sharply. However, progressive branching of B blocks (i.e., an increase in η_{B}) shifts

Figure 9. Binodals separating spherical (S), cylindrical (C), and lamellar (L) morphologies calculated with a parabolic potential framework (solid lines) and with a two-layer model (crosses). Arrows indicate block copolymer compositions, $f_{0,3}=0.446$ and $f_{0,2}=0.536$ corresponding to the onset of dead zone formation in the two-layer model. At $f_{B}<f_{0,3}$ (white area), no dead zones in the B layers, at $f_{0,3}<$ $f_{B}<f_{0,2}$, dead zones emerge only in spherical morphology (dark gray area), while at $f_{B}>f_{0,2}$, dead zones emerge in both cylindrical and spherical morphologies (light gray area). (Inset) Relative width $y_{i}=$ z_{0} / D_{i} of dead zones in spherical $(i=3)$ and cylindrical $(i=2) B$ layers. Intersections of binodals with the black line $\beta^{1 / 2} \eta_{B} / \eta_{A}=1$ correspond to morphological transitions in topologically symmetrical (including linear-linear) block copolymers. Binodals for inverted structures (B domains in A matrix) are not shown.

Figure 10. Ratio $r_{3}=R_{3, \text { par }} / R_{3}$ of spherical domain radii calculated with a parabolic potential ($R_{3, \text { par }}$) and two-layer model $\left(R_{3}\right)$ as a function of diblock copolymer composition f_{B} and topological ratio η_{B} of matrix block $\eta_{A}=1, \beta=1$. Onsets of thermodynamic stability for spherical morphology are indicated by arrows: $f_{B}=0.525,0.666$, and 0.883 for $\eta_{B}=3,2$, and 1 , respectively. For $\eta_{B}=5$, arrow at $f_{B}=0.366$ is not shown. To the right of each arrow spherical domains are stable and to the left metastable.
the onset of stability of spherical domains (indicated by arrows 654 in Figure 10) to smaller values of f_{B}, providing a wider interval 655 of stability for the spherical morphology. Therefore, the 656 difference between $R_{3, \text { par }}$ and R_{3} in a wide range of $f_{B} \lesssim 0.97$ is 657 predicted to be less than 10%, supporting the application of the 658 SS-SCF framework to calculate the equilibrium parameters of 659 the spherical and cylindrical domains.

Figure 11. Ratio $r_{2}=R_{2, \text { par }} / R_{2}$ of cylindrical domain radii calculated with a parabolic potential ($R_{2, \text { par }}$) and two-layer model $\left(R_{2}\right)$ as a function of diblock copolymer composition f_{B} and topological ratio η_{B} of matrix block $\eta_{A}=1, \beta=1$. Cylinders are thermodynamically stable between the two arrows located at $f_{B}=0.701$ and 0.883 for $\eta_{B}=1$ and to the left of the arrow at $f_{B}=0.666$ for $\eta_{B}=2$. No thermodynamically stable cylinders at $f_{B}>0.5$ for $\eta_{B}=3$ and $\eta_{B}=5$.

