

Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon

Larissa Richter, David Amouroux, Emmanuel Tessier, Anne Hélène Fostier

▶ To cite this version:

Larissa Richter, David Amouroux, Emmanuel Tessier, Anne Hélène Fostier. Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon. Chemosphere, 2023, 339, pp.139779. 10.1016/j.chemosphere.2023.139779. hal-04189575

HAL Id: hal-04189575 https://univ-pau.hal.science/hal-04189575v1

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Chemosphere

Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon --Manuscript Draft--

Manuscript Number:					
Article Type:	VSI:Latin-Analytical				
Section/Category:	Environmental Chemistry				
Keywords:	Isotopic composition; Soil; Litter; Ashes; Combustion; Atmospheric emissions				
Corresponding Author:	Anne Helene Helene Fostier, PhD State University of Campinas Campinas, BRAZIL				
First Author:	Larissa Richter, PhD				
Order of Authors:	Larissa Richter, PhD				
	David Amouroux, PhD				
	Emmanuel Tessier, PhD				
	Anne Helene Helene Fostier, PhD				
Abstract:	Mercury (Hg) emissions from forest fires, especially tropical forests, contribute significantly to the atmospheric mercury budget. Recent studies have shown that the combustion process results in Hg isotope fractionation that allows tracking coal combustion Hg emissions. However, the potential of Hg stable isotopes to trace forest fire Hg emissions has never been investigated. Here we measured the Hg isotopic composition of litter, soil, and ash samples collected in prescribed forest fire experiments carried out in two localities of the Brazilian Amazonian Forest, Alta Floresta (AF) and Candeias do Jamari (CJ). For AF, where a small-scale experiment was performed, no difference was found in the mercury isotopic composition of the samples collected before and after burning. In contrast, the larger-scale experiment carried out in CJ resulted in significant mass dependent fractionation (MDF δ 202Hg) in soils and ash. As for coal combustion, mass independent fractionation was not observed. This work highlights the potential of forest fires to cause Hg isotopic fractionation, depending on the fire severity. The results also allowed to establish an isotopic fingerprint for tropical forest fire Hg emissions that corresponds to a mixture of litter and soil Hg isotopic composition.				
Suggested Reviewers:	Xuewu Fu Institute of Geochemistry Chinese Academy of Sciences fuxuewu@mail.gyig.ac.cn Dr. Xuewu Fu has high expertise on biogeochemical cycle study, working on atmospheric Hg emission and deposition processes, also using Hg isotopic composition in his studies Bridget Begquist University of Toronto bergquist@es.utoronto.ca				
	Dr Begquist's research field concerns research on metal biogeochemistry (both laboratory and field) with studies of natural metal isotopic variations has the potential to yield insights into the modern global cycles of metals				
	Jason Demers University of Michigan jdemers@umich.edu Dr Demers's research fields are Organometallic Chemistry, Environmental Chemistry and Geochemistry. Among others, he has skills and expertise on Mercury isotopes, Ecosystems, Environment, Forests, Streams, Atmospheric deposition, Biogeochemistry, Water Quality, Environmental Chemistry, Geochemistry				
	Martin Jiskra University of Basel				

	martin.jiskra@unibas.ch Dr Jiskra's field research concerns Mercury biogeochemical cycle, with many studies related to Hg emission/deposition in forest ecosystems and also using mercury isotopes in is investigations.
	Jean Remy Davee Guimaraes Federal University of Rio de Janeiro Carlos Chagas Filho Biophysics Institute jeanrdg@biof.ufrj.br Dr Guimaraes has been studied the mercury biogeochemichal cycle in the Amazon for more than 30 years. He also has been using mercury isotopic composition in some of his studies.
	Ari Feinberg Massachusetts Institute of Technology arifein@mit.edu Dr Feinberg research focuses on atmospheric mercury (Hg) modelling. He recently published a paper highlighting the importance of vegetation uptake and deforestation in chemistry-transport model.
Opposed Reviewers:	

Dear Editor of Chemosphere,

I am herewith enclosing the manuscript "Impact of forest fire in the Amazon on the mercury stable isotopes composition in litter and soil" to be considered for publication into the Chemosphere Special Issue on "Environmental / Analytical Chemistry and/or Toxicology and Risk Assessments in Latin-American Countries".

Uptake of atmospheric Hg by forests, especially tropical forests, has been recognized to be the largest global mechanism for removal of atmospheric Hg. Conversely, forest fires increase direct emissions of mercury to air and remobilization of mercury stored in the terrestrial environment. Although Hg stable isotopes composition appears as a very performant tool to improve knowledge on different processes that make up the complex Hg biogeochemical cycle, its potential to trace forest fires Hg emissions has still not been investigated.

To fill this gap we measured the Hg isotopic composition of litter, soils and ashes samples collected in prescribed forest fire experiments carried out in two localities of the Brazilian Amazonian Forest. The work highlights the potential of forest fires to cause Hg isotopic fractionation depending on the fire severity. It also allowed to establish an isotopic fingerprint for tropical forest fires Hg emissions that corresponds to a mixture of litter and soils Hg isotopic composition.

As the Amazon rainforest accounts for more than half of the remaining tropical forests on the planet, we are convinced that this work makes an important contribution to a better understanding of the important processes involved in the Hg cycle in these ecosystems.

The authors certify that this is an original work that has not been previously published in a refereed journal, and it is not being submitted fully or partially for publication elsewhere. All the authors have read the manuscripts and agree with its publication.

Sincerely yours,

Anne Hélène Fostier Environmental Chemistry Group Institute of Chemistry University of Campinas, Campinas, São Paulo, Brazil -Hg isotopic composition of Amazon Forest soil, litter and ashes is measured -Hg isotopic composition is determined before and after forest fire experiments -Hg isotopes exhibit mass-dependent fractionation due to higher fire severity -Hg isotopes show that forest fires emit soil and litter Hg to air and ashes -Hg isotopic composition of tropical forest fire emissions is assessed Larissa Richter: Conceptualization, Methodology, Investigation, Formal analysis, Writing – original draft.

David Amouroux : Conceptualization, Project administration, Writing-original draft, Writing-review and editing, Supervision.

Emmanuel Tessier: Investigation.

Anne Hélène Fostier: Conceptualization, Project administration, Writing-original draft, Writing-review and editing, Supervision.

Declaration of interests

⊠The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon

1	Larissa Richter ¹ , Davi	d Amouroux ^{2*} , Emma	nuel Tessier ² , Anne	e Hélène Fostier ^{1*}
---	-------------------------------------	---------------------------------	----------------------------------	--------------------------------

² ¹ Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo,

3 Brazil

⁴ ² Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences

5 Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France;

6

7 * Correspondence:

8 <u>david.amouroux@univ-pau.fr; annehfostier@gmail.com</u>

9 Highlights:

- 10 -Hg isotopic composition of Amazon forest soil, litter and ashes is measured
- 11 -Hg isotopic composition is determined before and after forest fire experiments
- 12 -Hg isotopes exhibit mass-dependent fractionation due to higher fire severity
- 13 -Hg isotopes show that forest fires emit soil and litter Hg to air and ashes
- 14 -Hg isotopic composition of tropical forest fire emissions is assessed

15

16

17

23 Abstract

24 Mercury (Hg) emissions from forest fires, especially tropical forests, contribute significantly to the 25 atmospheric mercury budget. Recent studies have shown that the combustion process results in Hg 26 isotope fractionation that allows tracking coal combustion Hg emissions. However, the potential of Hg 27 stable isotopes to trace forest fire Hg emissions has never been investigated. Here we measured the Hg 28 isotopic composition of litter, soil, and ash samples collected in prescribed forest fire experiments 29 carried out in two localities of the Brazilian Amazonian Forest, Alta Floresta (AF) and Candeias do 30 Jamari (CJ). For AF, where a small-scale experiment was performed, no difference was found in the 31 mercury isotopic composition of the samples collected before and after burning. In contrast, the largerscale experiment carried out in CJ resulted in significant mass dependent fractionation (MDF δ^{202} Hg) 32 33 in soils and ash. As for coal combustion, mass independent fractionation was not observed. This work 34 highlights the potential of forest fires to cause Hg isotopic fractionation, depending on the fire severity. 35 The results also allowed to establish an isotopic fingerprint for tropical forest fire Hg emissions that 36 corresponds to a mixture of litter and soil Hg isotopic composition.

37

38 Keywords: Mercury; Isotopic composition; Soil; Litter; Ashes; Combustion; Atmospheric emissions.

40 Introduction

41 Mercury (Hg) is a highly toxic and ubiquist element in the environment (Outridge et al., 2018). 42 In the atmosphere, 90% to 99% is present as gaseous elemental mercury (GEM), with the remaining 43 portion composed of operationally-defined gaseous oxidized mercury (GOM) and particulate-bound 44 mercury (PBM) (Gustin et al., 2013). Foliage uptake has been shown to be an efficient process to 45 remove atmospheric GEM (Jiskra et al., 2018), but GOM and PBM can also be sorbed by or on leaves. 46 Mercury is then transferred to soil by litterfall and throughfall, where it accumulates. Forests have, 47 therefore, been recognized to play a key and global role in the biogeochemical cycle of this element 48 (Wang et al., 2016; Obrist et al., 2018; Zhou et al., 2021).

