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Abstract—Connected environments collect data from millions
of devices every second presenting valuable information to the
community. However, data integrity faces critical research gaps
especially when it comes to data obsolescence and its detection.
Thinking of data obsolescence as an independent terminology,
we define it as the state wherein data is no longer significant
or effective with respect to the device, parent zone and/or the
environment. Accordingly, this paper provides connected environ-
ments with a dimensional architecture that : (1) assess predefined
quality metrics of each sensed data, (2) discovers interrelation
between deployed devices using clustering techniques, and (3)
identifies data obsolescence through three main layers; namely,
the device, hosting zone, and/or environment level.

Index Terms—+ Connected environments, Data obsolescence
detection, Data quality metrics, Dimensional architecture.

I. INTRODUCTION

”Smart and more connected” is the current trend within the
emerging metaverse. Smart cities deployed to collect millions
and millions of data are helping in better understanding
human activities, improving quality of life, and easing paths
for sustainability. For instance, cities may boost their energy
efficiency by 30% if their data is well utilized [1]. It is also the
case in other sectors such as healthcare, finance, transportation,
and retail to mention a few. However, this is possible when
having a good information and communication technology
(ICT) infrastructure [2]. Connected environments represent
one important sector reinforcing data collection, analysis, and
processing [3]. Quantifying real data from a connected envi-
ronment can aid in advanced advisory and warning information
across various maneuvers (such as traffic interactions and
driving decisions which showed no evidence of negative im-
pact [4]). This pushes, for instance, regional agglomeration’s
collective intelligence forward, supporting key urban flows;
namely, forecast and management [5]. Accordingly, this all-
connected paradigm is producing more and more valuable data
for country, society, community, or even individual.

While connected environments are providing us with valu-
able data, it is notable that not all data is of benefit for the topic
of interest. While many efforts have focused on data speed and
security, less emphasis has been dedicated towards data quality
and more particularly data significance. “Data Obsolescence”,
a key pillar of data integrity, is the representative behind this
research gap. Knowing to which extent a data is useful and

relevant to the question in hand will increase productivity and
efficiency while reducing the technological lags that various
sectors face. It is to be noted that the obsolescence term
was initially introduced as electronic part obsolescence when
military specifications were required by some stringent gov-
ernmental products; however, these specifications were hard to
attain causing the unfinished product to become insignificant
[6]. Similarly, a data is thought of as a product with a level
of importance impacting the efficiency of the whole data set.
On the other hand, a data’s significance towards the data set
it belongs to experiences minimal research especially in the
information technology sector. Connected environments are
one of these sectors, especially that they are purposed to col-
lect, store and analyze huge amount of data. In most existing
approaches, obsolescence is represented globally as another
terminology such as contradiction or relevance. Although these
terminologies are key factors in data quality measurements,
they should act as indicators helping in data obsolescence and
not represent the latter itself. For this purpose, in our previous
work [7], we aimed in officially defining data obsolescence as
an independent terminology providing it with quality metrics
essential for its computation and detection. Accordingly, in this
paper, based on the metrics we provided in [7], we propose
an efficient dimensional architecture for detecting obsolete
data within connected environment infrastructures. Detecting
data obsolescence is only the first step inside a bigger ap-
proach. Data processing is our future goal as it addresses
the sources that constantly generate such obsolescence. Being
able to detect such issues will help in providing processing
solutions and a possibility to return the data’s usefulness
or even finding a new fitting scenario for the data. Take
note, solving the obsolescence source does not necessarily
bring improvements at the level of data storage solely; other
benefits might originate in terms of location, deployment,
and data querying of the device. For instance, why would
a device stay in its location or zone if one knows that it
is not producing useful data (such as a monitoring camera
that is partly or fully blocked by a wall or any other object)?
Detecting obsolescence can uncover such mishaps improving
device deployment for a more comprehensive collection. The
latter is one of many scenarios on how understanding data is
a direct way of understanding productivity methodologies.



The remainder of the paper is organized as follows: Section
II illustrates a motivating scenario. Section III presents the
state of the art. Section IV describes our proposed data obso-
lescence detection architecture. Finally, Section V summarizes
the paper and provides future research directions.

