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Extension of an all-Mach Roe scheme able to deal with low Mach
acoustics to full Euler system.

Thomas Galié∗ Jonathan Jung†‡ Ibtissem Lannabi†‡ Vincent Perrier‡†

July 18, 2023

Abstract

We propose to extend the fix of Roe’s approximate Riemann solver developed for the Barotropic Euler
equations in [2] to the full Euler equations. This scheme is built mainly to handle low Mach acoustic waves.
Moreover, compared to pressure-centered type schemes, this numerical fix has the advantage of improving the
numerical solution in the sense that the oscillating modes are reduced. The theoretical study is based on a
two-time scales asymptotic analysis. It is proved that the Euler system equipped with a general equation of
state is consistent with a first-order wave system in a low Mach number regime. Similar analysis is performed
at the discrete level on the Roe scheme to derive the new fix. Numerical tests confirm the results obtained for
the Barotropic case about the ability of this fix to deal with both steady and low Mach acoustic computations
also in the case of full Euler equations.

Introduction
We consider the Euler system of equations

∂tU +∇x · f (U) = 0, where U =

 ρ
ρu
ρE

 , f (U) =

 ρuT

ρu⊗ u + pI
(ρE + p)uT

 . (1)

The vector U refers to the conservative variables composed of the density, momentum and total energy, and f to
the physical fluxes in dimension d. The total energy is defined as the sum of the internal energy e and the kinetic
energy ρE = ρe + ρ‖u‖

2

2 and the pressure p satisfies the general state law p = p(ρ, ρe). The differential of this
function writes

dp = χdρ+ κd(ρe). (2)

With those notations, the square sound velocity of the fluid is

a2 = χ+ κh,

with h = e + p/ρ the specific enthalpy. Under the assumption that a2 > 0 for all (ρ, e), the Euler system (1) is
well-known to be hyperbolic with eigenvalues given by λ± = u · n± a with genuinely nonlinear characteristic fields
and λ = u · n with linear characteristic fields.

Given one time scale t0, one length scale x0, one density scale ρ0 and one pressure scale p0, the following
dimensionless variables may be defined

t̃ =
t

t0
, x̃ =

x

x0
, ρ̃ =

ρ

ρ0
, p̃ =

p

p0
. (3)

It is natural to scale the velocity by u0 = x0/t0, and the sound speed by a2
0 = a2(ρ0, p0). If the corresponding

dimensionless variables are used instead of the original ones, the following system is obtained

∂t̃Ũ +∇x̃ · f̃
(
Ũ
)

= 0, where Ũ =

 ρ̃
ρ̃ũ

ρ̃Ẽ

 , f̃
(
Ũ
)

=


ρ̃ũT

ρ̃ũ⊗ ũ +
1

γM2
p̃I

(ρ̃Ẽ + 1
γ p̃)ũ

T

 , (4)
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with ũ = u/u0, M = u0/a0, and Ẽ = E/a2
0. The coefficient γ is defined as γ =

ρ0u
2
0

p0M2
=

ρ0a
2
0

p0
. Moreover,

we have ẽ = e/a2
0, ã2 = χ̃ + κ̃h̃ with h̃ = h/a2

0 = ẽ + p̃/(γρ̃), χ̃ = χ/a2
0 =

1

a2
0

∂p

∂ρ
=

p0

ρ0a2
0

∂p̃

∂ρ̃
=

1

γ

∂p̃

∂ρ̃
and

κ̃ = κ =
∂p

∂(ρe)
=

p0

ρ0a2
0

∂p̃

∂(ρ̃ẽ)
=

1

γ

∂p̃

∂(ρ̃ẽ)
. Additionally, given the definition of the total enthalpy H = E + p/ρ, one

can define its dimensionless expression as H̃ = H/a2
0, which leads to H̃ = Ẽ + p̃/(γρ̃).

Since some flows experience both acoustic and compressible effects and others may contain regions of both low
and high Mach numbers in the same domain, a numerical scheme which is able to deal with these kinds of flows
and which is accurate at low Mach number is required. As it is explained in [24], collocated density based schemes
are able to handle mixed Mach number flows. More precisely, we are interested in finite volume schemes with the
Roe numerical flux.

However, these methods face the well-known accuracy problem in a low Mach number regime, previously char-
acterized by the creation of spurious pressure modes and explained via a single-scale asymptotic analysis as the
inability of some schemes to produce discrete solutions which match the convective asymptotic solutions of the Euler
system [8, 6, 7, 19, 13, 18]. Afterwards, using a two-scale asymptotic analysis [16], many papers have discussed
the convective-acoustic limit obtained for Roe-type schemes [2, 26, 15], which gave another view to the accuracy
problem. Based on Schochet’s result [21], an interesting way to explain the accuracy problem by a simple analysis
of a linear wave system has been proposed [4, 11]. In [11], it was shown that a given Godunov-type scheme is
low Mach number accurate as soon as the long time limit of the matching discretization of a wave system ensures
a uniform pressure (equal to the pressure imposed at the boundary) and a divergence free velocity (equal to the
divergence free component of the Hodge Helmholtz Decomposition of the initial velocity): this statement is valid
under specific boundary conditions that ensure the existence of the long time limit at the continuous and discrete
levels (see [10]).

To overcome the accuracy problem, several fixes have been put forward. Most of them are built by modifying
the artificial diffusion to achieve accurate low Mach number results. We refer to [9] for a review on the impact of
the artificial diffusion on the accuracy of a low Mach number scheme.

Some fixes may be classified into pressure-centred schemes [4, 20, 22]. They consist in reducing the velocity
diffusion in the discretization of a wave system leading to a centered discretization of the pressure gradient. Indeed,
the modification of the artificial diffusion is carried out on the wave system derived from the asymptotic analysis of
Euler’s equations at low Mach number. Unfortunately, pressure-centered schemes introduce other problems such as
checkerboard modes [3]. In contrast with pressure-centered fixes which aim at reducing the velocity diffusion, other
fixes not only reduce the velocity diffusion but also add a pressure diffusion leading to a decentered discretization
of the pressure gradient [2, 12, 14]. Once again, the change of the artificial diffusion is done on a wave system.