49 Due to their specificities such as high biomass productivity, leaf area index and leaf lifespan 50 (Witt et al., 2009), tropical and subtropical forests are especially efficient in removing atmospheric Hg 51 (Wang et al., 2016) and further storing it in soil (Wang et al., 2019). On the other hand, these forests 52 have also been submitted to intense rates of deforestation often associated with forest burning 53 (Carmenta et al., 2011). A number of studies have provided evidence that part of the Hg stored in 54 vegetation and soil is reemitted to the atmosphere during a forest fire (Friedli et al., 2009; Chen et al., 55 2013; De Simone et al., 2015; Shi et al., 2019; Gworek et al., 2020), and it has been estimated that 56 43.3% of the total Hg budget emitted by forest burning can be attributed to tropical forests (Kumar et 57 al., 2018).

The Amazon rainforest accounts for over half of the planet's remaining tropical forest, and it was estimated that it contributes to approximately 20% to 30% of the total Hg land sink (Fostier et al., 2015; Feinberg et al., 2022). But, this biome also figures as an important Hg emitter due to enormous annual deforestation (INPE, 2022). However, the Amazon remains a region with few studies focused on this topic and with great uncertainties related to the emissions, thus increasing the difficulty in establishing accurate mass balance and mathematical models to understand Hg fate during the burning process in this region. In recent years, studying Hg stable isotope composition appears as a very performant tool to improve knowledge on different processes that make up the complex Hg biogeochemical cycle (Blum et al., 2014; Bishop et al., 2020; Kwon et al., 2020). The basis of the technique is that Hg isotopes undergo both mass dependent fractionation (MDF, reported as δ^{202} Hg (‰)) and mass independent fractionation (odd-MIF, reported as Δ^{199} Hg (‰) and even-MIF, reported as Δ^{200} Hg (‰)) processes, which enables investigation of possible Hg sources, its transformations and even fate in the environment.

Many studies have been performed aiming to investigate mercury isotopic composition in different types of forests (Demers et al., 2013; Zhang et al., 2013; Jiskra et al., 2015; Enrico et al., 2016; Zheng et al., 2016; Wang et al., 2017; Liu et al., 2019), but only a few have focused on the Amazon rainforest region (Fig, 1) (Araujo et al., 2018; Guedron et al., 2018; Miserendino et al., 2018; Schudel et al., 2018). Furthermore, the potential of Hg stable isotopes to trace forest fire Hg emissions has never been investigated.

In coal combustion processes, Sun et al. (2014) were the first to observe that GEM emitted from coal-fire plants were enriched in heavier Hg isotopes, suggesting that isotopic fractionation may occur during coal burning and fly ash removal processes. However, Li et al. (2021) observed that total mercury emissions in flue gas from residential feed coal had similar isotopic composition than coal itself, indicating that scale, temperature or other factors may influence isotopic fractionation during burning, although many uncertainties still remain about this issue. As forest burning involves a nonquantitative combustion process, it is expected to cause mercury isotopic fractionation.

The aim of this work was therefore to assess forest burning potential to cause mercury isotopic fractionation (MDF and MIF) in different soil compartments (litter, soils and remaining ashes). The study was performed in the Amazon rainforest in small- and larger-scale prescribed burning experiments to assess some factors that can influence such isotopic fractionation.

90 **2. Materials and methods**

91 2.1 Fire experiments and sampling

92 Fire experiments were carried out in two places (Fig. 1): Alta Floresta (AF) (9°56'40S,

93 56°19′48″W) and Candeias do Jamari (CJ) (8°45'1"S, 63°27'20"W). Both localities are in the so-

94 called *arc of deforestation*, a vast region with high rates of fire-based deforestation resulting from

95 efforts to transform forests in crop land (Carvalho et al., 2001). The vegetation type from the

96 experimental areas is old-growth *terra firme* forest (Chave et al., 2010) and the soils are leached

97 ferralitic soils, oxisols (Lacerda et al., 2004; Almeida et al., 2005). The climate of the region is humid

98 tropical, type Aw in the Koppen classification (Ferraz et al., 2005). The annual rainfall rate is around

99 2200 mm year⁻¹, with the rainy season lasting from November to April (Brown et al., 1995;

100 Aparecido et al., 2020).

101 At AF, six burning sub-area $2 \times 2 \text{ m}^2$ plots of land were delimited inside the forest and a variable 102 amount of fuel (litter and branches) was placed within each experimental sub-area. Fuel material was 103 weighed before burning, and the remaining ash was weighed after burning to calculate biomass 104 consumption completeness (BCC (% m m⁻¹) according to equation S1 (Text S1) in Supplementary 105 Information (SI); detailed data on fuel loading and ash mass are also available in SI, Table S1. In these 106 experiments litter, soils and ashes were collected in each sub-area. Soil sampling was carried out to 107 depths of 0-1 cm and 1-2 cm before and after burning.

Figure 1 - Map of the Brazilian legal Amazon territory, location of the study areas (Candeias do Jamari
 and Alta Floresta) and other works reported in the literature including Hg isotopes data for the
 Amazonian region (Araujo et al., 2018; Guedron et al., 2018; Miserendino et al., 2018; Schudel et al.,
 2018)

At CJ, a prescribed fire experiment was conducted in a $150 \times 150 \text{ m}^2$ plot (Fire experiment 113 114 authorization 204/2014 Secretaria de Estado do Desenvolvimento Ambiental do Rondônia). Details on 115 this experiment are given in the SI (Text S2). Briefly: the forest was cleared at the beginning of the dry 116 season (June-August) and burned in August. BCC was estimated according to equation S1 (SI, Text 117 S1) through the results obtained for nine different 2×2 m² sub-area plots in which litter, soil (0-1, 1-118 2, 2-5 cm) and ash were sampled. It is important to notice, that at both sites, after burning the 0-1-cm 119 layer visually corresponded to the burned O-horizon, and ash mainly to the burned biomass. Details on 120 fuel loading, ash mass and BCC on each sub-area are presented in SI, Table S2. 121 In both experiments, soil and ash sampling were performed according to the method described

- 122 by Melendez-Perez et al. (2014). The samples were dried at room temperature on laminar flow wood,
- 123 milled in mortar with liquid N₂ and stocked at room temperature in HDPE flasks.
- 124 2.2 Total Hg determination

125 Total mercury (Hg_{Tot}) determination was carried out by thermo-desorption atomic absorption 126 spectrometry (DMA-80 Tri Cell, Milestone, Italy) according to Melendez-Perez and Fostier (2013). 127 Accuracy was assessed in terms of recovery (%) by analyzing Standard Reference Materials and was 128 $113 \pm 8\%$ for NIST 2689 (Trace elements in coal), $113 \pm 5\%$ for NIST 1632d (coal fly ash), $93 \pm 2\%$ 129 for IAEA 336 (lichen) and $99\pm5\%$ for IAEA 433 (marine sediment). Precision expressed as the 130 relative standard deviation of three analytical repetitions was <10%. Detection limit (DL) and quantification limit (QL) were 1.7 ± 0.1 and 5.6 ± 0.5 ng g⁻¹, respectively, for litter analyses, 1.3 ± 0.1 131 ng g^{-1} and 4.5 ± 0.4 ng g^{-1} for ash, and 0.75 ± 0.06 and 2.5 ± 0.2 ng g^{-1} for soil. 132

133

134 2.3 Isotopic composition analysis

For isotopic composition analysis, two sample preparation methods were used. In the first one, approximately 1000 mg of ash, litter or soil sample were digested with 5 mL HNO₃ and 0.5 mL H₂O₂ in a high-pressure Asher (HPA-S, Anton Paar) according to Barre et al. (2018, 2020). For the second one, between 500-800 mg of sample were decomposed in 50 mL PP vial with 5 mL of HNO/HCl/H₂O₂ (3:1:1, v:v:v) at 85 °C for 48 h, (Guedron et al., 2018). For soils, the first method was only used for more complex samples and those with lower Hg concentration.

Mercury isotope analyses were performed with a cold vapor generation system (CVG) with SnCl₂ reduction coupled to a multicollector (MC) – mass spectrometer with inductively coupled plasma (ICP-MS) (Nu Plasma, Nu Instrument) as described by Barre et al. (2020). MDF and MIF are expressed according to the equations recommended by Bergquist and Blum (2007) as follows in Eq. 1 and 2, respectively.

