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Abstract. The purpose of this study is to present a solution to a partic-
ular challenge related to indexing resources in a connected environment.
In essence, multiple factors impact significantly resource indexing in con-
nected environments such as uneven spatial distribution of devices, their
heterogeneous capacities, varying usage, and querying purposes and pri-
orities, to mention a few. This work proposes a hybrid resource indexing
approach able to cope with devices’ capacities (especially their storage
capacity). To validate our approach, several types of queries have been
submitted to test the index’s efficiency. Preliminary experiments show
promising results and prove the efficiency and usefulness of the proposal.
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1 Introduction

Connected environments (IoT, Edge Computing, Fog Computing, etc.) have been
adopted in many industries linked to the environment, supply chain, and smart
cities [3]. According to statistics, connected resources4 will reach 27 billion de-
vices in 2023 [7]. With the increase of connected resources, several problems
related to data storage, routing, networking, privacy, and devices’ deployment
have emerged.

In this paper, we address the retrieval problem by proposing a hybrid indexing
approach called Resource Indexing in Large Connected Environment (RILCE).
In RILCE, one node (having enough processing capacities) generates a global
index taking into account individual devices capacities and coverage zones of the
environment. Then, it distributes to each device a local index providing it with
the capability to interact, exchange information and respond to queries directly
or indirectly in a fully distributed manner without relying on the initial node
(owning the global index).
4 The terms resource and device will be used interchangeably in the rest of the paper.
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However, many factors interfere with the index creation and querying process.
Therefore, the following challenges should be addressed:

– Challenge 1: How to optimize network lifecycle(Reduce network latence and
response lag) and querying by taking into consideration the capacity of the
devices in each index?

– Challenge 2: How to consider covered and uncovered zones in order to max-
imize the index coverage?

Our approach aims at addressing the aforementioned challenges as we will
see in the next sections.

The rest of the paper is organized as follows. Section 2 reviews related works
and compares the different approaches to ours. Section 3 details the main defini-
tions and preliminaries used to ease the understanding of our approach concepts.
Section 4 presents our proposal explaining the index generation and query execu-
tion algorithms, while Section 5 describes the experiments conducted to validate
our approach in various cases and discusses the results. Finally, Section 6 con-
cludes the paper and pins down several future works.

2 Related Work

The number of connected nodes has expanded in recent years, generating a
tremendous volume of data. A connected environment’s indexing method aims to
quickly locate and obtain a resource that holds the needed data from a collection
of linked devices. In what follows, we will present the research studies belonging
to the spatial resource indexing. Spatial Indexing uses geographical coordinates
such as longitude, latitude, and altitude to represent the environment(e.g., kd-
tree, R-tree).

In [10] and [6], the authors present the Geographic Hash Table (GHT) and
the DIFS(extension of GHT), tree-based algorithms that uses an indexing tree
to retrieve data from devices. Each node is assigned a hash key k representing
the geographical coordinates of the node and its value accessible via queries.
When a query is issued, It starts with nodes that cover precisely the query range
traversing the tree until it reaches a node that covers the entire network.

In [5], a quad-tree index technique is proposed. The GH-indexing, using a
divide-and-conqueror approach, builds a tree by encoding the IoT resources into
geo-hashes. Starting at the root node, the query will go down the tree, evaluating
the child nodes and comparing their minimum bounding rectangles against the
region of query to discover matches.

The authors in [4] presented an indexing technique following a modified ver-
sion of DP-means. The approach groups sensors into different clusters and queries
are forwarded to the proper gateway by a discovery service layer. When the dis-
covery service receive a query, it forwards it to the gateway with the shortest
distance between its centroid and the query.

In [11,12] provide an approach that adopts minimum energy principles. The
authors propose algorithms named ECH and EGF-tree, where the connected
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environment is divided into sub-regions based on grid division. In this proposal,
sensors report their data to the base station. The authors provide a query aggre-
gation plan: sub-queries return their result to the base station using in-network
aggregation and the query results are derived from the sub-queries.

There are also approaches that use mathematical calculations, such as proba-
bilities to index IoT devices. In [8], the authors implement discovery services that
are connected via Gaussian mixture models. Then, probabilistic indexing is used
to determine which discovery service or gateway is responsible for forwarding
a query. Lower-level discovery services become less sensitive to the probability.
Query forwarding continues until the requested resource is reached.

In [1], a tree-structured method named BCCF-tree is presented. The BCCF
tree has two main layers: the internal node level (nodes with pivots) and the
leaf node level (nodes that have containers). This technique creates clusters by
measuring the distance r between pivots and then fetching the distance (less
than r) between one of the pivots and the centroid of a cluster. When users issue
queries, the distance between the pivots and the query shrinks while going down
the tree.

