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ABSTRACT: The phosphine-borane iPr2P(o-C6H4)BFxyl2 (Fxyl = 3,5-(F3C)2C6H3) 1-Fxyl was found to promote 

the reductive elimination of ethane from [AuMe2(µ-Cl)]2. NMR monitoring revealed the intermediate formation of 

the (1-Fxyl)AuMe2Cl complex. DFT calculations identified a zwitteri-

onic path as the lowest energy profile, with an overall activation barrier 

more than 10 kcal/mol lower than without borane assistance. The Lewis 

acid moiety first abstracts the chloride to generate a zwitterionic Au(III) 

complex, which then readily undergoes C(sp3)–C(sp3) coupling. The chloride is finally transferred back from boron 

to gold. The electronic features of this Lewis assisted reductive elimination at gold have been deciphered by IBO 

analyses. Sufficient Lewis acidity of boron is required for the ambiphilic ligand to trigger the C(sp3)–C(sp3) cou-

pling, as shown by complementary studies with two other phosphine-boranes, and the addition of chlorides slows 

down the reductive elimination of ethane.

 

 

Introduction 

Gold complexes were long considered quite inert and their synthetic use was mostly confined to Lewis acid 

behavior for the activation of CC multiple bonds towards nucleophilic addition.1 However, this is no longer the 

case and intensive research efforts over the past 10-15 years have shown that versatile chemistry is in fact possible 

at gold. Recent studies have provided evidence for its ability to undergo several key elementary steps besides π-

coordination: oxidative addition, migratory insertion and β-H elimination in particular.2 Rational ligand design en-

ables gold to display typical transition metal (TM) behaviour, but its reactivity profile is often very different from 

that of the other TMs, which makes it very complementary and useful.3,4 

Reductive elimination is a pivotal step in many TM-catalyzed transformations. It is the product-releasing step 

and often the driving force of the reaction. Pioneering studies on C–C coupling from Au(III) complexes date back 



 

to the 1970-1990’s with a series of seminal contributions by Tobias, Kochi, Komiya and Vicente.5-7 The field then 

remained dormant for about 2 decades, until Toste et al. reported that C(sp2)–C(sp2) reductive elimination is excep-

tionally fast at gold, much faster than with any other TM in fact.8 Comparatively, C–C coupling involving C(sp3) 

centers is much less favored and actually highly challenging with very scant examples reported so far. In 1976, 

Kochi et al. noticed a significant impact of the X co-ligand in the reductive elimination of the (Ph3P)AuMe2X 

complexes. The less coordinating was the X co-ligand, the faster was the C(sp3)–C(sp3) coupling.6b More recently, 

Toste et al. achieved challenging Ar–CF3 couplings within less than 1 minute at –10°C by reacting (phos-

phine)Au(Ar)(CF3)I complexes with Ag salts.9 In addition, Bergman, Raymond and Toste devised and successfully 

applied a supramolecular catalytic approach to the H3C–CH3 coupling at gold. Polyanionic cages were used to 

entrap and activate LAuMe2I complexes (L = PMe3, PEt3) through iodide dissociation.10,11 

These recent studies and the peculiar behaviour of gold stimulated renewed interest for C–C and C–X reductive 

elimination from Au(III) complexes.12-15 Besides experimental investigations, thorough DFT studies have shed light 

into the factors influencing C–C coupling at gold.10c-g,16 In general, two different scenarios can be distinguished 

depending on the hybridization of the carbon centers to couple. While C(sp2)–C(sp2) reductive eliminations proceed 

readily from 4-coordinated Au(III) complexes, C–C(sp3) reductive eliminations are more difficult to achieve and 

typically involve 3-coordinate Au(III) species (Figure 1a). 

 

 

 

Figure 1. C–C Reductive elimination at gold. a) 4-Coordinate vs 3-coordinate pathways for the reductive elimina-

tion of C(sp2)–C(sp2) vs C(sp3)–C(sp2/sp3) bonds at Au(III). b) Possible scenarios for the H3C–CH3 reductive elim-
ination at Au(III) assisted by phosphine-boranes, as investigated in this work. 

 

Our interest in gold reactivity and ambiphilic ligands prompted us to consider the possibility to take advantage 

of a Lewis acid (LA) moiety to promote reductive elimination and C–C coupling at gold. Recent studies have 

pinpointed the positive impacts that external LAs (BR3, ZnR2, AgX, MgX2…) may have on challenging C–C re-

ductive eliminations.17,18 The LA may either coordinate to a remote basic site of the group to couple, behave as a 

Z-type ligand and withdraw electron-density from the metal, or abstract a co-ligand at the metal to generate a 

coordinatively unsaturated complex. 