II. MOTIVATING SCENARIO

Here we consider a scenario of a smart connected con-
ference venue to clearly highlight and describe connected
environments and data obsolescence motivation and concerns.
It is important to note that we are presenting the setup and
needs of connected environments in a simplified manner, and
it does not necessarily fully incorporate all data obsolescence
issues. Figure 1 depicts this connected environment which
includes five zones (i.e., geographical areas) whereby four
zones designate conferences rooms sharing a common hallway
zone. The zones host different categories of devices: (1) static
devices (e.g, temperature (T1, T2, T3, T4, and T5), fixed
camera (C4)), and (2) mobile devices (e.g., rotating camera
(C1, and C2), mobile phone (P1, and P2)). Each device has
a well defined location and senses different environmental
parameters (e.g., temperature, presence, motion) within par-
ticular coverage areas (ca) represented by hashed shapes (i.e.,
hashed rectangle, circle, or cone). A device’s coverage area
is not necessarily limited by the respective hosting zone. In
other words, a device can measure data from adjacent zones
depending on the data and border nature (e.g., since zone2
and zone3 are separated by a glass wall, C2 located in zone2
might capture data from zone3).

One can interact with the environment through queries,
by requesting data from any device. In Figure 1 queries are
illustrated by dotted shapes. There are two types of queries:
(1) Projection: requesting all data collected by a device, (2)
Selection: querying certain data gathered by a device through
specifying particular conditions. Each query is assigned to
one or multiple devices, and each device keeps record of the
requests it receives. For instance, q1, q2 and q3 are assigned
to device C1 while q4 and q5 are assigned to C4, both devices
keeping track of when data was queried.

This scenario highlights the dynamicity of a connected
environment as it exposes its evolution over time. This dy-

namic nature is due to the zones capability of merging or
splitting (e.g., zone4 and zone5 are combined into zone4bis
resulting in a larger conference room), and mobile devices’
capability of moving. For instance, mobile devices can change
location within the same zone (e.g., device P1 moved within
zone1), change zones (e.g., P2 moved from zone1 to zone2),
and/or rotate to sense data from different angles (e.g., rotating
cameras C1, C2, and C3).

One or more sources might be behind the generation of data
obsolescence. Here are some illustrative cases:

• Case 1: A 360◦ rotating camera (C1) covering the entire
zone every minute while only data every hour are required
(i.e., temporal source).

• Case 2: A 360◦ rotating camera (C1) periodically collect-
ing data from the whole zone when only data belonging
within 120◦ portion are needed (i.e., spatial source).

• Case 3: A mobile device (P1) capturing several types of
data (e.g., temperature, presence) while only temperature
data are required (i.e., contextual source).

Now that the general view was described, the next step
revolves around listing the challenges we will be addressing:

• Challenge 1: How to assess data as obsolete ?
• Challenge 2: How to evaluate obsolete data with respect

to the connected environments and their dynamicity ?
• Challenge 3: What dimensions to consider for obsoles-

cence source interpretation ?

III. STATE OF THE ART

In 2015, McKinsey Group estimated by 2025 a potential loss
of $3.9-11.1 trillion per year for the IoT sector; i.e., worth 11%
of the world’s economy [17]. Lack of data processing being
one of the latter’s main causes, increasing data cohesiveness is
deemed necessary. Heterogeneous solutions are required with
the evolving smart cities concept supporting higher urbanism
qualities [18]. In [19], a generic IoT architecture is built of:
(1) a perception layer: devices and sensors, (2) a network
layer: data transmission, and (3) an application layer: user
view point. Here, the authors explain how the perception layer
continuously faces major challenges including storage super-
vision and device durability. Similar cases for the network
layer, interference and communication range are in crucial

Fig. 1: Motivating scenario



TABLE I: Data Obsolescence Detection Comparison

Approaches Data Quality Metrics CE and Dynamicity Obsolescence Grounds
ac pl rl tl a av cr ct cn fc Temporal Spatial Contextual