146
$$\delta^{XXX}Hg(\%_0) = \left[\left(\frac{XXX}{198} Hg \right)_{sample} / \left(\frac{XXX}{198} Hg \right)_{CRM NIST 3133} - 1 \right] * 1000$$
(1)

147
$$\Delta^{XXX} Hg = \delta^{XXX} Hg - (\beta_{XXX} \cdot \delta^{202} Hg)$$
(2)

148 Where xxx corresponds to the studied isotope in the sample and in the CRM NIST 3133 149 solution, monitored following a standard bracketing method as a Hg isotopic composition reference in 150 the same concentration as the sample (1.0, 0.5 and 0.25 μ g L⁻¹); and β_{XXX} is the kinetic massdependence scale factor, characteristic of each isotope mass (for ¹⁹⁹Hg is 0.2520, ²⁰⁰Hg 0.5024, ²⁰¹Hg 151 0.7520 and for ²⁰⁴Hg 1.493). The instrumental mass-bias was corrected by using the internal standard 152 of Tl (NIST 997, ²⁰⁵Tl/²⁰³Tl = 2.38714). NIST 8610 (former UM-Almadén) standard solution was 153 154 monitored during each analytical session as a quality control of the isotopic composition analyses. 155 Multiple measurements of the certified reference materials (CRM) BCR-482 (lichen), IAEA 336 156 (lichen) and IAEA 405 (marine sediment) were also performed. The consistency between the average 157 isotopic composition of each material obtained in the present study and those previously published in 158 the literature (Table S3) attests to the good accuracy of the method. The precision method, expressed 159 as 2 standard deviations of the N measurements, is also given in Table S3.

For litter, ash, and soil samples, recovery (R%) was estimated as the total Hg concentration measured by CVG/MC-ICP-MS*100/total Hg concentration measured by TD-AAS. The precision measurement (expressed as 2SD for CVG/MC-ICP-MS analyses) was calculated from three analytical replicates. When considering all the analyzed samples, average recovery was $96 \pm 11\%$, $99 \pm 7\%$ and $90 \pm 8\%$ for litter, ash, and soils respectively, and for δ^{202} Hg, δ^{200} Hg and Δ^{201} Hg, 2SD was <0.15‰.

Uncertainties of the isotopic composition measurements were defined as follows: when the measurement precision of CRM NIST 8610 for a particular isotope was greater than the obtained value for a particular type of sample, the values of 2SD of NIST 8610 were considered, as observed for litter and soil samples; when a particular type of sample presented greater values of 2SD than NIST 8610, the samples 2SD were considered, as observed for ash samples.

172 2.4 Complementary analyses

173	The organic matter content was obtained by gravimetric method after calcination for 2 h at 360
174	°C (North Central Regional Research, 2012). Elemental composition (C, H, N) was determined with
175	an elemental analyzer (PerkinElmer, 2400 System, Waltham, MA, US).
176	2.5 Statistical data treatment
177	Different data treatments were performed using Origin 8.1®, Microsoft Excel® and Xlstat®
178	software. All the results were assessed for normal distribution using the Shapiro-Wilk test (α =5%).
179	When the results were not normally distributed, nonparametric statistical tools (Kruskal Wallis test
180	combined with Conover-Iman with Bonferroni correction) were used to compare the data to each other.
181	
182	3. Results
183	
184	3.2 Total Hg concentration in litter, ash, and soil
185	Concentration of Hg _{Tot} in all analyzed samples are given in Table 1 (detailed data in Table S4
186	and S5). For litter, Hg _{Tot} at AF (54 \pm 9 ng g ⁻¹) was significantly higher (p = 0.002) than at CJ (33 \pm 8
187	ng g ⁻¹). In wood, Hg _{Tot} were 8.8 ± 1.1 ng g ⁻¹ and $< LQ$ (1.3 ng g ⁻¹) for the samples from AF and CJ,
188	respectively. In ash, Hg_{Tot} was in the same range (12 to 31 ng g ⁻¹) in AF and CJ samples. In both sites
189	the concentrations in ash were lower than in litter ($p = 0.01$ for AF and $p = 0.03$ for CJ). In AF soil,
190	Hg _{Tot} significantly decreased after burning for both depths (0-1 cm: $p = 0.02$ and 1-2 cm: $p = 0.03$),
191	while at CJ significant decreases were only observed for the surface layer (0-1 cm: $p = 0.02$).
192	

		Litter	Ash			Se	oil		
				0-1	cm	1-2	cm	2-5	cm
				BB	AF	BB	AF	BB	AF
	N ^(a)	5	5	6	6	6	6	-	-
	Range	40 - 65	13 - 31	68 - 93	57 - 77	67 - 82	60 - 79	-	-
AF	$\frac{Mean \pm}{SD^{(b)}}$	54 ± 9	23 ± 6	79 ± 9	66 ± 7	75 ± 6	69 ± 8	-	-
	Median	55	23	81	67	76	68	-	-
	N ^(a)	9	9	9	9	9	9	9	9
a	Range	25 - 50	12 - 31	135 - 172	113 - 167	136 - 172	126 - 169	138 - 167	131 168
CJ	$\frac{Mean \pm}{SD^{(b)}}$	33 ± 8	23 ± 8	148 ± 13	134 ± 21	148 ± 12	146 ± 16	150 ± 12	151 : 13
	Median	33	24	144	125	146	141	149	151

Table 1. Total mercury concentration (ng g⁻¹) in litterfall, ash and soil samples collected before (BB)
 and after (AB) burning at Alta Floresta (AF) and Candeia do Jamari (CJ) experimental sites.

197

198 3.2 Hg isotopic composition in soil, litter and ash

199 Averages of the isotopic composition and main results per type of sample and locality are

200 given in Table 2. Complete data of Hg isotopic composition from samples are given in

201 Supplementary Information (Table S6 and S7), while probabilities for each comparison between

202 different datasets are given in Table S8.

		(0)		δ^{202} Hg	δ ²⁰⁰ Hg	Δ^{200} Hg	Δ^{199} Hg
Locality	Type of sample	N ^(a)		(‰)	(‰)	(‰)	(‰)
	T '	4	Mean	-1.66	-0.93	-0.09	-0.54
	Litter	4	SD	0.26	0.11	0.05	0.07
	Ash	3	Mean	-1.64	-0.87	-0.04	-0.56
Alta		5	SD	0.32	0.19	0.06	0.02
Floresta	Soils before	8	Mean	-1.56	-0.82	-0.03	-0.52
	burning	0	SD	0.17	0.09	0.02	0.07
	Soils after	7	Mean	-1.50	-0.81	-0.06	-0.53
	burning		SD	0.06	0.05	0.05	0.04
	Litter Ash	10 9	Mean	-1.62	-0.89	-0.07	-0.36
			SD	0.17	0.11	0.04	0.06
			Mean	-1.78	-0.93	-0.03	-0.58
do Jamari			SD	0.10	0.05	0.02	0.06
	Soils before	12	Mean	-2.05	-1.07	-0.04	-0.59
	burning		SD	0.10	0.07	0.04	0.03
	Soils after	13	Mean	-2.08	-1.07	-0.03	-0.63
	burning		SD	0.12	0.08	0.05	0.03

(a): N, number of analyzed samples

206 Mass dependent fractionation

207 Regarding δ^{202} Hg in AF (Fig. 2a, Table 2), no significant difference (p>0.05, Table S8) was 208 observed between litter, soil and ash, before and after burning. In contrast, in CJ (Fig. 2b) significant 209 differences (p<0.05) were observed between 1) litter and soil before burning, 2) litter and soil after 210 burning, 3) ash and soil before burning, and 4) ash and soil after burning. Comparing the results from 211 AF and CJ, no significant difference was observed between δ^{202} Hg of litter and ash from both sites 212 (p=0.94 for litter and p=0.47 for ash). For soils, however, significant differences were obtained 213 between AF and CJ (p<0.05 before/after burning).

Figure 2. Graph of δ^{200} Hg versus δ^{202} Hg for litter, ash and soil samples from a) Alta Floresta (AF) and b) Candeias do Jamari (CJ). Soil samples are divided into different depths (0-1, 1-2 or 2-5 cm) and before or after (aft.) fires. * For the CRM NIST 8610, IC is represented in another range of the graph, and results are inserted at the top of the graph just to represent the magnitude of the uncertainty of the validated methods.

