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Sensitivity analysis and optimal control for a friction
problem in the linear elastic model

Loic Bourdin? Fabien Caubet! Aymeric Jacob de Cordemoy*
August 2, 2024

Abstract

This paper investigates, without any regularization procedure, the sensitivity analysis of a
mechanical friction problem involving the (nonsmooth) Tresca friction law in the linear elastic
model. To this aim a recent methodology based on advanced tools from convex and variational
analyses is used. Precisely we express the solution to the so-called Tresca friction problem
thanks to the proximal operator associated with the corresponding Tresca friction functional.
Then, using an extended version of twice epi-differentiability, we prove the differentiability of
the solution to the parameterized Tresca friction problem, characterizing its derivative as the
solution to a boundary value problem involving tangential Signorini’s unilateral conditions.
Finally our result is used to investigate and numerically solve an optimal control problem
associated with the Tresca friction model.

Keywords: Sensitivity analysis, optimal control, mechanical friction problem, Tresca’s fric-
tion law, Signorini’s unilateral conditions, variational inequalities, proximal operator, twice epi-
differentiability.

AMS Classification: 49J40, 74M10, 74M15, 35Q93.

1 Introduction

General context and motivation On the one hand, optimal control theory is the mathematical
field aimed at finding the control of a given system that allows to minimize a given cost while sat-
isfying given constraints. In order to numerically solve an optimal control problem, the numerical
descent methods usually require to compute the gradient of the cost functional which usually de-
pends on the solution to a partial differential equation with given boundary conditions. Therefore
a crucial point is to perform the sensitivity analysis of the solution to the boundary value problem
with respect to perturbations, in order to characterize its derivative.

On the other hand, solid mechanics is the scientific field that studies the deformation of solids.
A classical mechanical setting consists in a deformable body which is in contact with a rigid foun-
dation, possibly sliding against it which causes friction on the contact surface. This friction can
be mathematically modeled by the so-called Tresca friction law (see, e.g., [26]) which appears as a
boundary condition involving nonsmooth inequalities depending on a friction threshold. Mechan-
ical problems with friction are usually investigated through the theory of variational inequalities,
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and the Tresca friction law causes nonlinearities and nonsmoothness in the corresponding varia-
tional formulations.

As a consequence, in order to investigate optimal control problems with mechanical models in-
volving the Tresca friction law, we have to perform the sensitivity analysis of nonsmooth variational
inequalities. The standard methods found in the literature usually consist in regularization (see,
e.g., [0, 13} [14], or |25, Section 10.4 Chapter 10]) and dualization (see, e.g., [37, B8]) procedures.
In a nutschell, regularization consists in replacing the nondifferentiable term by its Moreau’s enve-
lope to approximate the optimization problem associated with the model, thus the corresponding
optimality condition is replaced by a smooth variational equality instead of a nonsmooth varia-
tional inequality. However this method does not take into account the exact characterization of
the solution and perturbs the nonsmooth nature of the original physical model. The dualization
method consists in describing the primal /dual pair of the model as a saddle point of the associated
Lagrangian. The dual model leads to a characterization of its solution that involves only projection
operators and thus Mignot’s theorem (see [28]) about conical differentiability can be applied. With
this method, the derivative of the solution to the primal model, with respect to perturbations, can
be obtained but is characterized only implicitly, due to the presence of dual elements.

In this paper the sensitivity analysis is performed using a recent methodology based on advanced
tools from convex and variational analyses such as the notion of proximal operator introduced by
J.J. Moreau in 1965 (see [30]) and the notion of twice epi-differentiability introduced by R.T.
Rockafellar in 1985 (see [32]). This methodology allows us to preserve the original nonsmooth
nature of the model, that is, without using any regularization procedure, and to work only with
the primal model.

Objective and methodology The present work follows from our previous papers [3| [10] in
which the sensitivity analysis of boundary value problems involving the scalar version of the
Tresca friction law are performed. In this new paper we focus on the classical Tresca friction law
which is about the linear elastic model. Precisely we consider the (parameterized) Tresca friction
problem given by

—div(Ae(uy)) = fir in Q,
Ut = 0 on FD7
on(ut) = hy on I'y, (TP¢)
lor(ue)ll < g+ and ug, - o7 (ur) + gi flug, || = 0 on Iy,

for all ¢ > 0, where Q C R¢ is a nonempty bounded connected open subset of RY, with d € {2, 3}
and with a C'-boundary denoted by I' := 0, where n is the outward-pointing unit normal vector
to I' and where the boundary is decomposed as I' =: I'p UT'y, where I'p and I'y are two measurable
(with positive measure) pairwise disjoint subsets of I" such that almost every point of I'y belongs
to intr(I'y). Recall that, in linear elasticity, A is the stiffness tensor, e is the infinitesimal strain
tensor, oy, is the normal stress and o is the shear stress (see Section [2] for details). Moreover ||-||
stands for the usual Euclidean norm of R? and we assume that f; € L2(Q,R%), h; € L?(I'y)
and g; € L?(I'y), with g; > 0 almost everywhere on 'y, for all + > 0. Finally we recall that the
tangential boundary condition on I'y is known as the Tresca friction law.

Remark 1.1. In this paper we consider a model with a prescribed normal stress and a Tresca
condition on T'x (as studied for example in [20, Section 5.2 Chapter III]). This covers the particular
case of zero normal stress (taking hy = 0) which corresponds to the case of no tensile or compressive
stress. Nevertheless it would be possible to consider a contact problem by constraining the normal
displacement, that is, by replacing on(ur) = hy by uy, = 0 on I'n. This case corresponds to a
bilateral contact (see, e.g., [16, Remark 2.1]). This would not add any difficulty and could be dealt
in the same way as the one presented in this paper (see Rema'rkfor details).



The main objective of this work is to characterize the derivative of the map t € Ry — u; €
HE(Q,R?) at t = 0, where HL(Q,R?) := {w € HY(Q,RY) | w = 0 a.e. on I'p} and where the
abbreviation a.e. stands for almost everywhere. However the norm ||-|| which appears in the
Tresca friction law generates nonsmooth terms in the variational formulation of Problem
given by: find u; € Hy(Q,RY) such that

/QAewn :e<w—ut>+/FN g¢ o | —/FN gt e || > /thww—ut)

—|—/ hi (Wn — Uty) Yw € HE(Q,Rd),
I';

for all ¢ > 0. Nevertheless recall that u; can be expressed, using the proximal operator (see

Definition [A.4)), as

up = proxg 5 (Fy),

where F; € HE(Q,R9) is the unique solution to the (smooth) parameterized Dirichlet-Neumann
problem given by: find F; € H(Q,R?) such that

/ Ae(Fy) s e(w) = / fi-w +/ hiwy, vw € HE(Q,RY),
Q Q I'n

for all ¢ > 0, and where @ is the parameterized Tresca friction functional defined by
®: Ry xHL(QRY) — R
(tw) > @tw) = [ ol

I'n

Similarly to our previous paper [10], to deal with the differentiability (in a generalized sense) of the
parameterized proximal operator proxg .y : H%)(Q,Rd) — H%)(Q,Rd), we will invoke the notion
of twice epi-differentiability for convex functions introduced by R.T. Rockafellar in 1985 (see [32])
which leads to the protodifferentiability of the corresponding proximal operators. Actually, since
the work by R.T. Rockafellar deals only with nonparameterized convex functions, we will use
instead the recent work [2] in which the notion of twice epi-differentiability has been extended to
parameterized convex functions (see Definition .

Main result With the previous methodology and under some appropriate assumptions described
in Theorem [2.25, we prove that the map ¢t € Ry ~ u; € HL (2, R?) is differentiable at t = 0, and
its derivative uj, € HL, (02, R?) is given by

r /
Uy = PIOXD2g (ug| Fo—uo) (£0)

where D2®(ug|Fy — ug) stands for the second-order epi-derivative (see Definition [A.11) of the
parameterized Tresca friction functional ® at ug for Fy — ug, and where F} € Hf, (2, R?) is the
derivative at ¢ = 0 of the map t € Ry — F, € HL(Q,R%). Moreover we prove that uj € H} (Q, R?)



exactly corresponds to the unique weak solution to the tangential Signorini problem

) N e .
—div(Ae(up)) = f§ in £,
uy =0 on I'p,
/ !
on(ug) = hg on I'y,
o
UOT =0 on FN?)VQO7
/ g0 r /. Yoy U, _ / Uo, 1
o () + iy (ub, — (ub, - ooy ) oy ) = —gbyimsy on Dygon,
/ or(uo) / 1 o7 (uo) or(ug)
up, € R-Z=e), (o (up) - gh Zxited ) - =lte) < 0
and uy_ - (o (up) — g(’)%) =0 on I'yuo.s0,

where I'y is decomposed (up to a null set) as I'yzo.90 Ul yuo0.00 ULy 2090 (see details in Theorem ,
= {y € R? | v < 0 such that y = pIrlulls

and where, for almost all s € I'yzo.90, R_ 079(5&))(5 907(5)}'

Here f € L%(Q,RY) (vesp. hfy € L2(I'y)) is the derivative at ¢t = 0 of the map t € R, + f; €
L2(Q,R%) (resp. of the map t € R, — h; € L?(T'y)) and ¢ € L?(I'y) is the map defined, for
almost every s € 'y, by g{(s) := lim; g+ M

We emphasize that the boundary conditions which appear on FNuo g0 are called the tangential
Signorini’s unilateral conditions. They are close to the classical Slgnorml s unilateral conditions
which describe a non-permeable contact (see, e.g., [35], [36]) except that, here, they are concerned
with the tangential components (instead of the usual normal components). Roughly speaking
our main result claims that the tangential Signorini’s solution can be considered as first-order
approximation to the perturbed Tresca’s solution.

Application to an optimal control problem The above sensitivity analysis allows us to
investigate the optimal control problem given by

minimize J(z),
zeU

where J is the cost functional given by

J: V. — R
— J(z2):

z

Ll pey + 2 1) F2 )

where V is the open subset of L*>°(I'y) defined by
V:i={zeL>®{Ty)|3C(2) >0, £(z) > C(z) a.e. onI'n},

where £ is the map defined by z € L>(I'x) — £(2) := g1 + z92 € L>°(I'x), where g; € L>=(I'x)
with g1 > m a.e. on I'y for some positive constant m > 0 and g € L>°(I'y) such that ||ga||r,ec(ry) >
0, and where u(/(z)) € Hy(Q,RY) stands for the unique solution to the Tresca friction problem
given by

—div(Ae(u)) = f in Q,
u =0 on I'p,
ou(u) = h on Ty, (CTPy(»))
llor ()] < 4(z) and u, - o7 (u) + £(z ) |lu-|l =0 on Iy,

where f € L2(Q,R?) and h € L2(I'y), where 3 > 0 is a positive constant and where U is a given
nonempty convex subset of V such that ¢ is a bounded closed subset of L?(I'y). Note that the



first term in the cost functional J corresponds to the compliance, while the second term is the
energy consumption which is standard in optimal control problems (see, e.g., [27]).

