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Abstract

Compositional data are a special kind of data, represented as a proportion carrying relative

information. Although this type of data is widely spread, no solution exists to deal with the

cases where the classes are not well balanced. After describing compositional data imbal-

ance, this paper proposes an adaptation of the original Synthetic Minority Oversampling

TEchnique (SMOTE) to deal with compositional data imbalance. The new approach, called

SMOTE for Compositional Data (SMOTE-CD), generates synthetic examples by computing

a linear combination of selected existing data points, using compositional data operations.

The performance of the SMOTE-CD is tested with three different regressors (Gradient

Boosting tree, Neural Networks, Dirichlet regressor) applied to two real datasets and to syn-

thetic generated data, and the performance is evaluated using accuracy, cross-entropy, F1-

score, R2 score and RMSE. The results show improvements across all metrics, but the

impact of oversampling on performance varies depending on the model and the data. In

some cases, oversampling may lead to a decrease in performance for the majority class.

However, for the real data, the best performance across all models is achieved when over-

sampling is used. Notably, the F1-score is consistently increased with oversampling. Unlike

the original technique, the performance is not improved when combining oversampling of

the minority classes and undersampling of the majority class. The Python package smote-

cd implements the method and is available online.

Introduction

Context

Over the past few years, data imbalance problems have been widely studied in classification

tasks [1]. An imbalance distribution over the classes will often cause the models to prioritize

their performance on the majority classes, at the expense of the minority ones. Different meth-

ods exist to deal with imbalanced datasets [2]: algorithm-level methods, where the algorithm

reduces the bias by inducing a weight on the classes; data-level methods, where the data are

modified to reach a more balanced state; and hybrid methods, combining both algorithm-level

methods and data-level methods. Among data-level methods, Synthetic Minority
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Oversampling TEchnique (SMOTE) [3], with all its variations [4], is one of the most popular

for classification problems. The SMOTE algorithm generates synthetic data points for a partic-

ular class by combining the features of two existing points belonging to the same class through

linear interpolation.

Most algorithms designed to tackle class imbalance problems, such as SMOTE, are often

limited to the classification tasks; for instance [5–9]. However, even though regression prob-

lems are also very common in real-life problems, only a few resampling strategies exist for

regression tasks [10, 11].

In this paper, we address the special issue of dealing with an imbalanced dataset in regres-

sion problems in the case where the labels are compositional. Compositional data are data car-

rying relative information [12], presented as proportions or percentages, making them

different from other types of data. Compositional data are encountered in various fields, includ-

ing biology [13–15], chemistry [16, 17], ecology [18, 19], geology [20, 21], and social sciences

[22–24], among others. However, the class imbalance problem in compositional data regression

remains a major challenge in the development of effective models. Existing adaptations of

SMOTE and other oversampling techniques have focused on addressing imbalanced datasets in

single-label regression [25–28], multi-label classification [29, 30], or when the features are com-

positional data [31]. However, to the best of our knowledge, no oversampling technique exists

for addressing the issue of class imbalance in multi-label regression problems with composi-

tional labels. Therefore, we propose a new oversampling technique called SMOTE for Compo-

sitional Data (SMOTE-CD), specifically designed to address this particular situation.

Here, we will measure class imbalance by summing the values of the labels (probability val-

ues) for each class on the whole dataset, and summarizing it as a percentage. In that sense, in a

perfectly balanced dataset, the percentage of the sum of each class would be 1/K, with K being

the number of classes.

The proposed method is evaluated using five different performance metrics, including accu-

racy, cross-entropy, F1-score, R2 score, and RMSE, to three different models (Gradient Boost-

ing tree, Neural Networks, Dirichlet regressor) on both simulated and real datasets. Since no

other oversampling algorithm currently exists for compositional data, the evaluation of SMO-

TE-CD is limited to comparing its performance against the case where no oversampling tech-

nique is applied. The results show that the performance of the models is overall greater when

applying SMOTE-CD, thus demonstrating the effectiveness of the proposed method. This is an

important contribution to the field, as it provides a solution for dealing with compositional

data imbalance, which has not been addressed before. The use of five different evaluation met-

rics, as well as the application of three different models to both simulated and real datasets, fur-

ther strengthens the reliability and generalizability of the proposed method.

The entire paper is arranged as follows. The paper’s first section introduces the proposed

method and the motivation example. Section 2 presents the compositional data and the SMO-

TE-CD algorithm. Section 3 presents the metrics, the simulation study and its results. Sections

4 and 5 present the result on the real datasets. Section 6 presents the discussion and conclusion.

Motivation example: Maupiti island

Description of Maupiti island. The overall purpose of our research project is to develop

an automated mapping tool able to provide a classification map from a given satellite image,

with a particular focus on a coral reef-lagoon system. The test field site is the Maupiti island,

the westernmost Leeward island of the Society archipelago, French Polynesia. The site has a

size of approximately 8km by 8km. Maupiti data, that we use here, is just an example, but com-

positional data can be found, for instance, in health or chemistry fields.
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An expert-based mapping of Maupiti island was used as a training dataset to develop the

model. The satellite image used is a 4-band image captured on June, 14 2021 by the Pleiades

satellite. The expert-based mapping of the image relies on the combination of several field

observation campaigns [32] and direct examination of the satellite image. The present analysis

focuses on the shallow regions of the lagoon, displaying more interpretable imaging. In the

selected areas, four seabed type classes were established (Fig 1a):

• Class 1: Coral, marked by a overwhelming dominance of coral reef cover.