 

Phosphine-boranes and related ambiphilic ligands readily engage in M→B interactions and bridge M–Cl bonds 

via P→M–Cl→B interactions.19 Ultimately, chloride abstraction may be observed leading to zwitterionic com-

plexes.20 As for gold, we have shown that ambiphilic ligands offer an alternative to silver salts to activate Au(I) 

precatalysts.20d 

In this work, we questioned the ability of phosphine-boranes to trigger difficult reductive elimination at gold, in 

particular C(sp3)–C(sp3) coupling. The Lewis acid may assist the reductive elimination by either coordination to 

gold as a Z-type ligand or by abstracting a chloride at gold to give a 3-coordinate zwitterionic complex (Figure 1b). 

As reported hereafter, phosphine-boranes were indeed found to efficiently promote H3C–CH3 elimination from 

[AuMe2(µ-Cl)]2. The influence and the role of the borane moiety were thoroughly investigated by experimental and 

computational means. 

 

Results and Discussion 

For this study, iPr2P(o-C6H4)BFXyl2 (Fxyl = 3,5-(F3C)2C6H3) 1-Fxyl21 was chosen as phosphine-borane since 

we recently found it readily reacts with organo (vinyl, alkynyl, aryl) Au(I) complexes to give zwitterionic species.22 

The possibility for 1-Fxyl to trigger reductive elimination was assessed with the µ-Cl bridged dimer (AuMe2Cl)2 

2, which is reluctant to undergo C(sp3)–C(sp3) coupling (Scheme 1). The phosphine-borane was mixed with 0.5 

equiv. of 2 in chloroform at room temperature. NMR monitoring revealed complete conversion within 8 hours, with 

formation of ethane (as apparent from its diagnostic singlet at δ 0.88 ppm in the 1H NMR spectrum) along with the 

phosphine-borane Au(I) chloro complex 3-Fxyl (identified by its 31P NMR signal at δ 65.0 ppm).22b Control anal-

yses showed that the Au(III) dimer 2 is stable in the solid state (only traces of decomposition are detected after 

weeks) while some degradation occurs in solution, but it is very slow (94% within 8 days). Thus, the phosphine-

borane 1-Fxyl significantly speeds up C(sp3)–C(sp3) coupling from 2 and somehow promotes reductive elimination 

at gold. 

 

 

Scheme 1. Reductive elimination of ethane upon treatment of 2 with the phosphine-borane 1-Fxyl. 

 

 

To gain more insight into the influence of the Lewis base and Lewis acid, the Au(III) dimer 2 was then treated 

separately with phosphines and boranes under similar conditions (Table 1). With the phosphine iPr2PPh alone, the 



 

µ-Cl bridge was immediately split to give cis-(iPr2PPh)AuMe2Cl, whose structure was unambiguously ascertained 

by 31P, 1H and 13C NMR spectroscopy.23 This complex proved extremely stable over time, with only 8% conversion 

after 12 days. On their side, triaryl boranes were found to only marginally influence the stability of 2. With BPh3, 

only 50% conversion is achieved after 6 days and even with the very Lewis acidic borane B(C6F5)3, 6 days are 

needed to reach 90% conversion. Thus, the presence of both the phosphine and borane seems crucial for the reduc-

tive elimination to proceed rapidly. Nonetheless, our first attempt by combining iPr2PPh and B(C6F5)3 resulted in 

very slow conversion of (AuMe2Cl)2. In fact, the phosphine and borane react with each other (via nucleophilic 

aromatic substitution)24 faster than with (AuMe2Cl)2 and the resulting phosphonium-borate (iPr)2PhP(p-

C6F4)BF(C6F5)2 is completely inert towards C(sp3)–C(sp3) coupling at gold. To prevent this irreversible quenching, 

the phosphine iPr2PPh was first reacted with (AuMe2Cl)2 and the ensuing complex was then treated with B(C6F5)3. 

Under these conditions, reductive elimination proceeds quickly and is essentially complete within 10 minutes. All 

together, these experiments suggest that the phosphine and borane moieties of 1 act synergistically. The phosphine 

is presumed to coordinate to gold and split the µ-Cl bridge, while the borane is expected to coordinate to gold or to 

pull on the chloride at gold (and eventually abstract it).20 

 

Table 1. Conversion of the Au(III) dimer 2 at RT in CDCl3 (determined by 
1
H NMR spectroscopy, by relative 

integration with tetrachloroethane as internal standard). 