We prove in Theorem that the cost functional J is Gateaux differentiable on V, and its
Gateaux differential at any zo € V, denoted by dgJ(20), is given by

daTz0)(:) = [

[ zm@@ﬁwwﬂ—wmm+/ B2 (g1 + 092)

ug.£(z0) T wg,e(z0) YT g, e(z0)
N0-4(z0 N20-4(0 Npo-£(z0

for all z € L>°(I'x), where ug := u(£(20)) is the solution to the Tresca friction problem (CTPy.,)),
and where 'y is decomposed (up to a null set) as FN?),@(ZO) U FN;O,WO) U FNgO,e(ZO).

The expression of the Gateaux differential of J allows us to exhibit an explicit descent direction
of J (see Subsection for details). Hence, using this descent direction together with a basic pro-
jected gradient algorithm, we perform numerical simulations to solve the optimal control problem
on a two-dimensional example.

Novelty and originality of the present paper We emphasize here that the previous works [3]
4, [T0] focused on scalar models, while the present work deals with the vectorial linear elasticity
model, which constitutes an essential step in view of dealing with concrete cases and applications.
Even if the present work is inspired by the previous papers, we want to underline that the extension
to the vectorial context is not trivial and leads to several additional difficulties, especially in the
investigation of the parameterized twice epi-differentiability of the parameterized Tresca friction
functional which involves the tangential norm map || -,(s) ||, for almost all s € I'y. In particular,
we present in this paper a generalization (see Proposition @ of a result proved by C. N. Do
about the twice epi-differentiability of a support function (see [I9] Example 2.7 p.286]) which is
used next to prove that the tangential norm map is twice epi-differentiable (see Subsectionfor
details). Moreover, the methodology used in this paper allowed us to characterize the derivative
of the solution to the Tresca friction problem as the solution to a non-standard boundary problem
(a tangential Signorini problem), that does not appear in the literature yet and which constituted
an additional difficulty. Finally we present a first application of these results to an optimal control
problem, with the aim of illustrating the feasibility of the presented method.

Organization of the paper The paper is organized as follows. Section [2]is the core of the
present work: in Subsection [2.1] we describe the functional framework and we introduce three
boundary value problems that are involved all along the paper; in Subsection the sensitivity
analysis of the Tresca friction problem is performed. In Section[3] we investigate an optimal control
problem and numerical simulations are performed to solve it on a two-dimensional example. Finally
Appendix [A] is dedicated to some basic recalls from convex, variational and functional analyses
used throughout the paper.

2 Main result

In this section let d € {2,3} and © be a nonempty bounded connected open subset of RY
with a Cl-boundary denoted by T' := 9Q (see Remark for comments on this C!-regularity
assumption). We denote by L2(©, R?), L2(T,RY), L}(T,RY), H'(Q, R?), HY/2(I',R?), H~/2(T", R%)
the usual Lebesgue and Sobolev spaces endowed with their standard norms. Moreover the no-
tation D(Q, R?) stands for the set of infinitely differentiable functions ¢ : Q — R? with compact
support in Q, and D’(, R?) for the set of distributions on 2. Moreover, all along this paper, we
denote by : the scalar product defined by B : C = Z?Zl B; - C; for all B, C € R¥?, where B; € R?
(resp. C; € R?) is the i-th line of B (resp. C) for all i € [[1,d]].



Let us consider the decomposition
I'=: FD U FN7

where I'p and I'y are two measurable (with positive measure) pairwise disjoint subsets of I' such
that almost every point of I'y belongs to intp(I'y) (see Remark [2.15] for comments on this last
assumption). We introduce HL (€2, R?) the linear subspace of H! (2, R?) defined by

HL(Q,RY) := {we HY(Q,RY) | w =0 a.c. on I'n}.

Moreover, we assume that € is an elastic solid satisfying the linear elastic model (see, e.g., [34]),
that is

o(w) = Ae(w),
where o is the Cauchy stress tensor, A the stiffness tensor, and e is the infinitesimal strain tensor
defined by

1
e(w) := 5(Vw +Vu'),
for all displacement field w € H!(Q, R%). We also assume that all coefficients of A are measurable

(denoted by a;j;x; for all (4,7, k,1) € {1, ..., d}4) and that there exist two constants o > 0 and v > 0
such that all coefficients of A and e (denoted by ¢;; for all (4,5) € {1, ..., d}?) satisfy

aijri(x) = ajin () = akij(z), laijri(z)| < o,
and also
d d d d d d
DD aime(wi)(@)en(wa) (@) = 7Y Y es(wn) (@) (w2) (@),
1=1 j=1k=11[=1 i=1 j=1

for all displacement field wy, ws € H'(Q, R?) and for almost all z € 2. Moreover, since I'p has a
positive measure, then we can deduce that

2 Vi (e (HL(Q,RY))? — R
(w1, we) +— /Ae(wl):e(wg)7
Q

is a scalar product on HL (€2, R?) (see, e.g., [20, Chapter 3]) and we denote by ||-||H]13(Q}Rd,) the
corresponding norm.

We denote by n € C°(T") the outward-pointing unit normal vector to I'. Therefore, for any w €
L2(I',R%), one has w = wyn + w,, where w, := w-n € L}(T,R) and w, := w — wyn € L2(I', R?).
In particular, if the stress vector Ae(w)n is in L?(T'y, R?) for some w € H! (€2, R%), then we use the
notation

Ae(w)n = op(w)n + o (w),

where o, (w) € L?(I'y, R) is the normal stress and o, (w) € L?(I'y, R?) is the shear stress. We also
denote by |[|-|| the Euclidean norm on R and, for all w € L2(I',RY), ||w,|| € L3(T') is defined by

lws: T — R

The rest of this section is organized as follows. Subsection introduces three boundary value
problems involved all along the paper: a Dirichlet-Neumann problem (see Problem ), a tan-
gential Signorini problem (see Problem ) and a Tresca friction problem (see Problem . In
Subsection [2:2] the sensitivity analysis of the Tresca friction problem is performed and we establish
the main result of this paper (see Theorem .



2.1 Three boundary value problems

For the needs of this subsection, let us fix f € L2(Q,R¢). Only the proofs of Subsection
are detailed since the tangential Signorini problem is, to the best of our knowledge, new in the
literature. For the proofs of the other problems, they are classical and close to the ones presented
in [3] and thus they are left to the reader.

2.1.1 A problem with Dirichlet-Neumann conditions
Let z € L?(I'y, R%) and consider the Dirichlet-Neumann problem given by
—div(Ae(F)) = f in Q,

F =0 onIp, (DN)
Ae(F)n = z onI'y.

Definition 2.1 (Strong solution to the Dirichlet-Neumann problem). A (strong) solution to
the Dirichlet-Neumann problem (DN) is a function F € H'(Q,R?) such that —div(Ae(F)) = f
in D'(Q,RY), F =0 a.e. onT'p, Ae(F)n € L2(I'x, R?) with Ae(F)n = z a.e. on I'x.

Definition 2.2 (Weak solution to the Dirichlet-Neumann problem). A weak solution to the
Dirichlet-Neumann problem (DN) is a function F € H(Q,R?) such that

/Ae(F):e(w):/f-w+/ Z-w, Vw € HE(Q,RY).
Q Q I'n
Proposition 2.3. A function F € H'(Q,R?) is a (strong) solution to the Dirichlet-Neumann
problem (DN|) if and only if F is a weak solution to the Dirichlet-Neumann problem (DNJ).

Using the Riesz representation theorem, we obtain the following existence/uniqueness result.
Proposition 2.4. The Dirichlet-Neumann problem (DN|) admits a unique (strong) solution F
€ HY(Q,RY). Moreover there exists a constant C > 0 (depending only on Q) such that

1Pl oz < € (I lsme) + 12y ze) ) -

2.1.2 A tangential Signorini problem

In this part we assume that I'y is decomposed (up to a null set) as
I'vn =:T'np UT'ng UT'Ng,

where I'ng, I'np, I'ng are three measurable pairwise disjoint subsets of I'y. Moreover let h €
L}(Tx), £ € L3(T'x), v € L>=(I'x, RY) such that [0l Los Py urng Re) S 1,k € L4(I'ny ) such that k >
0 a.e. on I'yy, and we denote, for almost all s € I'ng, R_v,(s) := {y € R | 3v < 0 such that y =
vv,(s)}. The tangential Signorini problem is given by

—div(Ae(u)) = f inQ,
u=0 onlp,
on(u) = h onTy,
ur =0 on 'y, (SP)
or(u) + k (ur — (ur -v7)v,) = bv; on I'ng,
ur € R_vy, (07 (u) —lvr) - v, <0and ur - (0,(u) —lv;) =0  on I'ng.



Definition 2.5 (Strong solution to the tangential Signorini problem). A (strong) solution to
the tangential Signorini problem is a function u € H'(Q,R?) such that —div(Ae(u)) = f
in D'(Q,RY), u = 0 a.e. onTp, ur = 0 a.e. on I'ny, Ae(u)n € L3(Tx,RY) with o,(u) = h
a.e. onIn, o,(u) + k(ur — (ur - v )vy) = boy ace. on I'ng, ur € R_vg, (07(u) — Lvy) - vy <
0 and u, - (0,(u) —lv;) =0 a.e. on I'ng.

Definition 2.6 (Weak solution to the tangential Signorini problem). A weak solution to the tan-
gential Signorini problem (SP)) is a function u € K*(Q,RY) such that

/QAe(u) ce(w—u) > /Qf-(w—u)—l— . h(wn—un)—|—/F vy — k (ur — (ur - v7)v7)) (Wr —ur)

NR

+ é'UT : ('U)T - uT)? vw e ICl(Q7]Rd)7 (21)

FNS
where K(Q,R?) is the nonempty closed convex subset of Hi, (2, RY) given by
KMQ,RY) := {w € HL(LR?Y) | w, =0 a.e. onI'ny and w, € R_v, a.e. onDng}.

One can easily prove that a (strong) solution to the tangential Signorini problem is also a
weak solution. However, to the best of our knowledge, without additional assumptions one cannot
prove the converse. To get the equivalence, one can assume, in particular, that the decomposi-
tion I'p UT'ng UT'ng UDNg of T' is consistent in the following sense.

Definition 2.7 (Consistent decomposition). The decomposition I'p UT'n,. UT'n, UTNg of T is said
to be consistent if:

(i) for almost all s € I'ng, s € intr(I'ng);

(ii) the nonempty closed convex subset KK'/?(I',R%) of HY/2(T',R?) defined by
KY2(r,RY) = {w e HY3(I,RY) |w =0 a.e. onTp, w, =0 a.e. on In,
and wr € R_v, a.e. on I'ng },
is dense in the nonempty closed conver subset K°(I',RY) of L2(I',RY) given by
KT, R?) := {w cL2(0,RY) |w =0 a.e. onTp, w, =0 a.e. onTn,

and wr € R_v; a.e. on I'ng }

Proposition 2.8. Let u € H(Q,R9).

(i) If u is a (strong) solution to the tangential Signorini problem (SP)), then u is a weak solution
to the tangential Signorini problem (SPJ).

(ii) If u is a weak solution to the Signorini problem (SP)) such that Ae(u)n € L%(T'x,R?) and the
decomposition T'p UT'n, U TN, UT'ng of T' is consistent, then u is a (strong) solution to the
tangential Signorini problem (SPJ).