Variations of Hg δ^{200} Hg and δ^{199} Hg as a function of δ^{202} Hg, respectively presented on Fig. 2 222 223 and Fig. S1, allow to assess if both odd and even Hg isotopes follow a strictly MDF process or exhibit significant deviation inherent to Hg isotopes MIF. The δ^{200} Hg/ δ^{202} Hg ratio of all AF (Fig. 2a) and CJ 224 225 (Fig. 2b) samples clearly follows a linear distribution with the same slope as expected for Hg isotopes 226 MDF (Blum et al., 2014), suggesting no even Hg isotopes MIF. This observation is clearly validated in Fig. S2 (Δ^{200} Hg compared to δ^{202} Hg) and Fig. S3 (Δ^{200} Hg compared to Δ^{204} Hg), that explicitly 227 illustrate that Δ^{200} Hg and Δ^{204} Hg extent and variations are not significant between the localities and 228 samples (i.e. considering analytical precision). The variation of δ^{199} Hg as a function of δ^{202} Hg (Fig. 229 230 S1) roughly follow the classical MDF line. However, for CJ (Fig. S1b), litter presented significant 231 deviations from the MDF line, suggesting that MIF-odd is statistically significant. Odd MIF extents 232 for Hg isotopes are indeed different from zero and exhibit negative average values as shown in Table 233 2. Variation of odd-MIF for Hg isotopes is highlighted by Fig. S2 showing Δ^{199} Hg compared with Δ^{201} Hg plot, in which a clear difference appears between CJ litter and other samples from both localities 234 235 (p<0.05, Table S8).

Figure 3 represents odd-MIF compared with MDF of Hg isotopes (Δ^{199} Hg × δ^{202} Hg). It shows that for AF (Fig. 3a) the obtained isotopic composition of the different types of samples mainly overlap and no discrimination of specific sample types can be verified. However, for CJ (Fig. 3b), litter samples are separated from the others due to their enrichment in Δ^{199} Hg when compared with other samples (ash and soil) from the same location ($\epsilon(\Delta^{199}$ Hg) ~0.15‰, p<0.05). Ashes compared to soils are in the same odd-MIF range (Δ^{199} Hg), while they present an enrichment (ϵ) in δ^{202} Hg of about +0.2‰.

Figure 3. Graphic of Δ^{199} Hg compared with δ^{202} Hg for litter, ash and soil samples from a) Alta Floresta (AF) b) Candeias do Jamari (CJ). Soil samples are divided into different depths (0-1, 1-2 or 2-5 cm) and before or after (aft.) fires.* For the CRM NIST 8610, IC is represented in another range of the graph, and results are inserted at the top of the graph just to represent the magnitude of the uncertainty of the validated methods.

- 249 **4. Discussion**
- 250

4.1 Mercury distribution and its isotopic composition as a function of sample type and burning
 experiment

253

Litter: Total Hg concentration in litter from AF and CJ significantly differed (Table 1), which could 254 255 be related to the different operational approach used in each experiment. The clearing of the forest at 256 the beginning of the dry season in CJ left the litter exposed to solar radiation (i.e. UV-visible light and 257 heat) and rain washout for several months. These conditions could have respectively promoted direct 258 atmospheric evasion and leaching of Hg from exposed litter, and therefore, reduced the total Hg content 259 in litter at this site. In contrast, the AF experiment was carried out under forest cover, below the canopy, 260 preventing litter from being frequently exposed to intense solar radiation or rain washout, and 261 consequently reduced potential Hg loss from the litter. This hypothesis is confirmed by the Hg_{Tot} $(57 \pm 3 \text{ ng g}^{-1})$ of an additional litter sample collected inside the forest at CJ, which is much closer to 262 263 the concentration obtained in AF and to the average concentration reported for litter in the Amazon 264 forest (Fostier et al., 2015).

265 Despite these conclusions, the differences between the isotopic composition in litter from AF 266 and CJ cannot only be explained by potential photochemical induced reduction and volatilization of 267 Hg. Although such a process could generate significant MDF and odd-MIF of the Hg isotopes, the litter 268 sample collected under the forest canopy of CJ exhibits very similar isotopic composition to the litter 269 samples from the burning experiment area (Table 2). This suggests that the differences in litter Hg 270 concentration and isotopic composition between CJ and AF are mainly caused by non-photochemical 271 solar heating and/or rain washout processes for which only MDF and negligible MIF of the Hg isotopes 272 are expected (Blum et al., 2014). However we do not have data regarding isotopic fractions for such specific pathways, and differences measured for both concentration and isotopic composition could
also be attributed to specific regional and ecological differences between both locations such as
atmospheric total gaseous Hg, predominant plant species, tree and leaf age, among other factors (Yuan
et al., 2019).

277 The greater differences between the isotopic composition for litter from different localities 278 appear for MDF (Fig. 4). In temperate forest system, Demers et al. (2013) obtained a MDF extent for litter of δ^{202} Hg = -1.32 ± 0.14‰, which is markedly higher than the present study. Meanwhile, more 279 negative MDF values were reported in another tropical rainforest (Guedron et al. (2018): δ^{202} Hg = -280 $2.01 \pm 0.18\%$) and a boreal forest (Jiskra et al. (2015): δ^{202} Hg = -2.35 ± 0.09‰). These large 281 282 differences can be related to many factors such as atmospheric Hg_{Tot}, tree species and tree and leaf age that result in different uptake of atmospheric Hg (Zhou et al., 2021). The large δ^{202} Hg extent (~1.0‰) 283 284 suggests that the type of forest doesnot have a clear influence on Hg MDF isotopic composition in 285 litter.

For odd-MIF in litter from tropical forest, Guedron et al. (2018) obtained Δ^{199} Hg=-0.20±0.15‰, values that are less negative than those obtained in the present study. This can be explained because those samples were collected close to a former gold mining site. Indeed, metallic Hg commonly used in small-scale gold mining has an odd-MIF close to zero. In Demers et al. (2013), odd MIF average was higher (Δ^{199} Hg=-0.18±0.03‰, but most likely reflects the isotopic composition of atmospheric Hg in a region largely influenced by industrial anthropogenic inputs. In Jiskra et al. (2015), odd-MIF average (Δ^{199} Hg=-0.44±0.03‰) is similar to our study.

293 Nonetheless, results of δ^{202} Hg, Δ^{199} Hg and Δ^{200} Hg in litter indicate that the origin of Hg in these 294 samples is mostly atmospheric, as demonstrated in previous investigations, and exhibits negative MDF, 295 slightly negative odd-MIF and close to zero even-MIF (Demers et al., 2013; Jiskra et al., 2015; Araujo

296 et al., 2018; Guedron et al., 2018; Miserendino et al., 2018; Yuan et al., 2019; Barre et al., 2020; Wang

Figure 4. Graphic of Δ^{199} Hg as a function of average δ^{202} Hg for litter, ash and soil samples analyzed in this work compared to other forest samples reported in the literature. Sources: Araujo et al. (2018), Demers et al. (2013), Guedron et al. (2018), Jiskra et al. (2018) and Miserendino et al. (2018).

302

298

303 *Soil:* The average concentrations of Hg_{Tot} in soils of both study sites before burning (Table 1) are in 304 the same range as those previously reported in the literature (e.g. Lacerda et al. (2004) and Michelazzo 305 et al. (2010) for AF, and Almeida et al. (2005) for CJ). At both sites, Hg_{Tot} before burning was 306 homogeneously distributed in the different soil layers.

S5), indicating that even though at CJ the burning experiment was much more severe than in AF (asdiscussed in section 4.3), mercury emissions from soils may be affected by several parameters.

Regarding the isotopic composition, large differences for MDF (δ^{202} Hg) were observed 312 313 between AF and CJ. Hg isotopic composition in soils may vary widely depending on the geogenic Hg 314 contribution, origin of the atmospheric Hg deposition, type of soil and even how the nutrient cycling 315 occurs at each location (Blum et al., 2014; Zheng et al., 2016), as illustrated in Fig. 4 reporting data 316 from different forested ecosystems. For North American temperate forests not directly impacted by anthropogenic sources, the MDF and MIF-odd values reported by Demers et al. (2013), (δ^{202} Hg = -317 $0.87 \pm 0.12\%$; Δ^{199} Hg=-0.19 ± 0.02‰) are very different from those obtained in this study. 318 319 Conversely, the values reported by Araujo et al. (2018) (δ^{202} Hg = -2.60 ± 0.34‰; Δ^{199} Hg = - $0.38 \pm 0.22\%$) and Miserendino et al. (2018) (δ^{202} Hg = -2.12 to -2.23 ± 0.14‰; Δ^{199} Hg= -0.55‰) who 320 321 also assessed nonimpacted forests in the Amazon, are closer to those obtained in our study. Among the 322 forests, systematic negative values of MDF and MIF falling in a close range confirm the importance 323 of all forests for the scavenging of atmospheric gaseous Hg and the litterfall transfer of this Hg from 324 the litter to the soil.

The Hg isotopic composition does not exhibit significant differences in the soils sampled before and after burning, except for Δ^{199} Hg from CJ (Table S8). These results may indicate that although fire leads to quantifiable Hg emissions from soil, this does not necessarily result in a significant isotopic fractionation of the residual fraction remaining in the soil.

