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Abstract—Semiconductor opening switch (SOS) diodes are
capable to switch currents with a density of more than 1 kA/cm2

and withstand nanosecond pulses with an amplitude of up to
1 MV. SOS diodes however require a specific pumping circuit
that must simultaneously provide forward and reverse pumping
currents with a time of ∼500 ns and ∼100 ns, respectively.
Such a pumping circuit with energies >1 J typically requires
a gas-discharge switch or a low-efficient solid-state solution.
This study proposes a novel approach to pumping SOS diodes
based on a spiral generator (a.k.a. vector inversion generator).
Due to its wave characteristics, the spiral generator produces
a bipolar current discharge that meets the time duration and
current amplitude required to pump an SOS diode. Moreover, the
initial pulse from the spiral typically has a relatively low current
amplitude compared to the opposite polarity secondary pulse – so
the SOS diode can operate at very high efficiencies. This idea has
been tested using an all-solid-state spiral generator coupled with
large-area SOS diodes (1 cm2). With this combination, a voltage
pulse of 62 kV having a rise time of only 11 ns was obtained on
an open circuit load (3 pF, 1 MΩ). The experiments were highly
repeatable, with no damage to the components despite multiple
tests. There is significant scope to further improve the results,
with simple alterations to the spiral generator.

Index Terms—Pulsed power systems, semiconductor opening
switches, solid-state circuits, spiral generators.
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I. INTRODUCTION

SOLID-STATE pulsed power is attracting more and more
attention due to its distinct advantages over traditional

gas-discharge methods of generating nanosecond, high-voltage
electrical pulses. Semiconductor switches are free of gas-
discharge switch weaknesses such as electrode erosion, di-
electric contamination, and jitter. Therefore, solid-state pulsed
power systems with their long lifetime and high average power
find numerous industrial applications in medicine, agriculture,
food processing, etc.

Drift step recovery diodes (DSRD) [1] and semiconductor
opening switch diodes (SOS) [2] are one of the most powerful
semiconductor switches up to date. They operate as follows.
First, the submicrosecond forward current injects electron-hole
plasma into the diode structure. This process is referred to as
“forward pumping”. Then, current flows through the diodes in
a reverse direction, storing energy in inductive energy storage.
This phase is called “reverse pumping”. Finally, diodes cut off
the current, forming a high-voltage nanosecond pulse across
the load.

Both DSRD and SOS diodes work similarly in terms of
circuit design, yet completely different in terms of physics.
According to a comparison of DSRD and SOS diodes [3], the
current cut-off occurs at the p-n junction for DSRD and at the p
region for SOS. This difference in operation eventually results
in different ultimate parameters of cut-off current density and
peak power: 102 A/cm2, 108 W for DSRD and 105 A/cm2,
1010 W for SOS [3]. Due to extremely high peak power, SOS
diodes are employed in many pulsed power applications, as
described in the comprehensive review of the SOS technology
in [4]. It includes electron accelerators, X-ray pulse devices,
high-power microwave electronics, pumping of gas lasers, and
ignition of electrical discharges.

However, a pumping circuit of the SOS diode is challenging
since it has to generate a forward current of 100 A / 500 ns
and a reverse current of 1 kA / 100 ns. To keep the all-solid-
state approach, several energy compression stages (ECSs) are
used in SOS generators with an output energy of >1 J. The
efficiency of this approach is about 40 % due to losses in
ECSs. Higher efficiency of up to 70 % can be reached using
a single ECS such as a saturating pulse transformer [4].

0000–0000/00$00.00 © 2023 IEEE
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Although in this case, a primary gas-discharge switch is
required, which brings the aforementioned disadvantages into
the system.

In this work, we propose a new single ECS circuit for pump-
ing semiconductor opening switches such as DSRD and SOS
diodes. The circuit is based on a vector inversion generator
[5], also known as a spiral generator [6], which represents
a double spiral-shaped stripline with a low-inductive primary
switch. Using a low-voltage switch, the spiral generator can
produce pulses of 100s kV due to the generous voltage
multiplication factor, which depends on the coil turn number.
The wave nature of a spiral generator is responsible for the
non-symmetrical oscillations of the output voltage. The period
of these oscillations can be in the submicrosecond range,
depending on geometry. A combination of these factors makes
the spiral generator an ideal circuit for pumping semiconductor
opening switches.

Thanks to the advantages of modern semiconductor tech-
nology, an all-solid-state spiral generator [7] has been tested
in this work as a prototype of the SOS diode pumping
circuit. A spark gap, traditionally used in the spiral generator,
was replaced by highly interdigitated thyristors [8] that are
commercially available under the Solidtron brand [9].