Finally, C. Dong et al. [2] propose a method named A-DBSCAN which clus-
ters devices using DBSCAN. This generates clusters with high device density.
Therefore, every cluster is then re-clustered using k-means. In this approach,
users can provide feedback which is used to improve future iterations.

In Table 1, we present a comparison of the reviewed approaches based on
three criteria: i) consideration of device capacities (Yes: the approach consid-
ered devices’ capacities; No: otherwise); ii) consideration of different query types
(Fast: queries sent directly to devices regardless of response availability, Urgent:
queries that attempts various routing paths to find a query answer, Default:
queries will try all possible paths to reach the target while taking into account
node capacities to reduce the complexity); and iii) indexing coverage denotes
the type of zones taken into account by the approach (Covered: zones that are
covered by at least one device, Both: covered and uncovered zones, Undefined:
approaches that do not handle indexing coverage at all).

Devices Capacities Types of Queries Indexing Coverage
GHT/DIFS [6,10] No Fast Covered
GH-Indexing [5] No Fast Undefined
Mod. DP-means [4] No Fast Covered
ECH [11]/EGF-Tree [12] No Fast Covered

DSIS [8] Yes (capacity is the number
of sensors in the WSN) Urgent Undefined

BCCF-Tree [1] Yes Fast Undefined
Multi-index [9] No Fast Undefined
A-DBSCAN [2] No Fast Covered
Our approach Yes Default Both

Table 1: Comparison table of indexing approaches for IoT resources
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None of the existing approaches fully consider our entire criteria as well as
the challenges that we intend to address. We present next our proposal starting
with some preliminaries to clarify and formally define the used terminology.

3 Definitions & Assumptions

In this section, we will present preliminaries and assumptions used in our ap-
proach.

Definition 1 (Global Index).
A global index gi is a 3-tuple matrix-based structure defined as follows:

gi ∶ (D,Z, bRule) where ∶ (1)

– D is the set of devices that constitute the matrix rows
– Z is the set of covered and uncovered zones that constitute the matrix columns
– bRule is the binary association rule that maps a zone to a set of devices. ∎

Every row in gi will be used to generate the local index of each device. The
algorithmic behavior of bRule is the main contribution of this study and will be
explained in details in the following section. In what follows, uncovered zones
will be represented in the matrix with a bar (e.g., z̄).

Example 1. Let’s assume that a device (PC) located in the monitoring office
has the capability to store the entire index of a connected environment

(composed of: 4 devices d1-d4, 4 covered zones, and 3 uncovered zones). The

global index will correspond to the following: gi1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1 z2 z3 z4 z̄5 z̄6 z̄7
d1 1 1 1 0 1 0 0
d2 0 1 1 1 0 1 0
d3 1 0 1 1 0 0 1
d4 1 1 1 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4 Proposed Approach

We present here the scope of the contribution and the proposed algorithms. In
this study, we don’t address the physical network communication problems and
technologies and assume that messages can be sent between any devices using
the physical layer (as it is the case in our motivating scenario). Two types of
devices are considered:

– High-Capacity (HC) device: is a device which has the storage capacities to
log a big part or the entire environment and deployed devices.

– Low-Capacity (LC) device: is a device that has a limited storage capacities
and consequently cannot store enough information to have a visibility of the
entire environment.
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Users can interact with the environment by sending a query to specific devices
or by broadcasting it within a location. When receiving a query, a device can
choose to respond to the query or forward it to others. When possible, the query
can also be sent to the orchestrator which forwards it following the global index.
In order to react to queries effectively and by maximizing query response using
limited capacity devices, this paper focuses on the global device index generation.
Due to space limitation, the clustering algorithm of zones won’t be detailed here.

4.1 Global Index Generation

In order to explain the global index generation algorithm we took an example
of an environment having 4 devices and 7 zones in which 4 of these zones are
covered (Z1, Z2, Z3, Z4) and 3 of them are uncovered(Z̄5, Z̄6, Z̄7). For the index
generation, two main algorithms are implemented. The index initialization (Algo.
1) is responsible for initializing the global index (of the entire environment or
a part of it) using, in its matrix representation, a set of devices as rows and
zones as columns. The device indexing (Algo. 2) adds the corresponding indexes,
creating consequently a device-to-zone relation. Both algorithms are executed on
an orchestrator.

In Algo. 1, we show the pseudo-code of the global index initialization. More
concretely, after initializing the index matrix, we sort it following the devices
capacities (line 2). We end up by assigning each device to a zone that maximizes
its coverage. An illustration is given in Figure 1 (step 1). When device capacity
is between 1 and ∥Z∥ + ∥Z̄∥, Algo. 2 needs to be applied.