• Class 2: Sand, describing areas covered by detritic sand.

• Class 3: Shorereef, gathering shore reef and transitional shore reef.

• Class 4: Mixed, representing area covered by a combination of sand and coral.

Automatic mapping. To perform the automatic mapping, the image was first segmented

using Felzenszwalb’s method [33], which gives Fig 1. For each segment, two different opera-

tions were applied:

• The four statistical moments (mean, variance, skewness, kurtosis) were computed on each

band; these 16 values will be the features of the dataset.

• The percentage of pixels belonging to each class were computed, according to the expert-

based classification; this results in a vector that sums up to 1 that will be the labels of the

dataset.

Fig 1. (a) Expert-based mapped image of Maupiti island and (b) Pleiades image of Maupiti island segmented with Felzenszwalb’s method.

https://doi.org/10.1371/journal.pone.0287705.g001
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To be able to map the satellite image, the idea was to train a regressor to retrieve, for each

segment, the percentage of pixels belonging to each class (i.e., a vector of probabilities). As

shown in Table 1, the data are not balanced: one of the class represents 49.5% of the dataset,

while another one represents only 3.6%. To overcome this issue, we developed an oversam-

pling technique in order to improve the performance of the regression model on this special

kind of data.

Materials and method

Compositional data

Mathematically, we define a D-part compositional dataset as a vector x ¼ ðx1; x2; . . . ; xDÞ 2
RD such that,

xi � 0; 8 i 2 f1; 2; . . . ;Dg;

XD

i¼1

xi ¼ 1:

8
>><

>>:

A simplex SD is defined as the ensemble of all the D-part compositional data, i.e.

SD ¼
�

x ¼ ðx1; x2; :::; xDÞ j 8i 2 f1; 2; . . . ;Dg; xi � 0;
XD

i¼1

xi ¼ 1

�

:

The operations performed in SD must be adapted to follow the properties of the simplex [12].

For instance, before performing the Euclidian operations, it is possible to first apply the cen-

tred log-ratio transform clr(�) to the data,

clr : SD ! RD

ðx1; . . . ; xDÞ 7! log
x1

gðxÞ

� �

; . . . ; log
xD
gðxÞ

� �� �

:

where the function g(�) is the geometric mean gðxÞ ¼ ð
QD

i¼1
xiÞ

1
D. The clr(�) function is only

defined for vectors where none of the value is equal to 0. Several methods exist to overcome

this issue [34], but in practice we just replace the 0 by a tiny value such as 10−20. The definition

of the clr(�) function involves the existence of the inverse function clr−1(�), that turns to be the

softmax function, defined for z ¼ ðz1; . . . ; zDÞ 2 R
D

as

softmaxðzÞ ¼
1

PD
i¼1

exp ðziÞ
� ðexp ðz1Þ; . . . ; exp ðzDÞÞ:

It is also possible to directly define operators on SD. Let C be the closure operator,

8k 2 N;Cðx1; . . . ; xkÞ ¼ ðx1; . . . ; xkÞ=ðx1 þ � � � þ xkÞ:

For two D-part compositions x, y 2 SD, the perturbation x� y is defined by

x� y ¼ Cðx1y1; . . . ; xDyDÞ; ð1Þ

Table 1. Percentage of the number of pixels of each class on Maupiti data, based on expert mapping.

Class Class 1 Class 2 Class 3 Class 4

Percentage 0.117 0.040 0.482 0.361

https://doi.org/10.1371/journal.pone.0287705.t001
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and, given a 2 R, the power transformed composition α� x is

a� x ¼ Cðxa
1
; . . . ; xaDÞ: ð2Þ

SMOTE for compositional data

In this section, we denote by n the number of samples in the dataset, p the number of features

and K the number of classes. The matrix X 2 Rn�p
contains the n observations of the p features

and Y 2 Rn�K
contains their labels. For any i 2 {1, . . ., n} and j 2 {1, . . ., K}, we denote by yi,j

the value of Y at row i and column j, and yi,� = (yi,1, . . ., yi,K) the probability vector label of row

i. Similarly, for i 2 {1, . . ., n} and j 2 {1, . . ., p}, xi,j is the value of X at row i and column j, and

xi,� = (xi,1, . . ., xi,p). In order to simplify the notation, we define

argmaxðyi;�Þ ¼ argmax
j2f1;...;Kg

ðyi;jÞ;

which represents the majority class of a given label yi,� 2 [0, 1]K. We also define the sum vector

S 2 RK
as the sum of the values for each class,

S ¼

 
Xn

i¼1

yi;1;
Xn

i¼1

yi;2; . . . ;
Xn

i¼1

yi;K

!

: ð3Þ

The majority class of the dataset is thus defined as argmax(S), and the minority class as argmin

(S).

Before introducing the SMOTE-CD algorithm, let’s first summarize the idea behind the

original SMOTE algorithm. As shown in Fig 2(a), the SMOTE algorithm creates a new

point that belongs to class 1 (represented by blue points). To achieve this, the algorithm

first selects a point at random (in this case, p1) and identifies its nearest neighbors (p2, p3,

p4). Note that only neighbors with the same label as p1 (i.e., class 1) are considered, while

points labeled as class 2 (represented by red points) are ignored. The algorithm then

chooses one of these neighbors (p4) and creates a new point along the line that connects p1

and p4. The features of the new point are determined through a linear combination of the

features of p1 and p4, and its label is assigned as 1. Algorithm 1 describes the SMOTE

algorithm.

