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Sensitivity analysis and optimal control for a contact
problem with friction in the linear elastic model

Loïc Bourdin∗, Fabien Caubet†, Aymeric Jacob de Cordemoy‡

August 3, 2023

Abstract

This paper investigates, without any regularization procedure, the sensitivity analysis of a
mechanical contact problem involving the (nonsmooth) Tresca friction law in the linear elastic
model. To this aim a recent methodology based on advanced tools from convex and variational
analyses is used. Precisely we express the solution to the so-called Tresca friction problem
thanks to the proximal operator associated with the corresponding Tresca friction functional.
Then, using an extended version of twice epi-differentiability, we prove the differentiability of
the solution to the parameterized Tresca friction problem, characterizing its derivative as the
solution to a boundary value problem involving tangential Signorini’s unilateral conditions.
Finally our result is used to investigate and numerically solve an optimal control problem
associated with the Tresca friction model.

Keywords: Sensitivity analysis, optimal control, contact mechanics, Tresca’s friction law, Sig-
norini’s unilateral conditions, variational inequalities, proximal operator, twice epi-differentiability.

AMS Classification: 49J40, 74M10, 74M15, 35Q93.

1 Introduction
General context and motivation. On the one hand, optimal control theory is the mathe-
matical field aimed at finding the control of a given system that allows to minimize a given cost
while satisfying given constraints. In order to numerically solve an optimal control problem, the
numerical descent methods usually require to compute the gradient of the cost functional which
usually depends on the solution to a partial differential equation with given boundary conditions.
Therefore a crucial point is to perform the sensitivity analysis of the solution to the boundary
value problem with respect to perturbations, in order to characterize its derivative.

On the other hand, contact mechanics is the engineering field that describes the deformation
of solids that touch each other on parts of their boundaries. A classical mechanical setting consists
in a deformable body which is in contact with a rigid foundation, possibly sliding against it which
causes friction on the contact surface. This friction can be mathematically modeled by the so-called
Tresca friction law (see, e.g., [20]) which appears as a boundary condition involving nonsmooth in-
equalities depending on a friction threshold. Mechanical contact problems are usually investigated
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through the theory of variational inequalities, and the Tresca friction law causes nonlinearities and
nonsmoothness in the corresponding variational formulations.

As a consequence, in order to investigate optimal control problems with mechanical contact
models involving the Tresca friction law, we have to perform the sensitivity analysis of nonsmooth
variational inequalities. The standard methods found in the literature usually consist in regulariza-
tion (see, e.g., [7] or [19, Section 10.4 Chapter 10]) and dualization (see, e.g., [31, 32]) procedures.
In a nutschell, regularization consists in replacing the nondifferentiable term by its Moreau’s enve-
lope to approximate the optimization problem associated with the model, thus the corresponding
optimality condition is replaced by a smooth variational equality instead of a nonsmooth varia-
tional inequality. However this method does not take into account the exact characterization of
the solution and perturbs the nonsmooth nature of the original physical model. The dualization
method consists in describing the primal/dual pair of the model as a saddle point of the associated
Lagrangian. The dual model leads to a characterization of its solution that involves only projection
operators and thus Mignot’s theorem (see [22]) about conical differentiability can be applied. With
this method, the derivative of the solution to the primal model, with respect to perturbations, can
be obtained but is characterized only implicitly, due to the presence of dual elements.

In this paper the sensitivity analysis is performed using a recent methodology, already used in
our previous papers [3, 4, 10, 18], based on advanced tools from convex and variational analyses
such as the notion of proximal operator introduced by J.J. Moreau in 1965 (see [24]) and the notion
of twice epi-differentiability introduced by R.T. Rockafellar in 1985 (see [26]). This methodology
allows us to preserve the original nonsmooth nature of the model, that is, without using any
regularization procedure, and to work only with the primal model.