Proof. Assume that u is a (strong) solution to the tangential Signorini problem (SP)). Then,
from the boundary conditions, u € K(Q,R?). Moreover, since —div(Ae(u)) = f in D'(Q,R?)
and f € L%(Q,R%), then —div(Ae(u)) = f in L2(2,R%). Hence, from divergence formula (see
Proposition , one gets

/QAe(u) re(w —u) — (Ae(u)n, w — Wg-1/2 (1 gayxH1/2(r R = /Qf (w —u),

for all w € K'(, R%). Moreover, for all w € K'(Q,R?), w € H(l)é2(FN,Rd) which can be identified
to a linear subspace of H'/2(T', R%), hence

/QAe(u) re(w —u) — (Ae(u)n, w — u>H0_01/2(FN,]Rd)XHééQ(FN,Rd) = /Qf (w —u),
for all w € K1 (2, R?). Furthermore, since Ae(u)n € L2(I'y, R?), it follows that

(Ae(u)n,w — Ae(u)n - (w — w),

u _ =
>H001/2(FN,]Rd) xHp (D, RY) .

for all w € K'(Q, R?). Using the decomposition of Ae(u)n on its tangential and normal components,
one has

/FN Ae(u)n - (w —u) = /FN on(u)(wn — Un) +/ or(u) - (wy —u,),

FNR UFNS

for all w € K(Q,RY). From the boundary conditions, one has o, (u) = h a.e. on I'y and o, (u) =
v, —k(ur — (ur - v7)vr) a.e. on 'y, Moreover one has

or(u) - (wr —ur) =07 (u) - wr —or(u) - ur > vy - wr — Loy - ur = oy - (Wr —ur),

a.e. on I'ng. This concludes the proof of the first item.

(ii) Assume that u is a weak solution to the tangential Signorini problem (SP). Then u €
KY(Q,R?). For all ¢ € D(Q,R?), considering w := u + ¢ € K'(Q,R?) in Inequality , one
gets —div(Ae(u)) = f in D'(2,R?), then also in L2(2,R?) since f € L2(2,R?). Hence we can
apply the divergence formula (see Proposition in Inequality to get that

(Ae(u)m w — U>H*1/2(F,Rd)><H1/2(I‘,Rd) > /F h(wy — uy)
N
—|—/ (bvr — k (ur — (ur - v7)v7)) - (Wr —ur) + Loy (wr — ur),

for all w € K*(Q,R%). Moreover, similarly to (i) and from the assumption Ae(u)n € L?(I'x, R%),
one gets

/FN on(u)(wy — uy) + /FNRUFNS or(w) - (wr — ur) > /FN h(wn — un)
+/F (to; — k (ur — (ur - v7)07)) - (Wy — uy) +/ o, - (wy —uy), (2.2)

FNS
for all w € K(,R?), then also for all w € KY2(T, R?). From the assumption that the decomposi-
tion T'p UT' N, UT N, UT'ng of T'is consistent, K'/2(I', R?) is dense in K°(T', R?). Therefore, since k €
L*(Txg)s [[0]|ro0 (P T Re) < 1 and from the continuous embedding HY(Q,RY)—L4(T",R?), we
deduce that Inequality (2.2)) is still true for all w € K°(T', R9).

NR



By considering the function w := u #+ ¢n € K°(I',RY) in Inequality (2.2]), where v € L2(T") is
given by
_ 0 on FD,
w B { ¢ on FN;
with ¢ any function in L?(T'y), one deduces that o, (u) = h a.e. on I'y.

By considering w := u + wg € K°(I', R?) in Inequality (2.2)), where w, € L2(T',RY) is given by

_ 0 onI'puU FNT U FN87
We = 10 on I'ny,

with ¢ any function in L2(T'x,, R?), one gets that o, (u) = fv, — k (uy — (ur - v;)v;) a.e. on Tny.
Hence Inequality (2.2]) becomes

/ or(u) - (wr —uy) > Loy (wr — ur), (2.3)
T'ng

I'ng

for all w € K°(I',R%). Let s € I'ng be a Lebesgue point of o, (u) - v, € L?(I'n, U I'ng) and
of ¢ ||vTH§ € L2(I'ny UTNg), such that s € intp (g ). By considering the function w := u — ¢, €
KO(T, R?) in Inequality (2-3), where 1 € L2(T) is defined by

1 on Br(s,e),
Y= 0 on I'\Br(s,e),

for € > 0 such that Br(s,e) C I'ng, one gets that

1 o) v 1

-,
1Br(s,)] Jr(s.c) = Br(s.0)]

Br(s,e)

and thus (o, (u)(s) — £(s)v-(s)) - v-(s) < 0 by letting e — 0. Moreover, since almost every point
of I'ng are in intr(I'yg) and are Lesbegue points of o, (u) - v, € L?(I'n, U I'ng) and of £ ||1}TH§ €
L?(I'ny UT'Ng ), one deduces

(O'.,-(U) - 41}7-) cUr S 07

a.e. on I'ng. Finally, by considering w = 0 and w = 2u in Inequality (2.3)), one gets
/ ur - (o (u) — lv;) =0,
FNS

therefore u, - (0, (u) — fv;) = 0 a.e. on I'xg since u € K1(Q,R?). The proof is complete. O

Now let us prove that there exists a unique solution to the tangential Signorini problem (SP)).
To this aim let us introduce the functional ¥ defined by

v: HL(QRY) — R
k
w — Uw) ::/ = (ol oy e ?).
FNR

Note that ¥ is well defined since k € L*(I'ny), ||[v]] < 1 a.e. on 'y, and from the continuous
embedding H!(Q, RY)—L*(T, R?).

10



Lemma 2.9. The functional ¥ is convex and Fréchet differentiable on H (Q,RY) and, for all wy €
HE (Q,RY), V¥(wp) € HY(Q,R?) is the unique solution to the Dirichlet-Neumann problem

—div(Ae(V¥(wp))) = 0 in £,
V\I/(wo) =0 on FD,
Ae(VU(wg))n =0 on 'y U TN, (2.4)
on (V¥ (wp)) =0 on I'ng,
o (V¥ (wp)) = k(wo, — (wo. -v7)v;) on Ing.

Proof. Let us start with the convexity of W. Take wy,ws € Hi (2, R?) and v € (0,1). Then

U(vwy + (1 — v)ws) — v¥(wy) — (1 — v)¥(ws) =

k
/ 75”(1*V)[[||w17||2 +lwa, I+ 2w, - wa, — wr, v |* = |wa, - vr ] = 2(wn, - vr) (wa, - vr)
NR

k k
- / V(L =) fuw, +ws |? +/ “v(1—v)|(wy, +wa ) v
T

Ng I'ng 2

Since k> 0 and |[v|| <1 a.e. on I'ny, one deduces

U(rvwy + (1 — v)wa) —v¥(wy) — (1 — )T (we) <

J

Thus ¥ is convex on HE (€2, R%). Now let us prove that ¥ is Fréchet differentiable. For wg €
HY(Q,R?Y) and w € HE(Q,R?), it holds that

k k
e =)o, b P [ Do)+ o <0,

NR Ing

\I/(w0+w):\l'(w0)+/ ks (wo, — (wo. -UT)UT)-wT+/F g(||w7|\2—|w7-117|2).

Ing Nr

k 2 2
5 lw-]|” = wy - 07 ) = o(w),
[ 5 )

where o stands for the standard Bachmann-Landau notation for the HE (2, R¢)-norm. Moreover
the map

Moreover one has

w € HY (Q,RY) — k (wo, — (wo. - vy)vy) - ws € R,

I'ng

is linear and continuous. Therefore ¥ is Fréchet differentiable in wo € HE (22, R?) and

<V\I/(w0)7w>H113(Q,Rd) = / k (w07 - (wOT : UT) UT) s Wr, Vw € HllD(QaRd)

Nr

In other words V¥ (wg) € Hi) (9, R?) is the unique solution to the Dirichlet-Neumann problem (2.4
The proof is complete. O

Proposition 2.10. The tangential Signorini problem (SP|) admits a unique weak solution u €
HE(Q,R?) which is given by
(£),

u = prOX\I’JrL,Cl(Q)Rd)

11



where F € HE(Q,RY) is the unique solution to the Dirichlet-Neumann problem (DN|) with z :=
hn + v, € L2(I'x,RY), and ProXy ., , stands for the proximal operator associated with the

Junctional U + v (q ray-

Rrd)

Proof. Let F € HL (9, R?) be the solution to the Dirichlet-Neumann problem (DN)) with z :=
hn + ¢v, € L?(I'x, RY). Then

(Fyw) (QRY) = / fw+ hw, + Loy - we, Yw € H5(Q,RY).
P Q I'n I'x

Let u € HL (92, R?) and note that ¥ + LK1 (q,r4) 1S a proper lower semi-continuous convex function
on HE(€Q,R9). Then u is the weak solution to the tangentiel Signorini problem (SP) if and only
if u € K1(Q,RY) and

(w,w =g qray = [ fr(w—u)+ h (wy — )
P Q I'n

+/ (v — k (ur — (ur - vr)vr)) - (Wr —ur) + oy - (wr —uy), Yw € KHQ,RY),
r

NgR Ing
i.e. if and only if

/ kE(ur — (ur - v7)vr) - (wr —up) > (F —u,w — U>H]13(Q.Rd) , Yw € KHQ,RY),
- ,

Ngr
i.e. if and only if (see Proposition
U(w) —V(u) > (F —u,w— u>H]13(QJRd) , vw € KH(Q, RY),
i.e. if and only if
(F—u,w— u>HE(Q,Rd) < U(w) — U(u) + i ore) (W) — Lo ray (0), vw € Hp(2,RY),

ie. if and only if F —u € (¥ + 1 (qra)) (u), ie. if and only if u = ProXy., Rd)(F)’ which

concludes the proof. O

2.1.3 A Tresca friction problem

Let h € L?(I'y) and g € L?(I'y) such that g > 0 a.e. on I'y. Consider the Tresca friction
problem given by

—div(Ae(u)) = f in Q,
u =0 onIp,
on(u) = h on I'y, (TP)
lor(w)|| < g and u; - o7 (u) + g |lur]] =0 on I'x.

Definition 2.11 (Strong solution to the Tresca friction problem). A (strong) solution to the Tresca
friction problem (TP)) is a function u € H(Q, R?) such that —div(Ae(u)) = f in D'(Q,RY), u=0
a.e. on T'p, Ae(u)n € L2(I'x,RY) with a,(u) = h, |lor(u)| < g and u, - 0. (w) + g|lur|| = 0 a.e.
on I'y.

Definition 2.12 (Weak solution to the Tresca friction problem). A weak solution to the Tresca
friction problem (TP) is a function u € HY (2, R?) such that

12



AAe<u>:e<wu>+LNg||wT||/FNgnuTnz/Qf'(wu)

+ h(wn — ty), Yw € H (Q,RY).
I'n

Proposition 2.13. A function u € H(Q,R%) is a (strong) solution to the Tresca friction prob-
lem (TP) if and only if u is a weak solution to the Tresca friction problem (TP).

From definition of the proximal operator (see Definition [A.4)), one deduces the following exis-
tence/uniqueness result.