6. COMPARISON TO EXPERIMENTS

661 In our previous publication ${ }^{36}$ we checked the predicted 662 exponent $2 / 3$ in the molecular mass dependence of the 663 domain size, $R_{i}\left(N_{A}\right)$, for sets of chemically different $A B$ and 664 ABA copolymers with bottlebrush B blocks. Here, we perform 665 a more refined comparison between the theoretical predictions 666 and the experimental data.
667 Microphase-segregated triblock $A B A$ copolymers, PMMA668 PDMS-PMMA, with bottlebrush PDMS and linear PMMA 669 blocks were experimentally examined in the series of papers by 670 Sheiko et al. ${ }^{16,19,49}$ These copolymers had high volume 671 fractions f_{B} of PDMS (B component) and gave rise to 672 spherical PMMA domains in the PDMS matrix upon 673 evaporation of nonselective solvent toluene. The data for 674 series of samples with $m_{B}=1$ and $n_{B}=14$ and 70 are collected 675 in Table S1 in the SI in the upper and lower panels, 676 respectively.
677 In localizing these copolymers in the morphological diagram 678 of states ${ }^{36}$ we treated the PDMS block as a bottlebrush 679 polymer with $q_{B}=1$ and $\beta \approx 1.26$ for the PDMS/PMMA pair, 680 that is, the PDMS block was envisioned as a linear chain of N_{0} 681 impermeable superblobs with radius $r_{0}=\left(l_{B} b_{B} n_{B}\right)^{1 / 2}$ and 682 effective Kuhn length $\simeq r_{0} .{ }^{52}$ While the backbone in each 683 superblob is strongly elongated, the bottlebrush conformations 684 in the melts remain Gaussian on larger scales with the 685 backbone average end-to-end distance $R_{0} \simeq r_{0} N_{0}^{1 / 2}$. On the 686 basis of this model, the topological coefficient η_{B} for the PDMS 687 block with $n_{B}=14$ was estimated via eq 8 with the numerical 688 coefficient $\alpha_{B}=0.5$ to give $\eta_{B} \approx 1.13$ and position $\beta^{1 / 2} \eta_{B} \approx$ 6891.27 for this PMMA-PDMS-PMMA series in the morpho690 logical diagram. ${ }^{36}$ Notably, α_{B} served as an adjustable 691 parameter to match the theoretical value of the $\mathrm{C}-\mathrm{S}$ binodal 692 to the experimental volume fraction $f_{B} \approx 0.82$, corresponding 693 to first detection of PMMA domains with nonspherical 694 geometry.
695 It should be emphasized, however, that superblob 696 impermeability arises due to conformational losses associated 697 with extra stretching of the side chains upon superblob 698 interpenetration. Therefore, the concept of an impermeable 699 superblob becomes progressively more accurate for barbwire
polymers with $m_{B}=1$ and increasing $q_{B}>1$, i.e., with side 700 chains stretching beyond the Gaussian size, r_{0}. The superblobs 701 in conventional bottlebrushes with $q_{B}=1$ still experience 702 interpenetration, and estimation of $m_{B^{*}}$ according to eq 7 for 703 the PDMS parameters ($v_{B}=136 \AA^{3}, l_{B}=2.5 \AA, b_{A}=13 \AA$) 704 gives $m_{B^{*}} \simeq 0.67$ for $n_{B}=14$ and $m_{B^{*}} \approx 1.51$ for $n_{B}=70.705$ Therefore, according to eq 7, experimental PDMS blocks with 706 $m_{B^{*}} \simeq 1$ are found at the crossover between comblike and 707 bottlebrush regimes.

An alternative option in analyzing the experimental data is to 709 use η_{B} corresponding to the scale-independent Gaussian 710 elasticity of the backbone in the B block. In this scenario, 711 $\eta_{B} \approx\left(1+n_{B} / m_{B}\right)^{1 / 2}$ for comb-shaped blocks with long 712 backbones yielding $\eta_{B} \approx 3.87$ for $m_{B}=1$ and 14 . Below, we 713 use both expressions for η_{B} (eqs 5 and 8) in confronting the 714 theoretical predictions to the experimental data. Due to large 715 content of PDMS in the PMMA-PDMS-PMMA block 716 copolymers ($f_{B}>0.8$), we apply the two-layer model of the 717 B matrix to calculate the equilibrium radius R_{3} of the A domain 718 (eqs 29 and 31 for $i=3$).
The structural parameters of the microphase-segregated melt 720 of PMMA-PDMS-PMMA ($A B A$) copolymer with a spherical 721 morphology ${ }^{16,19,49}$ are collected in Table S1 in the SI. The 722 experimentally measured ${ }^{19}$ radius $R_{3}^{\exp }(\AA)$ of the PMMA A_{723} domains in a series of samples with $n_{B}=14$ (upper panel in 724 Table S1) is presented in Figure 12 as a function of DP N_{A} of 725 f12

Figure 12. Radii $R_{3}(\AA)$ of the A domain in a microphase-segregated melt of triblock copolymer $A B A$ with molecular brush B block as a function of DP N_{A} of linear block A. In the B block, $n_{B}=14, m_{B}=1, \beta$ $=1.26$. Experimental R_{3} for PMMA-PDMS-PMMA copolymers ${ }^{16,49}$ are indicated by diamonds with error bars. Red filled triangles indicate theoretically calculated R_{3} (eq 29) for the B block treated as a bottlebrush with $\eta_{B}=1.13$; blue filled triangles correspond to treatment of the block as comblike with $\eta_{B}=\left(1+n_{B} / m_{B}\right)^{1 / 2}=15^{1 / 2}$ in the two-layer model. Unfilled triangles indicate theoretical values of R_{3} in the SS-SCF parabolic potential framework.
the PMMA block (black diamonds with error bars). Filled 726 triangles indicate $R_{3}^{\text {theor }}$ calculated according to eqs 29 and 31727 with $\eta_{B}=1.13$ and 3.87, respectively, for values of parameters $\gamma 728$ $=0.37,{ }^{44} \beta=1.26, v_{A}=141 \AA^{3}, l_{A}=2.5 \AA$, and $b_{A}=17 \AA .729$ Unfilled blue triangles indicate $R_{3}^{\text {theor }}$ calculated in the 730 parabolic SS-SCF approximation (eqs 29and 31 with $G_{3}=731$ g_{3}). As shown in Figure 12, modeling the PDMS block B as a 732 bottlebrush polymer, i.e., as a linear chain of impermeable 733
superblobs with $\eta_{B}=1.13$ (red filled triangles), strongly overestimates the domain radius $R_{3}^{\exp }$, while the scaleindependent Gaussian backbone elasticity $\left(\eta_{B}=3.87\right.$, blue filled triangles) leads to a better correspondence with the experimental data. The difference between filled and unfilled blue triangles (i.e., between predictions of the SS-SCF model and the two-layer model) is minor.