Algorithm 1 Original SMOTE [3]
Require: X 2 Rn�p the features.
Require: Y 2 {1, . . ., J}n the class label outputs.

Fig 2. Difference between the original SMOTE algorithm and SMOTE-CD. The blue points are the points to oversample.(a)

The points to oversample belong to the same class (here, class 1). (b) The points to oversample are the ones that have the same class

as their majority class in their compositional vector label.

https://doi.org/10.1371/journal.pone.0287705.g002
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Require: k 2 N the number of neighbors to select for the k-Nearest
Neighbors.
Ensure: Generated data Xnew 2 R

q�p and Ynew 2 {1, . . ., J}q with q the num-
ber of points created.
1: Denote by Sj the number of points labeled as class j.
2: M  the majority class of dataset.
3: Initialize Xnew and Ynew as empty matrices.
4: for every class m that needs to be oversampled do
5: while Sm < SM do
6: Compute D ¼ fi j yi ¼ m}, the set of points labeled as class m.
7: Randomly choose r1 2 D and find the indices of its k nearest
neighbors.
8: Randomly choose an index r2 among these neighbors.
9: xnew  w � xr1;�

þ ð1 � wÞ � xr2;�
with w 2 [0, 1] randomly drawn.

10: ynew  m.
11: Sm  Sm + 1.
12: Append xnew to Xnew, append ynew to Ynew.
13: end while
14: end for
15: return Xnew, Ynew

The SMOTE-CD algorithm keeps the main ideas from the original SMOTE: 1) select a

point from the class to be oversampled, 2) select one of its k-Nearest Neighbors (k 2 N speci-

fied by the user) and 3) create a synthetic point in-between those two points. Because of the

label that is compositional, these three steps have to be adapted:

1. Select a point r1 whose majority class is m, where m is the minority class of the dataset.

2. Compute the k-Nearest Neighbors of r1 among the points that also have m as their majority

class. Then select a point r2 in one of these k neighbors.

3. Randomly draw w 2 [0, 1]. The features of the point to be created is a linear combination of

the two points selected before, with w being the weight of r2 and (1 − w) the weight of r1.

Similarly, the labels of the point to be created is a linear combination, but using the opera-

tors from Eqs (1) and (2).

Fig 2(b) depicts an example of how SMOTE-CD creates a new point. As we are dealing with

compositional data label, every point pi has a vector label yi. All the blue points are the points

having the class m as the majority class of their label yi, where m is the minority class of the

dataset. The algorithm computes the 3 nearest neighbors of p1 only considering the blue

points, and then a point is created on the line between p1 and p4. The label of the new point is a

linear combination of the labels y1 and y4 using the operations defined on the simplex (Eqs (1)

and (2)).

Algorithm 2 describes the SMOTE-CD algorithm, using the same notation.
Algorithm 2 SMOTE for compositional data
Require: X 2 Rn�p the features.
Require: Y 2 Rn�K the labels (compositional data).
Require: k 2 N the number of neighbors to select for the k-Nearest
Neighbors.
Ensure: Generated data Xnew 2 Rq×p and Ynew 2 Rq×K with q the number of
points created.
1: Compute the label sum vector S 2 RD as defined in Eq (3).
2: M  argmax(S), the majority class of dataset (hence SM is the sum
of the majority class).
3: Initialize Xnew and Ynew as empty matrices.
4: while min(S) < SM do
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5: m  argmin(S), the minority class of dataset.
6: Compute D ¼ fi j argmaxðyi;�Þ ¼ mg, the set of points whose majority
class is m.
7: Randomly choose an index r1 2 D.
8: Find the indices of the k nearest neighbors of r1 in D, using the
Euclidian distance on X.
9: Randomly choose an index r2 among these indexes.
10: Uniformly draw a number w 2 [0, 1].
11: xnew  w � xr1;�

þ ð1 � wÞ � xr2;�
.

12: ynew  w � yr1;�
� ð1 � wÞc� yr2;�

.

13: S  S + ynew.
14: Append xnew to Xnew, append ynew to Ynew.
15: end while
16: return Xnew, Ynew

The step that creates the label of the new point (line 12) uses the definitions of Eqs (1)

and (2). Nevertheless, it is also possible to create the label by using the Euclidian operations

on the logratio transformed labels, and to apply the inverse transformation afterwards:

clr� 1ðw� clrðyr1;� Þ þ ð1 � wÞ � clrðyr2;� ÞÞ. Although the label could be created by directly

performing Euclidian operations on the compositional label, however this would be mathe-

matically irrelevant because it would not respect the rules of compositional data analysis

[35].

The proof of convergence holds in the fact that, at each iteration, the increase of the major

class of S is smaller that the increase of its minor one, causing the sum of the minor class to

converge to the sum of the major one. In other words, we have to be assured that, at each itera-

tion, ynewm > ynewM , with m (resp. M) the minority (resp. majority) class of the dataset.

This is straightforward by noticing that the two indices r1 and r2 used for generating a new

point are chosen in D ¼ fi j argmax(yi,�) = m}:

r1; r2 2 D )

( yr1;m > yr1 ;M

yr2;m > yr2 ;M

)

(w� yr1 ;m > w� yr1 ;M

ð1 � wÞ � yr2 ;m > ð1 � wÞ � yr2 ;M
) w� yr1 ;m þ ð1 � wÞ � yr2 ;m > w� yr1 ;M þ ð1 � wÞ � yr2 ;M
) ynewm > ynewM :

Simulation study

Data simulation

The simulated data are generated by using a multinomial logistic regression. The main idea is

to create a probability distribution from a multinomial logistic regression, and then use a

Dirichlet distribution with those probabilities to generate the actual label of the new point.