Algorithm 1: initializeGlobalMatrix()
Input : Set of Devices D, Covered Zones Z, Uncovered Zones Z̄
Output: gi // Initial global index matrix

1 gi←matrix(∥D∥, ∥Z∥ + ∥Z̄∥); // index creation
2 Sort(gi,Asc,D.C); // index ascending ordering according to capacities
3 foreach dj ∈ gi.D do
4 gi(dj , gi.Z⋂max dj .s.cz) = 1 // assigning each device to a best covered zone
5 end
6 Return gi

After completing the initialization phase, binary values must be added to
create a device-to-zone relationship using Algo. 2. Its inputs are: the initial
global index (output of Algo. 1), α indicating the number of covered zones that
should be indexed per row (also taking into consideration the device capacity),
β is the number of uncovered zones per row. It also has some local variables:
the maximum capacity, and a counter used start-row for optimization purpose
(equal to 2 on the first iteration of Algo. 2 since Algo. 1 is considered as an
iteration). In this study, we aimed to keep α always greater than β to foster
covered zones over uncovered ones.

For each iteration, we get the starting row using the cpt by increasing the
variable start_row that indicates the starting row. In other words, the row of a
device having a capacity less than cpt will be skipped since it has been already
maximized, and no index value can be added (lines 1-4). We note that at the
end of each recursive call, we increment cpt (lines 30). In lines 5-8, a minimal
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set of index entries is created to consider all the covered zones. This is done
by adding an index (value 1) next to each column in the matrix except for the
devices that belong to the column of the final covered zone. For these devices, an
index is added at the beginning of the matrix. The createMinimalCycle function
(line 7) is responsible for doing that. After generating this cycle, all devices in
covered zones will be able to interact, which highlights the importance of this
step. This iteration can be seen in step 2 of Figure 1. Since D1 is located in Z1,
and Z1 is near the zone Z2 in the index, D1 adds an index for Z2. Since Z5 is
an uncovered zone, an index for Z1 is added to D4.

Algorithm 2: generateIndex()
Input : gi,α,β, max_capacity, cpt
Output : gi // final index matrix
Local Variables: start_row = 0, cpt = 2,max_capacity

1 for i in 0..∥gi.D∥ do
2 if (di.C<=cpt) then

// device capacity less or equal cpt
3 start_row + +;
4 end
5 if (cpt == 2) then
6 α = α − 1
7 createMinimalCycle(gi) // The function will generate the cycle that connects

the zone with each other through common devices
8 α = α − 1
9 else if (cpt == 3 and β ≠ 0) then

10 for i in start_row..∥gi.D∥ do
11 gi(i, i + ∥Z∥) = 1 // set 1 on the diagonal of uncovered zones columns.
12 end
13 addIndexOnRemainingConveredZones(gi) // if the diagonal reaches the end of

the index and there are still devices that hadn’t received an index, we add an
index in the covered zone part for these devices following the number of index
in a column

14 β = β − 1
15 else if (cpt%2 == 1 and α ≠ 0 ) then
16 addIndexOnCoveredZones(gi) // put 1 on covered zones following column sum
17 α = α − 1
18 else if (cpt%2 == 0 and β ≠ 0 ) then
19 addIndexOnUncoveredZones(gi) // put 1 on uncovered zones following column sum
20 β = β − 1
21 else if (α ≠ 0 and cpt <max_capacity) then
22 addIndexOnCoveredZones(gi)
23 α = α − 1
24 else if (β ≠ 0 and cpt <max_capacity ) then
25 addIndexOnUncoveredZones(gi)
26 β = β − 1
27 else if (α == 0 and β == 0 or cpt >max_capacity) then
28 verifyCycle(gi) // verify that the index has been indexed correctly + adding one

from uncovered zones to covered zones when the sum of indexes are equal(on the
same device)

29 else
30 cpt + +
31 generateIndex()
32 end
33 Return gi

After the minimal cycle creation (leading to the decrease of α twice), we
can start indexing uncovered zones (if β ≠ 0). A diagonal of the uncovered
zones columns is created to ensure we have information about all uncovered
zones (lines 10-12). After creating the diagonal, we add indexes in covered zones
for the remaining devices in order to foster covered over uncovered zones. The
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addIndexOnRemainingConveredZones function is responsible for doing that (line
13). The result of this step is illustrated in step 3 of Figure 1. Z5, Z6, and Z7
are indexed by D1, D2, and D3, respectively. We have access to every zone that
is uncovered at this stage. An index for Z2 is added for D4 because it hasn’t
been indexed yet.

Fig. 1: Algorithm Steps Example

Indexes are added for columns with the fewest indexes to have an even distri-
bution. From lines 15-17, when α is still not equal to 0, the addIndexOnCovered-
Zones function is triggered by adding indexes in covered zones for all the devices
that didn’t maximize their capacities. The indexes are added so that the sum
of indexes is calculated before adding an index, and the column with the lowest
number of indexes will be indexed (step 4 of Figure 1). α is decremented at the
end of this step. The same process is repeated if β is not equal to 0 for uncovered
zones using the addIndexOnUncoveredZones function (lines 18-20). Indexes are
added for uncovered zones based on the index summation of each column, and
β is decremented by 1. The modulo is used to alternate between covered and
uncovered zones. Plus, the same functions are used in lines 21-26 and repeated
until α and β reach 0. β will converge before α since it is lesser.