Figure 13. Radii $R_{3}(\AA)$ of A domains in a microphase-segregated melt of triblock copolymer $A B A$ with a comb-shaped B block with $n_{B}=70$ as a function of DP N_{A} of a linear block. Experimental radii $R_{3, \text { exp }}$ are shown by diamonds. Theoretical values of R_{3} calculated with the SSSCF parabolic potential framework and the extended Semenov's model are indicated by filled and unfilled triangles, respectively. B blocks were treated as comblike polymers with $\eta_{B}=\left(1+n_{B} / m_{B}\right)^{1 / 2}$ and $m_{B}=1$.

In Figure 13, we compare $R_{3}^{\exp }$ for PMMA-PDMS-PMMA samples with $n_{B}=70$ (diamonds) to the theoretically predicted $R_{3}^{\text {theor }}$ calculated according to eqs 29 and 31 with $\eta_{B}=(1+$ $70)^{1 / 2} \approx 8.43$ (triangles). Similarly to the series with $n_{B}=14$ (Figure 12), modeling the B block as a linear chain of impermeable superblobs considerably overestimates $R_{3}^{\exp }$ (not shown in Figure 13). Notably, in both series, the backbones in the B blocks are strongly elongated, even approaching the backbone contour length in some samples with $n_{B}=70$. However, the two-layer model partially compensates for the nonlinear elasticity of the backbones via overestimated elongation near the surfaces of the A domains (see SI).
In Figure 14, we present the normalized domain radius $R_{\text {norm }}=\left(\frac{2 \Phi_{3}(x) l_{A}}{3 \gamma v_{A} b_{A}}\right)^{1 / 3} R_{3}^{\text {exp }}$ as a function of N_{A}. The data for samples with stronger stretched backbones ($n_{B}=70$, unfilled symbols) and less stretched backbones ($n_{B}=14$, filled symbols) fall predominantly above and below the theoretical asymptote, $R_{\text {norm }}^{\text {theor }}=N_{A}^{2 / 3}$ (shown by the straight line with slope $2 / 3$). One would expect that samples with stronger elongated backbones (i.e., series with $n_{B}=70$) would deviate below $R_{\text {norm }}^{\text {theor }}$ due to smaller values of the equilibrium domain radius. In contrast, the majority of samples with $n_{B}=70$ demonstrate a larger domain radius than predicted by the twolayer model. The deviations of the data for $n_{B}=70$ above the theoretical asymptote $R_{\text {norm }}^{\text {theor }}$ correlate with the shift from a comblike to a bottlebrush regime for the B block upon

Figure 14. Normalized radius $R_{\text {norm }}=R_{3}^{(\exp)}\left[\left(2 l_{A} \Phi_{3}\right) /\left(3 \gamma v_{A} b_{A}\right)\right]^{1 / 3}$ of the A domain in a microphase-segregated melt of triblock copolymer $A B A$ with molecular brush B block as a function of DP N_{A} of the linear block. Topological ratio for B blocks was calculated as $\eta_{B}=\left(1+n_{B} / m_{B}\right)^{1 / 2}$ with $m_{B}=1$. Filled and unfilled symbols correspond to $n_{B}=14$ and 70, respectively. Straight line is the theoretically predicted asymptote, $R_{\text {norm }}=N_{A}^{2 / 3}$. (Inset) Raw data for $R_{3}^{(\exp)}$ (error bars are not shown).
increasing n_{B}. The discrepancy could also arise due to a lack of 767 equilibration of the self-assembling networks of the ABA block 768 copolymers. At the same time, the relative deviations from the 769 asymptotic dependence $R_{\text {norm }}^{\text {theor }}=N_{A}^{2 / 3}$ are moderate in both 770 cases, indicating that the two-layer model with a scale- 771 independent elasticity of B blocks could still describe the 772 structure of microphase-segregated $A B A$ melts with reasonable 773 accuracy.