 

additive Conversion / Time  

none 94 % / 8 days  
iPr2PPh 8 % / 12 days  

B(C6F5)3 90 % / 6 days  

BPh3 50 % / 6 days  
iPr2PPh + B(C6F5)3 96 % / 7 days 

iPr2PPh then B(C6F5)3 90 % / <10 min. 

 

With the aim to get more information about the way the phosphine-borane 1-Fxyl reacts with (AuMe2Cl)2 2, we 

tried to characterize some intermediate complex. Right after mixing the two components, 3 different compounds 

were detected by 31P NMR spectroscopy (Figure 2): the free phosphine-borane 1-Fxyl (δ 30.5 ppm), its Au(I) chloro 

complex 3-Fxyl, and a new species 4-Fxyl (δ 34.7 ppm). The amount of 4-Fxyl increases relatively quickly at the 

beginning of the reaction. It reaches a plateau after about 1 hour and then decreases in favour of the Au(I) chloro 

complex 3-Fxyl. To further characterize the intermediate complex 4-Fxyl, the phosphine-borane 1-Fxyl and Au(III) 

dimer (AuMe2Cl)2 2 were let to react for 1 h 25 min at room temperature and the solution was then cooled to ‒

15°C. At this point, 4-Fxyl is the major species (representing 47% of the P-containing compounds) and it remains 

so for several hours. Despite the presence of 1-Fxyl and 3-Fxyl, all the 1H and 13C NMR signals for 4-Fxyl could 

be identified and attributed unequivocally.23 It is the Au(III) complex cis-(1-Fxyl)AuMe2Cl. Most diagnostic are 

the two 13C NMR signals for the Me groups in trans and cis to P resonating as doublets at δ 21.4 and 10.3 ppm with 



 

2JPC coupling constants of 100.5 and 4.5 Hz, respectively. The slow generation of 4-Fxyl contrasts with the imme-

diate formation of its boron-free analog cis-(iPr2PPh)AuMe2Cl. It is probably due to the closed form of 1-Fxyl 

(with intramolecular P→B interaction),21a which slows down the coordination to gold and the splitting of the µ-Cl 

bridge. 

 

 

 

 

 

Figure 2. Reaction between the phosphine-borane 1-Fxyl and (AuMe2Cl)2 2 in CDCl3 at room temperature. Top: 

Stacked 31P{1H} NMR spectra. Bottom: Variation of the relative percentage of P-containing species, as determined 

by 1H NMR spectroscopy. 

 

Given the lower activation barriers predicted for C(sp3)–C(sp3) reductive elimination at tricoordinate versus 

tetracoordinate Au(III) centers,16a the borane moiety of 1-Fxyl is expected to activate the Au‒Cl bond in 4-Fxyl via 

bridging coordination or even complete abstraction. Unfortunately, the exact bonding situation within 4-Fxyl could 

not be authenticated experimentally. No 11B NMR signal was observable for 4-Fxyl (neither for the Au(I) complex 

3-Fxyl22b). To nonetheless support the interaction between B and Cl, the influence of adding an external chloride 



 

source (as a competitive inhibitor for boron) was investigated. The reaction between 1-Fxyl and 2 was let to go to 

about 50% conversion to form complex 4-Fxyl in maximum quantity. An excess of tetraphenylphosphonium chlo-

ride TPPCl (3 equiv. per gold and phosphine-borane, related to the initial amounts) was then added quickly at ‒

80°C. From this time, the consumption of complex 4-Fxyl was monitored at room temperature by 1H{31P} NMR 

spectroscopy.23 Comparing the parallel experiments performed with and without added TPPCl (Figure 3) clearly 

shows a noticeable slowdown of the reductive elimination with extra chlorides. Indeed, more than two thirds of 

complex 4-Fxyl are still observed after 24 hours in the presence of TPPCl while it is completely consumed within 

8 hours without TPPCl. 

 

 

 

Figure 3. Evolution of complex 4-Fxyl against time in CDCl3 at room temperature with and without added tetra-

phenylphosphonium chloride (3 eq.) (t = 0 corresponds to the first NMR control after addition of chloride). 