Proposition 2.14. The Tresca friction problem (TP) admits a unique (strong) solution u €
HE(Q,RY) given by
u = prox,(F),

where F € HY(Q,RY) is the solution to the Dirichlet-Neumann problem (DN)) with z := hn €
L?(I'x,R%), and where prox, stands for the proximal operator associated with the Tresca friction
functional ¢ defined by

¢: HLQRY) — R
w — $w) = / gl
I'n

Remark 2.15. The assumption that almost every point of I'y is in intp(T'y) is only used to prove
that a weak solution to the Tresca friction problem is also a (strong) solution (precisely to get
the Tresca friction law pointwisely on I'x). Of course, some sets do not satisfy this assumption, for
instance the well-known Smith—Volterra—Cantor set (see, e.g, [5, Example 6.15 Section 6 Chapter
1]). Nevertheless it is trivially satisfied in most of standard cases found in practice. Furthermore,
if this assumption is not satisfied, one can also prove that the weak solution to the Tresca friction
problem is a (strong) solution by adding the assumption that g € L>°(T'y), and by using
the isometry between the dual of (L!(I'y,R9), || - 1 (ry rey,) and L>*(T'y, R%) (with its standard
norm || - [|es (ry re)) Where || - [[L1(ry re), is the norm defined by

|H|L1(I‘N,Rd)g: L'(Tw,RY) — R
w — / gl
I'n

We refer to [20, Chapitre 3] for details in a similar context.

2.2 Sensitivity analysis of the Tresca friction problem

In this section we perform the sensitivity analysis of the Tresca friction problem. To this aim
we consider the parameterized Tresca friction problem given by

—div(Ae(uy)) = fir in Q,
ug =0 onI'p,
on(ug) = hy onI'y, (TP:)
llor(ue)l| < g¢ and uy, - o (ug) + g ||Jue, || =0 on Ty,

where f; € L2(Q,R%), h; € L?(T'y) and g; € L2(I'y) such that g; > 0 a.e. on I'y, for all £ > 0.

13



2.2.1 Parameterized Tresca friction functional and twice epi-differentiability

Let us introduce the parameterized Tresca friction functional given by
®: Ry xHL(QRY) — R (2.5)
(t,w) — P(t,w) = / gt |lw-|| .

I'n
From Proposition the unique solution to the parameterized Tresca friction problem (TP is
given by
U = pI‘OXq>(t7_)(Ft),

where F} is the unique solution to the parameterized Dirichlet-Neumann problem

—dIV(Ae(Ft)) = ft in Q,
F,=0 onIp, (DNy)
Ae(Fi)n = lyn on I'y,

for all ¢ > 0. Similarly to the scalar case (see [10]), since the parameterized Tresca friction
functional depends on a parameter ¢ > 0, we have to use the notion of twice epi-differentiability
depending on a parameter (see Definition , in order to apply Theorem Let us prepare
the background for the twice epi-differentiability of the parameterized Tresca friction functional.
More specifically, let us start with the characterization of the convex subdifferential of ®(0,-) (see
Definition . To this aim, for all s € I'y, we introduce the tangential norm map defined by

|+ : R — R
e

)

and we introduce an auxiliary problem defined, for all u € H{, (2, R%), by

—div(Ae(v)) =0 in Q,
v=0 onIp,
on(v) =0 on I'y,
or(v)(s) € go(s)0 H-T(S)H (u(s)) on I'y,

(APy)

where, for almost all s € 'y, 0 ||‘r(s) || (u(s)) stands for the convex subdifferential of the tangential
norm map ||--(s)|| at u(s) € R%. For a given u € HL(Q,R?), a solution to this problem is
a function v € HY(Q,R?) such that —div(Ae(v)) = 0 in D'(Q,R?), v = 0 a.e. on I'p, Ae(v)n €
L2(I'n,RY) with 04 (v) = 0 a.e. on I'y and o, (v)(s) € go(5)0)|-+(s)||(u(s)) for almost all s € I'y.

Lemma 2.16. Let u € HL(Q,R?). Then
09(0,-)(u) = the set of solutions to Problem (AP,).

Proof. Let u € HL(,R?) and let us prove the two inclusions. Firstly, let v € H'(Q,R?) be
a solution to Problem (AP,). Then v € HL(Q,RY), Ae(v)n € L%}(I'y,R%) with o, (v)(s) €
90(5)0||-+(s)||(u(s)) for almost all s € I'x. Hence one has

- (v)(s) - (wr(s) = ur(s)) < go(s)(lwr ()| = llur(s)]),

for all w € HY (22, R?) and for almost all s € I'y. It follows that

/of<v>-<w7—ur>s/ gonwfn—/ g0 llurl],
I'n I'n I'n
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for all w € HL (2, RY). Moreover —div(Ae(v)) = 0 in D’(Q,R?), thus it holds —div(Ae(v)) = 0
in L2(Q, R%). Hence, from divergence formula (see Proposition |A.15]), one gets

(v,w — U>H]13(Q,]Rd) = (Ae(v)n,w — U>H;01/2(FN,R‘1)xH}JéQ(FN,Rd) ,

for all w € HY(Q,RY). Since Ae(v)n € L%(T'y,RY) and o, (v) = 0 a.e. on I'y, one deduces that

(v, w = Wy ey = / or(v) - (wr —ur),

I'n

for all w € HY(Q,RY). Therefore it follows that

(v,w — Uy QRd) < 9o [[w-|| — g0 llu-ll,
bl )
I'n I'n

for all w € HL(Q,R?). Thus v € 99(0,-)(u) and the first inclusion is proved. Conversely let v €
0P(0,-)(u). Then one has

(00 = iyazn < [ aolwrl = [ g0l 20)
FN 1—‘N

for all w € HE(Q,RY). Considering the function w := u + ¢ € HL(Q,R?) with any func-

tion 1 € D(Q,R?), one deduces from Inequality (2.6) that —div(Ae(v)) = 0 in D’(2, R%), thus it
holds —div(Ae(v)) = 0 in L?(Q, R?). Hence, from divergence formula (see Proposition [A.15) and
Inequality (2.6)), it follows that

TR (1 U [ A T
N N

for all w € HL (92, R?), and thus also for all w € H(l)(/)2 (I'x, RY). Now, by considering w := u + ¢ €
H(l,(/)Q(I‘l\I,Rd)7 for any ¢ € HééQ(FN,Rd), one gets

(Ae(v)n, <'0>H501/2(I‘N,Rd)XH(I,(/J2(FN,R‘1) SA go ”@TH < H90HL2(FN) HSD”LZ(FN,JRd)’
N

for all p € HééQ (I'x, RY). From Proposition one deduces that Ae(v)n € L?(I'y, R?%) and also

that

Ae(v)n- (w—u) = /

I'n

72(0) (wr =)+ [ (o) (wn )

I'n
< / go llwn || - / gollurll, (2.7)
FN 1—‘N

for all w € H(l)(/)2 (I'x, RY), and thus for all w € L2(I'y, RY) by density. By considering w := u=+1m €
L%(Tn, R?) in Inequality (2.7)), for any ¢ € L?(I'y), one gets

/ on(v) = 0.
I'n
Therefore o, (v) = 0 a.e. on I'y and Inequality (2.7) becomes

/FN or(v) - (wr —ur) < /FN 9o lw-[l — /FN go llur| (2.8)

15
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for all w € L2(I'y,R%). Now let sp € I'y be a Lebesgue point of (0, (v)); € L?(T'y) for i €
[[1,d]], o (v) - ur € LYT'n), go € L%(T'n) and of go |Ju,|| € L' (I'x), such that s € intr(I'y). Let us
consider the function w € L?(T'y,RY) defined by

[ & on Br(so,¢),
Y=Y uw on I'n\Br(so,€),

with 2 € R? and & > 0 such that Br(sg,e) C I'y. Then one has from Inequality (2.8

1 1 1

T 0r(v) - (27 —ur) < ——— gollzrll = 57— go [Ju-| -
|Br(80:€)| JBr(s0.¢) |Br (50, )| JBr(s0.6) |Br(50:€)| JBr(s0.¢)

The map s € T' — ’xT(S)H € R, is continuous since n € C°(T), thus sy is a Lebesgue point
of gollz-|| € L*(I'n), then o7 (v)(s0) - (Tr(se) = ur(50)) < go(50) [|#r(s0)|| — g0(50) [lur(s0)[| by
letting ¢ — 0F. This inequality is true for any z € R?, therefore o (v)(s0) € go(50)8||"r(s0)|l(u(s0)).
Moreover, almost every point of I'y are in intr(I'x) and are Lesbegue points of (o, (v)); € L*(T'x)
for i € [[1,d]], o, (v) - u, € LY(T'N), go € L2(I'x) and of go ||u,|| € LY(I'x), hence one deduces

- (v)(s) € go(5)0|[-r(s l[(u(s)),

for almost all s € 'y, and this proves the second inclusion. O

Remark 2.17. As one can see in the proof of Lemma, the assumption that I' is of class C!
is only used to ensure that n € C%(T), and thus to characterize the convex subdifferential of ®(0, -)
as the set of solutions to Problem (AP,|).

Since the twice epi-differentiability is defined using the second-order difference quotient func-
tions, let us compute the second-order difference quotient functions of ® at v € HL (9, R?)
for v € 09(0,-)(w).

Proposition 2.18. For allt > 0, all u € H5(Q,RY) and all v € 0®(0,-)(u), it holds that
A7 (u | v)(w) = /F AFG(s)(u(s) | o-(v)(s))(w(s)) ds, (2.9)
N

for all w € HE(Q,R?), where, for almost all s € Ty, AZG(s)(u(s) | o-(v)(s)) stands for the
second-order difference quotient function of G(s) at u(s) € R? for o-(v)(s) € go(s)0||-+(s)||(u(s)),
with G(s) defined by

G(s): Ry xRY — R
(tx) > G(s)(tx) = gi(s) [Jars -

Remark 2.19. Note that, for almost all s € I'y and all t > 0, G(s)(t, ) := g+(s) H~T(S)H is a proper
lower semi-continuous convex function on R?. Moreover, since gy > 0 a.e. on I'y, it follows that

9 [G(s)(0,)] () = go(8)9|-7(s)l|(2),
for all z € R% and for almost all s € I'y.

Proof of Proposition[2.18 Let t > 0, u € Hy(Q,R%) and v € 99(0,-)(u). From Lemma and
the divergence formula (see Proposition |A.15)), one deduces that

<”aw>H]13(Q,Rd) :/ or(v) - w,

I'n
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for all w € HY(Q,R?). Tt follows that

Aot ) = [ S+ 0] = ()] = ofe)e) ) o,

for all w € HE(Q,R?). Moreover, since o-(v)(s) € go(s)9||-r(s)||(u(s)) for almost all s € I'y, one
deduces that
Af®(u | v)(w) = | AFG(s)(u(s) | o7 (v)(s))(w(s))ds,

I'n

for all w € HE (92, R?), which concludes the proof. O

From Proposition 2.18] it is clear that the twice epi-differentiability of the parameterized Tresca
friction functional ® is related to the twice epi-differentiability of the parameterized function G(s).
Hence we have to compute the second-order epi-derivative of G(s) for almost all s € I'y. To this
aim, let us start with the investigation of the twice epi-differentiability of the tangential norm map.
Since, for almost all s € 'y,

“7(s) H = §WO(RH(S))L, where fmm(Rn(s))L is the support function
of B(0,1) N (]Rn(s))L (see Definition |A.2), we have to extend a result proved in [I9, Example 2.7
p-286] about the twice epi-differentiability of a support function.