To illustrate that implementation of the scale-independent 775 Gaussian elasticity for backbones allows for better agreement 776 with the experiments, we present here also the data for PS- 777 PDMS ($A B$) diblock copolymers with comb-shaped blocks ${ }^{13} 778$ that self-assemble in lamellar structures $(i=1)$. All of the 779 selected samples (listed in Table S2 in SI) have one side chain 780 per monomer unit of norbornene backbone in each block, and 781 both backbones have DP $M_{i}>n_{i}^{1 / 2}$. The latter condition 782 allows us to use eq 5 , which is asymptotically valid in the limit 783 of $M_{i} \gg n_{i}^{1 / 2}$. Equation 5 for the topological coefficient with $q_{i} 784$ $=1$ and $m_{i}=1$ is applicable to both blocks if they are treated as 785 comblike homopolymers with equal sizes of monomer units in 786 the backbone and side chain. ${ }^{45}$ If, however, both blocks are 787 treated as bottlebrushes, their topological ratios are calculated 788 as $\eta_{i}=\alpha_{i}\left(l_{i} b_{i}\right)^{3 / 4} v_{i}^{-1 / 2} n_{i}^{1 / 4}$ (eq 8) with numerical coefficients 789 $\alpha_{i} \simeq 1$. Evaluation of m_{*} (eq 7) for samples listed in Table S2 790 indicated that the PS blocks (with $m_{*}=0.76$ for $n_{A}=29$, and 791 $m_{*}=1.14$ for $n_{A}=48$) as well as the PDMS block (with $m_{*}=792$ 1.41 for $n_{B}=65$) were at the crossover between the comblike 793 and the bottlebrush regimes, and we used both eqs 8 and 5 to 794 calculate the lamellae periodicity. Notably, the planar geometry 795 of the lamellae eliminates curvature-induced dead zones, while 796 the effect of the architecture-induced dead zones decreases 797 upon increasing backbone length, M_{i}, which justifies 798 application of the SS-SCF model to evaluate the periodicity 799 of the lamellar structures.

7. CONCLUSIONS

 855 affect the fraction of B bridges connecting neighboring A 856 domains in cylindrical and spherical morphologies (Figures 6857 and 7). At a small curvature of the domains (i.e., in the absence 856 domains in cylindrical and spherical morphologies (Figures 6
857 and 7). At a small curvature of the domains (i.e., in the absence 858 of dead zones in the two-layer model), the equilibrium fraction

In this study, we examined the equilibrium fraction of bridges and the effect of dead zones in microphase-segregated melts of $A B A$ block copolymers comprising comb-shaped blocks. The curvature-induced dead zones were described via the two-layer model of the matrix in a Wigner-Seitz cell.
The development of curvature-induced dead zones and variations in the architecture of the $A B A$ triblock copolymer

In Figure 15, the experimentally measured period $d_{1}^{\exp }$ of the lamellae is presented as a function of DP N_{A} of the PS block. Black squares correspond to positions of the main pick in the SAX scattering intensity curves; white squares with error bars indicate the data from TEM for selected samples. The theoretical values of period $d_{1}^{\text {theor }}=2\left(R_{1}+D_{1}\right)$ were calculated using eq 29, that is, $d_{1, \mathrm{bb}}^{\text {theor }}$ (blue filled triangles) and $d_{1, c b(m=1)}^{\text {theor }}$ (blue unfilled triangles) were obtained by treating both blocks either as bottlebrushes or as comblike polymers, respectively. Similarly to the case of the PMMA-PDMSPMMA triblock copolymer in Figure 14, treatment of the branched blocks as linear chains of impermeable superblobs significantly overestimates the dimensions of microphasesegregated domains, and the experimental and theoretical periods are found in better agreement if the blocks are treated as comblike polymers (see also Figure S5 in SI).
As it follows from Table S2 in the SI, the backbones in both blocks were strongly stretched in the lamellae, particularly at small values of M_{i}. Nonetheless, the parabolic potential framework SS-SCF reasonably describes the experimental data. Notably, in the theoretical model, the sizes of the monomer units in the backbones and side chains are presumed to be equal. The norbornene monomer unit in the backbone of the PS-PDMS diblock is however approximately two times longer than the monomer units in the PS and PDMS side chains. This difference could be roughly accounted for by assigning $m_{i}=2$ in the theoretical estimates of $d_{1}^{\text {theor }}$. The set of $d_{1}^{\text {theor }}$ for $m_{i}=2$ (which doubles the distance between neighboring grafts on the norbornene backbone) is shown in Figure S6 in the SI.
The presented examples of lamellar ${ }^{13}$ and spherical ${ }^{16}$ mesophases illustrate that treatment of comb-shaped blocks as comblike with $\eta_{i}=\left(1+n_{i} / m_{i}\right)^{1 / 2}$ leads to a better correspondence between the theoretically predicted and the experimentally measured structural parameters of superstructures. However, such change in treatment of the blocks leads to concomitant relocation of the PS-PDMS and PMMA-PDMS-PMMA series in the morphological diagram presented earlier. ${ }^{36}$ Relocation of the PS-PDMS series makes samples with shorter PS side chains $\left(n_{A}=29\right)$ closer to the LC boundary but still keeps it in the lamellae stability region. All of the PMMA-PDMS-PMMA samples move deeper in the stability region of the spherical morphology. The predicted onset of the cylindrical morphology for a series with $n_{B}=14$ (and $\eta_{B} \approx 3.87$) then significantly decreases compared to the experimental $f_{B} \approx 0.82$ at which cylindrical PMMA domains were first detected in addition to spherical ones.