Other schemes are based on the use of preconditioning techniques which are known to compute accurately
incompressible flows [25]. However, these fixes damp the acoustic variations on a very fast time scale [2].

This paper aims at extending the LMAAP fix (Low Mach Acoustic Accuracy Preserving) developed in [2] to the
full Euler system. The interest in investigating this extension is motivated by the success of this scheme in taking
into account acoustic phenomena, giving the right order of accuracy with a second order scheme and reducing the
oscillatory modes in the solution, although the scheme is not Galilean invariant and its expression is asymmetric.

In the present study, a two-time scales asymptotic analysis is performed for Euler equations equipped with a
general equation of state. We are able to prove that the first order pressure and zeroth order velocity satisfy a
wave system with non constant coefficients. However, for the Roe scheme, the challenge in considering a general
equation of state lies in the choice of the averaged partial derivatives of the thermodynamic variables derived from
the considered equation of state. As we face some difficulties in proving the consistency with a wave system for the
Roe scheme, the study is restricted to an equation of state where the first-order term of the asymptotic expansion of
the partial derivatives of the thermodynamic variables are supposed to be constant. Hence, under this assumption,
the consistency with the wave system is verified. Finally, the extension of LMAAP fix is deduced by following the
same steps done in [2].

The paper is organized as follows: firstly, section 1 briefly recalls the formulation of the Roe scheme and its
dimensionless expression in the subsonic case. After this, in section 2, the convective-acoustic limit is derived
using two-time scales analysis. The study is performed for the continuous Euler equations by considering a general
equation of state. However, for the discrete case, the first-order partial derivatives are supposed to be constant.
Afterwards, in section 3, the extension of the Roe scheme corrected using the LMAAP fix from the barotropic case
to the full Euler system is briefly presented. Finally, section 4 concerns the numerical tests. The LMAAP fix is
assessed on three different problems: a low Mach Riemann problem, a channel with a singular pressure loss and an
interaction of a low Mach isentropic stationary vortex with a low Mach acoustic wave.
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1 The finite volume Roe scheme for low Mach flows

1.1 The finite volume Roe scheme
We define the following Roe averages

ρij = (1− ζij) ρi + ζijρj ,

uij = ζijui + (1− ζij)uj ,
Hij = ζijHi + (1− ζij)Hj ,

where ζij =

√
ρi√

ρi +
√
ρj
. (5)

Let us notice that we can also write ρij =
√
ρiρj . Regarding the average partial derivatives χij , κij , there is not a

unique choice. However, they should satisfy the relation

∆p = χij∆ρ+ κij∆(ρe), (6)

where ∆(·) = (·)j − (·)i is the jump of a variable between cells i and j. Here we set them as follows

(κij , χij) =



(
ζijκi + (1− ζij)κj ,

∆p

∆ρ
− κij

∆(ρe)

∆ρ

)
if ∆ρ 6= 0,(

∆p

∆(ρe)
, χi

)
if ∆ρ = 0, ∆(ρe) 6= 0,

(κi, χi) otherwise.

The average sound velocity is then given by a2
ij = χij + κijhij , with hij = Hij − ‖uij‖2 /2. Other choices are

possible for the average partial derivatives such as in [23] but these should not impact significantly results (at least
for low Mach numbers flow which are of interest here). The Roe scheme for the Euler equations is defined as

|Ωi|dtUi(t) +
∑

Γij⊂∂Ωi

|Γij |ΦRoe
ij = 0, (7)

with

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
1

4
|uij · nij − aij |

∆p− ρijaij∆(u · nij)
a2
ij

 1
uij − aijnij

Hij − (uij · nij)aij


− 1

2
|uij · nij |

(
∆ρ− ∆p

a2
ij

) 1
uij

Hij − a2
ij/κij

− 1

2
|uij · nij | ρij

 0
∆u⊥(nij)

uij ·∆u⊥(nij)


− 1

4
|uij · nij + aij |

∆p+ ρijaij∆(u · nij)
a2
ij

 1
uij + aijnij

Hij + (uij · nij)aij

 , (8)

where u⊥(n) := u− (u · n)n, denotes the tangential component of u with respect to normal direction n.

1.2 Dimensionless expression of the Roe scheme in the subsonic case
The scheme (8) can be adimensioned by considering the dimensionless variables (3) and

ãij =
aij
a0
, H̃ij =

Hij

a2
0

, |Γ̃ij | =
|Γij |
|Γ0|

, |Ω̃i| =
|Ωi|
|Ω0|

, (9)

where |Γ0|/|Ω0| = 1/x0. In the subsonic case, the absolute values around the sonic waves can be removed and the
flux can be simplified as

Φ̃Roe
ij =

f̃(Ũi) + f̃(Ũj)
2

· nij −
1

2
|ũij · nij |

(
∆ρ̃− ∆p̃

γã2
ij

) 1
ũij

H̃ij − ã2
ij/κij


− 1

2
|ũij · nij | ρ̃ij

 0
∆ũ⊥(nij)

M2ũij ·∆ũ⊥(nij)

− 1

2

Mρ̃ij (ũij · nij) ∆(ũ · nij) + 1
γM∆p̃

ãij

 1
ũij
H̃ij


− 1

2

(
(ũij · nij) ∆p̃

γã2
ij

+ ρ̃ij∆(ũ · nij)

) 0
1
M ãijnij

M(ũij · nij)ãij


− θ̃ij − 1

2
(ρ̃ij∆(ũ · nij))

 0
1
M ãijnij

0

 , (10)
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where θ̃ij = 1 for the Roe scheme and θ̃ij = min(Mij , 1) for the Dellacherie et al. fix with Mij = max(Mi,Mj) =
max (‖ui‖ /ai, ‖uj‖ /aj) = Mmax (‖ũi‖ /ãi, ‖ũj‖ /ãj). For more details, we refer to [5]. The system (10) will be
used for performing the asymptotic analysis of the scheme.