Proposition 2.20. Let ¢ be the support function of a nonempty closed convexr subset C of RY.
Then, for all x € C*, one has 0éc(x) = C and &c is twice epi-differentiable at x for any y € C
with

dZéc(r |y) = o)
where Ne(y) = {z €R? | z- (¢ —y) <0,Yc € C} is the normal cone to C at y € C and ixg(y)
stands for the indicator function of Nc(y) defined by ixq ) (2) := 0 if 2 € Na(y), and ing(y)(2) =
+00 otherwise.

Proof. Let x € Ct. From [23] Lesson EJ, it holds that:
(i) y € 0¢c(z) & x € dic(y) & y € C;
(ii) if y € C, then z € N¢(y) & &c(z) =z - y.

From the first item one deduces that 9¢c(x) = C. Let y € C and let us prove that hc is twice
epi-differentiable at x for y. To this aim we use Proposition Consider z € N¢(y) and
thus £c(z) = y - z. By considering the sequence z; := z for all ¢ > 0, one gets

82¢c(z | y)(z) = Eolx +tz) —tgc(m) —tyz

SUp.cc (@ +1t2)-c—ty -2 _ éa(z) —&cl(z) _o
2 t ’

Moreover, since 62¢c(z | y)(w) > 0 for all w € R, one deduces that d?¢c(x | y)(z) = 0. Now
consider z ¢ N¢(y). There exists ¢p € C such that z - ¢ > 2 -y, thus £¢(2) > 2z - y. Consider any
sequence (2¢),, — 2. Since {c is lower semi-continuous one has

liminf &c(2) > &c(z) and y-z—y - 2,
when ¢ — 07. Therefore there exists € > 0 such that

fcl(z) —y -z

| fele) =y
4 )

Ec(z) > &c(z 1

and —y-z>—y-z—
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for all ¢ < e, and thus

fecla e = S0 5 COZ0

when ¢ — 0. Hence d2¢c(x | y)(2) = +o0o which concludes the proof. O

Remark 2.21. Note that if we consider a general real Hilbert space (H,(:,-);), then Proposi-
tion [2:20]is still true since the support function of a nonempty closed convex subset of H is convex
and lower semi-continuous, thus weakly lower semi-continuous.

Lemma 2.22. For all s € T'y, the map H-T(S)H is twice epi-differentiable at any x € RY for
any y € 8H~T(S)H(w) and its second-order epi-derivative is given by

AON

[

2
__1 2 _ .
& et | @ [ 9)(2) = § 2Terc] (”*%” ) e #0,

LNB(O,I)O(RI\(S))J-(y)(Z> if Tr(s) =0,

. =T L
for all z € R, where NSG DN ®n(s ))L( y) is the normal cone to B(0,1) N (Rn(s))™ at y.

Proof. Let s € I'y. Note that

- if x5 #0,
|7 |(2) = {llu> } , (s)

Since -
(B(0,1) N (Rn(s))")* = Rn(s),
one can apply Proposition to get that
2 —
d ||'T(S) || (@ ly) = NEG @)L ¥)1

for all z € Rn(s) and all y € B(0,1) N (Rn(s))". In the case where z ¢ Rn(s) (i.c. Tr(5) # 0), one
can easily prove that H-T(S) H is twice Fréchet differentiable at x with

D2 ||7'(s)|| (1’)(21,22) =
1 Tr(s)
m (’217(5) TR20) T (xT(s) ‘ 227(5)) “lrgsy W) ) V (21, 22) € RY x R
From Remark [A710] one gets

el (=122 ) = 30 ol 009 = gt el

for all z € R?, which concludes the proof. O

2
L1(s)

Zr(s) T
O Nar|l

Now, with additional assumptions, let us compute the second-order epi-derivative of G(s) for
almost all s € I'y.
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Proposition 2.23. Assume that, for almost all s € T'n, the map t € Ry — gi(s) € Ry s
differentiable at t = 0, with its derivative denoted by g{(s). Then, for almost all s € T'x, the
map G(s) is twice epi-differentiable at any x € R? for all y € 90(8)0||+(5)|(z) with

L Tr(s) T . . 0
IO P el 2 Y070,

(Z) + 96(8)#(5) 4 Zf Tr(s) = 07

2
) +90(s) 1

g0(s) 2
D2G(s)(z | y)(2) == 2l=reoll <”ZT(S)H
Ne@ D)+ (T @)
for all z € R?,
Proof. We use the same notations as in Definitions and Let 2 € R%. Then, for almost
all s € I'y, for all y € go(s)0||-+(s)||(x) and all z € R?, one has

T(s +t 7(s - (s —ty -
A26(s) e | ) () = 2 NTre) +tze | = 0u(s) [lanoll 1y -2

12
_, 5)er<s>+tzr<s>||—Hﬂws)”—tﬁ"z (9:(5) ~ 90()
‘ t2 tgo(s) ’
that is (0r(5) ()
A2G(s)(x 2) = g4(8)02|] (s (x )Z+W - 2,
FG(s)(@ | 0)(2) = a6l (| ) () + 20
with — ) € 9||-7(s)||(z), and where 53”'7(8)”@‘9?‘%5)) is the second-order difference quotient func-

tion of ||-7(s)|| at z for g%(s) (see Definition since ||-7(5)|| is a t-independent function). Using
the characterization of Mosco epi-convergence (see Proposition |A.8]) and Lemma one gets

D) [ 1)) = a0 1ol (i1 2 ) + i) 2 o

The proof is complete. O

To conclude this part, let us characterize Ngr—=s, (y) for all y € B(0,1) N (Rn(s:))l and

for almost all s € I'y.

B(0,1)N(Rn(s))L \Y

Lemma 2.24. Let s € I'y. It holds that

N () = Rn(s) if y € B(0,1) N (Ru(s)) ™,
BODN®n(s)* WY Ru(s) +Roy  ify € OB(0,1) N (Ru(s))",

for all y € B(0,1) N (Rn(s))", where Ryy := {z € R | Jv > 0 such that z = vy}.
Proof. Let s € T'y and y € B(0,1) N (Rn(s))™
(i) First, let y € B(0,1) N (Rn(s))". If v € Rn(s), then
v ly—2)=0, V2eBO1)N (Ru(s)",
thus v € Ng5 1)0(Rn(s))L( y). Since this is true for any v € Rn(s), one deduces that

Rn(s) C Nggajn@n(s) - )
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Consider v € N Then it holds that

B(0, l)ﬂ(Rn(s))L( y)-

v-(z—y) <0, vz € B(0,1) N (Rn(s)) ™.

Moreover there exists ¢ > 0 such that B(y, ) N (Rn(s))™ € B(0,1) N (Rn(s))". Therefore by
considering z := y + 5oy for any w € (Rn(s))™", one deduces that

v-w =0, Vw € (Rn(s))*

Thus v € ((Rn(s))1)t = Rn(s). Since this is true for any v € N5 ®n(s)* (y), one deduces
that
NB(0,1)m(Rn(s))L(y) C Ru(s).

Let y € B(0,1) N (Ru(s))". If v € Rn(s) + R4y, then
ve(z=y) =ve(e) - (2 =) < [oro LIzl = vrge) -y < [Jorgo | = [lomeo | = 0,
for all z € B(0,1) N (Rn(s))". Thus it follows that

Ru(s) +R+y C Ny yng@n(s) - (¥)-

Let v € Nggijn(rn(s))* (¥), and consider z := : (|Z:Si|| lyll + y) € B(0,1)N (Rn(s))". One

deduces that

1
0>v- (Z - y) = Ur(s) - (HU || ” ” ) (HUT(S)H Hy” Ur(s) y) >0,

thus |[v-(s)|| |yl = vr(s) - ¥, hence vy (5) € Ryy. This is true for any v € NWO(RD(S))L(y),
thus one deduces that
NE G 1A ®n(s))~ () C Rn(s) +Ryy.

The proof is complete. O

2.2.2 The derivative of the solution to the parameterized Tresca friction problem

From the previous results and some additional assumptions detailed below, we are now in a
position to state and prove the main result of this paper which characterizes the derivative of the
solution to the parameterized Tresca friction problem (TP4).

Theorem 2.25. Let u; € H}D(QJRd) be the unique solution to the parameterized Tresca friction
problem (TPy) for allt > 0. Let us assume that:

(i)

(i)

the map t € Ry — f; € L2(Q,R?) is differentiable at t = 0, with its derivative denoted
by f§ € L*(Q,RY);

the map t € Ry w hy € L?(T'y) is differentiable at t = 0, with its derivative denoted
by hy € L2(Tx);

(iii) for almost all s € T'n, the map t € Ry — gi(s) € Ry is differentiable at t = 0, with its

derivative denoted by gf(s), and also g € L2(T'x);
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(iv) the map s € Lyroso \|u0 (ss))” € Ry belongs to L4(FNuo 90) (see below for definition of the
set FN;ovgo );

(v) the parameterized Tresca friction functional ® defined in (2.5)) is twice epi-differentiable (see
Definition at ug for Fy —ug € 0P(0,-)(up), with
DZ®(ug | Fo — uo)(w) = / DZG(s)(uo(s) | o7(Fo — uo)(s))(w(s)) ds, (2.10)
I'n

for all w € HB(Q,Rd), where Fy € H%(Q,Rd) s the unique solution to the parameterized
Dirichlet-Neumann problem (DNy) for the parameter t = 0.

Then the map t € Ry — uy € HL(Q,RY) is differentiable at t = 0, and its derivative denoted
by uy € HE(Q,Rd) is the unique weak solution to the tangential Signorini problem

—div(Ae(uy)) = f; in Q,
uy =0 on I'p,
on(ug) = hj on I'x,
up. =0 on Iyeo.a0,

u u U ( IO)
/ i 0 0 0

+ uy, — (ug. - ) ) = =gt on I'yuo.
o7 (up) Huo I ( Or ( 0~ Huofll) \|u07|\> 0o, I R0

wy, € R (g (ufp) - g 2elied) . e=lied < g

90 go

and ug_ - (JT(%) 96 UT;§°)> =0 on Lyzo.00,

where I'y is decomposed (up to a null set) as I'yuo.s0 Ul'yu0.00 U yuo.00 with

{s € I'n | uo, (s) # 0},

FN;():QO =49s €y | U, (S) =0 and %&JS))(S) € B(O, 1) N (Rn(s))J‘} s
Tyzo = {5 € T | o, (s) = 0 and 25 € 9B(0, 1) N (Ru(s))" }

I'yuoe9
NRO 0

Remark 2.26. As mentioned in papers [3,[10], one can naturally expect from Propositionthat
the second-order epi-derivative of the parameterized Tresca friction functional ® at ug for Fy — uo
is given by Equality (2.10 -, which corresponds to the inversion of the symbols ME-lim and fr
Equality (2.9 . Nevertheless, to the best of our knowledge, the validity of this inversion is an open
question in the literature. Precisely, we do not know, in general, if the parameterized Tresca friction
functional is twice epi-differentiable at ug for Fy —ug. Nevertheless, similarly to [I0, Appendix A],
one can prove it in some practical situations.