[8] ✓ ✓ ✓
[9] ✓ ✓ ✓
[10] ✓ ✓ ✓ ✓
[11] ✓ ✓ ✓ ✓
[12] ✓ ✓ ✓ ✓ ✓
[13] ✓ ✓ ✓
[14] ✓ ✓
[15] ✓ ✓ ✓
[16] ✓ ✓ ✓
Our contribution ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

need for solutions. These obstacles still need processing due
to the aforementioned issue; lack of emphasis on the data
itself and how significant it is. This reflects the impact that
data obsolescence will have once it is detected and dealt with.
Connected environments, using this generic IoT architecture,
are in need of a detection methodology required by this
domain’s research breach.

The aim of our study is to provide a solution to detect
data obsolescence within a connected environment. Although
little (to no) research is done in this field, yet there exists
some studies related to obsolescence in general. Life cycle
curve forecasting is the main obsolescence detect method used
in [20]. The authors depend on data mining; however, it is
worth mentioning that this obsolescence is specific to physical
electronic parts (e.g., integrated circuits). In other words, the
authors deal with real vendor parts while connected environ-
ments generally focus on cloud data provided by the embedded
devices (e.g., real and virtual sensors). A similar topic, which
is the product life cycle, is the focus in [21], especially
when it comes to data centers and infrastructure. The authors
suggest: (1) reactive approaches: solving obsolescence after
it occurs, and (2) proactive approaches: preventive measures
and obsolescence predictability, or the formers combined.
While they appeal representative of data obsolescence, they
are described theoretically without an actual detection and
computation strategy; the gap this paper aims to fill in. In [22],
Rojo et al. extend on electronic part obsolescence agreeing
how a component’s life cycle is usually shorter than that of the
system; i.e., insignificance at the technology level. Logic wise,
the aim is to prove that a similar process occurs at the data
level of evolving technologies. At one point, a piece of data
is very important to a system or user while at another point, it
might become no longer up to date and not representative of
the real world. Similar to how electronic parts have detection
methods, this paper’s mission revolves around filling in this
gap for data obsolescence via providing a layered detection
infrastructure.

Storage data obsolescence, specifically temporal obsoles-
cence, is the main topics [10] discusses. Data repositories aim
to save the world’s dynamic states; however, if they change
faster than our capability to save, they become obsolete.
In other words, it’s temporal obsolescence representing data
going out of date whereby each data has a credibility parameter
which changes over time. For that purpose, the authors agree

that their analytical methodology is a difficult approach as the
decay in credibility requires experts in the domain at hand.
Similarly in [8], old data is considered obsolete with respect
to time solely; i.e., the authors mainly focus on the timeliness
factor for classifying obsolescence reiterating the fact how it is
regularly confused as obsolescence itself. In this paper, we aim
to reveal that data obsolescence does not necessarily have to
be solely a temporal phenomena as it can also be spatial and/or
contextual (i.e., providing an architecture capable of detecting
and identifying the type of obsolescence). In [9], obsoles-
cence has been also addressed in databases, namely relational
databases. Each table undergoing obsolescence cycles goes
through at least three checks each with a specified time limit. A
data record is then considered obsolete when not accessed after
a certain number of cycles ‘M’. In this context, the provided
approach focuses more on data popularity whereby the number
of access is the primary pillar. This refers back to the idea
of confusing data obsolescence with another existing quality
indicator. Accordingly, popularity is a crucial parameter that
works alongside other indicators towards a comprehensive
obsolescence detection.

Few authors (e.g., authors of [23]–[25]) categorize obsoles-
cence as either: (1) technological obsolescence: new technolo-
gies replaces older ones, (2) functional obsolescence: reduction
of a system’s performance, (3) logistical obsolescence: short-
ages in manufacturing and materials, (4) ecological obsoles-
cence: high environmental negative impacts, or (5) economic
obsolescence: discarding a product due to high maintenance.
In [26], the authors provide mathematical detection/prediction
methods for obsolescence based on the category of interest.
Gaussian distribution is used for data obsolescence at the end-
of-product level. For general technological obsolescence, the
authors suggest logistic regression, binary assessment such as
in or out of production, in order to predict the obsolescence.
In [26], other insights are put forward tending to lean towards
electronic part obsolescence and product life cycles. Accord-
ingly, this reinforces the lack of detection and prediction
methods at the level of data. In other words, technological
obsolescence is not necessary that of a physical electronic
part, rather a much wider scope. For that purpose, our study
here extends our previous research [7] where we provided
several definitions (about how the connected environment is
built with all its zones and sensors, sensor measurements
called individual data, the sensor’s data set called data item,