The notation is the same as in the previous section: the number of features (resp. classes) is

p (resp. K), and the number of samples is n. The user has to specify a matrix B 2 [0, 1](p+1)×K

which corresponds to the regression coefficients, where Bi,k is associated with the ith feature

and the kth class. For instance, for a class k, the regression coefficients will be (B0,k, B1,k, . . ., Bp,

k). Note that B0,k is the intercept, hence explaining the (p + 1) × K dimension of B.
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For a given point x ¼ ðx1; . . . ; xpÞ 2 R
p
, we define x0 ¼ ð1; x1; . . . ; xpÞ 2 R

pþ1
and a vector

α as:

a ¼ softmaxðB0;1 þ B1;1x1 þ � � � þ Bp;1xp; . . . ;B0;K þ B1;Kx1 þ � � � þ Bp;KxpÞ

¼ softmaxðx0 � B�;1; . . . ; x0 � B�;KÞ:

We are then able to randomly draw a label for x with a Dirichlet distribution with parame-

ter α. Algorithm 3 generates a random dataset using this method.

To better understand how the regression coefficients B can change the configuration of the

data, we give an example of simulated data with 2 features and 2 labels. Two different values

B(a) and B(b) are tested:

BðaÞ ¼

0:4 0:4

0:2 0:4

0:5 0:3

2

6
4

3

7
5; BðbÞ ¼

0:1 0:9

0:0 0:5

0:8 0:1

2

6
4

3

7
5:

Each column of a matrix B represents the coefficients for one class. There are 3 lines here

because there are 2 features and the first value corresponds to the intercept of the regression.

In B(a), the coefficients of each class are purposely close to each other, while they are easily sep-

arable in B(b). Fig 3 shows the value of the labels when generating the same 400 points with

each matrix, using the function generate_dataset of our smote-cd Python package, with ran-
dom_state = 2. The points created with B(b) have a clearer border between the points fully

belonging in one class or the other. As there are only two classes and their sum is 1, it is only

necessary to represent the value of one of them with the gradient of color.

Algorithm 3 Function to generate a synthetic dataset with compositional labels
Require: K 2 N the number of classes.
Require: p 2 N the number of features.
Require: n 2 N the number of samples.

Fig 3. Simulation of 400 points using B(a) (a) and B(b) (b).

https://doi.org/10.1371/journal.pone.0287705.g003
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Require: B 2 [0, 1](p+1)×K the regression coefficients, where Bm,k is
associated with the mth feature and the kth class.
Ensure: Generated data X 2 Rn×p and Y 2 Rn×K

1: Create a random matrix of points X 2 Rn×p such that for all i, j, xi,
j is a random number uniformly drawn in a chosen interval (for instance
[-10, 10])
2: Initialize Y as an empty matrix of size (n × K).
3: for every row x in X (and its associated row index i) do
4: Compute α = softmax(x0 � B�,1, . . ., x0 � B�,K) where x0 = (1, x1, x2, . . .,
xp)
5: Randomly draw a vector from a Dirichlet distribution with parame-
ter α and attribute it to yi,., the ith row of Y.
6: end for
7: return X, Y

Performance measures

The value of row i column j of Y is still denoted by yi,j, and is the probability that the ith sample

belongs to class j. Let ŷi;j be the estimate of this probability by a model.

Different metrics can be used to measure the performance of the model. A popular metric

is the cross-entropy:

CrossEntropy ¼ �
1

n

Xn

i¼1

XK

j¼1

yi;j logðŷi;j þ εÞ: ð4Þ

The ε is added here to overcome the case where ŷi;j ¼ 0. We chose ε = 10−20. As the cross-

entropy is a loss function, the smaller it is, the better the model performs. The cross-entropy

loss may not always be suitable for our model because it treats each sample as equally impor-

tant, without taking into account the imbalance of the test set. For instance, consider a model

predicting three different classes (1, 2 and 3), and imagine that this model performs quite well

on class 1 but poorly on classes 2 and 3. If the test set is imbalanced and has a large proportion

of class 1 samples, the cross-entropy loss of this model will be low even though it performs

poorly overall. The coefficient of determination R2 allows assessment of the performance of a

model on each of the K classes. For a class j, the coefficient of determination is given by

R2
j ¼ 1 �

Pn
i¼1
ðyi;j � ŷi;jÞ

2

Pn
i¼1
ðyi;j � �yjÞ

2
;

where �yj is the mean of the values of the jth class. The final R2 will be equal to the average of

the R2
j for each class j.

In addition, we also use the Root Mean Squared Error (RMSE) to measure the accuracy of

the models. Since we are dealing with multi-class compositional vectors, we define the RMSE

between a true and estimated vector as the average of RMSEs calculated across all their classes.

Specifically, this is calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
1

K

Xn

i¼1

XK

j¼1

ðyi;j � ŷi;jÞ
2

v
u
u
t :

Even though we are working on a regression problem, classification metrics can be a good

tool to understand the efficiency of the models. To do so, it is easy to transform a
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compositional label yi,� into a class y0i by applying the argmax,

y0i ¼ argmax
j

yi;j:

The usual classification metrics can then be applied to y0. Here, we will use the accuracy

(the number of correct points divided by the total number of points) and the F1-score which is

computed per class,

F1 � score ¼
TP

TP þ
1

2
ðFN þ FPÞ

;

where TP are the true positive, FN the false negative and FP the false positive. As with the R2,

the F1-score will be computed for each class and then averaged.