2 Two-scale asymptotic analysis: acoustic limit on an incompressible
flow

2.1 Behavior of the continuous equations in the low Mach number limit
In this section, we are interested in deriving a system which allows to separate the material time scale information
(moving at velocity u = u·n) from the acoustic time scale which corresponds to phenomena that move approximately
at the velocity of the sound a0 when the Mach number is sufficiently low. It means that we have now two reference
time scales Tmat = x0/u0 = t0 and Tac = x0/a0 yielding two dimensionless time scales, namely

t̃ =
t

Tmat
and τ =

t

Tac
=

t

x0/a0
=

t

u0 × Tmat/a0
=

t

M × Tmat
=

t̃

M
. (11)

The material time t̃ and the acoustic time τ have a ratio of order M . This justifies to split the time dependency
of the variables into two times: t̃ but also τ . Details on this development can be found in [16]. Then ϕ ∈ {ρ,u, E}
can be written as an expansion in powers of the Mach number M

ϕ̃
(
x̃, t̃,M

)
=

N∑
n=0

Mnϕ̃(n)
(
x̃, t̃, τ

)
+O

(
Mn+1

)
, (12)

with τ = t̃/M . Then the derivative with respect to the time is

∂t̃ϕ̃(x̃, t̃,M) =

N∑
n=0

Mn

(
∂t̃ϕ̃

(n)
(
x̃, t̃, τ

)
+

1

M
∂τ ϕ̃

(n)
(
x̃, t̃, τ

))
+O

(
Mn+1

)
. (13)

Let first note that since

ρ̃Ẽ = ρ̃ẽ+M2ρ̃
‖ũ‖2

2
,

then we can deduce that

ρ̃ẽ = (ρ̃Ẽ)(0) +M(ρ̃Ẽ)(1) +M2

(
(ρ̃Ẽ)(2) − ρ̃(0)

∥∥ũ(0)
∥∥2

2

)
+O

(
M3
)
,

which naturally gives a definition to (ρ̃ẽ)(i), i = 0, . . . , 2 in the asymptotic expansion:

(ρ̃ẽ)(0) = (ρ̃Ẽ)(0), (ρ̃ẽ)(1) = (ρ̃Ẽ)(1), (ρ̃ẽ)(2) = (ρ̃Ẽ)(2) − ρ̃(0)

∥∥ũ(0)
∥∥2

2
.

Concerning the asymptotic development on the pressure, a first order development gives

p̃ = p̃(ρ̃, ρ̃ẽ) = p̃
(
ρ̃(0) +Mρ̃(1) +O

(
M2
)
, (ρ̃ẽ)(0) +M(ρ̃ẽ)(1) +O

(
M2
))

= p̃
(
ρ̃(0), (ρ̃ẽ)(0)

)
+
∂p̃(0)

∂ρ̃(0)
Mρ̃(1) +

∂p̃(0)

∂(ρ̃ẽ)(0)
M(ρ̃ẽ)(1) +O

(
M2
)

= p̃(0) +Mp̃(1) +O
(
M2
)
, (14)

with

∂p̃(0)

∂ρ̃(0)
= γχ̃(0),

∂p̃(0)

∂(ρ̃ẽ)(0)
= γκ̃(0), p̃(0) = p̃

(
ρ̃(0), (ρ̃ẽ)(0)

)
, p̃(1) = γχ̃(0)ρ̃(1) + γκ̃(0)(ρ̃ẽ)(1).

Applying a differential operator d on (14) thus leads to

dp̃ = dp̃(0) +Mdp̃(1) +O
(
M2
)
. (15)

with
dp̃(0) = γχ̃(0)dρ̃(0) + γκ̃(0)d (ρ̃ẽ)

(0)
,

dp̃(1) = d
(
γχ̃(0)ρ̃(1)

)
+ d

(
γκ̃(0) (ρ̃ẽ)

(1)
)
.

(16)

(17)
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Proposition 1. (Properties of the thermodynamic variables) The pressure p̃(0) is such that

p̃(0)
(
x̃, t̃, τ

)
= p̃(0)(t̃), (18)

and ρ̃(0), Ẽ(0), χ̃(0), κ̃(0) do not depend on τ .

Proof. By injecting the development (13) in (4), the momentum equation at order M−2 gives

∇x̃p̃
(0) = 0, (19)

At order M−1, we obtain 
∂τ ρ̃

(0) = 0,

∂τ

(
ρ̃(0)ũ(0)

)
+

1

γ
∇x̃p̃

(1) = 0,

∂τ

(
ρ̃(0)Ẽ(0)

)
= 0.

(20a)

(20b)

(20c)

Since we have (16), multiplying (20a) by γχ̃(0) and (20c) by γκ̃(0) and using the formula (ρ̃ẽ)(0) = (ρ̃Ẽ)(0) lead to
∂τ p̃

(0) = 0 and thus independence of p̃(0) from x̃ and τ . Note that, from (20a) and (20c), we obtain

ρ̃(0)
(
x̃, t̃, τ

)
= ρ̃(0)

(
x̃, t̃
)
,

ρ̃(0)Ẽ(0)
(
x̃, t̃, τ

)
= ρ̃(0)Ẽ(0)

(
x̃, t̃
)
,

(21)

and thus

χ̃(0) =
1

γ

∂p̃(0)

∂ρ̃(0)
= χ̃(0)

(
x̃, t̃
)
, κ̃(0) =

1

γ

∂p̃(0)

∂(ρ̃ẽ)(0)
= κ̃(0)

(
x̃, t̃
)
.