Proof of Theorem[2.25 From Hypotheses and Proposition it follows that

2
Uug Uuop
D§¢(uo|Fo—uO)<w)=/ - |1* - ‘T ) g w
o] o, | o, T

ag (FO - UO)

101
o s st [ g T,
FN\FN;()’-‘?O B(0,1)N(Rn(s))+ 90(s) FN\FN;(JM‘?O g0

for all w € Hy(Q,RY), which can be rewritten as
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D2®(ug | Fo — ug)(w) =

uOT a. FO — Up
\I/('U)) + / 96 “wr g or (Fg—ug) (U}) + / 96 - ( ) *Wr,
FN“OvQO IlU’OT H vo» 90 FN\FNUOvQO gO
R R
U: HL(QRY) — R

for all w € H(Q,R?), where ¥ is defined by
90 2 Uo 2
wor ww= [ (“’T” T T||‘>’
1—‘N"FEO*QO uo, o,

which is well defined from the continuous embedding H'(Q, R?)<L*(T", R?) and from Hypothe-

sis [(iv), and where lCuD oz (Fo—up) 18 the nonempty closed convex subset of Hi (92, R?) defined by
’ 90

: 1 d or (Fo —ug) (s)

for almost all s € FN\FNE()»HO }

Moreover, from Lemma and since o, (Fy) =0 a.e. on I'y, it follows that

or(u
K, ortro—un = {w € HL(Q,RY) | w, =0 a.e. on Pxuo-o0 and wr € R r(to) a.e. on FNgovgo} .
? 90 go

Since =% > 0 a.e. on I'yuo.s0 and from Lemma one deduces that U is convex and Fréchet
R

g
[Tuo ]

differentiable on HL (2, R9). In particular we get that D2®(ug|Fy — ug) is a proper lower semi-
continuous convex function on Hi (€2, R%). Moreover, from Hypotheses |(i)| and |(ii)| and from the
linearity of the Dirichlet-Neumann problem and Proposition we can easily prove that
the map t € Ry — F;, € HL(Q,R?) is differentiable at ¢t = 0, with its derivative Fy, € HL (0, R?)
being the unique solution to the Dirichlet-Neumann problem

—div(Ae(Fy)) = fy inQ,
F,=0 onTIp,
Ae(F))n = hjn on I'x.

Thus one can apply Theorem to deduce that the map ¢t € Ry — u, € HE(Q,R?) is differen-
tiable at t = 0, and its derivative u} € HL (2, R?) satisfies

U6 = prOXD§<I>(uo\F0—uo)(F(;)7
which, from the definition of the proximal operator (see Proposition , leads to
F} —ufy € 0D2®(ug | Fo — uo)(up),
which means that
(Fo — g, w = up) g1 ey < Di®(uo | Fo — uo)(w) — DZ®(ug | Fo — uo)(up),

for all w € HY(Q,R?). Hence we get that
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(B = a0 = )y < W) = W) F 06y () = 0K iy ()
U or (Fy—u
A ARy G L
T 40,90 [[wo, | N\ %0,90 90

for allw € HY (9, R?). Moreover, since o, (Fy) = 0 a.e. on I'y, and for all w € ICuO or(Fo—ug) s Wy = 0
90

)

a.e. I‘Nuo w90, one deduces that uf, € K, o, 22 Fo=10) and
(ug, w — ug) gy L opre) T ¥(w) / fo- ( +/F h (wa — ug,)
N
!/

or (U
‘/ g —uo>+/ 7 e ),
FN;ngo o, FNgowgo 9o

forallw e K 7o (o) Moreover, since ¥ is convex and Fréchet differentiable on HE (2, RY) (see

0,

Lemma [2.9 .7 one gets from Proposition m IA.5| that

<V‘I’(U6)7W*UG>H}D(Q,RQ > — (ug, w — ug Hl (Q,R4) /fo w — ug +/F ho (wn—u{)n)
N

U or (U
,/ 96 0, (U)T*UQT)*F/ 96 'r( 0) '(wr*UBT),
FNuO’gO ||u07 || FNuO,gO gO

for all w € € 7o) - Finally, using the expression of V¥ (uf) € HL (€2, R?), one gets

0,

or (ug)
{ug, w — H1 (Q,R4) _/fo w —up) +/ ho (wn—uén)—k/ go—— (wr—u&)
I T\ uo.90

90

S
Uo 9o / / Uo Uo /
+/ (ot~ ey (.~ (o o) ) - (o
tsom & P, T T\ 7\ TuorT) Tor ) ) (07 700

for all w € ICuO o7 (Fg—ugp) - From Definition [2.6| one deduces that uy, is the unique weak solution to
’ 90

the tangential Signorini problem (SPy|) which concludes the proof. O

Remark 2.27. Consider the framework of Theorem[2.25] Note that u{ is the unique weak solution
to the tangential Signorini problem (SPg)), but is not necessarily a strong solution. Nevertheless,
in the case where Ae(ug)n € LQ(FNJR ) and the decomposition I'p U 'yzo.90 U T'yro.s0 U o sso
of T' is con51stent (see Definition [2.7] E7 then wf, is a strong solution to the tangentlal Slgnorlnl

problem (S

Remark 2.28. In this paper a prescribed normal stress o, (u;) = hy on I'y has been considered
in the parameterized Tresca friction problem . Nevertheless, as mentioned in Remark
it is possible to consider a contact problem by constraining the normal displacement, that is, by
replacing oy (us) = hy by uz, = 0 on I'y. This would lead in Theorem to a derivative wuy
satisfying ug, = 0 on I'y, instead of oy, (uj) = hy. One can also consider the Signorini’s unilateral
conditions given by wu;, < 0, oy(u;) < 0 and ug,on(ur) = 0 on I'y. In that case, for all ¢ > 0,
the solution u; is given by u; := prox,, . ¢,.)(£), where Fy is the solution to the parameterized
Dirichlet-Neumann problem with h; = 0, and (g is the indicator function associated with
the closed convex subset K of Hf,(Q2,R?) given by K := {v € H,,({, R%) | v, <0 a.e. onT'y}. To
develop our strategy in that context, one should investigate the twice epi-differentiablity of ¢i.
This nontrivial part is done in the submitted paper [24] where our methodology has been applied
to a contact problem with the Signorini’s unilateral conditions in a shape optimization context.
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3 Application to optimal control

Consider the functional framework introduced at the beginning of Section Let f € L2(Q,RY),

h € L?)(I'x), g1 € L>*(I'y) such that gy > m a.e. on I'y for some positive constant m > 0

and go € L*°(I'x) such that ||ga||pec(ry) > 0. In this section we consider the optimal control
problem given by

minimize J(z), (3.1)

zel
where J is the cost functional defined by

J: V. — R
z — J(z) =3 llu(f(z ))HHl @rty + 5 1) 2

where V is the open subset of L°°(T'y) defined by
V:i={zeL>®{Ty)|3C(2) >0, ¢(z) > C(z) a.e. onI'n},

where ¢ is the map defined by z € L*(I'x) — £(2) := ¢1 + 292 € L*>°(I'x), and where u(4(z)) €
HE (9, R?) stands for the unique solution to the Tresca friction problem given by

—div(Ae(u)) = f in Q,
oa(e) = b on Ty (CTPy)
o () < (=) and w7, (w) + £(2) s | = 0 on T,

where 8 > 0 is a positive constant and where U/ is a given nonempty convex subset of V such
that U is a bounded closed subset of L?(I'x). Note that the first term in the cost functional J
corresponds to the compliance, while the second term is the energy consumption which is standard
in optimal control problems (see, e.g., [27]).

This section is organized as follows. In Subsection [3.I] we prove the existence of a solution to
Problem . In Subsection we prove, under some assumptions, that J is Gateaux differen-
tiable on V and we characterize its gradient. Finally, in Subsection numerical simulations are
performed to solve Problem on a two-dimensional example.

3.1 Existence of a solution
This section is dedicated to the following existence result.
Proposition 3.1. There exists z* € U such that J(z*) < J(z) for all z € U.

Proof. In this proof the strong (resp. weak) convergence in Hilbert spaces is denoted by —
(resp. —) and all limits with respect to the index i will be considered for i — +o00. Since 0 <
J(z) < 4oo for all z € U, we get that inf,cy J(2) € Ri. Considering a minimizing se-
quence (z;);en, there exists N € N such that J(z;) <1+ inf,ey J(2) for all ¢ > N, that is

1 2 B 2 .

3 llu(€(zi) Iy (o.re) + 5 [€(z) |tz gy <1+ Zlggj(z)a
for all > N. Thus the sequence (£(2;));en is bounded in L?(I'x) and thus, up to a subsequence that
we do not relabel, weakly converges to some g* € L?(I'x). Moreover, since U is a bounded closed

convex subset of L2(T'y) (and thus weakly closed in L2(I'y)), we know that, up to a subsequence
that we do not relabel, the sequence (z;);eny weakly converges to some z* € U. Moreover one has

IR z*g2>w] = [ G=a
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for all w € L?(I'x), and, since go € L°°(I'y), it holds that gow € L?(I'y) and one deduces
that £(z;) — g1 + 2*go in L?(I'y) and thus g* = g; + 2*g2. In a similar way, up to a subsequence
that we do not relabel, the sequence (u(£(2;)))ien weakly converges in H (€2, R%) to some u* €
HE(Q,RY), thus u(4(2;)) — u* in L2(T, R?) from the compact embedding HE (2, RY) < L2(T, R?)
(see Proposition . Let us prove that u(f(z;)) — u* in H5(Q,R9). It holds that

™ — w(e(20)) gy (e = (0™ 0™ = wllz0)) iy e ey — (wl(l(z2)), 0" = ull(20)) 1y o m)

for all ¢ € N. Using the weak formulation satisfied by u(¢(z;)), we get that

o = )y ) < (00 = ey = [ - 0" = u(t(z)

— [ hu - / ) (It — lu(@z0))-1)

I'n

< (' — (=) gy oty — / [t a0 — [ b - ull(z))

I'n
+ Cu” = u(l(z:)) 2 (0 gay — 0,

where C' > 0 is a constant (depending only on € and on max;en |[€(2;)||r2(ry)). Now let us prove
that u* = u(gy + 2*g2). For w € H5(Q, R?) fixed, it holds that

() w — ullz)) g gnesy + / () | - / 0z ule(z0)- |
> / f - (w - u(t(z))) + / h(wn — u(t(z))), (3.2)

for all 7 € N. Note that:

(i) ‘ (u(l(z)), w — u(ﬁ(z’i)»H]lD(Q,]Rd) —(u"w— u*>Hb(Q,Rd) <Dlu" - u(f(zi))HH}D(Q,Rd) — 0;

(i) /f (21))) — Qf‘(w*“*) SDHf”Lz(Q,]Rd) HU**U(E(Zi))HH]g(Q,Rd) —0
(i) | [ o= a@z)) = [ B = )| < Dlbllagey = aez0) e ey — 0
) | [ ez (lws | = lluteq / 6" (lwr | = )| <

'n I'n

[ =)l + \ / (26) = g | + D llu” = w(l()) 2 ) — 0

where D > 0 is a constant (depending only on 2, A and w). Therefore it follows in (3.2) when ¢ —
+o0 that

ww = amn + [ ool = [ gz [ @) [ ).
I'n I'n Q I'n

Since this inequality is true for all w € H}(Q,R?) and g* = g1 + 2*ga, one deduces that u* =
u(g1 + 2*g2), and then
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* 1 * 2 6 * 2
J(2") = By [u(gr + 2 g2)||H]1)(Q,Rd) T3 g1 + 2" g2llr2(ry) <
. 1 2 B 2 . .
i (5 Fu(e )l o0 + 5 166G ey ) < linnind 7:0) = ing 7).
which concludes the proof. O

Remark 3.2. Since the solution to the Tresca friction problem is not linear with respect to the
friction term, note that J is not a strictly convex functional (and thus the uniqueness of the
solution to Problem ([3.1)) is not guaranteed).