Ash: The presence of Hg in ash after the burning experiments may be attributed to the incomplete emission of Hg initially present in the litter, and to the uptake of Hg emitted from the surface soil during burning. Despite some differences observed in the Hg_{Tot} and Hg isotopic composition of the litter and soil samples, ash from AF and CJ presented similar Hg_{Tot} (Table 1) and similar isotopic composition (p>0.05 for Hg_{Tot} and Hg isotopes, Table S8). This can be related to the similarities in the 334 chemical composition of the ash from both locations. Ash chemical composition did not differ 335 significantly (p>0.05) between both sites for organic matter (Table S4), Hg_{Tot} and major element 336 composition (C, H, N) (Table S9). This suggests that Hg content and Hg isotopic composition in ashes 337 can be significantly constrained by the ash chemical characteristics, that can vary under different 338 burning experimental conditions. Therefore, the influence of the final ash composition, and the Hg 339 fractionation confirm that Hg uptake by ashes is closely related to re-adsorption or condensation 340 mechanisms of Hg onto ash particles during and after the burning experiment. This hypothesis can 341 explain the final Hg isotopic composition of the ash, but not the exact main source of this Hg in the 342 cleared forest system.

343 According to Sun (2019) who reviewed Hg isotopic fractionation associated with the coal 344 combustion process, if MDF processes are expected during coal combustion, MIF are not. Reviewed 345 literature data mainly reports enrichments in heavier isotopes in ash material, following MDF law, 346 when compared to coal Hg isotopic composition. Using the same assumption for forest fires, the 347 differences measured in MIF extent between litter and ash at CJ (Fig. 3b) suggests that the litter contribution to the Hg recovered in ash was low or insignificant. Indeed, for CJ, Δ^{199} Hg determined in 348 ash was significantly lower than in litter (Δ^{199} Hg litter= -0.37 ± 0.05‰; Δ^{199} Hg ash = -0.58 ± 0.07‰). 349 Conversely, Δ^{199} Hg in ash was like that in soils before burning (Δ^{199} Hg ash =-0.59 ± 0.03‰), 350 351 suggesting that Hg in ash mainly originated from soils. In addition, δ^{202} Hg in ash at CJ was 352 significantly higher than in soils before burning (Fig. 2b). This suggests that an MDF process occurs 353 during soil heating and burning. This can be explained by the emission of lighter Hg isotopes to the atmosphere and a simultaneous ash enrichment of heavier Hg with higher δ^{202} Hg. This corroborates 354 355 the fact that forest fire can follow similar basic processes than coal combustion in a power plant as 356 reported by Sun (2019).

357 The fractionation of Hg and the associated isotopic composition can likely be explained by the 358 equilibrium between the two main Hg species emitted during a combustion process, such as GEM and 359 particular bound Mmercury (PBM). When Hg is emitted during biomass combustion, both species are 360 occurring, but their proportion can vary according to moisture and fuel nature, among other factors 361 (Obrist et al., 2018). Furthermore, PBM is more easily deposited after burning than GEM and can 362 easily be adsorbed on ash (De Simone et al., 2017; Sun, 2019). For coal combustion, Sun et al. (2014) 363 reported significant isotopic fractionation following MDF pathways. They determined higher δ^{202} Hg 364 in the PBM associated with ash material, which was then enriched in heavier isotopes compared to 365 GEM Hg isotopic composition. This resulting ion is very similar to our observation for ash isotopic 366 composition at the CJ location. However, such an increase of δ^{202} Hg in ash was not observed during 367 the AF experiment, which indicates that other parameters are involved in the Hg fractionation processes 368 from soils and that significant MDF of Hg stable isotopes will not necessarily occur in all fires.

369

4.3 Factors influencing Hg isotopic composition during forest fire

Although the present dataset provided some information on Hg isotopic fractionation during
forest fires, it also highlights how fractionation processes can vary according to the type of forest fire,
especially for soil emissions.

One of the factors that differentiates forest fires is the severity, which is related to the intensity of burning and depends on factors that govern the fire behavior (e.g. propagation rate, duration and height of the flames), climatic conditions (temperature, relative humidity, wind and rain), topography, and quantity, size and moisture of live and dead vegetal fuel and its chemical and structural composition (Keeley et al., 2009; Mataix-Solera et al., 2011; Abraham et al., 2018). Although measuring burning severity is still a challenge due to the many variables involved, some parameters are frequently used to this end (Engle et al., 2006; Keeley et al., 2009). 381 In the experiments of AF and CJ, the consumption of biomass and the variations of organic 382 matter content in soil were used to assess the burning severity. Biomass consumption completeness at 383 AF averaged $80 \pm 10\%$, while at CJ it was 90 ± 11 (Table S1 and S2). For the soil organic matter content [OM, % w w⁻¹], different behaviors were observed between both locations (Table S10). In AF, [OM] 384 385 did not change significantly after burning ($[OM]_{0-1 \text{ cm}}$ before = $18 \pm 6\%$; $[OM]_{0-1 \text{ cm}}$ after = $16 \pm 5\%$; p = 386 0.55), while in CJ this variation was substantial ($[OM]_{0-1 \text{ cm}}$ before = $21 \pm 5\%$; $[OM]_{0-1 \text{ cm}}$ after 387 =14 \pm 4%; p = 0.005). This indicates that burning at CJ resulted in an important consumption of soil 388 organic matter, likely due to longer combustion and higher temperatures (Merino et al., 2018). Thus, 389 we hypothesize that the burning conditions at CJ allowed higher temperatures to be reached during the 390 experimental fire, enabling the consumption of the soil organic matter and the emission and isotopic 391 fractionation of Hg between soils and ashes.

392 Likewise, different parameters influencing the severity of burning in previous studies were 393 found to modify the isotopic composition of other elements, such as carbon, oxygen and nitrogen (Kato 394 et al., 1999; Schumacher et al., 2011). Kato et al. (1999) observed that during biomass burning 395 processes the volatile carbon species formed during the initial flaming phase were enriched in 396 isotopically heavier carbon species (¹³C enrichment) compared to the initial fuel material, which exhibited lighter carbon isotopic composition (¹³C depletion) throughout the burning process and 397 398 during the smoldering phase (i.e. flameless burning phase with significant gas emissions). Therefore, 399 different burning settings that can result in a longer or smaller smoldering phase may influence 400 differently the isotopic composition of the burning products, favoring either the production of 401 isotopically lighter or heavier species. Based on the same assumptions for Hg emissions from soils 402 during biomass burning, more pronounced isotopic fractionations (i.e. MDF) may be expected in longer 403 burning episodes with more pronounced smoldering phases. These conditions in which greater amount 404 of energy is given throughout a longer burning period were likely achieved during CJ experiment.

Schumacher et al. (2011) evaluated the oxygen isotopic composition (¹⁶O vs ¹⁸O) in the CO₂ 405 406 formed after the combustion of different types of fuels and under different conditions. They reported 407 that the composition of the fuel load and the comburent gases strongly influence the isotopic 408 composition of the emitted CO₂. However, several processes may affect whether the resulting gas will 409 have an isotopic composition either more relatable to the comburent gas (i.e. lighter isotopic 410 composition or ¹⁶O enrichment), or to the fuel load (plant tissues, with heavier isotopic composition 411 for carbon and oxygen). For wet fuel samples, the fractionation was smaller, resulting in lighter isotopic composition (depletion of ¹³C and ¹⁸O isotopes) of the CO₂ compared with dry fuels. These authors 412 413 also observed that for higher temperatures reached during burning, the gases produced had heavier 414 carbon and oxygen isotopic composition compared to smaller temperatures, indicating that when 415 higher temperatures are reached the influence of the fuel isotopic composition may increase in the final 416 product.

417 Expanding these previous conclusions for lighter elements to Hg emissions during biomass 418 burning, several parameters may affect Hg fractionation and isotopic composition during forest burning 419 episodes. Even though the temperature was not measured during the burning experiments, we suggest 420 that the combustion temperature and fuel moisture may act as important factors for Hg emission and 421 fractionation in the soil/litter/ash system. These hypotheses are based on the fact that no significant 422 losses of soil OM were observed for AF experiment with dominant wet fuels, while much drier fuels 423 were burnt during the CJ experiment. During burning, OM consumption can only be observed above 424 300 °C (González-Pérez et al., 2004) and fuel moisture directly impacts the combustion completeness 425 and therefore, the fire temperature itself (Certini, 2005). This infers that these two factors are both 426 significantly influencing differences in the fate and fractionation of Hg observed between AF and CJ 427 experiments.

428 Considering the isotopic composition of the fuel material (i.e. litter and surface soils) and of 429 the resulting ash and soil after burning, we suggest that Hg from the litter was almost totally emitted to the atmosphere while Hg from surface soil was partially and variably emitted as a function of several
parameters, such as fire temperature and moisture content of fuel. We highlight here that the burning
conditions play a fundamental role in the isotopic fractionation of the Hg species emitted, suggesting
that further controlled experiments are required to better understand this complex dynamic.