Proposition 2. (Link with the wave system)
(
p̃(1), ũ(0)

)
satisfies the wave system

∂τ p̃
(1) + γρ̃(0)

(
ã(0)

)2

∇x̃ · ũ(0) = −dt̃p̃
(0),

∂τ ũ
(0) +

1

γρ̃(0)
∇x̃p̃

(1) = 0,

(22a)

(22b)

where dt̃ denotes the total derivative.

Proof. From the insertion of the development (13) in (4), we get at order M0
∂t̃ρ̃

(0) + ∂τ ρ̃
(1) +∇x̃ ·

(
ρ̃(0)ũ(0)

)
= 0,

∂t̃(ρ̃
(0)Ẽ(0)) + ∂τ

(
ρ̃Ẽ
)(1)

+∇x̃ · (ρ̃(0)Ẽ(0)ũ(0) +
1

γ
p̃(0)ũ(0)) = 0.

(23a)

(23b)

Applying the partial derivative ∂τ as the differential operator in (17) on p̃(1) leads to

∂τ p̃
(1) = γχ̃(0)∂τ ρ̃

(1) + γκ̃(0)∂τ (ρ̃ẽ)
(1)
, (24)

since χ̃(0) and κ̃(0) do not depend on τ . Since p̃(0) does not depend on x̃, with (16) we get

γχ̃(0)∇x̃ρ̃
(0) + γκ̃(0)∇x̃

(
ρ̃H̃
)(0)

= γχ̃(0)∇x̃ρ̃
(0) + γκ̃(0)∇x̃

(
ρ̃Ẽ
)(0)

+ κ̃(0)∇x̃p̃
(0)

= γχ̃(0)∇x̃ρ̃
(0) + γκ̃(0)∇x̃ (ρ̃ẽ)

(0)
= 0.

In addition, we have

γχ̃(0)ρ̃(0) + γκ̃(0)ρ̃(0)Ẽ(0) + κ̃(0)p̃(0) =γρ̃(0)
(
χ̃(0) + κ̃(0)ẽ(0) + κ̃(0)p̃(0)/(γρ̃(0))

)
=γρ̃(0)

(
χ̃(0) + κ̃(0)h̃(0)

)
=γρ̃(0)

(
ã(0)

)2

.

Then, by multiplying (23a) and (23b) respectively by γχ̃(0) and γκ̃(0) and by summing the two, we obtain (22a).
(22b) is obtained using (20b) and (20a).
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2.2 Behavior of the Roe scheme and the Roe scheme corrected with the Dellacherie
et al. or Rieper fixes

The study of the semi-discrete scheme (10) is organized by following the same steps as in subsection 2.1 for the
continuous case. However, we face an obstacle for proving uniformity of p̃(0) and deriving the consistency with the
wave system whenever χ̃(0) and κ̃(0) are not constant. For this sake, the study is limited to an equation of state
where the first order term of the pressure p in the Mach number expansion is a linear function of ρ and ρe.

Hypothesis 1. We suppose in what follows that χ and κ are constant in space, i.e. χ̃(0)
ij = χ̃

(0)
i = χ̃(0), κ̃

(0)
ij =

κ̃
(0)
i = κ̃(0), ∀i, j.

The following proposition is the discrete version of Proposition 1.

Proposition 3. (Properties of the thermodynamic variables)
If p̃(0)(x̃, t̃, τ = 0) = p̃

(0)
0 (t̃) and p̃(0) is also equal to p̃(0)

0 at the boundaries, then

∀t̃ > 0, ∀τ ≥ 0, ∀i, p̃
(0)
i (t̃, τ) = p̃

(0)
0 (t̃).

Moreover, we have
∀t̃ > 0, ∀τ ≥ 0, ∀i, ρ̃

(0)
i (t̃, τ) = ρ̃

(0)
i (t̃), Ẽ

(0)
i (t̃, τ) = Ẽ

(0)
i (t̃),

∀t̃ > 0, ∀τ ≥ 0, ∀i, ρ̃
(0)
i

(
ã

(0)
i

)2

(t̃, τ) = ρ̃(0)
(
ã(0)

)2

(t̃).

Proof. By injecting (12) in (7)-(10), we obtain at order M−2

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ p̃(0)
i + p̃

(0)
j

2
nij = 0, (25)

and at order M−1

∂τ ρ̃
(0)
i +

1

|Ω̃i|

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ 1

2γã
(0)
ij

(
p̃

(0)
i − p̃

(0)
j

)
= 0,

∂τ (ρ̃iũi)
(0)

+
1

|Ω̃i|

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ [ 1

2γã
(0)
ij

(
p̃

(0)
i − p̃

(0)
j

)(
ũ

(0)
ij +

(
ũ

(0)
ij · nij

)
nij

)

+

(
p̃

(1)
i + p̃

(1)
j

2γ
+
δρ̃

(0)
ij ã

(0)
ij

2
(ũ

(0)
i − ũ

(0)
j ) · nij

)
nij

]
= 0,

∂τ

(
ρ̃iẼi

)(0)

+
1

|Ω̃i|

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ H̃(0)
ij

2γã
(0)
ij

(
p̃

(0)
i − p̃

(0)
j

)
= 0,

(26a)

(26b)

(26c)

where δ = 1 for the Roe scheme and δ = 0 for the Dellacherie et al. or Rieper fixes.
By multiplying (26a) by γχ̃(0) and (26c) by γκ̃(0), that are supposed to be constant, and summing the resulting

equations, we get

γχ̃(0)∂τ ρ̃
(0)
i + γκ̃(0)∂τ

(
ρ̃iẼi

)(0)

+
1

|Ω̃i|

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ χ̃(0) + κ̃(0)H̃
(0)
ij

2ã
(0)
ij

(
p̃

(0)
i − p̃

(0)
j

)
= 0.

