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ABSTRACT:  A cooperative catalyst system involving 
Pd(0)/Senphos complex, tris(pentafluorophenyl)borane, 
copper bromide, and an amine base, is demonstrated to 
catalyze trans-hydroalkynylation of internal 1,3-enynes. For 
the first time, a Lewis acid catalyst is shown to promote the 
reaction involving the emerging outer-sphere oxidative 
reaction step. The resulting cross-conjugated dieneynes are 
versatile synthons for organic synthesis and their 
characterization reveals distinct photophysical properties 
depending on the positioning of the donor/acceptor 
substituents along the conjugation path. 

Hydroalkynylation, i.e., the net addition of terminal alkyne to 
an alkyne unit, is an atom-economical and straightforward 
approach to 1,3-enynes and related conjugated molecules 
which are widely exploited in bioactive molecules,1 functional 
materials2 and complexity-building transformations.3 To this 
end, significant advances have been achieved in terminal 
alkyne homo- and cross coupling4,5 (Scheme 1a). However, the 
hydroalkynylation of an internal alkyne has been more 
challenging due to the competing homodimerization, 
oligomerization and cyclotrimerization of either starting 
materials as well as regio- and diastereoselectivity issues when 
unsymmetrical internal alkynes are used. So far, a few 
stereoselective hydroalkynylation6,4a of internal alkynes 
(Scheme 1b) have been reported, with trans-selective examples 
being particularly rare (Scheme 1c). In 2014, Zhu et al. reported 
the first example of Pd-catalyzed trans-addition terminal 
alkyne to N-sulfonyl ynamides.7 Recently, Lassaletta and 
coworkers developed a catalyst-counteranion-dependent Au-
catalyzed divergent trans-hydroalkynylation of haloalkynes or 
cis-bromoalkynylation of terminal alkynes.8 Another elegant 
work from Fürstner demonstrated that [Cp*RuCl]4 catalyzed 
the trans-addition of iPr3SiCCX (X =H, Cl) across internal 
alkynes.9 Nevertheless, a broadly applicable trans-
hydroalkynylation of internal alkynes with wide scope remains 
underdeveloped. 
In our program to expand the chemical space in ligand design 
for applications in homogeneous catalysis through BN/CC 
isosterism,10  we recently described trans-hydroboration,11 
trans-cyanoboration12 and cis-carboboration of 1,3-enynes13 
catalyzed by a 1,4-azaborine biaryl phosphine(Senphos)-Pd 
complex. Mechanistic studies14 support an unusual outer-
sphere oxidative addition mechanism15 where a Lewis acid (LA) 

activates a Pd(0)-enyne complex to form a zwitterionic Pd--
allyl species (e.g., A in Scheme 1d).16 Recently, we were able to 
crystallographically characterize an outer-sphere oxidative 
addition adduct where the LA is B(C6F5)3.17 Whereas in our 
reported borylative transformations the LA activator is 
employed in stoichiometric amounts as substrates, we 
hypothesized that a catalytic amount of LA18 such as B(C6F5)3 
may enable a general and selective addition of nucleophiles and 
electrophiles across a 1,3-enyne via cooperative catalysis 
(Scheme 1d).19 In this communication, we present the 
successful development of the Pd/Senphos-catalyzed trans-
selective hydroalkynylation of internal 1,3-enynes in the 
presence of Lewis acid and copper co-catalysts and an amine 
base (Scheme 1e). The nucleophile in this work is proposed to 
be the Cu-alkynyl species and the electrophile is a proton. Our 
catalytic transformation is site-, regio-, and diastereoslective, 
exhibits broad scope and functional group tolerance, and is an 
atom-economic and simple method to access the family of 
cross-conjugated dieneynes. A library of donor/acceptor-
substituted derivatives could be readily prepared and 
characterized by UV-Vis absorption and emission spectroscopy.  