434

435 **4.4 Mercury isotopic fingerprint of forest fire emissions**

436 Rayleigh's equation is commonly used to access the isotopic composition during a particular 437 chemical reaction. It describes the partition between two isotopes as the initial reservoir decrease along 438 with reaction advancement and time. This equation can only be used if the following principles are 439 applied: 1) the material is continually removed from a mixed system that contains all the evolved 440 species; 2) The isotopic fractionation can be described in any instant by a fractionation factor (α) and 441 3) α does not change throughout the process (Kendall and Doctor, 2003; Hintelmann and Zheng, 2011). 442 As pointed out in the previous discussion, several variables act simultaneously during forest 443 burning, making it almost impossible to determine a fractionation factor for such complex processes 444 and environments. A conservative approach may be applied to provide an initial estimate of the forest 445 burning Hg isotopic signature emitted to the atmosphere. Considering the evolved environmental 446 compartments as part of a conservative mass relation, the isotopic composition of reagents and products 447 of the burning can be described by the mass balance given in Equation 3.

449
$$\overline{(EF_{Soil} * \overline{CI_{Soil0-1cm}})} + \overline{(EF_{biomass} * \overline{CI_{biomass}})} = \overline{(Hg_{ash} * \overline{CI_{ash}})} + \overline{EF_{Atm} * \overline{CI_{Atm}}})$$
 (3)
450 Where:

- 451 $\overline{EF_{Soil}}$ = Average mass of Hg emitted by soils (in µg of Hg per m²);
- 452 $\overline{EF_{Biomass}}$ = Average mass of Hg emitted by biomass (in µg of Hg per m²);
- 453 $\overline{Hg_{ash}}$ = Average mass of Hg remaining in ash (in µg of Hg per m²);

454	$\overline{EF_{Atm}}$ = Average mass of total Hg emitted to the atmosphere due to forest burning (sum of all emitted
455	species (GEM, PBM, etc.), in µg of Hg per m ²);
456	$\overline{IC_X}$ = estimated average isotopic composition δ^{202} Hg, Δ^{199} Hg , Δ^{200} Hg for each studied matrix (where
457	X is the soil, biomass, ash or atmosphere) (in ‰).
458	
459	The detail of the calculations performed to obtain these different masses is presented in the SI
460	(Text S3). By considering Equation 3 as an acceptable first approximation and using the different

460 (Text S3). By considering Equation 3 as an acceptable first approximation and using the different 461 values obtained for Hg average isotopic composition of each compartment (Table 2) together with the 462 average EF or remaining mass (Table S11) in each compartment, we estimate the average isotopic 463 composition of the atmospheric Hg emissions presented in Table 3.

464

Table 3. Average Hg isotopic composition obtained for soils, litter and ash and calculated for the
 atmospheric emissions due to the Candeias do Jamari experimental burn

467

Compartment (mean ± 1 SD)

0-1-011	son layer			
before	burning	Litter (N=9)	Ash (N=9)	Atmosphere
(N	I=5)			
-2.02	± 0.14	$\textbf{-1.63} \pm 0.16$	$\textbf{-1.78} \pm 0.10$	-1.79 ± 0.24
-0.02	± 0.01	-0.07 ± 0.04	-0.03 ± 0.02	-0.05 ± 0.04
-0.58	± 0.02	$\textbf{-0.37} \pm 0.05$	$\textbf{-0.58} \pm 0.06$	$\textbf{-0.45} \pm 0.12$
(N -2.02 -0.02 -0.58	(=5) ± 0.14 ± 0.01 ± 0.02	-1.63 ± 0.16 -0.07 ± 0.04 -0.37 ± 0.05	-1.78 ± 0.10 -0.03 ± 0.02 -0.58 ± 0.06	-1.79 ± 0.24 -0.05 ± 0.04 -0.45 ± 0.12

469	Up to now, studies on Hg isotopic composition due to combustion processes were only
470	performed for coal (Sun et al., 2014; Tang et al., 2017; Sun, 2019). For global coal, Sun et al. (2014)
471	reported δ^{202} Hg = -1.2 ± 0.5‰ (1SD). For coals from different locations these authors concluded that
472	due to the variability of δ^{202} Hg between different coals, their emissions could result in different δ^{202} Hg,
473	reflecting the high variability observed in various locations (1SD=0.5‰). Considering that the isotopic
474	composition of plants and soils varies depending on the location, type of plant, climatic conditions,
475	among other factors (Demers et al., 2013; Fu et al., 2019), significant uncertainties can also be expected
476	for the isotopic composition of Hg emissions from forest fires. The relatively high uncertainty obtained
477	for the estimated isotopic composition of the Hg emitted to the atmosphere in this study (Table 3) is
478	therefore consistent and overlaps with the expected variability for Hg emissions for different types of
479	forest fire. The present estimate can therefore be considered as an initial fingerprint of atmospheric Hg
480	isotopic composition resulting from forest fire.

481

482 Conclusion

483

484 The results obtained indicate that a burnt forest is a complex environment, with Hg emissions 485 being affected by several parameters. Mercury bound to litter is mostly emitted to the atmosphere, 486 while soil Hg may be partially emitted, varying accordingly to the burning conditions. In this way, Hg 487 isotopic fractionation was determined during forest fires but may occur at very different extent. Several 488 factors may act altogether, influencing the Hg isotopic composition in the fuels and the burning process 489 itself. Based on our findings, we conclude that Hg isotopic fractionation may occur during forest 490 burning, mainly following MDF, while no significant MIF variations can be observed. To better 491 understand Hg emissions and isotopic fractionation processes due to forest burning more studies should 492 be performed in different areas and types of forests, but also the influence of fuel and burning 493 conditions should be investigated in controlled conditions.

494 Acknowledgements

496	This work was funded by The São Paulo Research Foundation (FAPESP) (Projects 2008/04490-4,
497	2010/19040-4, 2014/00555-5 and 2016/14227-5) and also partially funded by the Regional Council of
498	Nouvelle Aquitaine (France) and French National Research Agency (ANR). Larissa Richter received
499	a fellowship from the Brazilian Coordination for the Improvement of Higher Education Personnel,
500	CAPES, (Financing code 001). We also thank the Brazilian Environmental Secretary for authorizing
501	the experiments that enabled this work. For the experimental work, we thank the owners of the Caiabi
502	Farm, the co-workers from the Brazilian Institute of Environment and Renewable Natural Resources
503	(IBAMA) and the Brazilian National Institute of Spatial Research (INPE). This work is a contribution
504	to the European MercOx project (EMPIR EURAMET, Grant number 16ENV01). Jim Hesson
505	copyedited the manuscript (https://www.academicenglishsolutions.com/editing-service).
506	
507	References
508	Abraham, J., Dowling, K., Florentine, S. (2018). Effects of prescribed fire and post-fire rainfall on
509	mercury mobilization and subsequent contamination assessment in a legacy mine site in Victoria,
510	Australia. Chemosphere 190, 144-153.
511	Almeida, M.D., Lacerda, L.D., Bastos, W.R., and Herrmann, J.C. (2005). Mercury loss from soils
512	following conversion from forest to pasture in Rondonia, Western Amazon, Brazil. Environmental
513	Pollution 137, 179-186.
514	Aparecido, L.E.D., De Moraes, J.R.D.C., De Meneses, K.C., Torsoni, G.B., De Lima, R.F., and

- 515 Costa, C.T.S. (2020). Koppen-Geiger and Camargo climate classifications for the Midwest of
- 516 Brasil. *Theoretical and Applied Climatology* 142, 1133-1145.

517	Araujo, B.F., Hintelmann, H., Dimock, B., De Lima Sobrinho, R., Bernardes, M.C., De Almeida,
518	M.G., Krusche, A.V., Rangel, T.P., Thompson, F., and De Rezende, C.E. (2018). Mercury
519	speciation and Hg stable isotope ratios in sediments from Amazon floodplain lakes—Brazil. 63,
520	1134-1145.
521	Barre, J.P.G., Deletraz, G., Sola-Larranaga, C., Santamaria, J.M., Berail, S., Donard, O.F.X., and

- 522 Amouroux, D. (2018). Multi-element isotopic signature (C, N, Pb, Hg) in epiphytic lichens to
- 523 discriminate atmospheric contamination as a function of land-use characteristics (Pyrenees-

524 Atlantiques, SW France). *Environmental Pollution* 243, 961-971.

- 525 Barre, J.P.G., Queipo-Abad, S., Sola-Larrañaga, C., Deletraz, G., Bérail, S., Tessier, E., Elustondo
- 526 Valencia, D., Santamaría, J.M., De Diego, A., and Amouroux, D. (2020). Comparison of the
- 527 Isotopic Composition of Hg and Pb in Two Atmospheric Bioaccumulators in a Pyrenean Beech
- 528 Forest (Iraty Forest, Western Pyrenees, France/Spain). 1.
- Bergquist, B.A., and Blum, J.D. (2007). Mass-dependent and mass-independent fractionation of Hg
 isotopes in aquatic systems. *Geochimica Et Cosmochimica Acta* 71, A83-A83.
- 531 Bishop, K., Shanley, J.B., Riscassi, A., De Wit, H.A., Eklof, K., Meng, B., Mitchell, C., Osterwalder,
- 532 S., Schuster, P.F., Webster, J., and Zhu, W. (2020). Recent advances in understanding and
- 533 measurement of mercury in the environment: Terrestrial Hg cycling. *Science of the Total*
- *Environment* 721.
- 535 Blum, J.D., Sherman, L.S., and Johnson, M.W. (2014). Mercury Isotopes in Earth and Environmental
- 536 Sciences. Annual Review of Earth and Planetary Sciences, Vol 42 42, 249-269.
- 537 Brown, I.F., Martinelli, L.A., Thomas, W.W., Moreira, M.Z., Ferreira, C.a.C., and Victoria, R.A.
- 538 (1995). Uncertainty in the Biomass of Amazonian Forests an Example from Rondonia, Brazil.
- 539 *Forest Ecology and Management* 75, 175-189.