Objective and methodology. The present work follows from our previous papers [3, 10] in
which the sensitivity analysis of boundary value problems involving the scalar version of the
Tresca friction law are performed. In this new paper we focus on the classical Tresca friction law
which is about the linear elastic model. Precisely we consider the (parameterized) Tresca friction
problem given by 

−div(Ae(ut)) = ft in Ω,
ut = 0 on ΓD,

σn(ut) = ht on ΓN,
∥στ (ut)∥ ≤ gt and utτ · στ (ut) + gt ∥utτ ∥ = 0 on ΓN,

(TPt)

for all t ≥ 0, where Ω ⊂ Rd is a nonempty bounded connected open subset of Rd, with d ∈
{2, 3} and with a C1-boundary denoted by Γ := ∂Ω (see Remark 3.17 for comments on this C1-
regularity assumption), where n is the outward-pointing unit normal vector to Γ and where the
boundary is decomposed as Γ =: ΓD ∪ ΓN, where ΓD and ΓN are two measurable (with positive
measure) pairwise disjoint subsets of Γ such that almost every point of ΓN belongs to intΓ(ΓN)
(see Remark 3.15 for comments on this last assumption). Recall that, in linear elasticity, A is
the stiffness tensor, e is the infinitesimal strain tensor, σn is the normal stress and στ is the shear
stress (see Section 3 for details). Moreover ∥·∥ stands for the usual Euclidean norm of Rd and
we assume that ft ∈ L2(Ω,Rd), ht ∈ L2(ΓN) and gt ∈ L2(ΓN), with gt > 0 almost everywhere
on ΓN, for all t ≥ 0. Finally we recall that the tangential boundary condition on ΓN is known
as the Tresca friction law. The main difference with respect to our previous paper [3] is that we
work here on the linear elastic model, which implies several non-trivial technical adjustments, in
particular for the computation of the twice epi-differentiability of the Tresca friction functional
(see Subsubsection 3.2.1 for details).

The main objective of this work is to characterize the derivative of the map t ∈ R+ 7→ ut ∈
H1

D(Ω,Rd) at t = 0, where H1
D(Ω,Rd) := {w ∈ H1(Ω,Rd) | w = 0 a.e. on ΓD} and where the
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abbreviation a.e. stands for almost everywhere. However the norm ∥·∥ which appears in the
Tresca friction law generates nonsmooth terms in the variational formulation of Problem (TPt)
given by: find ut ∈ H1

D(Ω,Rd) such that∫
Ω

Ae(ut) : e(w − ut) +

∫
ΓN

gt ∥wτ∥ −
∫
ΓN

gt ∥utτ∥ ≥
∫
Ω

ft · (w − ut)

+

∫
ΓN

ht (wn − utn) , ∀w ∈ H1
D(Ω,Rd),

for all t ≥ 0. Nevertheless recall that ut can be expressed, using the proximal operator (see
Definition 2.3), as

ut = proxΦ(t,·)(Ft),

where Ft ∈ H1
D(Ω,Rd) is the unique solution to the (smooth) parameterized Dirichlet-Neumann

problem given by: find Ft ∈ H1
D(Ω,Rd) such that∫

Ω

Ae(Ft) : e(w) =

∫
Ω

ft · w +

∫
ΓN

htwn, ∀w ∈ H1
D(Ω,Rd),

for all t ≥ 0, and where Φ is the parameterized Tresca friction functional defined by

Φ : R+ ×H1
D(Ω,Rd) −→ R

(t, w) 7−→ Φ(t, w) :=

∫
ΓN

gt ∥wτ∥ .

Similarly to our previous paper [10], to deal with the differentiability (in a generalized sense) of the
parameterized proximal operator proxΦ(t,·) : H1

D(Ω,Rd) → H1
D(Ω,Rd), we will invoke the notion

of twice epi-differentiability for convex functions introduced by R.T. Rockafellar in 1985 (see [26])
which leads to the protodifferentiability of the corresponding proximal operators. Actually, since
the work by R.T. Rockafellar deals only with nonparameterized convex functions, we will use
instead the recent work [2] in which the notion of twice epi-differentiability has been extended to
parameterized convex functions (see Definition 2.12).

Main result. With the previous methodology and under some appropriate assumptions de-
scribed in Theorem 3.23, we prove that the map t ∈ R+ 7→ ut ∈ H1

D(Ω,Rd) is differentiable
at t = 0, and its derivative u′0 ∈ H1

D(Ω,Rd) is given by

u′0 = proxD2
eΦ(u0|F0−u0)(F

′
0),

where D2
eΦ(u0|F0 − u0) stands for the second-order epi-derivative (see Definition 2.12) of the

parameterized Tresca friction functional Φ at u0 for F0 − u0, and where F ′
0 ∈ H1

D(Ω,Rd) is the
derivative at t = 0 of the map t ∈ R+ 7→ Ft ∈ H1

D(Ω,Rd). Moreover we prove that u′0 ∈ H1
D(Ω,Rd)

exactly corresponds to the unique weak solution to the tangential Signorini problem