Results

First, to investigate the effect of the oversampling technique, synthetic data were generated

with 2 features and 2 classes. To make the dataset imbalanced, 90% of the points that had

class 0 as a majority class were deleted. We obtain a dataset in which 93% of the points have

class 1 as their majority class (Fig 4(a)), which is then oversampled by selecting a number of

nearest neighbors k = 10. Fig 4(b) displays the balanced dataset after applying SMOTE-CD,

where the original points are displayed as circles and the synthetic created points are dis-

played as crosses. As in Fig 3, the gradient of color represents the value of one of the two

classes.

To evaluate the performance of SMOTE-CD, a 5-fold cross validation was used for three

models: Gradient Boosting tree (GB), Neural Network (NN) with one hidden layer, and

Dirichlet regression model [36]. The first and second models are chosen because Random For-

est and NN are known to be the most efficient to map coral reefs from multispectral satellites

[37, 38] and because NN are used in literature for the task of predicting compositional labels

[39, 40], and the third is chosen because it is used to generate the simulated data. For each

model, the performance is compared between the raw and oversampled data. For the models

Fig 4. An example of SMOTE-CD. (a) The original imbalanced dataset, (b) the output balanced dataset with the created points displayed as a cross.

https://doi.org/10.1371/journal.pone.0287705.g004
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on which it is possible (GB and NN), hyperparameter tuning was been performed for each

data (raw or oversampled). The hyperparameters are detailed in S1 and S2 Tables.

The simulated data were generated with the same shape as the Maupiti data. We selected a

matrix B such that the imbalance of the classes was similar to the one of the real data (see

Table 1). Then, 550 points were created with 16 features and 4 classes to train the models. Test-

ing was performed with 11000 points (20 times the training set size). This operation was

repeated 100 times with the same B. The results and metrics (accuracy, cross-entropy, average

F1, RMSE and R2) are presented in Table 2.

For both the Gradient Boosting and Neural Network models, the oversampling with logra-

tio distance significantly improves all metrics except for R2 on the Neural Network

(p< 0.0006). With the compositional distance on the Neural Network, only the F1-score sig-

nificantly increases (p� 10−10), while accuracy, RMSE, and R2 decrease. The GB model shows

significant improvement for cross-entropy, F1-score, and RMSE (p< 0.008), but a decrease in

accuracy. The Dirichlet model with oversampling significantly increases accuracy and

F1-score (p� 10−10) but decreases cross-entropy, RMSE, and R2.

In order to understand the effects of the imbalance of the dataset on the performance of the

oversampling method, three metrics (accuracy, F1 and R2) were evaluated with different

imbalance ratios. First, a matrix B was created to generate a balanced dataset with 16 features

and 4 classes. Then, the ratio of class 0 was increased by incrementing the value of B1,1. At each

step (for a total of ten steps), the following operation was repeated 100 times: 550 points were

created to train the models on the raw or oversampled data, and the models were tested on a

set of 11000 points. The result appears in Fig 5.

It is apparent that the efficiency of SMOTE-CD depends on the data and the model used.

The oversampling technique only improves the R2 score when the dataset is slightly imbal-

anced (largest class representing less than 40%), but performs poorly when it is highly imbal-

anced. On the other hand, the more the dataset is imbalanced, the more the oversampling

technique will improve the F1-score. The improvement in accuracy peaks at a certain value of

imbalance (when the largest class represents 50% of the dataset), but drops above that

threshold.

In order to explain the low R2 score for the oversampled data, the R2 per class was calculated

for each of the ten steps mentioned above and then averaged. Fig 6 displays the result. The

average imbalance ratio is 52% for class 0 (and thus approximately 16% for the three other

classes).

For the largest class, the R2 score is decreased from 0.5 to 0.3 by the oversampling tech-

nique, which explains why the raw score is higher than the oversampled score in Fig 5.

Table 2. Comparison of simulated raw data (4 classes) and oversampled data, repeated 100 times. Displayed results are mean (s.d.).

Accuracy Cross-entropy F1-score RMSE R2

GB (raw) 0.692 (0.018) 5.272 (1.539) 0.532 (0.045) 0.363 (0.011) 0.137 (0.067)

GB (logratio) 0.724 (0.017) 2.508 (0.553) 0.658 (0.027) 0.341 (0.011) 0.198 (0.074)

GB (compositional) 0.683 (0.016) 3.657 (1.055) 0.604 (0.038) 0.359 (0.011) 0.139 (0.085)

NN (raw) 0.772 (0.026) 3.340 (1.370) 0.611 (0.057) 0.315 (0.020) 0.298 (0.103)

NN (logratio) 0.784 (0.023) 1.700 (0.380) 0.729 (0.033) 0.304 (0.018) 0.301 (0.108)

NN (compositional) 0.750 (0.054) 3.483 (1.367) 0.690 (0.063) 0.332 (0.040) 0.198 (0.207)

Dirichlet (raw) 0.789 (0.016) 0.685 (0.017) 0.605 (0.039) 0.287 (0.004) 0.416 (0.022)

Dirichlet (logratio) 0.875 (0.010) 0.754 (0.017) 0.824 (0.019) 0.303 (0.004) 0.380 (0.022)

Dirichlet (compositional) 0.874 (0.011) 0.755 (0.017) 0.824 (0.019) 0.303 (0.004) 0.379 (0.022)

https://doi.org/10.1371/journal.pone.0287705.t002
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Fig 5. Performance of Dirichlet model on raw and oversampled data, depending on the imbalance of the dataset

(indicated by % of observations in class 0), based on 16 features and 4 classes.

https://doi.org/10.1371/journal.pone.0287705.g005
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However, for the three minority classes, the R2 is increased by approximately 0.05, which is the

initial goal of the method.