- 540 Carmenta, R., Parry, L., Blackburn, A., Vermeylen, S., and Barlow, J. (2011). Understanding
- 541 Human-Fire Interactions in Tropical Forest Regions: a Case for Interdisciplinary Research across
- the Natural and Social Sciences. *Ecology and Society* 16.
- 543 Carvalho, J.A., Costa, F.S., Veras, C.a.G., Sandberg, D.V., Alvarado, E.C., Gielow, R., Serra, A.M.,
- and Santos, J.C. (2001). Biomass fire consumption and carbon release rates of rainforest-clearing
- 545 experiments conducted in northern Mato Grosso, Brazil. Journal of Geophysical Research-

546 *Atmospheres* 106, 17877-17887.

- 547 Certini, G. (2005). Effects of fire on properties of forest soils: a review. *Oecologia* 143, 1-10.
- 548 Chave, J., Navarrete, D., Almeida, S., Alvarez, E., Aragao, L.E.O.C., Bonal, D., Chatelet, P., Silva-
- 549 Espejo, J.E., Goret, J.Y., Von Hildebrand, P., Jimenez, E., Patino, S., Penuela, M.C., Phillips,
- 550 O.L., Stevenson, P., and Malhi, Y. (2010). Regional and seasonal patterns of litterfall in tropical
 551 South America. *Biogeosciences* 7, 43-55.
- 552 Chen, C., Wang, H.H., Zhang, W., Hu, D., Chen, L., and Wang, X.J. (2013). High-resolution
- inventory of mercury emissions from biomass burning in China for 2000-2010 and a projection for
- 554 2020. Journal of Geophysical Research-Atmospheres 118, 12248-12256.
- 555 De Simone, F., Artaxo, P., Bencardino, M., Cinnirella, S., Carbone, F., D'amore, F., Dommergue, A.,
- 556 Feng, X.B., Gencarelli, C.N., Hedgecock, I.M., Landis, M.S., Sprovieri, F., Suzuki, N., Wangberg,
- 557 I., and Pirrone, N. (2017). Particulate-phase mercury emissions from biomass burning and impact
- on resulting deposition: a modelling assessment. Atmospheric Chemistry and Physics 17, 1881-
- 559 1899.
- 560 De Simone, F., Cinnirella, S., Gencarelli, C.N., Yang, X., Hedgecock, I.M., and Pirrone, N. (2015).
- 561 Model Study of Global Mercury Deposition from Biomass Burning. Environmental Science &
- 562 *Technology* 49, 6712-6721.

- 563 Demers, J.D., Blum, J.D., and Zak, D.R. (2013). Mercury isotopes in a forested ecosystem:
- 564 Implications for air-surface exchange dynamics and the global mercury cycle. *Global*

565 Biogeochemical Cycles 27, 222-238.

- 566 Engle, M.A., Gustin, M.S., Johnson, D.W., Murphy, J.F., Miller, W.W., Walker, R.F., Wright, J., and
- 567 Markee, M. (2006). Mercury distribution in two Sierran forest and one desert sagebrush steppe
- 568 ecosystems and the effects of fire. *Science of the Total Environment* 367, 222-233.
- 569 Enrico, M., Le Roux, G., Marusczak, N., Heimburger, L.E., Claustres, A., Fu, X.W., Sun, R.Y., and
- 570 Sonke, J.E. (2016). Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous
- 571 Elemental Mercury Dry Deposition. *Environmental Science & Technology* 50, 2405-2412.
- 572 Feinberg, A., T. Dlamini, M. Jiskra, V. Shah, and N. E. Selin. 2022. Evaluating atmospheric mercury
- 573 (Hg) uptake by vegetation in a chemistry-transport model. *Environmental Science: Processes &*
- 574 *Impacts*. Royal Society of Chemistry. doi:10.1039/D2EM00032F.
- 575 Ferraz, S.F.D., Vettorazzi, C.A., Theobald, D.M., and Ballester, M.V.R. (2005). Landscape dynamics
- of Amazonian deforestation between 1984 and 2002 in central Rondonia, Brazil: assessment and
- 577 future scenarios. *Forest Ecology and Management* 204, 67-83.
- 578 Fostier, A.H., Melendez-Perez, J.J., and Richter, L. (2015). Litter mercury deposition in the
- 579 Amazonian rainforest. *Environmental Pollution* 206, 605-610.
- 580 Friedli, H.R., Arellano, A.F., Cinnirella, S., and Pirrone, N. (2009). Initial Estimates of Mercury
- 581 Emissions to the Atmosphere from Global Biomass Burning. Environmental Science &
- 582 *Technology* 43, 3507-3513.
- 583 Fu, X., Zhang, H., Liu, C., Zhang, H., Lin, C.-J., and Feng, X. (2019). Significant Seasonal
- 584 Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in
- 585 China Caused by Vegetation and Mercury Sources. *Environmental Science & Technology* 53,
- 586 13748-13756.

- González-Pérez, J.A., González-Vila, F.J., Almendros, G., and Knicker, H. (2004). The effect of fire
 on soil organic matter--a review. *Environment international* 30, 855-870.
- 589 Guedron, S., Arnouroux, D., Tessier, E., Grirnaldi, C., Barre, J., Berail, S., Perrot, V., and Grimaldi,
- 590 M. (2018). Mercury Isotopic Fractionation during Pedogenesis in a Tropical Forest Soil Catena
- 591 (French Guiana): Deciphering the Impact of Historical Gold Mining. *Environmental Science* &
- 592 *Technology* 52, 11573-11582.
- 593 Gustin, M.S., Huang, J.Y., Miller, M.B., Peterson, C., Jaffe, D.A., Ambrose, J., Finley, B.D., Lyman,
- 594 S.N., Call, K., Talbot, R., Feddersen, D., Mao, H.T., and Lindberg, S.E. (2013). Do We
- 595 Understand What the Mercury Speciation Instruments Are Actually Measuring? Results of
- 596 RAMIX. Environmental Science & Technology 47, 7295-7306.
- Gworek, B., Dmuchowski, W., and Baczewska-Dabrowska, A.H. (2020). Mercury in the terrestrial
 environment: a review. *Environmental Sciences Europe* 32.
- 599 Hintelmann, H., and Zheng, W. (2011). "Tracking Geochemical Transformations and Transport of
- 600 Mercury through Isotope Fractionation," in *Environmental Chemistry and Toxicology of Mercury*,
- 601 eds. G. Liu, Y. Cai & N. O'driscoll.), 293-327.
- 602 INPE (2022). Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite
- 603 [Online]. Available: <u>http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes</u>
- 604 [Accessed].
- Jiskra, M., Sonke, J.E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C.L., Pfaffhuber, K.A.,
- 606 Wangberg, I., Kyllonen, K., Worthy, D., Martin, L.G., Labuschagne, C., Mkololo, T., Ramonet,
- 607 M., Magand, O., and Dommergue, A. (2018). A vegetation control on seasonal variations in global
- atmospheric mercury concentrations. *Nature Geoscience* 11, 244-+.
- Jiskra, M., Wiederhold, J.G., Skyllberg, U., Kronberg, R.M., Hajdas, I., and Kretzschmar, R. (2015).
- 610 Mercury Deposition and Re-emission Pathways in Boreal Forest Soils Investigated with Hg
- 611 Isotope Signatures. *Environmental Science & Technology* 49, 7188-7196.