The proposed approach can be used in pulsed power ap-
plications such as dielectric barrier discharge plasma sources
[10], runaway electron research [11], and x-ray generation
[12]. Also, this includes triggering the multichannel spark
gap [13], impact-ionization thyristor driver [14], as well as
pumping of the opening switch based on standard diodes,
which has been reported in our previous work [15].

The paper is organized as follows. Section II describes the
experimental setup, including the spiral generator, SOS diodes,
and diagnostics. Section III shows the results of a generator
prototype operating with resistive and capacitive loads. The
conclusion summarizes the results obtained and suggests a
path for future research.

II. EXPERIMENTAL ARRANGEMENT

A. Spiral Generator

As the main workhorse of this study, the spiral generator
(SG) deserves a proper description. Schematically SG consists
of three main components as shown in Fig. 1: spiral stripline,
driver board DB, and switch Sw. The spiral stripline is initially
charged up to 5 kV by the power supply installed in DB. After
receiving an optical trigger pulse, DB turns on the switch Sw,
starting the wave process in the spiral stripline. Eventually, this
causes high voltage oscillations on the load connected to the
high voltage output terminal HV. A detailed analysis of this
SG as well as a description of its components can be found
in [6] and [7].

Although the fabrication process was thoroughly explained
in [7], here we need to describe the geometry of the spiral
stripline since it determines the output pulse shape. The spiral
in the present study has 24 turns, which form a bobbin with
a total height of 75 mm, outer diameter of 60 mm, and inner
diameter of 20 mm. Each layer is made from 50 mm copper
tape 30 µm thick, laminated onto 75 mm Mylar strip, 250 µm

(a)

(b)
Fig. 1. Circuit diagram of the SG-40/50 spiral generator (a) and its appearance
(b): Spiral Stripline – spiral pulse forming line, DB – driver board, Sw – solid-
state switch, VP – voltage probe Tektronix P6015A, CP – pumping capacitor,
RSH1 – resistive shunt.

thick. For this configuration, the spiral capacitance CS is 17 nF.
The spiral insulation is made by vacuum impregnation with
epoxy resin. Tests at 5 kV revealed no flashover between layers
of the spiral. Having a mean winding diameter of 40 mm and a
conductive part width of 50 mm, this particular spiral generator
is referred to as SG-40/50.

The input switch (Sw in Fig. 1) consists of four series-
connected SP205-01 thyristors, also known as “Solidtrons” [9].
As it is customary when semiconductor items are connected in
series, to equalize the voltage distribution each thyristor has a
resistor of 100 MΩ (2512 package) connected in parallel. High
voltage, high dI/dt, and low inductance are the distinguishing
features of this solid-state switch, which are required for the
proper operation of the spiral generator.

The switch Sw is controlled via four ferrite-based transform-
ers (not shown in Fig. 1), which provide galvanic insulation
and synchronization. The triggering pulse is formed by the
control unit (DB in Fig. 1), which is driven by an external
optical signal. Feeding this triggering pulse to the primary
winding, common to all 4 ferrite-based transformers, allows
to generate simultaneous pulses on the secondary windings,
which are connected to the gate electrodes of the SP205-01
thyristors. A detailed description of Sw and DB is provided in
[7]. In addition, the DB carries a 5 kV regulated power supply
to charge the spiral and an interlock to protect the user.

To verify the ability of the SG-40/50 to generate the
current pulse required to pump the semiconductor opening
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switch, a pumping capacitor CP was installed as shown in
Fig. 1(a). High-voltage ceramic capacitors with a capacitance
from 80 pF to 500 pF were tested. Looking at Fig. 2(a), one
can find that the current shape is very similar to the typical
currents of the SOS or DSRD diodes. In particular, it is an
asymmetric sine of sub-microsecond duration, with the first
half-period having a lower amplitude than the second half-
period. This promising observation served as the motivation
for this study.

We choose a negative current amplitude as an optimization
parameter because this current can be stored in an inductive
energy storage and interrupted by a semiconductor opening
switch. Analysis of the currents presented in Fig. 2(a) reveals
the optimum value of CP, which ranges approximately from
125 pF to 250 pF. The voltage across the pumping capacitor
CP = 175 pF and current through it are shown in Fig. 2(b).

For the capacitance of the spiral CS = 17 nF, the stored
electrostatic energy at a charging voltage V0 = 4.7 kV is
WS = CS ∗ V 2

0 /2 = 188 mJ . When the spiral generator is
connected to a capacitive load CP = 175 pF, the maximum load
voltage generated is 23 kV (Fig. 2(b)), which corresponds to an
energy WC of 46 mJ. The overall energy efficiency WC/WS

is therefore 25 %.