Figure 15. Period $d_{1}(\AA)$ in a microphase-segregated melt of $A B$ diblock copolymer PS-PDMD with lamellar morphology $(i=1)$ as a function of DP N_{A} of PS block. Both blocks constitute molecular brushes: in PS block $n_{A}=65$, and in PDMS block $n_{B}=29$ or 48 (see Table S2 with data in SI). Experimental values of d_{1} (SAXS) are shown by black squares, theoretical values of $d_{1}=2\left(R_{1}+D_{1}\right)$ were calculated by treating both blocks as either bottlebrushes with $\eta_{i}=\alpha_{i}\left(l_{i} b_{i}\right)^{3 / 4} v_{i}^{-1 / 2} n_{i}^{1 / 4}(i=A, B)$ and numerical coefficients $\alpha_{A}=$ 0.65 and $\alpha_{B}=0.5$ (solid blue triangles) or comblike with $\eta_{i}=\left(1+n_{i} / m_{i}\right)^{1 / 2}$ and $m_{i}=1$ (unfilled blue triangles). $\gamma=0.37$. White squares with error bars are TEM data for selected samples.
$X_{B, i}$ of the bridges was calculated as in a planar layer. Here, $X_{B, i} 859$ decreases upon increasing volume fraction f_{B} of the B block 860 due to the increasing difference between the elastic free 861 energies of the loops and bridges. ${ }^{47}$ The onset of a dead zone 862 and the increase in its width z_{0} upon further increasing f_{B} lead 863 to progressive accumulation of the median points of the loops 864 closer to the external boundary of the Wigner-Seitz cell, 865 decreasing the difference between the elastic free energies of 866 the loops and bridges. As a result, the equilibrium fraction $X_{B, i} 867$ of the bridges increases with increasing f_{B}, passing through a 868 minimum at the onset of the dead zone. An increase in the 869 branching of the central B block in the $A B A$ block copolymer 870 leads to a reverse effect: the equilibrium fraction of the bridges 871 decreases upon increasing η_{B}. Although the fraction of bridges, 872 $X_{B, i}$, was estimated using an approximate (two-layer) model of 873 the matrix, the dependence of $X_{B, i}\left(f_{B}\right)$ is expected to remain 874 nonmonotonic in a more rigorous calculation due to the 875 exponential decrease in the width of the dead zone at small 876 curvatures.

We demonstrated that in a wide range of block copolymer 878 compositions, the account of curvature-induced dead zones 879 leads to minor changes in the structural parameters of the 880 domains (Figures 10 and 11) and the positions of the binodals 881 (Figures 8 and 9) compared to the parabolic potential 882 framework SS-SCF used by us previously. ${ }^{36}$

883
The developed theoretical model invoking linear elasticity of 884 the blocks allows for direct calculation of the domain sizes and 885 interdomain distances in microphase-segregated melts of $A B 886$ and $A B A$ block copolymers as a function of DPs of the blocks 887 and their architectural parameters. In spite of the strong 888 elongation of the backbones of the branched blocks in the 889 experimental systems, the structural parameters of the 890 microphase-segregated melts could be still reasonably 891 described by the two-layer model. Deviations between theory 892 and experiments on self-assembling networks of $A B A 893$ copolymers with spherical A domains ${ }^{16,19,49}$ were moderate 894 when the central B block was treated as a comblike polymer. 895