Similarly, Fig 6 also depicts the F1-score per class, averaged over the seven steps. The differ-

ence is that the F1-score of the majority class is not decreased by the oversampling technique,

while the score of the minority classes is increased by approximately 0.08.

Application to Maupiti data

The performance of the three models on the raw dataset was compared with the oversampled

dataset (with either the logratio distance used to create the new labels, or the compositional

Fig 6. Average R2 and F1-score per class of Dirichlet model on raw and oversampled simulated data. Bars represent the mean score, vertical lines

represent the standard deviation.

https://doi.org/10.1371/journal.pone.0287705.g006
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distance). The results are shown in Table 3. With the Maupiti dataset, the NN is defined with 2

hidden layers of size 80 and 40, and the relu activation function.

With the GB model, all the metrics are significantly improved (p< 0.03) when using the

oversampling technique, excepted for the cross-entropy for which the differences are not sta-

tistically significant (p = 0.14 and p = 0.38 respectively for the compositional and the logratio

distance). The SMOTE-CD shows less results with the NN and Dirichlet model, where only

the difference on the F1 is statistically significant (respectively p< 0.044) and p< 10−10). This

improvement is quite important for the Dirichlet model though, as it represents a difference of

almost 0.08.

We analyze the per-class R2 of the Gradient Boosting tree as it is the best model. Fig 7 com-

pares the R2 between the raw and oversampled data. The oversampling technique decreases

Table 3. Results comparing raw Maupiti data (4 classes) and oversampled with a 5-fold cross validation. Displayed results are mean (s.d.).

Accuracy Cross-entropy F1-score RMSE R2

GB (raw) 0.857 (0.003) 2.538 (0.196) 0.809 (0.031) 0.229 (0.003) 0.583 (0.018)

GB (logratio) 0.859 (0.003) 2.504 (0.182) 0.822 (0.028) 0.226 (0.003) 0.596 (0.019)

GB (compositional) 0.859 (0.004) 2.486 (0.149) 0.822 (0.028) 0.226 (0.003) 0.596 (0.018)

NN (raw) 0.877 (0.003) 4.048 (0.416) 0.831 (0.008) 0.214 (0.003) 0.624 (0.018)

NN (logratio) 0.877 (0.003) 3.982 (0.456) 0.835 (0.009) 0.214 (0.003) 0.623 (0.017)

NN (compositional) 0.878 (0.003) 3.956 (0.406) 0.834 (0.010) 0.213 (0.003) 0.622 (0.020)

Dirichlet (raw) 0.801 (0.056) 1.676 (0.874) 0.684 (0.127) 0.262 (0.033) 0.420 (0.163)

Dirichlet (logratio) 0.810 (0.049) 1.663 (0.851) 0.762 (0.064) 0.262 (0.036) 0.423 (0.174)

Dirichlet (compositional) 0.810 (0.049) 1.654 (0.839) 0.762 (0.064) 0.262 (0.036) 0.423 (0.174)

https://doi.org/10.1371/journal.pone.0287705.t003

Fig 7. Average R2 score per class of Gradient Boosting tree on raw and oversampled Maupiti data. The red dotted lines represent the weight of each

class, and the value below the class is its weight. Bars represent the mean score, vertical lines represent the standard deviation.

https://doi.org/10.1371/journal.pone.0287705.g007
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the performance of the model for the smallest class (Class 2) for the logratio distance, does not

change for the largest class (Class 3) and increases the performance on the others (Classes 1

and 4).

We conclude that SMOTE-CD does not improve the performance for a class that is too

small: in order to perform ideally, it requires enough points to oversample.

Application to Tecator dataset

To fully evaluate the effectiveness of the SMOTE-CD technique, we applied it to the Tecator

meat sample dataset [41], which consists of 240 meat samples. Each sample has absorbance val-

ues measured at 100 different wavelengths, as well as corresponding information on the com-

position of moisture (water), fat, and protein contents. The objective of this analysis is to

predict a 3-class compositional data vector from a feature vector of size 100. Because the

Dirichlet regression model can be very slow when dealing with a high number of features, we

opted to improve its speed by using only the 22 principal components provided in the dataset

instead of the 100 features.

To account for the small size of the dataset, a 10-fold cross validation is applied for each

model, iterated over 100 times to vary the folds. The results are displayed in Table 4. The neu-

ral network is configured with three hidden layers, each having 70 neurons and using the

hyperbolic tangent (tanh) activation function, which were selected through hyperparameter

tuning.

With the NN, the raw data gives slightly better performances than the oversampled data.

However, given the really poor performances of the NN (a negative R2 and a really high

RMSE), we also note that this model was probably not suited for this dataset.

The analysis of the GB and Dirichlet models reveals interesting differences. In both cases,

using either the raw or oversampled datasets leads to statistically significant differences

(p< 10−4). Specifically, for the GB model, using the oversampled data results in better perfor-

mance, while for the Dirichlet model, oversampling decreases the performance. Notably,

among all the models tested, the GB model trained on oversampled data with compositional

distance yields the best results. Compared to the Dirichlet model trained on raw data, this

approach achieves significantly better accuracy (p< 0.006), RMSE (p� 10−10), and R2

(p< 10−4), with only a slight difference of 1% in cross-entropy and F1-score.