- Kato, S., Akimoto, H., Röckmann, T., Bräunlich, M., and Brenninkmeijer, C.a.M. (1999). Stable
- 613 isotopic compositions of carbon monoxide from biomass burning experiments. *Atmospheric*
- 614 *Environment* 33, 4357-4362.
- 615 Keeley, J.E., Safford, H., Fotheringham, C.J., Franklin, J., and Moritz, M. (2009). The 2007 Southern
- 616 California Wildfires: Lessons in Complexity. *Journal of Forestry* 107, 287-296.
- 617 Kendall, C., and Doctor, D.H. (2003). "5.11 Stable Isotope Applications in Hydrologic Studies," in
- 618 *Treatise on Geochemistry*, eds. H.D. Holland & K.K. Turekian. (Oxford: Pergamon), 319-364.
- 619 Kumar, A., Wu, S.L., Huang, Y.X., Liao, H., and Kaplan, J.O. (2018). Mercury from wildfires:
- 620 Global emission inventories and sensitivity to 2000-2050 global change. *Atmospheric*
- *Environment* 173, 6-15.
- 622 Kwon, S.Y., Blum, J.D., Yin, R., Tsui, M.T-K, Yang, Y.O., Choi, J.W. (2020). Mercury stable
- 623 isotopes for monitoring the effectivness of the Minamata Convention on Mercury. Earth-Science624 Reviews 203, 103111.
- 625 Lacerda, L.D., De Souza, M., and Ribeiro, M.G. (2004). The effects of land use change on mercury
- distribution in soils of Alta Floresta, Southern Amazon. *Environmental Pollution* 129, 247-255.
- Li, X.Y., Li, Z.G., Chen, J., Zhang, L.M., Yin, R.S., Sun, G.Y., Meng, B., Cui, Z.K., and Feng, X.B.
- 628 (2021). Isotope signatures of atmospheric mercury emitted from residential coal combustion.
- 629 *Atmospheric Environment* 246.
- 630 Liu, H.-W., Shao, J.-J., Yu, B., Liang, Y., Duo, B., Fu, J.-J., Yang, R.-Q., Shi, J.-B., and Jiang, G.-B.
- 631 (2019). Mercury isotopic compositions of mosses, conifer needles, and surface soils: Implications
- 632 for mercury distribution and sources in Shergyla Mountain, Tibetan Plateau. *Ecotoxicology and*
- 633 Environmental Safety 172, 225-231.
- Mataix-Solera, J., Cerda, A., Arcenegui, V., Jordan, A., and Zavala, L.M. (2011). Fire effects on soil
- 635 aggregation: A review. *Earth-Science Reviews* 109, 44-60.

- 636 Melendez-Perez, J.J., and Fostier, A.H. (2013). Assessment of direct Mercury Analyzer® to quantify
- 637 mercury in soils and leaf samples. *Journal of the Brazilian Chemical Society* 24, 1880-1886.
- 638 Melendez-Perez, J.J., Fostier, A.H., Carvalho, J.A., Windmoller, C.C., Santos, J.C., and Carpi, A.
- 639 (2014). Soil and biomass mercury emissions during a prescribed fire in the Amazonian rain forest.
- 640 *Atmospheric Environment* 96, 415-422.
- Merino et al. (2018). Inferring changes in soil organic matter in post-wildfire soil burn severity levels
 in a temperate climate. Science of the Total Environment 627 (2018) 622–632.
- 643 Michelazzo, P.a.M., Fostier, A.H., Magarelli, G., Santos, J.C., and De Carvalho, J.A. (2010).
- 644 Mercury emissions from forest burning in southern Amazon. *Geophysical Research Letters* 37.
- 645 Miserendino, R.A., Guimardes, J.R.D., Schudel, G., Ghosh, S., Godoy, J.M., Silbergeld, E.K., Lees,
- 646 P.S.J., and Bergquist, B.A. (2018). Mercury Pollution in Amapa, Brazil: Mercury Amalgamation
- 647 in Artisanal and Small-Scale Gold Mining or Land-Cover and Land-Use Changes? *Earth and*
- 648 *Space Chemistry* 2, 441-450.
- 649 North Central Regional Research, N. (2012). "Recommended Chemical Soil Test Procedures for the
- 650 North Central Region". (United States of America: North Central Regional Research).
- 651 Obrist, D., Kirk, J.L., Zhang, L., Sunderland, E.M., Jiskra, M., and Selin, N.E. (2018). A review of
- global environmental mercury processes in response to human and natural perturbations: Changes
- of emissions, climate, and land use. *Ambio* 47, 116-140.
- 654 Outridge, P.M., Mason, R.P., Wang, F., Guerrero, S., and Heimbürger-Boavida, L.E. (2018).
- 655 Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury
- Assessment 2018. *Environmental Science & Technology* 52, 11466-11477.
- 657 Schudel, G., Miserendino, R.A., Veiga, M.M., Velasquez-López, P.C., Lees, P.S.J., Winland-Gaetz,
- 658 S., Davée Guimarães, J.R., and Bergquist, B.A. (2018). An investigation of mercury sources in the
- 659 Puyango-Tumbes River: Using stable Hg isotopes to characterize transboundary Hg pollution.
- 660 *Chemosphere* 202, 777-787.

- 661 Schumacher, M., Werner, R.A., Meijer, H.a.J., Jansen, H.G., Brand, W.A., Geilmann, H., and
- 662 Neubert, R.E.M. (2011). Oxygen isotopic signature of CO₂ from combustion
- 663 processes. *Atmospheric Chemistry and Physics* 11, 1473-1490.
- 664 Shi, Y.S., Zhao, A.M., Matsunaga, T., Yamaguchi, Y., Zang, S.Y., Li, Z.Q., Yu, T., and Gu, X.F.
- 665 (2019). High-resolution inventory of mercury emissions from biomass burning in tropical
- 666 continents during 2001-2017. *Science of the Total Environment* 653, 638-648.
- 667 Sun, R., Sonke, J.E., Heimbürger, L.-E., Belkin, H.E., Liu, G., Shome, D., Cukrowska, E., Liousse,
- 668 C., Pokrovsky, O.S., and Streets, D.G. (2014). Mercury Stable Isotope Signatures of World Coal
- 669 Deposits and Historical Coal Combustion Emissions. *Environmental Science & Technology* 48,
- 670 7660-7668.
- 671 Sun, R.Y. (2019). Mercury Stable Isotope Fractionation During Coal Combustion in Coal-Fired
- 672 Boilers: Reconciling Atmospheric Hg Isotope Observations with Hg Isotope Fractionation Theory.
- 673 Bulletin of Environmental Contamination and Toxicology 102, 657-664.
- 674 Tang, S., Feng, C., Feng, X., Zhu, J., Sun, R., Fan, H., Wang, L., Li, R., Mao, T., and Zhou, T.
- 675 (2017). Stable isotope composition of mercury forms in flue gases from a typical coal-fired power
- 676 plant, Inner Mongolia, northern China. *Journal of Hazardous Materials* 328, 90-97.
- Wang, X., Bao, Z.D., Lin, C.J., Yuan, W., and Feng, X.B. (2016). Assessment of Global Mercury
 Deposition through Litterfall. *Environmental Science & Technology* 50, 8548-8557.
- Wang, X., Luo, J., Yin, R.S., Yuan, W., Lin, C.J., Sommar, J., Feng, X.B., Wang, H.M., and Lin, C.
- 680 (2017). Using Mercury Isotopes To Understand Mercury Accumulation in the Montane Forest
- Floor of the Eastern Tibetan Plateau. *Environmental Science & Technology* 51, 801-809.
- 682 Wang, X., Yuan, W., Lin, C.-J., Zhang, L., Zhang, H., and Feng, X. (2019). Climate and Vegetation
- 683 As Primary Drivers for Global Mercury Storage in Surface Soil. *Environmental Science* &
- 684 *Technology* 53, 10665-10675.

- 685 Wang, X., Yuan, W., Lin, C.-J., Feng, X. (2021). Mercury cycling and isotopic fractionation in
- 686 global forests. Critical Reviews in Environmental Science and Technology.
- 687 Witt, E.L., Kolka, R.K., Nater, E.A., Wickman, T.R.J.W., Air,, and Pollution, S. (2009). Influence of
- the Forest Canopy on Total and Methyl Mercury Deposition in the Boreal Forest. *Water Air and*
- 689 *Soil Pollution* 199, 3-11.
- 690 Yuan, W., Sommar, J., Lin, C.-J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu, Z., Wu, C., and Feng, X.
- 691 (2019). Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring after
- 692 Reductive Loss from Foliage. *Environmental Science & Technology* 53, 651-660.
- 693 Zhang, H., Yin, R.S., Feng, X.B., Sommar, J., Anderson, C.W.N., Sapkota, A., Fu, X.W., and
- Larssen, T. (2013). Atmospheric mercury inputs in montane soils increase with elevation:
- 695 evidence from mercury isotope signatures. *Scientific Reports* 3.
- Zheng, W., Obrist, D., Weis, D., and Bergquist, B.A. (2016). Mercury isotope compositions across
 North American forests. *Global Biogeochemical Cycles* 30, 1475-1492.
- Key Kanali Shou, J., Obrist, D., Dastoor, A., Jiskra, M., and Ryjkov, A. (2021). Vegetation uptake of mercury
- and impacts on global cycling. *Nature Reviews Earth & Environment* 2, 269-284.

Supplementary Material

Click here to access/download Supplementary Material Richter et al. -Supplementary Information.docx