−div(Ae(u′0)) = f ′0 in Ω,

u′0 = 0 on ΓD,

σn(u
′
0) = h′0 on ΓN,

u′0τ = 0 on ΓN
u0,g0
T

,

στ (u
′
0) +

g0
∥u0τ ∥

(
u′0τ −

(
u′0τ · u0τ

∥u0τ ∥

)
u0τ

∥u0τ ∥

)
= −g′0

u0τ

∥u0τ ∥
on ΓN

u0,g0
R

,

u′0τ ∈ R−
στ (u0)

g0
,
(
στ (u

′
0)− g′0

στ (u0)
g0

)
· στ (u0)

g0
≤ 0

and u′0τ ·
(
στ (u

′
0)− g′0

στ (u0)
g0

)
= 0 on ΓN

u0,g0
S

,
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where ΓN is decomposed (up to a null set) as ΓN
u0,g0
T

∪ΓN
u0,g0
R

∪ΓN
u0,g0
S

(see details in Theorem 3.23),

and where, for almost all s ∈ ΓN
u0,g0
S

, R−
στ (u0)(s)

g0(s)
:= {y ∈ Rd | ∃ν ≤ 0 such that y = ν στ (u0)(s)

g0(s)
}.

Here f ′0 ∈ L2(Ω,Rd) (resp. h′0 ∈ L2(ΓN)) is the derivative at t = 0 of the map t ∈ R+ 7→ ft ∈
L2(Ω,Rd) (resp. of the map t ∈ R+ 7→ ht ∈ L2(ΓN)) and g′0 ∈ L2(ΓN) is the map defined, for
almost every s ∈ ΓN, by g′0(s) := limt→0+

gt(s)−g0(s)
t .

We emphasize that the boundary conditions which appear on ΓN
u0,g0
S

are called the tangential
Signorini’s unilateral conditions. They are close to the classical Signorini’s unilateral conditions
which describe a non-permeable contact (see, e.g., [29, 30]) except that, here, they are concerned
with the tangential components (instead of the usual normal components). Roughly speaking
our main result claims that the tangential Signorini’s solution can be considered as first-order
approximation to the perturbed Tresca’s solution.

Application to an optimal control problem. The above sensitivity analysis allows us to
investigate the optimal control problem given by

minimize
z∈U

J (z),

where J is the cost functional given by

J : V −→ R
z 7−→ J (z) := 1

2 ∥u(ℓ(z))∥
2
H1

D(Ω,Rd) +
β
2 ∥ℓ(z)∥2L2(ΓN) ,

where V is the open subset of L∞(ΓN) defined by

V := {z ∈ L∞(ΓN) | ∃C(z) > 0, ℓ(z) > C(z) a.e. on ΓN} ,

where ℓ is the map defined by z ∈ L∞(ΓN) 7→ ℓ(z) := g1 + zg2 ∈ L∞(ΓN), where g1 ∈ L∞(ΓN)
with g1 ≥ m a.e. on ΓN for some positive constantm > 0 and g2 ∈ L∞(ΓN) such that ||g2||L∞(ΓN) >

0, and where u(ℓ(z)) ∈ H1
D(Ω,Rd) stands for the unique solution to the Tresca friction problem

given by 
−div(Ae(u)) = f in Ω,

u = 0 on ΓD,
σn(u) = h on ΓN,

∥στ (u)∥ ≤ ℓ(z) and uτ · στ (u) + ℓ(z) ∥uτ∥ = 0 on ΓN,

(CTPℓ(z))

where f ∈ L2(Ω,Rd) and h ∈ L2(ΓN), where β > 0 is a positive constant and where U is a given
nonempty convex subset of V such that U is a bounded closed subset of L2(ΓN). Note that the
first term in the cost functional J corresponds to the compliance, while the second term is the
energy consumption which is standard in optimal control problems (see, e.g., [21]).