the various parameters provided by the sensor’s documenta-
tion and environment, etc.). Specific indicators are computed
at the level of individuals data (e.g., timeliness) and data
item (e.g., accuracy) to provide a comprehensives detection
pipeline. Table 1 re-emphasises, in a comparative manner, how
existing obsolescence detection approaches fail in covering the
following three criteria that address the challenges previously
listed in Section II:

• Data quality metrics: Stating the data quality metrics
taken into account by the approach (cf. Challenge 1).

• Connected environment and dynamicity: Denoting
whether the approach is compatible with the connected
environments and its changing nature (cf. Challenge 2).

• Obsolescence grounds: Specifying the obsolescence types
supported by the approach; namely, temporal, spatial,
and/or contextual (cf. Challenge 3).

While few related works (cf. Table I) manage to discuss some
quality indicators (such as popularity and relevance), none
entirely fulfils all our pre-proposed criteria (i.e., accessibility
ac, popularity pl, relevancy rl, timeliness tl, accuracy a,
availability av, credibility cr, contradiction ct, correctness cn,
format consistency fc). Worth mentioning, these approaches
delve into the indicators from a general-scope perspective
without necessarily putting forward a calculation methodology
that can be applied. As noticed in Table I, most papers cover
data quality from the time perspective with less focus on
other obsolescence possibilities such as spatial and contex-
tual aspects. Opposite these approaches, our contribution is
comprehensive using various data quality metrics especially
that it considers the dynamic nature of the connected envi-
ronments. Focusing on connected environments and with the
pre-identified algorithms, we discuss in the next section how
quality metrics, being the key pillars for analysis, contribute
to our layered architecture.

IV. PROPOSAL

Our previous work [7] selects data quality metrics necessary
for data obsolescence, categorizes them into individual data
and data item quality metrics, and adapts their definitions
to deal with connected environments. In this context, we
provide data obsolescence with the following definition: ”Data
obsolescence in connected environments describes the state
wherein data is no longer significant or effective with respect
to the device, parent zone and/or the environment”. In this
section, based on the provided definition, we propose an
approach for detecting data obsolescence (cf. Fig. 2). This
approach consists of three main modules:
A) Quality Assessment and Storage: Pre-detection process

responsible for collecting data and enriching it with
efficient metadata.

B) Device Clustering: Clustering process allowing to detect
dynamically the device neighborhood.

C) Data Obsolescence Detection: Detection process em-
ployed for identifying data obsolescence with respect to
the device, parent zone and environment.

The modules (A) and (B) process differently than the
module (C). More specifically, the first two modules are
always running and listening to the environment (i.e., Batch
modules), while module (C) only runs on requests (i.e., On-
Demand module). Figure 2 represents the workflow followed
by the modules. As we can see, one invokes the module
(C) whenever he needs to detect the obsolescence of specific
devices during a given time. During this detection process,
the module (C) interacts with the batch modules (A) and (B)
in order to fetch real-time information about data quality and
device neighborhood respectively.