In light of these results, it is apparent that SMOTE-CD can improve the performance for a

model that does not perform too poorly (e.g. a R2 above 0.3). Indeed, if a model has low perfor-

mance, it is more likely that this is due to poor fit to the data than from the imbalance of the

dataset.

Table 4. Results comparing raw Tecator data (3 classes) and oversampled with a 10-fold cross validation, iterated 100 times. Displayed results are mean (s.d.).

Model Accuracy Cross-entropy F1-score RMSE R2

GB (raw) 0.932 (0.006) 0.860 (0.001) 0.701 (0.042) 0.046 (0.001) 0.717 (0.023)

GB (logratio) 0.957 (0.008) 0.860 (0.001) 0.830 (0.046) 0.044 (0.002) 0.730 (0.027)

GB (compositional) 0.957 (0.008) 0.860 (0.002) 0.834 (0.046) 0.044 (0.002) 0.730 (0.026)

NN (raw) 0.908 (0.000) 0.928 (0.009) 0.512 (0.036) 0.113 (0.005) -1.230 (0.484)

NN (logratio) 0.904 (0.014) 0.938 (0.010) 0.513 (0.044) 0.122 (0.007) -1.156 (0.449)

NN (compositional) 0.904 (0.016) 0.937 (0.010) 0.512 (0.044) 0.122 (0.007) -1.158 (0.466)

Dirichlet (raw) 0.954 (0.007) 0.852 (0.003) 0.846 (0.037) 0.048 (0.003) 0.708 (0.045)

Dirichlet (logratio) 0.940 (0.011) 0.878 (0.006) 0.800 (0.044) 0.072 (0.006) 0.310 (0.224)

Dirichlet (compositional) 0.940 (0.011) 0.877 (0.005) 0.802 (0.037) 0.072 (0.005) 0.323 (0.413)

https://doi.org/10.1371/journal.pone.0287705.t004
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Discussion

The results on the synthetic datasets show that the SMOTE-CD technique can significantly

improve the F1-score and accuracy, but it has a mixed effect on other metrics depending on

the model and dataset imbalance level. SMOTE-CD improves the overall performance of the

model, especially with respect to the accuracy and the F1-score in the cases where the dataset is

not too heavily imbalanced. The R2 score of the majority class remains similar, but the R2 of a

very small class (3% of the dataset) will be decreased. The R2 of all the other classes is

improved, which is the desired goal of the method.

The results on the real datasets show that the SMOTE-CD technique can significantly

improve the performance of the Gradient Boosting model for all metrics, while it has a less

pronounced effect on the other models. The per-class analysis of the R2 score reveals that the

SMOTE-CD technique can improve the performance for some classes but not for others,

depending on the model and distance metric used.

Further tests are required with other datasets having compositional labels, but these are

often hard to find because they are not publicly available. Our oversampling technique could

be used with datasets in biology and metabolomics, in poll studies or in soil analysis, but its

effectiveness depends on several factors that should be carefully considered.

The original SMOTE paper [3] proposes to undersample the dataset before applying the

oversampling technique, which we similarly tested here. The synthetic dataset was first

undersampled by randomly withdrawing some points from the majority class, until the total

sum of the largest class was equal to the sum of the second largest one. SMOTE-CD was then

applied. The results are summarised in S3 Table and compared with those in Table 2 when

not using undersampling (S4 Table). No significant difference can be seen when using

undersampling before the oversampling, be it positive or negative. The results are similar

when undersampling not only the points having the largest class as their majority class, but

the points having one of the n largest classes as their majority class (with n 2 [1, . . ., 3]). At

this point, we are not able to exclude the utility of the undersampling and suggest it could

once more depend on the dataset or on the way the removed points are chosen. For instance,

when performing random undersampling, consideration could be given to an Edited Nearest

Neighbor approach [42]; see [43].

Work has still to be done regarding the initial selection of the points, because it can influ-

ence the performance of the original SMOTE algorithm. For instance, we could imagine attrib-

uting a “safe” level to each point by exploring its k nearest neighbors and using it in the

creation of a new point [44]. It would also be possible to only oversample the points on the

border [45], where the border would here be defined by the points having a given amount of

neighbors that have the largest class as their majority class.

Conclusion

The SMOTE algorithm has been adapted to deal with the special case in which the dataset

labels are compositional, which had not been done before. The present study investigates its

effectiveness on imbalanced datasets for three different models: Gradient Boosting tree, Neural

Networks, and Dirichlet Regression. The evaluation was performed on both synthetic and real

datasets, and several metrics, including accuracy, F1-score, RMSE, cross-entropy, and R2, were

used to assess the performance of the models.

The study suggests that the effectiveness of the SMOTE-CD technique depends on several

factors, including the model, distance metric, dataset imbalance level, and class distribution.