- REFERENCES

(1) Wurm, F.; Frey, H. Linear-dendritic block copolymers: the state 949 of the art and exciting perspectives. Prog. Polym. Sci. 2011, 36, 1-52.
(2) Blasco, E.; Pinol, M.; Oriol, L. Responsive Linear-Dendritic 950 Block Copolymers. Macromol. Rapid Commun. 2014, 35 (12), 1090-951 1115.
(3) Garcia-Juan, H.; Nogales, A.; Blasco, E.; Martinez, J. C.; Sics, I.; 953 Ezquerra, T. A.; Pinol, M.; Oriol, L. Self-assembly of thermo and light 954 responsive amphiphilic linear dendritic block copolymers. Eur. Polym. 955 J. 2016, 81, 621-633.
(4) Mirsharghi, S.; Knudsen, K. D.; Bagherifam, S.; Nystrom, B.; 957 Boas, U. Preparation and self-assembly of amphiphilic polylysine 958 dendrons. New J. Chem. 2016, 40, 3597-3611.
(5) Fan, X.; Zhao, Y.; Xu, W.; Li, L. Linear-Dendritic Block 960 Copolymer for Drug and Gene Delivery. Mater. Sci. Eng., C 2016, 62, 961 943-959.
(6) Rzayev, J. Synthethis of polystyrene-polylactide bottlebrush 963 block copolymers and their melt self-assembly into large domain 964 nanostructures. Macromolecules 2009, 42, 2135-2141.
(7) Liberman-Martin, A. L.; Chu, C. K.; Grubbs, R. H. Application 966 of Bottlebrush Block Copolymers as Photonic Crystals. Macromol. 967 Rapid Comтип. 2017, 38, 1700058.
(8) Song, D. P.; Zhao, T. H.; Guidetti, G.; Vignolini, S.; Parker, R. 969 M. Hierarchical Photonic Pigments via the Confined Self-Assembly of 970 Bottlebrush Block Copolymers. ACS Nano 2019, 13, 1764-1771. 971 (9) Bolton, J.; Bailey, T. S.; Rzayev, J. Large pore size nanoporous 972 materials from self-assembly of asymmetric bottlebrush block 973 copolymers. Nano Lett. 2011, 11, 998-1001. 974
(10) Gai, Y.; Song, D.-P.; Yavitt, B. M.; Watkins, J. J. Polystyrene- 975 block-poly(ethylene oxide) Bottlebrush Block CopolymerMorphology 976 Transitions: Influence of Side Chain Length and Volume Fraction. 977 Macromolecules 2017, 50, 1503-1511.
(11) Runge, M. B.; Bowden, N. B. Synthesis of High Molecular 979 Weight Comb Block Copolymers and Their Assembly into Ordered 980 Morphologies in the Solid State. J. Am. Chem. Soc. 2007, 129, 10551-981 10560.
(12) Runge, M. B.; Lipscomb, C. E.; Ditzler, L. R.; Mahanthappa, M. 983 K.; Tivanski, A. V.; Bowden, N. B. Investigation of the Assembly of 984 Comb Block Copolymers in the Solid State. Macromolecules 2008, 41, 985 7687-7694.
(13) Fei, H.-F.; Yavitt, B. M.; Hu, X.; Kopanati, G.; Ribbe, A.; 987 Watkins, J. J. Influence of Molecular Architecture and Chain 988 Flexibility on the Phase Map of Polystyrene-block-poly- 989 (dimethylsiloxane) Brush Block Copolymers. Macromolecules 2019, 990 52, 6449-6457.
(14) Sunday, D. F.; Chang, A. B.; Liman, C. D.; Gann, E.; 992 Delongchamp, D. M.; Thomsen, L.; Matsen, M. W.; Grubbs, R. H.; 993 Soles, C. L. Self-Assembly of ABC Bottlebrush Triblock Terpolymers 994 with Evidence for Looped Backbone Conformations. Macromolecules 995 2018, 51 (18), 7178-7185.
(15) Bolton, J.; Rzayev, J. Synthesis and Melt Self-Assembly of PS- 997 PMMA-PLA Triblock Bottlebrush Copolymers. Macromolecules 2014, 998 47, 2864-2874.
(16) Vatankhah-Varnosfaderani, M.; Keith, A. N.; Cong, Y.; Liang, 1000 H.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D. A.; 1001 Dobrynin, A. V.; Sheiko, S. S. Chameleon-like elastomers with 1002 molecularly encodded strain-adaptive stiffening and coloration. Science 1003 2018, 359, 1509-1513. 1004
(17) Yuan, J.; Müller, A. H. E.; Matyjaszewski, K.; Sheiko, S. In 1005 Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, 1006 M., Eds.; Elsevier: Amsterdam, 2012.

1007
(18) Tu, S.; Choudhury, C. K.; Luzinov, I.; Kuksenok, O. Recent 1008 advances towards applications of molecular bottlebrushes and their 1009 conjugates. Curr. Opin. Solid State Mater. Sci. 2019, 23, 50.1010
(19) Xie, G.; Martinez, M. R.; Olszewski, M.; Sheiko, S. S.; 1011 Matyjaszewski, K. Molecular Bottlebrushes as Novel Materials. 1012 Biomacromolecules 2019, 20 (1), 27-54.