Scheme 1. Transition Metal-Catalyzed 
Hydroalkynylation of Alkynes 



 

 
 
 
We selected 1,3-enyne 1 and phenylacetylene as model 
substrates for our reaction optimization efforts.  We 
determined that a combination of catalytic amounts of Pd/L1, 
B(C6F5)3, CuBr, and a stoichiometric amount of TMPH (2,2,6,6-
tetramethylpiperidine) in toluene at room temperature was 
crucial to obtain the desired product 2. When any of the 
catalysts or the TMPH was absent under otherwise identical 
conditions, the desired hydroalkynylation reaction did not 
proceed (Table 1, entries 1-6).  

 

Table 1. Control Experiment and Ligand Survey of 
Internal 1,3-enyne trans-Hydroalkynylationa 

 

Entry 
Variation from standard 

condition 
Yield 
(%)b 

Selectivityb 

1 none 88(84)c >98:2 
2 without [Pd] <2 N.D. 
3 without L1 <2 N.D. 
4 without B(C6F5)3 <2 N.D. 
5 without CuBr <2 N.D. 
6 without TMPH <2 N.D. 
7 L2 instead of L1 74 >98:2 
8 L3 instead of L1 9 >98:2 
9 L4 instead of L1 68 >98:2 

10 L5 instead of L1 61 >98:2 
11 L6 instead of L1 22 >98:2 
12 CC-L1 instead of L1 19 >98:2 
13 MePhos instead of L1  13 >98:2 

 

 aReaction performed at 0.4 mmol scale. See SI for detailed procedure. 
bYield and selectivity was determined by 1H NMR analysis of unpurified 
reaction mixture with CH2Br2 as the internal standard. Selectivity is 
defined as the ratio of title product over other isomers. cYield of 
isolated product in parenthesis. 

We then explored the ligand effect on this hydroalkynylation 
reaction. The use of a sterically more demanding ligand with a 
larger substituent on the C(3) position (e.g., R3 = Et or iPr) 
decreases the product yield (entries 7-8). When the R = Cy in 
Senphos is replaced with R = Ph, a reduction in yield is 
observed (entry 9 vs. entry 1). A similar detrimental effect of 
the increasing size of the R3 substituent is also observed for the 
arylphosphine (R = Ph) ligand series (entries 9-11). We also 
determined that the performances of the corresponding 
carbonaceous ligand CC-L1 and the commercially available 
structurally related analogue MePhos,20 are significantly 
inferior to Senphos L1 (entries 12-13 vs. entry 1), highlighting 
the distinct electronic structure features of the Senphos ligands 
enabling this transformation.21  
The hydroalkynylation proved to be quite general; a broad 
range of terminal alkynes serve as suitable substrates, 
affording the corresponding trans-addition product exclusively 
(Table 2). Various aryl alkynes (entries 4a-4l) bearing 
electron-donating or electron-withdrawing groups can readily 
participate in this reaction to afford product in moderate to 
good yield. Compatible functional groups include fluoro 
(entries 4b-d), tertiary amine (entry 4e), methoxy (entry 4f), 
trifluoromethyl (entry 4g), pinacolborato (entry 4h), ester 
(entry 4i), nitro (entry 4k) and cyano (entry 4l) groups. In 
addition, silyl acetylenes (entries 4m and 4n) and terminal 
aliphatic alkynes (entries 4o-4y) of different carbon chain 
length containing primary chloride (entry 4r), silyl ether (entry 
4t), ketone (entry 4u), ester (entry 4v), phthalimide (entry 4w), 
nitrile (entry 4x) and estrone moiety (entry 4y) are well 
accepted. We have obtained the X-ray crystal structure of 4m, 
thus unambiguously establishing the connectivity and the 
diastereoselectivity of the reaction product. For ease of 
purification, a more polar enyne was used as a reactant in some 
cases (entries 4k, 4l, 4r-4y). 
We also evaluated the scope with respect to internal 1,3-
enynes, and we were pleased to find broad applicability of the 
optimized reaction conditions and exclusive trans-selectivity of 
the reaction products (Table 3). For example, the reaction is 
insensitive to an array of electronically different aryl group on 
the alkene position R2 (entries 6a-6g). In addition to aryl 
groups, the R2 position also tolerates H (entry 6h) and alkyl 
substituents (entries 6i-6k), albeit requiring slightly forcing 
conditions. The reaction is also compatible with various diaryl 
1,3-enyne substrates bearing electronically diverse aryl groups 
at the R3 position (entries 6l-6r).  The regio- and 
stereochemistry of the hydroalkynylation of a representative 
diaryl 1,3-enyne substrate is established by an X-ray structure 
of the product 6m. In addition to Me and aryl groups at the R3 
position, enynes with longer chain alkyl groups (entry 6s) and 
those bearing functional groups (entries 6t-6y) are also 
suitable substrates. We also note that 1,3-enynes derived from 
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commercial drugs such as ibuprofen, isoxepac, naproxen afford 
the corresponding products 6w-6y in high yield. 
The hydroalkynylation products are versatile building blocks 
in organic synthesis. As shown in Scheme 2, the conjugated 
diene unit of 6l can participate in a Diels-Alder reaction to 
produce intermediate 7, which can be oxidized22 to give the 
arene product 8.23 In the presence of TBAF, desilylation of 6l 
proceeds smoothly to afford terminal alkyne 9. Building block 
9 cycloisomerizes to the corresponding naphthalene derivative 
9a in the presence of PtCl2 catalyst.24 In the presence of TsN3 
compound 9 generates triazole 9b in a click reaction catalyzed 
by CuTc.25  Furthermore, Sonogashira cross coupling of 9 with 
aryl and acyl electrophiles furnishes the corresponding 
products 9c, 9d, 9e, respectively.26  
 