Fig. 2: Overall obsolescence detection architecture

In what follows, we highlight and detail separately each
module.
A. Quality Assessment and Storage

Fig. 3: Data quality assessment and storage

This module calculates and saves the quality metrics nec-
essary for data obsolescence detection pipeline (cf. Fig. 3).
It maintains and provides the most up-to-date data quality
metrics. The metrics computation is triggered for every new
sensed data and/or every data interacting with any query.
In other words, whenever di gets collected via a sensor or
becomes the point of interest of a query, its quality metrics (i.e.
md,mD) gets created or modified respectively. Subsequently,
two actors can execute this process: sensors that generate the
data and the queries that request the existing data. For example,
each time a query retrieves di, its ac increases with respect
to the incremented access number. In essence, whether a data
is getting gathered or engaged by a query, it goes through
the three following phases pursing its storage along with its
corresponding quality metrics:



1) Individual Data Quality Assessment: computes the qual-
ity metrics of the new individual data di represented by md :≺
ac, pl, rl, tl, sa ≻. Precisely, it is composed of accessibility ac,
popularity pl, relevancy rl, timeliness tl, and spatial accuracy
sa. The storage of di and md is illustrated in Fig. 3.

When it comes to popularity (pl), it is based on the number
of requests an individual data di receives out of the overall
requests to the respective data item set Di. In other words,
every time di is accessed, its popularity increases; however,
all other individual’s popularity would also require update to
accommodate the new total number of requests towards Di.
The latter is exhaustive; continuously updating all individuals’
popularity percentage per access is inefficient. Consequently,
we save pl as the number of access; instead of saving the
popularity percentage, saving the number of access is sufficient
whereby pl is computed when required. This approach leads
to updating only the individual requested and incrementing the
total access of the data set; a less bulky process providing the
same outcome.

2) Data Item Quality Assessment: assesses the data item’s
new quality metrics computed after di gets collected. It is
designated by mD :≺ a, av, cr, ct, cn, fc ≻, and consists of
accuracy a, availability av, credibility cr, contradiction ct,
correctness cn, and format consistency fc. It is saved in the
tuple of di (cf. Fig. 3), allowing to track how the quality of
the data item is getting altered over time as more and more
data is generated by the sensor. Subsequently, it enables the
preservation of mD history. It is worth mentioning that the
current data item quality metrics are saved in the tuple of the
last collected data di.

3) Additional Quality Computation: aggregates the md

of all individual data into averages. It is represented by
mavg :≺ acavg, anavg, rlavg, tlavg, saavg ≻. Specifically, five
main additional metrics relative to all the individuals’ md are
computed; namely,:

• acavg: average of all individuals’ ac
• ansum: total accesses/requests to D
• rlavg: average of all individuals’ rl
• tlavg: average of all individuals’ tl
• saavg: average of all individuals’ sa

B. Device Clustering
Fig. 4: Device clustering

This module is responsible for dynamically computing and
storing device neighborhood; an essential requirement for data

obsolescence detection pipeline (cf. Fig. 4). This is achieved
by identifying clusters of neighbors; group of devices that are
thought to impact on another. There are two types of neigh-
bors: (1) devices sensing same physical properties, sharing
similar spatial characteristics (i.e., located nearby), and having
compatible coverage areas (i.e., intersects, contains, equals),
and (2) devices receiving queries asking for same physical
characteristics, and are compatible (i.e., intersects, contains,
or equals).

To pinpoint the aforementioned neighbors, the clustering
module goes through multiple steps (cf. Fig. 4):

1) Compatible Zones Fetching: The initial step consists
of retrieving and grouping all compatible zones; zones that
are directly adjacent and have physical barriers that do not
block sensing. Namely, the latter are selected according to
the adaptability of the physical barriers, type of detection and
devices’ coverage areas. Accordingly, this step helps determine
which zones should be considered when locating devices’
neighbors. Identifying neighbors from several zones is crucial
since devices are capable of measuring data outside their
hosting zone (i.e., device c2 cf. Fig. 1).

2) Device Clustering: The aim of this step is to identify
all device’s neighbors within compatible zones. To achieve
this, two clustering algorithms are applied in parallel for every
group of compatible zones.

a) Characteristics Clustering of Devices: The first clus-
tering is related to the physical characteristics of the devices
themselves. Devices get grouped based on what their sensors
are capable of measuring (e.g., temperature, humidity, wind)
alongside their location, and accordingly coverage area.

b) Query Clustering of Devices: The second clustering is
according to the queries of the devices. Devices get grouped
according to the intersection of queries they receive for the
same physical characteristics.

3) Cluster Unionization: Each clustering algorithm, previ-
ously mentioned, results in several groups of devices. In this
step, these two results are merged into a single one.