1013
(20) Gillich, T.; Benetti, E. M.; Rakhmatullina, E.; Konradi, R.; Li, 1014 W.; Zhang, A.; Schlüter, A. D.; Textor, M. Self-Assembly of Focal 1015 Point Oligo-Catechol Ethylene Glycol Dendrons on Titanium Oxide 1016 Surfaces: Adsorption Kinetics, Surface Characterization, and Non- 1017 fouling Properties. J. Am. Chem. Soc. 2011, 133, 10940-10950.

1018

1019 (21) Yeh, P. Y. J.; Kainthan, R. K.; Zou, Y.; Chiao, M.; 1020 Kizhakkedathu, J. N. Self-assembled monothiol-terminated hyper1021 branched polyglycerols on a gold surface: a comparative study on the 1022 structure, morphology, and protein adsorption characteristics with 1023 linear poly(ethylene glycol). Langmuir 2008, 24, 4907-4916.
1024 (22) Gillich, T.; Acikgoz, C.; Isa, L.; Schluter, A. D.; Spencer, N. D.; 1025 Textor, M. PEG-Stabilized Core-Shell Nanoparticles: Impact of 1026 Linear versus Dendritic Polymer Shell Architecture on Colloidal 1027 Properties and the Reversibility of Temperature-Induced Aggregation. 1028 ACS Nano 2013, 7, 316-329.
1029 (23) Pickett, G. T. Classical Path Analysis of end-Grafted 1030 Dendrimers: Dendrimer Forest. Macromolecules 2001, 34, 878410318791.

1032 (24) Zook, T. C.; Pickett, G. T. Hollow-Core Dendrimers Revised. 1033 Physical review letters 2003, 90 (1), 015502.
1034 (25) Kröger, M.; Peleg, O.; Halperin, A. From Dendrimers to 1035 Dendronized Polymers and Forests: Scaling Theory and its 1036 Limitations. Macromolecules 2010, 43, 6213-6224.
1037 (26) Gergidis, L. N.; Kalogirou, A.; Vlahos, C. Dendritic Brushes 1038 under Good Solvent Conditions: A Simulation Study. Langmuir 2012, 1039 28, 17176-17185.
1040 (27) Polotsky, A. A.; Gillich, T.; Borisov, O. V.; Leermakers, F. A. 1041 M.; Textor, M.; Birshtein, T. M. Dendritic versus Linear Polymer 1042 Brushes: Self-Consistent Field Modelling, Scaling Theory, and 1043 Experiment. Macromolecules 2010, 43, 9555-9566.
1044 (28) Borisov, O. V.; Polotsky, A. A.; Rud, O. V.; Zhulina, E. B.; 1045 Leermakers, F. A. M.; Birshtein, T. M. Dendron Brushes and 1046 Dendronized Polymers: A Theoretical Outlook. Soft Matter 2014, 10, 1047 2093-2101.
1048 (29) Li, C.-W.; Merlitz, H.; Wu, C.-X.; Sommer, J.-U. The structure 1049 of brushes made of dendrimers: Recent Advances. Polymer 2016, 98, 1050 437-447.
1051 (30) Leermakers, F. A. M.; Zhulina, E. B.; Borisov, O. V. Interaction 1052 forces and lubrication of dendronized surfaces. Curr. Opin. Colloid 1053 Interface Sci. 2017, 27, 50-56.
1054 (31) Polotsky, A. A.; Leermakers, F. A. M.; Zhulina, E. B.; Birshtein, 1055 T. M. On the Two-Population Structure of Brushes Made of Arm1056 Grafted Polymer Stars. Macromolecules 2012, 45, 7260-7273.
1057 (32) Zhulina, E. B.; Leermakers, F. A. M.; Borisov, O. V. Theory of 1058 brushes formed by Ψ-shaped macromolecules at solid-liquid 1059 interfaces. Langmuir 2015, 31 (23), 6514-6522.
1060 (33) Lebedeva, I. O.; Zhulina, E. B.; Borisov, O. V. Theory of 1061 Linear-dendritic Block Copolymer Micelles. ACS Macro Lett. 2018, 7 1062 (1), 42-46.
1063 (34) Lebedeva, I. O.; Zhulina, E. B.; Leermakers, F. A. M.; Borisov, 1064 O. V. Dendron and Hyperbranched Polymer Brushes in Good and 1065 Poor Solvents. Langmuir 2017, 33, 1315-1325.
1066 (35) Borisov, O. V.; Zhulina, E. B.; Polotsky, A. A.; Leermakers, F. 1067 A. M.; Birshtein, T. M. Interactions between Brushes of Root-tethered 1068 Dendrons. Macromolecules 2014, 47 (19), 6932-6945.
1069 (36) Zhulina, E. B.; Sheiko, S. S.; Dobrynin, A. V.; Borisov, O. V. 1070 Microphase segregation in the melts of bottlebrush block copolymers. 1071 Macromolecules 2020, 53 (7), 2582-2593.
1072 (37) Semenov, A. N. Contribution to the Theory of Microphase 1073 Layering in Block-Copolymer Melts. Sov. Phys. JETP 1985, 61, 7331074742.