Since
(
ρ̃iẼi

)(0)

= (ρ̃iẽi)
(0) (let us remind that indeed ρ̃iẼi = ρ̃iẽi +O(M2)), the above equation is thus simplified

into

∂τ p̃
(0)
i +

1

|Ω̃i|

∑
Γij⊂∂Ωi

|Γ̃ij |
ã

(0)
ij

2

(
p̃

(0)
i − p̃

(0)
j

)
= 0. (27)

By multiplying (27) by |Ω̃i|
(
p̃

(0)
i − p̃

(0)
0

)
and summing over all cells Ωi, we get

∂τ

(∑
i

|Ω̃i|
2

(
p̃

(0)
i − p̃

(0)
0

)2
)

+
∑
i

∑
Γij⊂∂Ωi

|Γ̃ij |
ã

(0)
ij

2

(
p̃

(0)
i − p̃

(0)
j

)(
p̃

(0)
i − p̃

(0)
0

)
= 0,

rearranging the second sum as a sum over the edges and distinguishing inner and boundary edges yield
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∂τ

(∑
i

|Ω̃i|
2

(
p̃

(0)
i − p̃

(0)
0

)2
)

= −
∑

Γij⊂Ω̊

|Γ̃ij |
ã

(0)
ij

2

(
p̃

(0)
i − p̃

(0)
j

)2

−
∑

Γij⊂∂Ω

|Γ̃ij |
ã

(0)
ij

2

(
p̃

(0)
i − p̃

(0)
0

)2

≤ 0.

where Ω̊ = Ω \ ∂Ω is the interior of Ω. Note that we used that in the boundaries ∂Ω, p̃(0)
j = p̃

(0)
0 . Then the positive

function τ 7→
∑
i
|Ω̃i|

2

(
p̃

(0)
i − p̃

(0)
0

)2

decreases. Since at τ = 0, p̃(0) is uniform (equal to p̃(0)
0 ), this function vanishes

at τ = 0 and then at any τ > 0. This concludes the proof for p̃(0). The properties on ρ̃
(0)
i and Ẽ

(0)
i are directly

deduced from (26a) and (26c). Which yields independence of ρ̃(0)
(
ã(0)

)2
with respect to τ . Moreover, using the

formula (6) and the uniformity of p̃(0), we have

∆

(
ρ̃(0)

(
ã(0)

)2
)

= ∆
(
ρ̃(0)

(
χ̃(0) + κ̃(0)H̃(0)

))
= χ̃(0)∆ρ̃(0) + κ̃(0)∆

(
ρ̃Ẽ
)(0)

+
κ̃(0)

γ
∆p̃(0) = 0,

which justifies the uniformity of ρ̃(0)
(
ã(0)

)2
. Note that the latter is uniform also at the continuous level, when χ(0)

and κ(0) are constant.

Still following the steps of (2.1), the following proposition gives the equivalent of Proposition 4 for the semi-
discrete scheme.

Proposition 4. (Consistency with the wave equation) Under the hypothesis of Proposition 3,
(
p̃(1), ũ(0)

)
satisfies

the semi-discrete (discrete in space and continuous in time) wave equation
∂τ p̃

(1)
i +

1

|Ω̃i|

∑
Γij⊂∂Ωi

|Γ̃ij |

(
γρ̃(0)

(
ã(0)

)2 ũ
(0)
i + ũ

(0)
j

2
· nij +

ã
(0)
ij

2

(
p̃

(1)
i − p̃

(1)
j

))
= −dt̃p̃

(0)
0 ,

∂τ ũ
(0)
i +

1

ρ̃
(0)
i

1

|Ω̃i|

∑
Γij⊂∂Ωi

|Γ̃ij |

(
p̃

(1)
i + p̃

(1)
j

2γ
nij +

δρ̃
(0)
ij ã

(0)
ij

2

((
ũ

(0)
i − ũ

(0)
j

)
· nij

)
nij

)
= 0,

(28)

where δ = 1 for the Roe scheme and δ = 0 for the Dellacherie et al. or Rieper fixes.

Proof. Under the hypothesis of the Proposition 3, the equation on ũ(0) is directly deduced from (26b) and the result
of Proposition 3.

From the injection of (12) in (7)-(10), we have at order M0

∂t̃ρ̃
(0)
i + ∂τ ρ̃

(1)
i +

1

|Ω̃i|

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ [ ρ̃(0)
i ũ

(0)
i + ρ̃

(0)
j ũ

(0)
j

2
· nij

+
1

2

∣∣∣ũ(0)
ij · nij

∣∣∣ (ρ̃(0)
i − ρ̃

(0)
j

)
+

1

2γã
(0)
ij

(
p̃

(1)
i − p̃

(1)
j

)]
= 0

∂t̃

(
ρ̃iẼi

)(0)

+∂τ

(
ρ̃iẼi

)(1)

+
1

|Ω̃i|

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ [ ρ̃(0)
i Ẽ

(0)
i ũ

(0)
i + ρ̃

(0)
j Ẽ

(0)
j ũ

(0)
j

2
· nij

+ p̃(0)

(
ũ

(0)
i + ũ

(0)
j

2γ

)
· nij +

1

2

∣∣∣ũ(0)
ij · nij

∣∣∣ (ρ̃(0)
i − ρ̃

(0)
j

)H̃(0)
ij −

(
ã

(0)
ij

)2

κ̃(0)


+
H̃

(0)
ij

2γã
(0)
ij

(
p̃

(1)
i − p̃

(1)
j

)]
= 0.