3.2 Gateaux differentiability of the cost functional

Consider the auxiliary functional
J: HL(QRY) xL=(y) — R
2 2
(v,9) — J(v,9) =3 ||”||H]13(Q,Rd) + § l9llt2 ).

One can easily prove that J is Fréchet differentiable on HL (€2, R%) x L>°(Ty) and its Fréchet
differential at some (v, g) € HL (9, R?) x L>°(Ty), denoted by dJ(v, g), is given by

dJ(vvg)(ﬁ7§) = <v7ﬁ>H]13(Q,Rd) + /8 <g7g>L2(FN) )
for all (9,3) € Hy(Q,R%) x L>(I'y). Now let us introduce the map

F: V — HL(QRY) x Lo(Ty)
2 o F(2) = (u(l(2)),£(2)),

where u({(z)) € HE(€2, R?) is the unique solution to the Tresca friction problem (CTPj.)). Hence
the cost functional 7 is given by the composition J = J o F.

Theorem 3.3. Let zgp € V be fized and let us denote by ug := u((zp)). Assume that:

(i) the map s € T'ug.ezo) ‘fl(ti‘))((ss))u € R% belongs to LY (D yuo.czo)) (see below for definition of
R T R

the set FN;O‘Z(ZO));

(ii) the parameterized Tresca friction functional ® defined in (2.5)) is twice epi-differentiable at ug
for F —ug € 09(0, -)(ug), with

DZ®(uo)|F — ug)(w) = /F DZG(s)(uo(s)|or(F — uo)(s))(w(s))ds,  Vw € HH(Q,RY),

where, for almost all s € T'x, the map G(s) is defined in Pmposition and F € Hy(Q,R?)
is the unique solution to the Dirichlet-Neumann problem

—div(Ae(F)) = f inQ,
F=0 onTp, (3.3)
Ae(F)n = hn on I'y.

Then the cost functional J is Gateauz differentiable at zo and its differential daJ (z0) is given by

daT(a)(z) = [

[ 292 (B (g1 + 7092) — [luo. ) + / B2g2 (g1 + 092)

o L(z0) T wg.e(z0) YT ug,e(z0)
Ni0-4(z0 N0 £(Z0 Ng0:4(z0
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for all z € L*>°(T'x), where 'y is decomposed (up to a null set) as FN¥0,z<ZO) U FN;(),[.(ZU) U FNQO‘“Z‘”
with
FN;(J,E(Z()) = {S eIy ‘ UuQ,, (S) 75 0},

or(ug)(s 1
FN;‘O,E(ZO) i=49s€Tn]|uo, (s) =0 and W € B(0,1) N (Rn(s)) },
1

Tysoior = {5 € Iv | o, (s) = 0 and G € 9B(0, 1) N (Rn(s)) } .
Proof. Let z € L>*°(I'y) and ¢ > 0 be sufficiently small such that z; := 2o +tz € V. We de-
note by u; = u(f(z)) € Hy(Q,R?). From Subsection u, € HL(Q,R?) is given by u; =
ProXg ;) (F), where @ is the parameterized Tresca friction functional defined in (2.5) and F' is the
unique solution to the Dirichlet-Neumann problem (3.3)). From Hypotheses (i1)| and since the
map t € Ry — £(z) € L>°(I'y) is differentiable at ¢t = 0, with its derivative given by ¢'(zo) := zga,
one can apply Theorem to deduce that the map t € Ry — u; € HL(Q,RY) is differentiable
at t = 0 and its derivative, denoted by wuj € lCuma,(ep(of)uO) C HL(Q,RY), is the unique solution to
Z0

the variational inequality (which is the weak formulation of a tangential Signorini problem) given
by

or (u
o =iz > [ L0 o)

r
Ngo,l(zo)

14
+/ <_€l(zo) Uo., _ (ZO) (UE}T o <U6T . Uo., ) Uo., )) . (wT _u/OT)a
T ot luo, [ [luo, | l[uo, [/ [luo. |
R

forall w e K o .(m-uy , Where
U0 T 1(zq)

K or(mg—ug) = {w € H5(Q,RY) | w, =0 a.e. on FN;O,WO)

%0, "7(2q)

or(Ug
6((20)) a.e. on FNgO,z(z[)) }

Since J = J o F, with J Fréchet differentiable on Hi (€2, R?) x V, and

and w, € R_

IF (20 +t2) = F(20) — £ (ug, €' (20)) |13 (2, ) xLow (1) _ l[ur = uo — tug |l g (o ray
t t

— 0,
when t — 0T, we deduce that J has a right derivative at zg in the direction z given by

J'(20)(2) = (ug, wo)uy (ra) + B (€(20), €' (20)) L2 (ry) -

Furthermore, since uf, £ ug € K, or@—uy, one deduces that
0 2(z)

Ug Uz0) [, / Ug Ug
(g, uo) d =/ <—€'(Zo) ST <U0 N\ %or ) o - o, -
CIREED T it luo | fluo | X777 T o 1 (luo. |l
R

Since (z0)
20 ’ ( / o, ) o, )
T (u, — | U, T | —— | “uo, =0
/p |'UJ07-||( T T uo, [/ (Juo, |l ’

uq,0(z0)
Ng
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we get that
(> w0}y (0 rty = _/ ' (20) [|uo. I,

T wg.e(z0)
Ni0-4(z0

and we can rewrite the right derivative of J at 2y in the direction z as

J'(20)(2) = —/F U'(z0) lluo, Il + | B (20)t(20)

N0+6(20) I'n
- / ¢(20) (B(z0) — [Juo, |}) + / B (20)¢(z0),
FN;o,f(ZO) FN;ovf(Zo)UFNgol(zo)
and thus
T'(z0)(2) = / 202 (B (g1 + z092) — [luo. ) + / B2gs (91 + 2095)
FN;()J{(ZO) FN¥07Z(ZO) UFN;OJ«(ZO)

Note that J'(z) is linear and continuous on L°°(T'y). Thus J is Gateaux differentiable at zy with
its Gateaux differential given by dgJ(20) := J'(z0). The proof is complete. O

Remark 3.4. In the proof of Theorem note that the derivative uj depends on the pair
(L(20),€'(20)) = (91 + 2092, 292) and thus on the term z € L*°(T'y). Therefore let us denote
by ug := ug(z). Note that u(z) is not linear with respect to z. However one can observe that the
scalar product (ug(z), u0>H]13(Q,]Rd)7 that appears in the proof of Theorem is linear with respect

to z. Therefore it leads to an expression of J'(zg) that is linear with respect to z, and thus to the
Gateaux differentiability of 7 at zg.

3.3 Numerical simulations

Let us assume that |[gz||1(ry) < m, where m > 0 is the constant introduced at the beginning
of Section [3] and consider the admissible set U given by

U:={zel’Tx)|-1<z<1ae onlx},

which is a nonempty convex subset of V and is a bounded closed subset of L?(I'x). In this subsection
our aim is to numerically solve an example of Problem (3.1) in the two-dimensional case d = 2, by
making use of our theoretical result obtained in Theorem [3.3]

3.3.1 Numerical methodology

Starting with an initial control zg € U, we compute z4 € L°(I'x) given by

—9g2 (6 (91 + 2092) - ||u0‘l’||> on FN;M(Z())?
Zd ‘=
I —Bg2 (91 + 2092) on FN;U,uzo) U FN;o,azo),

which is, from Theorem [3.3] a descent direction of the functional J at zq since it satisfies

AT (20)(2a) = ~llg2 (B (91 + 2092) = lluo 1) IIE2(r

N;L{M(ZO))

- HBQ2 (gl + 2092) ||i2(FNuo,l(zo)UFNuo,l(zo)) S O
T S
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Then the control is updated as z; = proj;, (2o + 1z4), where n > 0 is a fixed parameter and projy, is
the classical projection operator onto U considered in L?(I'y). Then the algorithm restarts with z;,
and so on.

Let us mention that the numerical simulations have been performed using Freefem++ soft-
ware [22] with P1-finite elements and standard affine mesh. The Tresca friction problem is numer-
ically solved using an adaptation of iterative switching algorithms (this adaptation is close to the
one described in [3, Appendix C] which concerns a scalar Tresca friction problem). We also precise
that, for all i € N*, the difference between the cost functional 7 at the iteration 20 x i and at the
iteration 20 x (¢ — 1) is computed. The smallness of this difference is used as a stopping criterion
for the algorithm.

Remark 3.5. In this paper, to numerically solve the Tresca friction problem, we used an iterative
switching algorithm since it is an easily implementable method. Nevertheless there exist many
different algorithms in the literature to numerically solve the Tresca friction problem: Nitsche’s
method (see, e.g., [15 [I7]), mixed methods (see, e.g., [2I]), etc. These algorithms could be more
efficient and investigations to compare them with the iterative switching algorithm need to be
carried out in order to study their advantages and drawbacks. However this interesting perspective
for further research works is beyond the scope of the present paper.

3.3.2 Example and numerical results

In this subsection take d = 2 and let © be the unit disk of R? with its boundary ' := 9Q
decomposed as I' = I'p UT'y (see Figure , where

I'p:= {(cosf,sinf) e |0<H< T},
Iy :={(cosf,sinf) €' | F <6 <2r}.

I'n

Figure 1: Unit disk © and its boundary I' = I'p U I'y.

We assume that  is isotropic, in the sense that the Cauchy stress tensor is given by
o(w) = 2ue(w) + Atr (e(w)) I,

for all w € HL (9, R?), where tr (e(w)) is the trace of the matrix e(w) and where p > 0 and A > 0
are Lamé parameters (see, e.g., [34]). In what follows we take p = 0.3846 and A = 0.5769. This
corresponds to a Young’s modulus equal to 1 and to a Poisson’s ratio equal to 0.3, which is a
typical value for a large variety of materials. Let us consider the arbitrary functions h := 0 a.e.
on 'y, g1 := 2 a.e. on I'y, g2 € L2(I'y) be the function defined by

gz : FN — R

(z,y) — ga(z,y) =12

_y27
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and f € L?(Q2,R?) be the function defined by

I Q — R?
o 5—x2— 2+m 5—g2— 2+z
(.9) — floyy) = (Bt yey )

With m := 2, one has g1 > m a.e. on I'y and 0 < ||g2||r(ry) < m, thus the assumptions from the
beginning of Section [3]|and from Subsection are satisfied. We consider the initial control zy € U
given by
zZ0 - I'n. — R
(r,y) — 20(z,y) = cos (z? — y*).

We present now the numerical results obtained for the above two-dimensional example using
the numerical methodology described in Subsection [3.3.1} Figure [2]depicts the control which solves
Problem . It is a bang—-bang optimal control, that takes exclusively the two values —1 and 1
on the boundary I'y. Figure [3]shows the evolution of the value of 7 with respect to the iteration.
We observe an usual decreasing of the cost functional J with respect to the iteration.