Scheme 2. Derivatization of Reaction Products. 

 

 
 

 

Table 2. Reaction Scope of Terminal Alkynes. a 

 

aReaction condition: 1 (0.4 mmol), (COD)Pd(CH2TMS)2 (2 mol%), L1 (2 mol%), for aryl alkynes 3a-3l: 3 (1.0 mmol), B(C6F5)3 (5 
mol%), CuBr (5 mol%), TMPH (0.4 mmol), toluene (0.8 mL), 22 C, 12 h; for alkyl alkynes 3m-3y: 3 (0.8 mmol), B(C6F5)3 (10 mol%), 
CuBr (10 mol%), TMPH (0.8 mmol), toluene (0.6 mL), 22 C, 12 h, unless otherwise noted. Yields of isolated product are reported as 
an average of two runs. Selectivity is determined by 1H NMR analysis of purified product. See SI for detailed procedure. b1.2 mmol 4-
methoxyphenylacetylene was used. c24 h reaction time. d1 (0.4 mmol), (COD)Pd(CH2TMS)2 (5 mol%), L1 (5 mol%), B(C6F5)3 (10 
mol%),  CuBr (5 mol%), TMPH (0.4 mmol), toluene (0.8 mL), 12 h, 50 C. 

Table 3. Reaction Scope of Internal 1,3-Enynes. a 



 

 

aReaction condition: 5 (0.4 mmol), (triisopropylsilyl)acetylene (0.8mmol), (COD)Pd(CH2TMS)2 (5 mol%), L1 (5 mol%), B(C6F5)3 (10 
mol%), CuBr (10 mol%), TMPH (0.8 mmol), toluene (0.6 mL), 50 C, 12 h, unless otherwise noted. Yields of isolated product are 
reported as an average of two runs. Selectivity is determined by 1H NMR analysis of purified product. See SI for detailed procedure. 
bStandard conditions, except: (COD)Pd(CH2TMS)2 (2 mol%), L1 (2 mol%), 22 C. cStandard conditions, except: (COD)Pd(CH2TMS)2 
(10 mol%), L1 (10 mol%), B(C6F5)3 (20 mol%), 24 h. 

In preliminary labeling experiments we determined that 51% 
deuterium is incorporated into the product with deuterated 
phenylacetylene under standard conditions. With deuterated 
phenylacetylene in the presence of Et3N (instead of TMPH), we 
observe 93% deuterium incorporation into the product 
(Scheme 3). These observations from the deuterium labeling 
experiments are consistent with the amine serving as a proton 
shuttle to deliver the proton to the activated enyne.  
 
Scheme 3. Deuterium Labeling Studies. 
 