(a)

(b)
Fig. 2. The output current of the SG-40/50 with the different capacitive load
CP (a): 1 – 80 pF, 2 – 125 pF, 3 – 175 pF, 4 – 250 pF, 5 – 500 pF. The
voltage across the CP (1) and current of the SG-40/50 (2) at CP=175 pF (b).

The voltage across the load is measured by the Tektronix
P6015A voltage probe (VP in Fig. 1(a)). The current is
measured by the in-house made current shunt RSH1 with a
resistance of 0.48 Ω and usable rise time of 0.5 ns. The
signal from RSH1 is captured with the Tectronix TDS7704B
oscilloscope, using the Barth 142 attenuator (26 dB, 30 GHz).
The same diagnostic techniques are employed in all further
experiments.

B. Semiconductor Opening Switch

Two types of SOS diodes were provided by the Institute of
Electrophysics, Russia. A diode blocking voltage is about 3 kV
for both types and wafer areas are 1 cm2 and 0.25 cm2, respec-
tively. The recommended maximum parameters of operation
are as follows: forward current density 0.8 kA/cm2, forward
pumping time 500 ns, reverse current density 4 kA/cm2,
reverse pumping time 100 ns.

To assemble SOS diodes in series, we developed two stacks,
called SOS-60-4 and SOS-24-1, with a rated blocking voltage
/ reverse current of 60 kV / 4 kA and 24 kV / 1 kA,
correspondingly. As shown in Fig. 3, the stack consists of
an empty plastic tube in which the diodes are placed. The two
opposite bolts serve as the clamping system as well as the
cathode and anode terminals.

Fig. 3. Stack of 20 diodes with an area of 1 cm2 connected in series –
SOS-60-4 (top); stack of 8 diodes with an area of 0.25 cm2 connected in
series – SOS-24-1 (bottom).

C. Spiral Generator Equipped with SOS Diodes

After the current shape was confirmed as suitable for SOS
diodes, the SG-40/50 spiral generator was equipped with a
stack of SOS diodes as shown in Fig. 4. The new generator
was denoted as SG-SOS. The pumping capacitor CP = 175 pF
was chosen according to the optimization results. Currents
through the load ZLOAD and opening switch SOS connected in
parallel are measured by two identical current shunts RSH1 and
RSH2. The load voltage can be measured by two independent
methods: (i) direct measurement by the voltage probe VP and
(ii) a calculation based on Ohm’s law, using the load current
and load resistance. Another diode (not shown in Fig. 4) can
be installed between the SOS and ZLOAD to prevent diverting
the SOS pumping current to a low-impedance load.
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(a)

(b)
Fig. 4. Circuit diagram of the SG-SOS generator (a) and its configuration
based on SOS-60-4 and ZLOAD = 1 kΩ (b): Spiral Stripline – spiral pulse
forming line, DB – driver board, Sw – solid-state switch, CP – pumping ca-
pacitor, SOS – semiconductor opening switch, ZLOAD – resistive or capacitive
load, VP – voltage probe, RSH1 and RSH2 – resistive shunts.

Let us describe the operation of the SG-SOS generator,
using the configuration with SOS-60-4 and 1 kΩ resistive
load as an example. Initially, the active layer of the spiral is
charged to V0 = 4.7 kV (Fig. 4). Turning on the Sw initiates
the wave processes in the spiral. First, this results in the
forward SOS current (Fig. 5, curve 1), which ”pumps” the
diode structure with electron-hole plasma. The reverse SOS
current then causes a fast current cutoff, and the diode switches
current to the load within a few ns (Fig. 5, curve 2). Finally,
a high-voltage nanosecond pulse is formed across the load
(Fig. 5, curve 3).

According to Fig. 5 (curve 1), the SOS pumping current
has the following parameters: forward amplitude I+ = 56 A,
forward pumping time t+ = 58 ns, reverse amplitude I- = 77 A,
and reverse pumping time t- = 38 ns. Corresponding reverse
current density j- = 77 A/cm2 makes us believe that the
opening switch operates rather in DSRD mode than SOS. The
short switching time (6 ns) – typical for the DSRD mechanism
– confirms this hypothesis. However, this has no negative
effect on the load voltage, which has a rise time of 13 ns
(0.1-0.9), amplitude of 41 kV, and duration of 29 ns (full width
at half maximum – FWHM).