Optimal contral value
o
=4
8

392
Angle (radian)

Figure 2: Values of the optimal control on the boundary I'y := {(cosf,sinf) € ' | Z < 6 < 2w }.

T T T T T T T
0 50 100 150 200 250 300
iteration

Figure 3: Values of the cost functional 7 with respect to the iterations.
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A Notions from convex, variational and functional analyses

A.1 Reminders from convex and variational analyses

For notions and results presented in this section, we refer to standard references such as |11}
29, 31] and [33, Chapter 12]. In what follows (H, (-,-),,) stands for a general real Hilbert space.

Definition A.1 (Domain and epigraph). Let ¢ : H — RU{4o00}. The domain and the epigraph
of ¢ are respectively defined by

dom (¢) :={z € H | d(z) < 400} and epi(d):={(z,v) e HXR| ¢(zx) <v}.

Recall that ¢ : H — RU{+oo} is said to be proper if dom(¢) # () and ¢(z) > —oo for all z € H.
Moreover, ¢ is a convex (resp. lower semi-continuous) function on # if and only if epi(¢) is a convex
(resp. closed) subset of H x R.

Definition A.2 (Support function). Let C be a nonempty closed convex subset of H. The support
function £c of C is the map defined by

éc: H — RU{+o0}
v Eolw) = sup (2, y)y
yeC
Definition A.3 (Convex subdifferential operator). Let ¢ : H — R U {400} be a proper function.
We denote by 0¢ : H = H the convex subdifferential operator of ¢, defined by

9¢(z) :={y e H|Vz €M, (y,2—x)y < d(2) — ¢(x)},
forallx € H.

Definition A.4 (Proximal operator). Let ¢ : H — R U {400} be a proper lower semi-continuous
convez function. The proximal operator associated with ¢ is the map prox, : H — H defined by

1
prox,(z) := argmin | $(y) + 5 [ly — zll3,| = T+ 0¢) 7" (x),
yeEH

for all x € H, where 1 : H — H stands for the identity operator.

The proximal operator have been introduced by J.-J. Moreau in 1965 (see [30]) and can be
seen as a generalization of the classical projection operators onto nonempty closed convex subsets.
It is well-known that, if ¢ : H — R U {400} is a proper lower semi-continuous convex function,
then 0¢ is a maximal monotone operator (see, e.g., [31]), and thus the proximal operator prox is
well-defined and a single-valued map (see, e.g., [11, Chapter II]).

We pursue with the following classical result which is crucial to prove the existence of a unique
weak solution to the tangential Signorini problem (see Proposition [2.10]).

Proposition A.5. Let ¢ : H — R be a Fréchet differentiable convex function and C be a nonempty
convez subset of H. Lety € C andx € H. Then the following variational inequalities are equivalent:

(1) ¢(2) —p(y) > (x —y,2—y)y,, V2€C
(i) (Vo). z—y)y > (@ —y,2—y)y, VzeCl

In what follows, some definitions related to the notion of twice epi-differentiability are recalled
(for more details, see [33], Chapter 7, section B p.240] for the finite-dimensional case and [19] for the
infinite-dimensional one). The strong (resp. weak) convergence of a sequence in H will be denoted
by — (resp. —) and note that all limits with respect to ¢ will be considered for ¢ — 0.
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Definition A.6 (Mosco-convergence). The outer, weak-outer, inner and weak-inner limits of a
parameterized family (Ai)iso of subsets of H are respectively defined by

limsup 4; = {:c €H | Itp)nen — 01,3 (Tn)peny = T, Vn € Ny, € Atn} ,
w-limsup 4; = {5C €M | 3I(tn)neny — 07,3 (Tn)peny = 2, VR €Nz, € Atn} ,

liminf 4A; = {x € H | Y(tp)nen — 01,3 (Tn)peny = ¢, IN €N,V > N, z,, € Atn} ,
wliminf A, = {2 €H |V(tn)nen — 01,3 (zn), ey = 2, IN EN,Vn > N, z,, € 4, }.

The family (A¢)iso is said to be Mosco-convergent if w-limsup A; C liminf A;. In that case all
the previous limits are equal and we write

M-lim A; := liminf A; = limsup A; = w-liminf 4; = w-lim sup A;.

Definition A.7 (Mosco epi-convergence). Let (¢1)i>0 be a parameterized family of functions ¢y :
H — RU{xo0} for allt > 0. We say that (¢+)t>0 is Mosco epi-convergent if (epi(¢t))eso is Mosco-
convergent in H x R. Then we denote by ME-lim ¢, : H — R U {zxoo} the function characterized
by its epigraph epi (ME-lim ¢;) := M-lim epi(¢;) and we say that (¢¢)i~o Mosco epi-converges
to ME-lim ¢;.

The proof of the next proposition can be found in [8, Proposition 3.19 p.297].

Proposition A.8 (Characterization of Mosco epi-convergence). Let (¢;)i~o be a parameterized
family of functions ¢y : H — R U {xoo} for allt > 0 and let ¢ : H — R U {£o0}. Then (é+)i=0
Mosco epi-converges to ¢ if and only if, for all x € H, the two conditions:

(i) there exists (x¢)¢t=0 — = such that limsup ¢¢(x;) < ¢(x);

(ii) for all (z4)i>0 — x, liminf ¢;(x¢) > @(x);
are both satisfied.
Now let us recall the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985

(see [32]) that generalizes the classical notion of second-order derivative to nonsmooth convex
functions.

Definition A.9 (Twice epi-differentiability). A proper lower semi-continuous convex function ¢ :
H — RU{+o0} is said to be twice epi-differentiable at x € dom(¢) for y € d¢(x) if the family of
second-order difference quotient functions (62¢(x | y))i>o defined by

Zo(x|y): H — RU{+oo}

N o(x + t2) —d;(zz) —t(y,Z>H’

for allt > 0, is Mosco epi-convergent. In that case we denote by

d2p(x | y) := ME-lim 67¢(x | y),

which is called the second-order epi-derivative of ¢ at x for y.
Remark A.10. In the case where ¢ is twice Fréchet differentiable at x € H, then ¢ is twice
epi-differentiable at x for Vé(z) and
1
o | Vo@)(z) = 5D*(x)(2,2),  VzeH,

where D?¢(x) stands for the second-order Fréchet differential of ¢ at 2. Note that the factor % could
be removed if the family of second-order difference quotient functions is defined with a factor % in

the denominator (see the original definition in [32]).
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In the above classical definition of twice epi-differentiability, the function ¢ does not depend on
the parameter t. However, in this paper, the parameterized Tresca friction functional does. There-
fore we use an extended version of twice epi-differentiability which has been recently introduced
in [2]. To this aim, when considering a function ® : Ry x H — R U {400} such that, for all ¢ > 0,
®(t,-) is a proper function on H, we will make use of the two following notations: 9®(0,-)(z)
stands for the convex subdifferential operator at € H of the map w € H +— ®(0,w) € RU {+o0},
and @1(,\R) :={x € H |Vt >0, ®(t,x) € R}.

Definition A.11 (Twice epi-differentiability depending on a parameter). Let ® : Ry x H —
R U {400} be a function such that, for allt > 0, ®(t,-) is a proper lower semi-continuous convex
function on H. The function ® is said to be twice epi-differentiable at x € ®~1(-,R) for y €
09(0,-)(z) if the family of second-order difference quotient functions (A2®(z | y))i>o defined by

Aoz |y): H — RU{+oo}
N <I>(t,x—|—tz)—tlzgt,x)—t<y7z>,{’

for allt > 0, is Mosco epi-convergent. In that case, we denote by
D2®(x | y) := ME-lim A?®(z | y),
which is called the second-order epi-derivative of ® at x for y.

Note that, if the function @ is t-independent in Definition [ATT] then we recover Definition [A-9]
Finally the following theorem is the key point in order to derive our main result in this paper. It
is a particular case of a more general theorem that can be found in [2, Theorem 4.15 p.1714].

Theorem A.12. Let @ : Ry x H — RU {+00} be a function such that, for allt > 0, ®(t,-) is
a proper lower semi-continuous convex function on H. Let F': Ry — H and let u: Ry — H be
defined by

u(t) := proxg, . (F(t)),
for all t > 0. If the conditions:

(i) F is differentiable at t = 0;
(if) @ is twice epi-differentiable at u(0) for F(0) — u(0) € 09(0, -)(u(0));
(iii) D2®(u(0)|F(0) — u(0)) is a proper function on H;

are satisfied, then u is differentiable at t = 0 with
u'(0) = ProXp2g(u(0)|F(0)—u(0)) (£ (0))-

A.2 Reminders from functional analysis

Let d € N* be a positive integer, {2 be a nonempty bounded connected open subset of R? with
a C'-boundary I' := 9 and n be the outward-pointing unit normal vector to I'. In what follows we
consider a decomposition I' =: T’y UT's where I'y and I's are two measurable disjoint subsets of T'.
Let us recall some embeddings useful in this work, that can be found for instance in [I, Chapter 4,
p.79], [9], [12], and [I8, Chapter 7, Section 2 p.395].

Proposition A.13. The continuous and dense embeddings:

e H'(Q,RY)—HY?(T,RY)—L3(I',RY)—H/2(T,R%);

33



o L2(I,RY)—LY(I",R?);
o H'(Q,RY)—L2(Q,RY);
o Hyp(I't RY) L2 (I, R Hog (T, RY);
are satisfied, where HééZ(Fl,Rd) can be identified to a linear subspace of H'/2(I',RY) defined by
HééQ(Fl,Rd) ={w e L*(T,RY) | v e H'(URY), v=w ace. onTy andv =0 a.e. onT>},
and Haol/Q (1, RY) stands for its dual space. Furthermore the dense and compact embedding
H'(Q,R?) < L*(I,R%),
holds true, and since d € {2,3}, then we have the continuous embedding H'(Q, RY)—L4(T, R?).

The next proposition is a particular case of a more general statement that can be found in [39]
Section 2.9 p.56].

Proposition A.14. Letv € Haol/Q(Fl,Rd). If there exists C' > 0 such that
(0, W) =120, gaysemiz ey gy < Cllwllie e, zay

for all w € HééQ(Fl,Rd), then v can be identified to an element h € L2(I'1, R%) with
<U’w>Hgol/2(Fl,]Rd)xHééz(Fl,]Rd) = (b w)r2(r, ray »

for all w € HY)(T'y, RY).
The next proposition, known as divergence formula, can be found in [6, Theorem 4.4.7 p.104].

Theorem A.15 (Divergence formula). Let v € Hgiy (2, R4*?) where
Haiy (Q, R := {w € L?(Q,R™?) | div(w) € L*(Q, R},
and div(w) is the vector whose the i-th component is defined by div(w); := div(w;) € L*(Q,R),

and where w; € L2(Q,R?) is the i-th line of w, for all i € [[1,d]] and for all w € Hg;, (Q, RE*9).
Then v admits a normal trace, denoted by vn € H-Y2(T'|RY), satisfying

/ div(v) - w —|—/ v Vw = (U0, W)yg-1/2(p gy H1/2(1 RY) 5 vw € H'(Q,RY).
Q Q
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