(29a)

(29b)

By multiplying (29a) by γχ̃(0) and (29b) by γκ̃(0), then summing the resulting equations, we get

∂τ p̃
(1)
i +

1

|Ω̃i|

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ [γχ̃(0)

(
ρ̃

(0)
i ũ

(0)
i + ρ̃

(0)
j ũ

(0)
j

2

)
· nij + γκ̃(0)

(
ρ̃

(0)
i Ẽ

(0)
i ũ

(0)
i + ρ̃

(0)
j Ẽ

(0)
j ũ

(0)
j

2

)
· nij

+ γκ̃(0)p̃(0)

(
ũ

(0)
i + ũ

(0)
j

2γ

)
· nij +

ã
(0)
ij

2

(
p̃

(1)
i − p̃

(1)
j

)]
= −dt̃p̃

(0)
0 ,
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because, since χ̃(0) and κ̃(0) have been supposed to be constant in space, we have
(
ã

(0)
ij

)2

= χ̃(0) + κ̃(0)H̃
(0)
ij . We

will now use the following equality

ϕ̃
(0)
i ũ

(0)
i + ϕ̃

(0)
j ũ

(0)
j

2
= ϕ̃

(0)
i

(
ũ

(0)
i + ũ

(0)
j

2

)
− ũ

(0)
j

(
ϕ̃

(0)
i − ϕ̃

(0)
j

2

)
= ϕ̃

(0)
i

(
ũ

(0)
i + ũ

(0)
j

2

)
+

ũ
(0)
j

2
∆ϕ̃(0),

for ϕ ∈ {ρ, ρE}. We obtain

∂τ p̃
(1)
i +

1

|Ω̃i|

∑
Γij⊂∂Ωi

∣∣∣Γ̃ij∣∣∣ [γρ̃(0)
i

(
χ̃(0) + κ̃(0)Ẽ

(0)
i + κ̃(0)p̃(0)/

(
γρ̃

(0)
i

))( ũ
(0)
i + ũ

(0)
j

2

)
· nij

+
ũ

(0)
j · nij

2
γ

(
χ̃(0)∆ρ̃(0) + κ̃(0)∆

(
ρ̃Ẽ
)(0)

)
+
ã

(0)
ij

2

(
p̃

(1)
i − p̃

(1)
j

)]
= −dt̃p̃

(0)
0 .

Since χ̃(0)∆ρ̃(0) + κ̃(0)∆
(
ρ̃Ẽ
)(0)

= ∆p̃(0) = 0, χ̃(0) + κ̃(0)Ẽ
(0)
i + κ̃(0)p̃(0)/

(
γρ̃

(0)
i

)
=
(
ã

(0)
i

)2

and ρ̃(0)
(
ã(0)

)2
is

uniform, this concludes the proof.

3 Extension of the LMAAP scheme: accurate in the low Mach number
limit for steady and for acoustics computations

In this section, we aim to extend the LMAAP scheme developed in [2] for the Barotropic Euler equations to the
full Euler system (1). We first present a general expression of the new scheme. Next, conditions for ensuring
a semi-discrete energy inequality are found. Then, the expression of the scheme is deduced for the wave system
obtained in Proposition 2 and eventually to the full Euler system.

3.1 Extension of the scheme for the wave system

Supposing that the domain is infinite or periodic, hypothesis of Proposition 3 holds, dt̃p̃
(0)
0 (t̃) = 0 for any t̃ and that

Hypothesis 1 holds, the expression of the scheme obtained in Proposition 4 is generalized to


∂τ p̃

(1)
i +

1

|Ω̃i|

∑
Γij⊂∂Ωi

|Γ̃ij |

(
γρ̃(0)

(
ã(0)

)2 ũ
(0)
i + ũ

(0)
j

2
· nij + C11

ij

(
p̃

(1)
i − p̃

(1)
j

)
+ C12

ij ·
(
ũ

(0)
i − ũ

(0)
j

))
= 0,

∂τ ũ
(0)
i +

1

|Ω̃i|

∑
Γij⊂∂Ωi

|Γ̃ij |

(
1

γρ̃
(0)
i

p̃
(1)
i + p̃

(1)
j

2
nij + C21

ij

(
p̃

(1)
i − p̃

(1)
j

)
+ C22

ij

((
ũ

(0)
i − ũ

(0)
j

)
· nij

)
nij

)
= 0.

(30a)

(30b)

We remark that the Roe scheme is consistent at low Mach number with a discretization of the wave system (30)
with C11

ij = ã
(0)
ij /2, C12

ij = C21
ij = 0, C22

ij = ρ̃
(0)
ij ã

(0)
ij /2ρ̃

(0)
i and the Roe scheme with Dellacherie or Rieper fixes

correspond to a discretization of the wave system (30) with C11
ij = ã

(0)
ij /2, C12

ij = C21
ij = 0, C22

ij = 0, which means
that we have a centered discretization of the pressure gradient.

Proposition 5. Under the Hypothesis 1, the assumptions of Proposition 3 and

C11
ij = C11

ji , C12
ij = C12

ji , ρ̃
(0)
i C21

ij = ρ̃
(0)
j C21

ji , ρ̃
(0)
i C22

ij = ρ̃
(0)
j C22

ji , (31)

the scheme (30) satisfies the semi-discrete energy inequality

∂τ

∑
i

|Ω̃i|

(
p̃

(1)
i

)2

+
(
γã

(0)
i ρ̃

(0)
i

)2

‖ũ(0)
i ‖2

2

 ≤ 0, (32)

if and only if

C11
ij ≥ 0, C12

ij +

(
γ2ρ̃(0)

(
ã(0)

)2
)
ρ̃

(0)
i C21

ij = 0, C22
ij ≥ 0. (33)

The proof is similar to the one done in [2]. The only difference is that one of the coefficients that appear in the
wave system depends on x. Note that (33) is compatible with (31) because ρ̃(0)

(
ã(0)

)2
is uniform.
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Proposition 6. The LMAAP (for Low Mach Acoustic Accuracy Preserving) scheme [2, 10] associated to a wave
system of the form (22), given by (30) with

C11
ij = ã

(0)
ij , C12

ij = ε
γ

2
ρ̃

(0)
ij

(
ã

(0)
ij

)2

|nij |, C21
ij = −ε 1

2γρ̃
(0)
i

|nij |T , C22
ij = 0, (34)

satisfies the semi-discrete energy inequality (32), where ε = ±1 and |nij | is a vector which its components are the
absolute values of the components of the vector nij.