 

To gain further insight into the impact and mode of action of the borane moiety, the mechanism of C(sp3)–

C(sp3) reductive elimination at gold was studied using Density Functional Theory (DFT). Calculations were per-

formed on the actual (1-Fxyl)AuMe2Cl complex 4-Fxyl at the PCM(chloroform)-B3PW91-D3(BJ)/SDD+f(Au),6-

31G**//B3PW91/SDD+f(Au) ,6-31G** level of theory.23 

 

 

 



 

 

Figure 4. Optimized structures of the (1-Fxyl)AuMe2Cl complex: P→Au‒Cl→B bridged ground state A, B-pen-

dant forms A’ (apical) and A” (rotated) at the B3PW91/SDD+f(Au),6-31G** level of theory. See Figure 5 for the 

zwitterionic form A’’’. Corrected Gibbs free energies ΔG (in kcal/mol) related to A computed at the 
PCM(chloroform)-B3PW91-D3(BJ)/SDD+f(Au),6-31G** //B3PW91/SDD+f(Au),6-31G** level. Key structural 
data (distances in Å, angles in °). 

 

The most stable form A involves P→Au‒Cl→B bridging coordination (Figure 4). Strong Cl–B interaction is 

apparent from the short distance (2.109 Å), the noticeable pyramidalization of boron (ΣBα 342.6°) and the elonga-

tion of the Au–Cl bond (2.488 Å). The Cl→B interaction is found as a polarized covalent bond upon Natural Bond 

Orbital analysis (NBO: 21.4% B, 78.6% Cl). Two B-pendant forms without interaction between the borane moiety 

and the AuMe2Cl fragment were located on the potential energy surface. In A’ (+ 3.1 kcal/mol), the boron center 

sits in an apical position, but remains far from gold (Au···B > 3.6 Å) and trigonal planar (ΣBα 358.8°). In A’’ (+10.7 

kcal/mol), the P–C(sp2) bond of the phosphine-borane ligand is rotated and the borane moiety points away from the 

metal center. 

From A, reductive elimination to give ethane and the phosphine-borane Au(I) complex B is very downhill in 

energy (ΔG –46.7 kcal/mol). The lowest energy path is a stepwise process (Figure 6) involving (i) chloride transfer 

from Au to B to give the zwitterionic Au(III) complex A’’’,25 (ii) C(sp3)–C(sp3) coupling to give the zwitterionic 

Au(I) complex INT-A’’’ and release ethane, and finally (iii) back-transfer of the chloride from B to Au to give the 

neutral Au(I)→B complex B22b. The zwitterionic complexes A’’’ and INT-A’’’ (Figure 5) are stabilized by π-coor-

dination of a Fxyl moiety at B to the coordinatively unsaturated Au(III/I) center (short Cipso–Au/Cortho–Au distances 

of 2.640/2.618 Å in A’’’ and 2.401/2.339 Å in INT-A’’’ are found).23,26 Relatively strong donor-acceptor interactions 

are found upon NBO analysis (with delocalization energies ΔE(2) of 33.3 and 41.3 kcal/mol, respectively). The 

respective Intrinsic Bond Orbitals (IBOs) are depicted in Figure 6. The zwitterionic Au(III) complex A’’’ lies 8.3 

kcal/mol above A and the activation barrier for its formation is fairly accessible at 15.9 kcal/mol. 

 



 

 

Figure 5. Optimized structures of the zwitterionic complexes A’’’ and INT-A’’’ at the B3PW91/SDD+f(Au),6-
31G** level of theory. Key structural data (distances in Å). 

 

 

 

Figure 6. Energy profile computed for the transformation of the (1-Fxyl)AuMe2Cl complex A into ethane and the 

(1-Fxyl)AuCl complex B at the PCM(CHCl3)-B3PW91-D3(BJ)/SDD+f(Au),6-31G**//B3PW91/SDD+f(Au),6-
31G** level of theory. Corrected Gibbs Free energies (ΔG) in kcal/mol, main distances in Å and bond angles in 
degrees (º). IBO orbitals accounting for the Cl→Au+, arene→Au+ and Au→B interactions. 

 

The C(sp3)–C(sp3) coupling proceeds readily from A’’’. The corresponding transition state TSA sits only 10.8 

kcal/mol above A’’’, corresponding to an activation barrier of 19.1 kcal/mol from A. In TSA, the BFxyl2 group is 



 

pendant and no longer engaged in π-arene coordination. The gold center is 3-coordinate and the C(sp3)–C(sp3) 

coupling is rather advanced: the C–Au–C bond angle is shrinked (from 82.3° in A’’’ to 57.3°), the Au–C(sp3) bonds 

are elongated (from 2.068/2.076 Å in A’’’ to 2.181/2.201 Å) and the C(sp3)···C(sp3) distance is shortened (from 

2.728 Å in A’’’ to 2.101 Å). IBO analyses along the intrinsic reaction coordinate (Figure 7) confirm this view. The 

two σ(Au–C) orbitals accounting for the Au–C(sp3) bonds progressively evolve into a σ(C–C) orbital (for H3C–

CH3) and a d(Au) orbital (in line with the reduction of the d8 Au(III) center into a d10 Au(I) center). This orbital 

redistribution is essentially done when the C(sp3)···C(sp3) distance reaches 2.54 Å, well before TSA. 