After the algorithm convergence in lines 27-28, we check that all devices have
a number of entries for covered zones greater than entries in uncovered zones.
When the number of indexes in uncovered zones is greater or equal to those in
covered zones on the same device, an entry from the uncovered zone is removed
and added for the covered zones using the verifyCycle function.

4.2 Query Execution Illustration

After the generation of the global index, it is divided and distributed to the
devices, each device receiving its own chunk. In Figure 2, an example of an ’ur-
gent’ query is demonstrated using our motivating scenario. Considering Z1 is the
source zone initiating the query and Z̄6 is the destination zone. D1 will broad-
cast the query to all devices stored inside its index. When the devices receive
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it, they will also broadcast the query to other known devices until reaching the
destination. Since D2 knows information about Z̄6, it will respond to the user
with an uncovered zone response.

Fig. 2: Urgent query execution

Several parameters can be added to queries in order to increase their effi-
ciency: 1) the minimum capacity can be added so to avoid forward the query to
devices with less capacity, 2) the forward strategy to be adopted (sent to devices
connected to more devices than others such as HC devices), 3) a Time To Live
or TTL parameter (a no-response message is returned beyond the threshold), to
mention a few.

5 Experiments

In the following section, we present the set of experiments conducted to validate
our approach. The experiments concern index generation and query execution.
The tests were conducted on a 16 GB RAM machine with a I7 CPU core on
windows 10 operating system. The coverage percentage used is 80%, meaning
that 80% of the zones are covered. We also used a 70% overlapping, meaning that
70% of the covered zones will have more than one device, creating a diversified
environment: zones with low and high device density while also having uncovered
zones. We did not compare our approach to existing ones since none of them
can meet all the required criteria in their indexing scheme(section 2). Data and
queries of our tests have been simulated using our generator. Run times are
averaged over ten runs.

Figure 3 demonstrates the impact of the zone number variation on the matrix
creation. The number of devices used is 3000 with α = 80 and β = 20. The index
took 11.3s to be generated for 100 zones, while it took 45.6s for 400 zones. The
higher the number of zones, the more time is needed to create the index. We can
see that the increase in time is linear in terms of zones.

In Figure 4, we fixed the number of zones to 300, with α = 80 and β = 20, and
we varied the number of devices. We can note that the generation of the global
index took 4s for 1000 devices, while it took 57s for 4000 devices. The creation
of the index takes longer the more devices there are. However, the behavior of
the algorithm is a bit different in that case representing a quadratic complexity.

In Figure 5, we compared the behavior of α and β on the global index cre-
ation. For α = 10 and β = 5, the index creation took 14s. Moreover, For α = 70
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and β = 40, the index creation took 59.76s. We note that during this experiment,
we fixed the number of devices to 3000, the number of zones to 300, and the
devices’ capacity to 64. The greater the value of α and β, the more time needed
to create the index. This is because more iterations are required, plus, as previ-
ously mentioned in Algo. 2, the process converges when α = β = 0 or when the
counter reaches max(C). In addition, when α >= 40, the time is almost the same
since the maximum capacity is reached. Therefore, since execution is almost the
same for α + β >= 64, no execution is done beyond 64 bits.

Fig. 3: Impact of zones on matrix creation Fig. 4: Impact of devices on matrix creation

Fig. 5: Impact of α and β on matrix creation Fig. 6: Impact of capacities on matrix creation

In Figure 6, we show the impact of the devices’ capacities on the global index
creation. We fixed the number of devices to 3000 and the number of zones to 300
with α = 80 and β = 20 and increased the devices’ capacity from 10 to 100. Our
approach takes longer with devices that have bigger capacities as it is capacity
dependent while maintaining a linear behavior. After analyzing the different
metrics that affect the global index creation, we generated an index of 3000
devices and 300 zones with an alpha = 80 and beta = 20 and a maximum capacity
of 20. We executed 80 queries, and all of these queries returned a response. The
average response time of 10 runs was 0.086103 s.

6 Conclusion and future works

In this paper, we present a capacity-aware indexing approach that consists of
indexing resources in connected environments with devices while using a decen-
tralized architecture. The approach consists of different steps that generate a
global index that is distributed over devices to use as a local index. Different
evaluations on index creation and query execution were done and came out with
good results. In future works, we are going to implement fast queries since most
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of the approaches are used along with other types of queries that fit user needs.
We will also detail the spatial clustering algorithm.
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