As a result, this model identifies all device’s neighbors.
However, as aforementioned in Section II, the connected
environment’s dynamicity leads to unstable variations in a
device’s neighborhood. For this purpose, the clusters are
updated whenever the environment evolves (e.g., new devices
appear, devices change zones).

C. Data Obsolescence Detection

This module is implemented for detecting obsolescence of
data collected by particular devices. The detection is applied
on a selection of devices based on the system’s default
choice, expert’s recommendation, or user’s customization (e.g.,
obsolescence detection every day at 3:00 for the data gen-
erated/accessed within the last 24 hours by certain devices).
Consequently, two main inputs are taken into consideration:
(1) a queue of devices to check obsolescence for, and (2)
a specific time span [t0, t1] of interest that the data was
generated within. As an end result, the framework identifies
the obsolescence result and type for each data individual.



Data generated by a single device is concerned relative
to this device, the related zone, and the environment itself.
In other words, to be able to check data obsolescence, it
is mandatory to check it with respect to all entities that
might be in need of it. For that purpose, in order to have a
cohesive detection pipeline, our architecture is based on three
main levels: (1) Device level, (2) Parent zone level, and (3)
Environment level, each to be later on delved into.

1) Device Level: As depicted in Figure 5, this level ex-
amines sequentially a queue of devices through retrieving,
analyzing, and verifying each device’s data individuals and
qualities. The latter produces a group of the obsolete in-
dividuals per device. Each device then undergoes a further
evaluation, once all its data have been assessed, to determine
its overall quality. In essence, for every device concerned,
this level evaluates each piece of data from two different
perspectives: (a) Individual data layers: per data for a more
comprehensive detection, and (b) Data item layers: against all
the data collected by the same device.

Fig. 5: Obsolescence detection: Device level

a) Individual data layer: This layer is responsible for
checking the obsolescence of one individual data (i.e., di).
The first step is retrieving the quality metrics (i.e., md, mD,
and mavg) of di (cf. Fig. 3). Following this, the algorithm
”Individual Data Quality Check” (algorithm 1) is applied for
detecting whether the individual data di is obsolete or not. It
computes two main quality scores:

• md score: reflecting a weighted average of the quality
metrics of di (cf. line 6 in algorithm 1).

• mD score(di): representing the variation of the data
source’s quality metrics resulting from the collection of
di (cf. line 7-8 in algorithm 1).

Based on the thresholds assigned to each of the two scores,
di is acknowledged as either of low quality or not (cf. line 9-10
in algorithm 1). Subsequently, each di is labeled as potentially
obsolete or not whereby the obsolete ones get appended to an
obsolescence data pool. Once all the data of a single device
have been evaluated, the respective pool undergoes an overall
check at the following data item layer.

Algorithm 1: Individual Data Quality Check
Inputs : di, // current individual data

di−1, // individual data at a previous time step

th1, th2, // thresholds

k1, k2, k3, k4 // weights

Output : is obsolete // indicates whether the di is obsolete or not

Variables: md score,mD score(di),mD list, x
// Variables initialisation

1 md score = 0; // score of di quality metrics

2 mD score(di) = 0; // score of the impact of di on D

3 mD list = [a, av, cr, ct, cn, fc]; // list of the mD metrics

4 is obsolete = False; /* Boolean variable that specify if data is
obsolete or not */

// Calculate the popularity

5 di.md.pl =
di.an

ansum
/* md_score is calculated using weighted average */

6 md score =
k1 × di.md.ac + k2 × di.md.pl + k3 × di.md.r + k4 × di.md.t;

7 for x in mD list do
// Score of mD evolution between two consecutive individuals

8 mD score(di)+ =
di.mD.x−di−1.mD.x

di−1.mD.x × 100;

// Checking if scores are exceeding the thresholds

9 if md score < th1 Or mD score(di) < th2 then
10 is obsolete = True;

11 return is obsolete;

b) Data item layer: This layer takes as input the time
settings [t0, t1] and a set of devices {d1, d2 ... dn} as explained
earlier. In this context, for each device, we first retrieve the
targeted set of data [dj , di] from the storage; sensor’s data
collected between t0 and t1 inclusive. Next, all d in [dj , di]
goes iteratively through the data individual level which results
in an obsolete data pool. This pool is necessary for applying
the algorithm ”Data Item Overall Check” (algorithm 2). It
analyzes the device’s overall obsolescence; a step that aims
to confirm whether only the individual data is of low quality,
or the data item it belongs to (cf. line 2-4 in algorithm 2).