Proof. We recall that ρ̃(0)
i

(
ã

(0)
i

)2

does not depend on i. Using Proposition 5, it is sufficient to prove that

ρ̃
(0)
ij

(
ã

(0)
ij

)2

= ρ̃(0)
(
ã(0)

)2
. We first remind that ρ(0)

ij

(
a

(0)
ij

)2

= ρ
(0)
ij

(
χ(0) + κ(0)H

(0)
ij

)
. By developing this equal-

ity with the Roe average formula (5) on H
(0)
ij , also using the fact that ρ(0)

ij =
√
ρ

(0)
i ρ

(0)
j therefore ρ(0)

ij ζ
(0)
ij =

ρ
(0)
i

(
1− ζ(0)

ij

)
and ρ

(0)
ij

(
1− ζ(0)

ij

)
= ρ

(0)
j ζ

(0)
ij , one can easily shows that ρ(0)

ij

(
a

(0)
ij

)2

is a convex combination of

ρ
(0)
i

(
a

(0)
i

)2

and ρ(0)
j

(
a

(0)
j

)2

. That concludes the proof.

We note that compared to the expression given in [2, 10], the vector 1d/
√
d has been replaced by the vector

|nij | corresponding to taking the absolute value of the normal on each component. This improvement has the
advantage of allowing us to find exactly the one-dimensional scheme when studying a unidirectional flow on 2D or
3D Cartesian mesh.

The explicit LMAAP scheme satisfies the von-Neumann necessary condition for stability with the same CFL
condition as the Roe scheme [2]. Its artificial diffusion allows us to consider convective but also acoustic low Mach
flows, called mixed diffusion in [9]. Only a few mixed diffusion schemes have a non-diagonal diffusion matrix. We
refer to [9, 17] for other examples.

3.2 From the wave system to the full Euler system
In order to extend the LMAAP fix from the wave equations to the full Euler equations, we first extend the dimen-
sionless system obtained for the wave equations to dimensionless Euler equations. Then we deduce the expression
of the Roe-LMAAP flux.

Definition 1. (Expression of the Roe-LMAAP scheme associated to the full Euler system) The Roe-LMAAP flux
is the following

ΦRoe-LMAAP
ij = ΦRoe

ij + (1− θij)


1

2aij
(pi − pj) + ε

ρij
2

(ui − uj) · |nij |

−εpi − pj
2
|nij |

Hij

2aij
(pi − pj) + ε

ρijHij

2
(ui − uj) · |nij |



− (1− θij)


0(ρijaij

2
(ui − uj) · nij

)
nij

0

 .

with θij = min(Mij , 1), where Mij = max(Mi,Mj) and ε = ±1. Note that it is up to the engineer who will code
this numerical flux to choose to assign ε as either 1 or −1, since the numerical results will be similar in both cases.

Note that we have introduced the term (1− θij) to get the original Roe scheme if θij = 1. Finally, with this
expression, we get that the Roe-LMAAP scheme satisfies both Proposition 3 and Proposition 4. Interestingly, with
the new fix, the contact discontinuities are preserved as we add terms involving pressure and velocity jumps.

4 Numerical results
In this section we present some numerical results on the full Euler system (1) equipped with the equation of state

p = (γ̄ − 1)ρe− (γ̄ − 1)ρq̄ − γ̄π̄. (35)

dedicated for stiffened gas. Note that for this case χ = (1 − γ̄)q̄ and κ = γ̄ − 1. Furthermore, the value of ε is set
to 1 in the expression of the Roe-LMAAP flux, for the subsequent numerical results.
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4.1 One dimensional Riemann problem with perfect gas
In this test, we consider the equation of state (35) with the parameters: γ̄ = 1.4, q̄ = 0, π̄ = 0. The selected test
case is a Riemann problem with the following left and right states:

ρl = 1, ul = 0.0001, pl = 1,

ρr = 1, ur = 0.0005, pr = 1,

and final time equals to 0.1 s. Numerical results are presented in Figure 1 for the Roe scheme, the Roe scheme with
the Dellacherie et al. fix [5], as well as for the Roe-LMAAP scheme. We observe that oscillatory modes appear on
the pressure, density and velocity computed using the Dellacherie et al. fix while there is no oscillation using the
new Roe-LMAAP fix.
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Figure 1: Numerical results for a Riemann problem.

4.2 One dimensional channel with a singular pressure loss
In this test, we consider a fluid governed by the stiffened gas equation of states (35) with the constants γ̄ = 2.35, q̄ =
−1167.056×103, π̄ = 109 which are the same values as in [1]. These values can be used to represent liquid water in
a core of a pressurized water reactor under nominal conditions that is typically p0 = 155 bar and h0 = 1300 kJ/kg.
The test consists in a one dimensional channel with the fluid being injected at the bottom xin = 0 m with a velocity
of uin = 1 m/s and enthalpy of hin = h0. The pressure is set at the top pout = p0. Note that we have in this case
ρ0(p0, h0) ≈ 716.6 kg/ m3. Two source terms are added in the equation of momentum : gravity g = −9.81 m/s2

and a singular pressure loss in x0 = 1 m with coefficient K0 = 100. The momentum equation can thus be written
in the following form :

∂t (ρu) + ∂x
(
ρu2 + p

)
= ρg − 1

2
K0δx0

ρu|u|,

where δx0
(x) denotes the Dirac distribution. The spatial discretization of the Dirac term is given by∫ xi+1/2

xi−1/2

1

2
K0δx0

ρu|u|dx =

{
1

2
K0ρiui|ui| if x0 ∈ [xi−1/2, xi+1/2],

0 otherwise.