For the 1 kΩ resistive load, a load energy WL = 36 mJ can
be estimated from the load current and voltage (see Fig. 5,
waveforms 2 and 3). This corresponds to a total efficiency of
about 20 %, calculated as WL/WS for the spiral generator
equipped with the SOS-60-4 diode.

Fig. 5. Typical waveforms of the SOS-60-4 diode current (1), load current
(2), and load voltage (3) at the 1 kΩ resistive load.

We can see that the SOS diode can be driven by a spiral
generator, delivering a high-voltage pulse into the resistive
load. Operation at different loads will be discussed in the next
section.

III. LOAD CHARACTERISTIC

A. Resistive Load

In this section, two resistive loads tested with two SOS
diodes, as shown in Fig. 4, are discussed. The first 1 MΩ
load is simply represented by the voltage probe Tektronix
P6015A (VP in Fig. 4), which has a resistance of 1 MΩ and
parasitic capacitance of 3 pF according to the datasheet. We
consider this as an open circuit load, where the maximum
voltage amplitude is obtained. For the second 325 Ω load,
carbon composition resistors were employed (ZLOAD in Fig. 4).
A value of 325 Ω was chosen to compare the SOS-60-4 and
SOS-24-1 diodes, as they can both withstand the voltage that
arises at this load. The waveforms of the SOS current and load
voltage are summarized in Fig. 6.

When the load voltage tends to exceed the SOS diode
rating, the diode limits the voltage by conducting current.
This situation is observed for SOS-24-1 operated at 1 MΩ
load in Fig. 6(a). As can be seen, the SOS current (Fig. 6(a),
curve 1) rises sharply when the voltage across the load and
diode reaches 25 kV (Fig. 6(a), curve 2), which is close to the
nominal voltage for SOS-24-1. It leads to a quasi-square pulse
across the load with a flat top part determined by the duration
of the current delivered by the pumping circuit. For SG-40/50,
the flat top duration is about 25 ns. However, the diode remains
intact as long as the pulse duration is shorter than the critical
value, which is determined by the power dissipation during
the conductive state at the high voltage (between 110 ns and
140 ns in Fig. 6(a)). Longer pulses lead to more energy
being deposited in the semiconductor structure, which may
cause an irreversible thermal breakdown. The time and the
corresponding critical energy are usually found empirically,
by trial and error. The observed effect may be used in the
design of square pulse generators.
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(a) (b)

(c) (d)
Fig. 6. Typical waveforms of the SOS current (curve 1) and load voltage (curve 2) obtained with SOS-24-1 at 1 MΩ (a) and 325 Ω (c), and SOS-60-4 at
1 MΩ (b) and 325 Ω (d).

The SOS-60-4 diode allows obtaining up to 62 kV at 1 MΩ
resistive load (Fig. 6(b), curve 2). It can be observed that there
is no current through the diode after the cut-off (Fig. 6(b),
curve 2), which does not form a flat top voltage on the load.
As shown in Fig. 6(c) and Fig. 6(d), reducing the load to
325 Ω makes the SOS-24-1 and SOS-60-4 operate identically
because the load voltage is below the rated value.

The summary of the load voltage and diode current pa-
rameters is presented in Table I. Changing load resistance
from 325 Ω to 1 MΩ weakly affects the diode current shape.
Thus, the diode pumping parameters provided by the spiral
generator remain almost constant: t+ ≈ 65 ns, I+ ≈ 66 A,
t- ≈ 36 ns, and I- ≈ 93 A. Although further decreasing of the
load resistance will affect the current shape, SG-SOS operation
with, for instance, 50 Ω is possible. This requires an isolating
element, such as a capacitor or diode, to prevent redirection
of the diode pumping current to the load.

The load energy in Table I was calculated using the voltage
amplitude and load capacitance for the 1 MΩ load, which gives
approximate values. For the 325 Ω load, directly measured
load current and voltage give more accurate results. An
efficiency of 25 % can be calculated in this case, using the
method described in Section II.