Algorithm 2: Data Item Overall Check
Input : D, // data item

OD, // obsolete data pool

th // threshold

Output : is overall obsolete// indicates whether the overall data item

is obsolete or not

Variables: percentage obsolete// % of obsolete data contained in D

// Variables initialisation

1 percentage obsolete = 0;
2 is overall obsolete = False;

// Calculating the percentage of obsolete data in the data item

percentage obsolete =
size(OD)
size(D)

× 100;

3 if percentage obsolete > th then
/* Checking if the percentage of data obsolescence in the data item

exceeds the threshold */

4 is overall obsolete = True;

5 return is overall obsolete;

2) Parent Zone Level: If the device level shows that di is of
low quality, this is not sufficient to approve its obsolescence.
Accordingly, this level checks the validity of the obsolescence
data pool, generated at the device level, with respect to the
device’s hosting zone. To do so, each di belonging to the ob-
solete data pool gets checked against its devices’ neighborhood
within the same zone (i.e., explicit neighbors). It is necessary
to perform the latter due to the possibility of an individual
being obsolete to the data item it belongs to, but rather



(a) Parent zone level (b) Environment level

Fig. 6: Zone and environment detection levels

complementary and reasonable to the devices’ neighborhood.
This is accomplished via the parent zone dimension that passes
every device containing data of low quality through several
phases (cf. Fig. 6a) as detailed in the following.

a) Explicit neighbors fetching: As aforementioned, an
obsolete individual data is to be checked with other related
devices within the same hosting zone to verify the validity
of the previously processed obsolescence check. Accordingly,
the first step within the parent layer is to retrieve the explicit
neighbors (i.e., interrelated devices located in the same zone)
of the device Di undergoing the obsolescence check. Based
on the device clustering results, devices from the same zone
belonging to Di’s cluster group are fetched.

b) Data pool generation: In this step, a data pool is
created and filled with the data individuals of every explicit
neighbor of Di. Namely, this pool represents a collection of
explicit data sensed within the [t0, t1] time-frame. In the next
step, each obsolete individual data collected by Di is analyzed
against the pool to approve or disapprove its obsolescence.

c) Obsolescence classification: The parent zone archi-
tecture is given a queue of low quality data to check against
the data pool created earlier in part b. At the device level, di
was proved to be obsolete; however, its mandatory to check
if it might be comprehensive with the neighboring devices.
For instance, consider cameras C2 and C3 of zone2 (cf. Fig.
1). These two cameras might help complement one another
to get a comprehensive view of the whole room specs. In
other words, while C2 might miss some data due to a blind
spot, C3 can come in handy if it is collecting data from such
areas. This reiterates how it is possible for one piece of data
to be obsolete at the device level, but not with respect to other
devices. Accordingly, to validate if an obsolete data is obsolete
at the parent zone level, the individual undergoes classification
machine learning algorithms with respect to the data pool. This
results in either: (1) Processing Data: data proves to be not
obsolete and sending it to to check what might have caused its
obsolescence at the device level, or (2) Going up the hierarchy
(i.e., environment level): data proves to be obsolete and is sent
for obsolescence check with respect to other zones.