 

Scheme 4 illustrates a plausible mechanism for the 
hydroalkynylation reaction. The active Pd(0)/Senphos 
complex I is generated from the catalyst precursor 
(COD)Pd(CH2TMS)2 and the Senphos ligand via reductive 
elimination,27 which is then followed by the coordination of the 
enyne substrate to furnish complex II. The B(C6F5)3 co-catalyst 
then activates the Pd(0)/enyne complex II to yield the outer-
sphere oxidative addition adduct III. Complex III subsequently 
undergoes a protodeboronation28 by an ammonium cation 
species (originating from a deprotonative activation of 
terminal alkyne in the Cu cycle to generate the Cu-alkynyl29 
species) to form IV with concomitant release of the B(C6F5)3 co-
catalyst. Transmetalation of the Cu-alkynl species (from Cu 
cycle) to IV affords intermediate V, which upon reductive 
elimination delivers the product and regenerates the Pd 
catalyst I.  

Scheme 4. Plausible Catalytic Cycle. 
 

 
 
 
 
Using our methodology, we were able to prepare a library of 
donor/acceptor substituted cross-conjugated30 dieneynes 
10a-e31 and characterize their photophysical properties.32 As 
can be seen from Figure 1, the isomeric compounds 10a-e 
display a relatively narrower abs range (352 - 378 nm) than 
the em range (435 – 481 nm). Compounds 10a, 10b, 10e 
exhibit a bathochromically shifted em compared to compounds 
10c and 10d. Among the investigated compounds, 10a stands 
out as the molecule featuring the highest quantum yield (Φ = 
28%) and as the only structure where its lowest energy 
transition (abs = 360 nm) does not have the strongest 
extinction coefficient. Electronic structure and TD-DFT 
calculations at wB97XD/6-311G(d,p) level33 (see Supporting 
Information for details) support the experimental observations. 
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TD-DFT reveals that the lowest-energy absorption (abs) is 
mostly derived from HOMO-LUMO transition for all 
compounds. Consistent with experimental data, the transition 
to the second excited state for 10a is predicted to have a larger 
oscillator strength than the transition to the first excited state. 
From the computed electronic structure calculations, the 
HOMO-LUMO transitions have more charge transfer character 
for compounds 10a, 10b, 10e whereas for compounds 10c and 
10d the first excited state is more consistent with a  to * 
transition. The distinct electronic structure differences of these 
frontier orbitals and the stronger charge transfer character 
may be responsible for the observed bathochromic shift in em 
for 10a, 10b, 10e in CH2Cl2 vs. 10c and 10d. It is worth noting 
that 10a is the only structure investigated where the donor and 
acceptor placement involves a cross-conjugated path.  
 
Figure 1. Normalized Absorption and Emission Spectra 
and Photophysical Data of 10a-10e in CH2Cl2.a 

 

Compound 
abs(nm)  
in CH2Cl2 

em(nm)  
in CH2Cl2 

Φ  
in CH2Cl2 

10a 360 477 0.28 
10b 352 481 0.0037 
10c 367 435 0.0041 
10d 372 442 0.0022 
10e 378 470 0.0037 

 

aAll data are independently measured in house at 1.0 x 10-5 M 
concentration to enable direct comparison. abs is defined as the 
wavelength of the lowest energy electronic transition. Quantum yield 
was determined through comparative method with quinine sulfate as 
standard. 

In summary, we have developed a highly selective trans-
hydroalkynylation reaction of internal 1,3-enynes with broad 
scope and functional group tolerance. In developing the 
reaction, we demonstrate for the first time that catalytic 
amounts of Lewis acids such as B(C6F5)3 can be deployed to 
promote a reaction involving an outer-sphere oxidative 
reaction step. The resulting cross-conjugated dieneynes serve 
as versatile building block for a variety of conjugated reaction 
products.  In addition, the facile access to a library of isomeric 
donor/acceptor substituted dieneynes reveals distinct 
photophysical properties depending on the positioning of the 
donor/acceptor substituents along the conjugation path. 
Overall, the unorthodox reactivity pattern exhibited by this 
reaction should serve as a general platform to other 
hydrofunctionalizations of unsaturated compounds, which is a 
subject of current efforts in our laboratory. 
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