TABLE I
PARAMETERS OF THE VOLTAGE PULSE ACROSS THE CAPACITIVE LOAD

FOR THE SOS-24-1 DIODE

Parameter 1 MΩ, 3 pF 325 Ω

Diode type SOS-24-1 SOS-60-4 SOS-24-1 SOS-60-4

Voltage, kV 26 62 24 27

Rise time, ns 5 11 8 10

FWHM, ns 37 27 30 28

Energy, mJ ∼1 ∼6 40 47

t+, ns 70 70 60 60

I+, A 70 65 63 68

t-, ns 35 35 35 40

I-, A 102 90 84 94

B. Capacitive Load

Low-inductance, high-voltage ceramic capacitors in various
combinations were used to test SG-SOS loaded to the capaci-
tive load ZLOAD according to the circuit shown in Fig. 4(a). The
pumping capacitor was set to CP = 125 pF and the SOS-24-1
diode was tested. Typical waveforms of the voltage across the
load for the load capacitance ranging from 20 to 130 pF are
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(a)

(b)
Fig. 7. Waveforms of the voltage across the capacitive load (a) and voltage
amplitude (square) and load energy (triangle) as a function of load capacitance
(b) for the SOS-24-1 diode.

presented in Fig. 7(a). Voltage magnitude and load energy as
a function of the load capacitance are plotted in Fig. 7(b).
Table II summarizes the voltage pulse parameters.

As can be seen in Fig. 6(a), the voltage limit of the
SOS-24-1 diode is about 25 kV in open circuit operation
(1 MΩ, 3 pF). However, as shown in Fig. 7(a), a voltage of
33 kV can be obtained using the same diode with a 19 pF
capacitive load. This voltage was verified by two independent
measurement techniques: (i) by the voltage probe Tektronix
P6015A and (ii) by the ratio of the charge to capacitance,
where the charge was calculated as a time-integral of the load
current. The higher voltage generated across the capacitive
load can be explained by carefully analyzing the electromag-
netic characteristics of the connection between the generator
and a capacitive load. In such a case, the parasitic inductance
between the SOS diode and the load stores magnetic energy
during the application of the current impulse. Later, this energy
is delivered to the load after the SOS diode returns to the
conductive state when its breakdown voltage is reached. This
leads to the load voltage exceeding the rated voltage of the
SOS diodes. This unwanted phenomenon was (qualitatively)
confirmed by PSpice circuit analysis.

It has been observed that the SOS-24-1 diode limits the load
voltage at an amplitude of about 25 kV, which is the nominal
voltage of this diode. This can be seen as a change in the slope

TABLE II
PARAMETERS OF THE VOLTAGE PULSE ACROSS THE CAPACITIVE LOAD

FOR THE SOS-24-1 DIODE

Parameter SOS-24-1

Capacitance, pF 19 42 84 130

Voltage, kV 33 30 26 21

Rise time, ns 12 15 23 29

FWHM, ns 37 39 44 47

Energy, mJ 10 19 28 29

of the curve with a bend point of about 25 kV in Fig. 7(b). The
current flowing through the diode at voltages above 25 kV also
confirms this limitation. A similar effect is observed for the
resistive 1 MΩ load Fig. 6(a)). When installing the SOS-60-4
diode, a voltage pulse with an amplitude of 39 kV, rise time
of 19 ns, and FWHM of 36 ns was obtained at 19 pF.

The energy delivered into the capacitive load (Table II) was
calculated using the load capacitance and voltage amplitude.
The efficiency increases with the capacitance value, reaching
15 % at the 130 pF load. A load with a higher capacitance was
not tested in this work because it required an additional com-
ponent to decouple the SOS diode from the low-impedance
load during pumping.

We believe that the overall efficiency of SG-SOS generators
can be increased by matching the output impedance to the
load. The use of an additional inductor may be a solution,
however, its effect on the spiral generator must be tested.

IV. CONCLUSION

To the best of the authors’ knowledge, this work is the
first attempt to use a spiral generator as a pumping circuit
for a semiconductor opening switch. An all-solid-state spiral
generator equipped with SOS diodes has been tested on
resistive and capacitive loads, with efficiencies of 20 % for
1 kΩ resistive load and 15 % for 19 pF capacitive load.
A voltage pulse with a peak of 62 kV, rise time of 11 ns,
and duration of 27 ns was successfully generated on an open
circuit (1 MΩ, 3 pF) when a current of about 65 A was cut
off by the SOS. The results were highly reproducible and
there was no degradation in the performance of the generator
components during all tests (more than 100 shots). Promising
results justify the proposed approach and encourage further
research. Despite the lack of adjustability and relatively low
efficiency of a spiral generator, this approach is a cost-effective
way to build compact solid-state generators of high-voltage
nanosecond pulses. Further research can be focused on more
energetic versions, which require modification of the spiral
and the primary switch. Being adjusted to a specific load,
these generators can be employed in numerous pulsed power
applications, such as impact ionization switches, multi-channel
spark gaps, plasma-activated water, and others. In addition,
testing a spiral generator as a pumping circuit for the off-the-
shelf diodes is of great interest, since it would significantly
reduce the cost of nanosecond pulse generators, making them
available to a broad range of researchers.
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