1075 (38) Ball, R. C.; Marko, J. F.; Milner, S. T.; Witten, T. A. Polymers 1076 Grafted to a Convex Surface. Macromolecules 1991, 24, 693-703.
1077 (39) Belyi, V. A. Exclusion Zone of Convex Brushes in the Strong1078 Streching Limit. J. Chem. Phys. 2004, 121, 6547.
1079 (40) Dimitriev, M. S.; Grason, G. M. End-exclusion zones in strongly 1080 stretched, molten polymer brushes of arbitrary shape. J. Chem. Phys. 1081 2021, 155, 224901.
1082 (41) Wijmans, C. M.; Zhulina, E. B. Polymer Brushes at Curved 1083 Surfaces. Macromolecules 1993, 26 (26), 7214-7224.
1084 (42) Park, S. J.; Cheong, G. K.; Bates, F. S.; Dorfman, K. D. Stability 1085 of the Double Gyroid Phase in Bottlebrush Diblock Copolymer Melts. 1086 Macromolecules 2021, 54, 9063-9070.
(43) Rud, O. V.; Polotsky, A. A.; Gillich, T.; Borisov, O. V.; 1087 Leermakers, F. A. M.; Textor, M.; Birshtein, T. M. Dendritic Spherical 1088 Polymer Brushes: Theory and Self-Consistent Field Modelling. 1089 Macromolecules 2013, 46, 4651-4662. 1090 (44) Tian, Y.; Ina, M.; Cao, Z.; Sheiko, S. S.; Dobrynin, A. V. How 1091 to Measure Work of Adhesion and Surface Tension of Soft Polymeric 1092 Materials. Macromolecules 2018, 51 (11), 4059-4067. 1093
(45) Mikhailov, I. V.; Zhulina, E. B.; Borisov, O. V. Brushes and 1094 lamellar mesophases of comb-shaped (co)polymers: a self-consistent 1095 field theory. Phys. Chem. Chem. Phys. 2020, 22, 23385-23398. 1096
(46) Fleer, G. J.; Cohen Stuart, M. A.; Scheutjens, J. M. H. M.; 1097 Cosgrove, T.; Vincent, B. Polymers at Interfaces; Chapman \& Hall: 1098 London, 1993.

1099
(47) Mikhailov, I. V.; Leermakers, F. A. M.; Darinskii, A. A.; Zhulina, 1100 E. B.; Borisov, O. V. Theory of microphase segregation in ABA 1101 triblock comb-shaped copolymers: lamellar mesophase. Macro- 1102 molecules 2021, 54, 4747-4759. 1103
(48) Zhulina, E. B.; Leermakers, F. A. M.; Borisov, O. V. Brushes of 1104 Cycled Macromolecules: Structure and Lubricating Properties. 1105 Macromolecules 2016, 49 (22), 8758-8767.

1106
(49) Clair, C.; Lallam, A.; Rosenthal, M.; Sztucki, M.; Vatankhah- 1107 Varnosfaderani, M.; Keith, A. N.; Cong, Y.; Liang, H.; Dobrynin, A. 1108 V.; Sheiko, S. S.; Ivanov, D. A. Strained Bottlebrushes in Super-Soft 1109 Physical Networks. ACS Macro Lett. 2019, 8 (5), 530-534. 1110 (50) Liang, H.; Wang, Z.; Dobrynin, A. V. Strain-Adaptive Self- 1111 Assembled Networks of Linear-Bottlebrush-Linear Copolymers. 1112 Macromolecules 2019, 52, 8617-8624.

1113
(51) Wessels, M. J.; Jayaraman, A. Molecular dynamic simulation 1114 study of linear, bottlebrush, and star-like amphiphilic block polymer 1115 assembly in solution. Soft Matter 2019, 15, 3987-3998. 1116
(52) Paturej, J. J.; Sheiko, S. S.; Panyukov, S.; Rubinstein, M. 1117 Molecular Structure of Bottlebrush Polymers in Melts. Science 1118 Advances 2016, 2 (11), No. el601448. 1119

[^0]: Received: April 26, 2022
 Revised: May 29, 2022