The number of cells is N = 200 and the simulation is stopped when the stationary solution is obtained. Results for
the Roe scheme with the Dellacherie et al. fix and the Roe-LMAAP scheme are presented on Figure 2. We observe
that adding a stiff source term such as a singular pressure loss introduces severe spatial oscillations in the velocity
and pressure profiles in the case of the Dellacherie et al. fix. This is not the case for the new Roe-LMAAP scheme.
Moreover, one can see that the pressure level before the pressure loss is better captured with the new scheme :
this is due to the fact that the source term is evaluated with value of velocity at the center of the cell. Thus, the
presence of oscillations disrupts the evaluation of the pressure loss and therefore the pressure profile.

10



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x (m)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

u
(m

/s
)

Velocity
Roe-Dellacherie et al.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x (m)

155.0

155.1

155.2

155.3

155.4

155.5

p
(b

ar
)

Pressure
Roe-Dellacherie et al.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x (m)

0.975

0.980

0.985

0.990

0.995

1.000

u
(m

/s
)

Velocity

Roe-LMAAP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x (m)

155.0

155.1

155.2

155.3

155.4

155.5

155.6

p
(b

ar
)

Pressure
Roe-LMAAP

Figure 2: Numerical results for the one dimensional channel with a singular pressure loss.

4.3 Interaction of an acoustic wave with a stationary vortex in a low Mach number
flow

In this test, we use the equation of state (35) with the same parameters as for the previous test. The initial condition
considered is a superposition of an isentropic vortex with an acoustic wave, given by

U0 =

{
UAcoustic

0 if − 1 ≤ x ≤ −0.25,

UStationary
0 otherwise.

The domain is supposed to be rectangular [−1; 1] × [0; 1], and the initial acoustic wave is computed on the left of
the domain while the stationary vortex on the right.

The isentropic vortex is centered in (0.5, 0.5). All the variables are supposed to depend only on the radius
r =

√
(x− 0.5)2 + (y − 0.5)2/r0 where r0 is a parameter that we define to fix the length of the vortex. For this test

case we choose r0 = 0.15. The orthoradial velocity is given by

uStationary
0 =

(
−u∞

(
y − 0.5

r

)
exp

(
1− r2

2

)
, u∞

(
x− 0.5

r

)
exp

(
1− r2

2

))T
,

while the initial pressure and density are respectively given by

pStationary
0 = (p∞ + π̄)

(
1− (γ̄ − 1)u∞ρ∞e

1−r2

2γ̄(p∞ + π̄)

)γ̄/(γ̄−1)

− π̄,

ρStationary
0 = ρ∞

(
p+ π̄

p∞ + π̄

)1/(γ̄−1)

.

The plane acoustic wave is defined by

pAcoustic
0 =

p∞
(

1 +M∞Ae
1/((x+0.5)(y+0.8))e−1/((−0.65+0.5)(−0.65+0.8))

)
−0.8 ≤ x ≤ −0.5

0 otherwise,

ρAcoustic
0 = ρ∞

(
p+ π̄

p∞ + π̄

)1/γ̄

,

uAcoustic
0 =

(
u∞ +

2c∞
γ̄ − 1

(
p+ π̄

p∞ + π̄

)(γ̄−1)/2γ̄−1

, 0

)T
,

11



where u∞ = γ̄M∞(p∞+ π̄)/ρ∞ and c∞ =
√
γ̄(p∞ + π̄)/ρ∞. We take M∞ = 10−3, p∞ = 155.105, ρ∞ = 716.6 and

the amplitude of the wave A = 150. The boundary conditions are supposed to be of type Steger-Warming. Results
are shown in Figure 3 for Roe, Roe-LMAAP and Roe-Turkel [8] schemes at different times. The CFL number
considered for these tests is 0.3 for Roe and Roe-LMAAP schemes and 0.0003 for Roe-Turkel scheme ; and the mesh
type considered is a Cartesian mesh containing 20 000 cells. We observe that when the acoustic wave has left the
domain, the vortex is well preserved with the Roe-LMAAP fix and dissipated with the Roe scheme. Whereas, with
the Roe-Turkel scheme the acoustic wave is damped without moving and the vortex is preserved.

t = 0 s t = 0.00063 s t = 0.01 s

Figure 3: Mach number obtained for the Roe scheme (top), the Roe-LMAAP scheme (middle) and the Roe-Turkel
scheme (bottom) for the test case of a stationary vortex combined with a low Mach acoustic wave.

Conclusion
In this paper, we have proposed a low-Mach number fix for Roe’s approximate Riemann solver applied for the
numerical resolution of the full Euler system. Numerical results show that

• the preconditioning-type fixes do not allow to propagate low Mach acoustic waves,

• the Roe fixes which are consistent with pressure-centered discretization for a wave system introduce oscillatory
modes,

• the Roe-LMAAP fix is able to deal with low Mach acoustic computations and reduces oscillatory modes in
the numerical solution even when a source term is introduced.

We recall that in the present study, for the asymptotic analysis of the compressible Euler equations, we have
considered a general equation of state of the form p = p(ρ, ρe), however, for the Roe scheme we made some
assumptions on the coefficients of the equation of state. The first-order term of the pressure in the Mach number
expansion is supposed to be a linear function of the first order terms of ρ and ρe. Further work has to be done for
the extension of this study to a more general equation of state. Furthermore, we highlight that via an asymptotic
analysis of the full Euler equations, a link with a wave system with non-constant coefficients was derived. In
counterpart, performing an asymptotic analysis on the Barotropic Euler equations leads also to a link with a
wave system which is however with constant coefficients. More research about the stability of a wave system with
non-constant coefficients is required.
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