3) Environment Level: If both device and zone levels prove
di to be obsolete, the environment layer (cf. Fig. 6b) gets
executed as the confirmation coating. Correspondingly, in this
level, the obsolescence of di is checked with respect to the
neighboring zones of the hosting zone. In other words, each
di gets evaluated against its device’s neighbors located across
different but compatible zones (i.e., implicit neighbors). That
is the case as when a device is deployed, the coverage area
is based on, but not limited to, the zone’s physical barrier. In
this dynamic connected environment approach, a device can
sense values from another zone if they are separated by what
doesn’t interrupt the sensing procedure (e.g., glass or virtual
wall). Going back to zone2’s C2 and C3 cameras (cf. Fig. 1),
we notice camera C3 is located in zone 3 but is gathering
some information from zone 2. Consequently, C3 might be
collecting information proving C2’s potentially obsolete data
as significant or confirming its obsolescence. In essence, the
same process applied at the parent level (neighbor fetching,
pool generation, and obsolescence classification) is applied at
the environment level. However, at the environment level, the
neighbor fetching is concerned with implicit devices; devices
from the different zones belonging to Di’s cluster group.

All the aforementioned levels work hand in hand providing
one complete detection architecture depicted in Figure 7. In
essence, each data sensed passes through device, parent zone,
and/or environment level to check its obsolescence. Further-
more, it undergoes an additional service (i.e., explainable data
obsolescence) that is essential before its final treatment.

Fig. 7: Obsolescence detection architecture

D. Explainable Data Obsolescence

The detection architecture presented earlier classifies data
into obsolete or not. However, relying solely on this catego-
rization is insufficient for adjusting obsolescence efficiently;
additional strategies are required to address this sophisticated
issue appropriately. In this context, this section introduces a so-
lution that revolves around pinpointing the source responsible
for producing obsolescence; ”explainable data obsolescence”.
This verification process plays a crucial role in properly
reducing concerns related to obsolescence. Obsolescence can
fall into one or a combination of the following categories:

• Temporal obsolescence: poor quality is related to the time
at which the individual data was collected.

• Spatial Obsolescence: poor quality is related to the loca-
tion from which the individual data was collected.

• Contextual Obsolescence: poor quality is related to the
content of the individual data.



Similar to the detection architecture, the explainable data
obsolescence is processed at three dimensions (i.e., device,
zone, environment) forming three split parts: (1) Part 1: type
check with respect to the device it belongs to, (2) Part 2:
with respect to the explicit devices within the same zone,
and (3) Part 3: with respect to the implicit devices from
neighboring zones. This module is established at the end of
each level. The latter requires as input the classified data with
their corresponding metadata (i.e., collection time, spatiality,
attribute) and outputs the obsolescence grounds. The aim of
this module is to check what’s in common between the data,
it inspects the data of every level and checks whether the
obsolescence is occurring during a periodic range of time,
and/or within a particular common spatial location, and/or for
one specific attribute. With each shift to a higher level (e.g.,
device to zone level), the number of metadata increments,
resulting in a higher number of features, which subsequently
leads into more powerful and semantic results. For instance,
after implementing this process on the camera C1, illustrated
in the motivating scenario (cf. Fig. 1, Section II case 2),
obsolete data was noticed to share common spatial properties;
namely, they originate from the 120-degree section of the
camera’s rotation. This helps infer how this spatial section is
the potential source of obsolescence accordingly marked for
inspection and treatment.

V. CONCLUSION

Data integrity faces a critical research gap especially when it
comes to data obsolescence - when data becomes insignificant
towards its original purpose - and its detection. Thinking
of data obsolescence as an independent terminology, this
paper provides connected environments with a dimensional
architecture to detect obsolescence using predefined data qual-
ity metrics. Namely, sensed data initially passes through a
quality assessment phase after which it is checked against
device, zone, and environment layers for obsolescence. With
the detection architecture examined, the next step involves
providing the experimental results on real deployed devices.
The detection architecture this paper proposes relies on two
main settings: (1) time span [t0, t1], and (2) a queue of
sensors to check obsolescence for. Accordingly, as future
work, it is required to provide a methodology through which
the inputs are automatically chosen and triggered to schedule
obsolescence detection. In other words, the current hierarchy
needs to be topped with a recommendation system for a more
productive selection, detection, and treatment. Speaking of
treatment, this layer is to be provided with its approaches of
handling and solving obsolete data. The current architecture
productively measures obsolescence within data and requires
two other systems to provide its input and handle its output
of obsolescence. REFERENCES
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