Finally, from the zwitterionic Au(I) complex INT-A’’’, back-transfer of the chloride from B to Au to give B is 

very exergonic (ΔG –25.3 kcal/mol) and its energy barrier is low (ΔG≠ 9.9 kcal/mol).  

Overall, the activation barrier computed for this boron-assisted C(sp3)–C(sp3) reductive elimination at gold is 

19.1 kcal/mol, consistent with a reaction occurring over hours at 25°C. A similar barrier (17.2 kcal/mol) was also 

found for the coupling of ethyl groups from the analogous complex (1-Fxyl)AuEt2Cl.23 These values are signifi-

cantly lower than those reported previously for (R3P)AuMe2X complexes (R = Ph, Me; X = Cl, I) (ΔG≠ > 30 

kcal/mol).10c,d,f,16a With the aim to further assess the impact of the Lewis acid on the activation barrier, alternative 

pathways have been looked for on the potential energy surface of complex (1-Fxyl)AuMe2Cl. Two other transition 

states for C(sp3)–C(sp3) coupling not involving Cl→B interaction were found (from A’ and A”, with the borane 

moiety sitting above gold or opposite to gold).23 The corresponding barriers are significantly larger (29.6 and 43.4 

kcal/mol), making the boron-assisted route much more favored. The boron-free analog (iPr2PPh)AuMe2Cl was also 

considered. The barrier for ethane formation was herealso estimated to be much higher (30.0 kcal/mol).23 

 



 

 

Figure 7. IRC path of the reductive elimination step accounting for the C(sp3)–C(sp3) coupling at Au(III) with the 

most relevant IBO orbitals (d(Au), σAuC, σCC). Numbers relate the fraction of electrons of the doubly occupied 
orbitals assigned to each atom. 

 

Finally, to assess how general are the observations made with 1-Fxyl, the Au(III) dimer (AuMe2Cl)2 2 was 

reacted with two other phosphine-boranes, 1-Pin and 1-Cy (Scheme 2). When replacing the BFxyl2 group for a 

Bpin moiety,27 the µ-Cl bridge was instantaneously split but the reaction stopped at 4-Pin. No C(sp3)–C(sp3) cou-

pling was detected even after 8 days, indicating that a boron center of sufficient Lewis acidity is needed to assist 

the reductive elimination at gold.23 Conversely, the phosphine-borane 1-Cy28 promotes reductive elimination, with 

70% conversion in 6 hours. Upon reaction monitoring, the corresponding (1-Cy)AuMe2Cl complex 4-Cy was iden-

tified as intermediate, with spectroscopic features very similar to those of 4-Fxyl.23 The borane moiety likely acts 

as chloride abstractor herealso, as supported by the strong inhibition observed upon addition of chlorides.23 Thus, 

phosphine-boranes seem quite general in assisting C(sp3)–C(sp3) reductive elimination at gold and the presence of 

a highly Lewis acidic borane is not required. 
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Scheme 2 Reaction of (AuMe2Cl)2 2 with the phosphine-boranes 1-Pin and 1-Cy. 

 

 

Conclusion 

In conclusion, phosphine-boranes were found to trigger the reductive elimination of ethane at gold. Thanks to 

reversible chloride abstraction, the Lewis acid moiety opens a low-energy path for C(sp3)–C(sp3) coupling. It in-

volves a 3-coordinate zwitterionic Au(III) complex as key intermediate. 

Ambiphilic ligands are attracting growing interest in TM chemistry. Due to the Lewis acid moiety, they exhibit 

non-innocent behavior which inherently differs from that operating with classical donor ligands.29 Over the past 

few years, Lewis acid assisted oxidative additions and transmetalations have been documented with ambiphilic 

ligands.30 The results reported here demonstrate that ambiphilic ligands may also assist reductive elimination.31 

Future studies will aim to generalize this concept to other challenging reductive eliminations at gold and to extend 

it beyond gold. 
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