The SMOTE-CD technique can improve the performance of a model that does not perform

too poorly, but it may not be effective for a model with very low performance.
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An implementation is proposed in the Python package smote-cd available on PyPi: https://

pypi.org/project/smote-cd. The Jupyter notebooks used to simulate the data and perform the

analyses can be found on the GitHub page of the package: https://github.com/teongu/smote_cd.
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19. Vercelloni J, Liquet B, Kennedy EV, González-Rivero M, Caley MJ, Peterson EE, et al. Forecasting

intensifying disturbance effects on coral reefs. Global change biology. 2020; 26(5):2785–2797. https://

doi.org/10.1111/gcb.15059 PMID: 32115808

20. Buccianti A, Pawlowsky-Glahn V. New perspectives on water chemistry and compositional data analy-

sis. Mathematical Geology. 2005; 37:703–727. https://doi.org/10.1007/s11004-005-7376-6

21. Coakley JP, Rust B. Sedimentation in an Arctic lake. Journal of Sedimentary Research. 1968; 38

(4):1290–1300.

22. de Faria FR, Barbosa D, Howe CA, Canabrava KLR, Sasaki JE, dos Santos Amorim PR. Time-use

movement behaviors are associated with scores of depression/anxiety among adolescents: A composi-

tional data analysis. PLOS ONE. 2022; 17(12):1–12. https://doi.org/10.1371/journal.pone.0279401

PMID: 36584176

23. Wei Y, Wang Z, Wang H, Yao T, Li Y. Promoting inclusive water governance and forecasting the

structure of water consumption based on compositional data: A case study of Beijing. Science of the

Total Environment. 2018; 634:407–416. https://doi.org/10.1016/j.scitotenv.2018.03.325 PMID:

29627564

24. Wei Y, Wang Z, Wang H, Li Y, Jiang Z. Predicting population age structures of China, India, and Viet-

nam by 2030 based on compositional data. PLOS ONE. 2019; 14(4):1–42. https://doi.org/10.1371/

journal.pone.0212772 PMID: 30973941

25. Camacho Luı́s and Douzas Georgios and Bacao Fernando. Geometric SMOTE for regression. Expert

Systems with Applications. 2022; 193:116387. https://doi.org/10.1016/j.eswa.2021.116387

26. Huang Y, Liu DR, Lee SJ, Hsu CH, Liu YG. A boosting resampling method for regression based on a

conditional variational autoencoder. Information Sciences. 2022; 590:90–105. https://doi.org/10.1016/j.

ins.2021.12.100

27. Moniz N, Ribeiro R, Cerqueira V, Chawla N. Smoteboost for regression: Improving the prediction of

extreme values. In: 2018 IEEE 5th international conference on data science and advanced analytics

(DSAA). IEEE; 2018. p. 150–159.

PLOS ONE SMOTE for compositional data

PLOS ONE | https://doi.org/10.1371/journal.pone.0287705 June 29, 2023 18 / 19

https://doi.org/10.3390/app8081325
https://doi.org/10.3390/s22093121
https://doi.org/10.3390/s22093121
http://www.ncbi.nlm.nih.gov/pubmed/35590809
https://doi.org/10.1016/j.measurement.2022.111975
https://doi.org/10.1111/exsy.12081
https://doi.org/10.1109/TKDE.2014.2365780
https://doi.org/10.1214/16-AOAS928
https://doi.org/10.1016/j.annepidem.2016.03.002
https://doi.org/10.1016/j.annepidem.2016.03.002
http://www.ncbi.nlm.nih.gov/pubmed/27255738
https://doi.org/10.1111/biom.12079
http://www.ncbi.nlm.nih.gov/pubmed/24128059
https://doi.org/10.1371/journal.pone.0172999
http://www.ncbi.nlm.nih.gov/pubmed/28253322
https://doi.org/10.1111/j.1755-0238.2005.tb00283.x
https://doi.org/10.1890/0012-9658(1997)078%5B0929:CDICET%5D2.0.CO;2
https://doi.org/10.1111/gcb.15059
https://doi.org/10.1111/gcb.15059
http://www.ncbi.nlm.nih.gov/pubmed/32115808
https://doi.org/10.1007/s11004-005-7376-6
https://doi.org/10.1371/journal.pone.0279401
http://www.ncbi.nlm.nih.gov/pubmed/36584176
https://doi.org/10.1016/j.scitotenv.2018.03.325
http://www.ncbi.nlm.nih.gov/pubmed/29627564
https://doi.org/10.1371/journal.pone.0212772
https://doi.org/10.1371/journal.pone.0212772
http://www.ncbi.nlm.nih.gov/pubmed/30973941
https://doi.org/10.1016/j.eswa.2021.116387
https://doi.org/10.1016/j.ins.2021.12.100
https://doi.org/10.1016/j.ins.2021.12.100
https://doi.org/10.1371/journal.pone.0287705


28. Torgo L, Ribeiro RP, Pfahringer B, Branco P. Smote for regression. In: Progress in Artificial Intelligence:

16th Portuguese Conference on Artificial Intelligence, EPIA 2013, Angra do Heroı́smo, Azores, Portu-

gal, September 9-12, 2013. Proceedings 16. Springer; 2013. 378–389.

29. Charte F, Rivera AJ, del Jesus MJ, Herrera F. MLSMOTE: Approaching imbalanced multilabel learning

through synthetic instance generation. Knowledge-Based Systems. 2015; 89:385–397. https://doi.org/

10.1016/j.knosys.2015.07.019

30. Deng M, Guo Y, Wang C, Wu F. An oversampling method for multi-class imbalanced data based on

composite weights. PLOS ONE. 2021; 16(11):1–15. https://doi.org/10.1371/journal.pone.0259227

PMID: 34767567

31. Gordon-Rodriguez E, Quinn T, Cunningham JP. Data Augmentation for Compositional Data: Advancing

Predictive Models of the Microbiome. Advances in Neural Information Processing Systems. 2022;

35:20551–20565.
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