We prove in Theorem 4.3 that the cost functional J is Gateaux differentiable on V, and its
Gateaux differential at any z0 ∈ V, denoted by dGJ (z0), is given by

dGJ (z0)(z) =

∫
Γ
N
u0,ℓ(z0)
R

zg2 (β (g1 + z0g2)− ∥u0τ ∥) +
∫
Γ
N
u0,ℓ(z0)
T

∪Γ
N
u0,ℓ(z0)
S

βzg2 (g1 + z0g2) ,

for all z ∈ L∞(ΓN), where u0 := u(ℓ(z0)) is the solution to the Tresca friction problem (CTPℓ(z0)),
and where ΓN is decomposed (up to a null set) as Γ

N
u0,ℓ(z0)

T

∪ Γ
N

u0,ℓ(z0)

R

∪ Γ
N

u0,ℓ(z0)

S

.
The expression of the Gateaux differential of J allows us to exhibit an explicit descent direction

of J (see Subsection 4.3 for details). Hence, using this descent direction together with a basic pro-
jected gradient algorithm, we perform numerical simulations to solve the optimal control problem
on a two-dimensional example.
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Organization of the paper. The paper is organized as follows. Section 2 is dedicated to
some basic recalls from convex, variational and functional analyses used throughout the paper.
Section 3 is the core of the present work: in Subsection 3.1 we introduce three boundary value
problems that are involved all along the paper; in Subsection 3.2 the sensitivity analysis of the
Tresca friction problem is performed. Finally, in Section 4, we investigate an optimal control
problem and numerical simulations are performed to solve it on a two-dimensional example.

2 Preliminaries

2.1 Reminders from convex and variational analyses
For notions and results presented in this section, we refer to standard references such as [11,

23, 25] and [27, Chapter 12]. In what follows (H, ⟨·, ·⟩H) stands for a general real Hilbert space.

Definition 2.1 (Domain and epigraph). Let ϕ : H → R ∪ {±∞}. The domain and the epigraph
of ϕ are respectively defined by

dom (ϕ) := {x ∈ H | ϕ(x) < +∞} and epi (ϕ) := {(x, ν) ∈ H × R | ϕ(x) ≤ ν} .

Recall that ϕ : H → R∪{±∞} is said to be proper if dom(ϕ) ̸= ∅ and ϕ(x) > −∞ for all x ∈ H.
Moreover, ϕ is a convex (resp. lower semi-continuous) function on H if and only if epi(ϕ) is a convex
(resp. closed) subset of H× R.

Definition 2.2 (Convex subdifferential operator). Let ϕ : H → R ∪ {+∞} be a proper function.
We denote by ∂ϕ : H ⇒ H the convex subdifferential operator of ϕ, defined by

∂ϕ(x) := {y ∈ H | ∀z ∈ H, ⟨y, z − x⟩H ≤ ϕ(z)− ϕ(x)} ,

for all x ∈ H.

Definition 2.3 (Proximal operator). Let ϕ : H → R ∪ {+∞} be a proper lower semi-continuous
convex function. The proximal operator associated with ϕ is the map proxϕ : H → H defined by

proxϕ(x) := argmin
y∈H

[
ϕ(y) +

1

2
∥y − x∥2H

]
= (I + ∂ϕ)−1(x),

for all x ∈ H, where I : H → H stands for the identity operator.

The proximal operator have been introduced by J.-J. Moreau in 1965 (see [24]) and can be
seen as a generalization of the classical projection operators onto nonempty closed convex subsets.
It is well-known that, if ϕ : H → R ∪ {+∞} is a proper lower semi-continuous convex function,
then ∂ϕ is a maximal monotone operator (see, e.g., [25]), and thus the proximal operator proxϕ is
well-defined and a single-valued map (see, e.g., [11, Chapter II]).

We pursue with the following classical result which will be crucial to prove the existence of a
unique weak solution to the tangential Signorini problem (see Proposition 3.10).

Proposition 2.4. Let ϕ : H → R be a Fréchet differentiable convex function and C be a nonempty
convex subset of H. Let y ∈ C and x ∈ H. Then the following variational inequalities are equivalent:

(i) φ(z)− φ(y) ≥ ⟨x− y, z − y⟩H , ∀z ∈ C;

(ii) ⟨∇φ(y), z − y⟩H ≥ ⟨x− y, z − y⟩H , ∀z ∈ C.
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In what follows, some definitions related to the notion of twice epi-differentiability are recalled
(for more details, see [27, Chapter 7, section B p.240] for the finite-dimensional case and [14] for the
infinite-dimensional one). The strong (resp. weak) convergence of a sequence in H will be denoted
by → (resp. ⇀) and note that all limits with respect to t will be considered for t→ 0+.

Definition 2.5 (Mosco-convergence). The outer, weak-outer, inner and weak-inner limits of a
parameterized family (At)t>0 of subsets of H are respectively defined by

lim supAt :=
{
x ∈ H | ∃(tn)n∈N → 0+,∃ (xn)n∈N → x, ∀n ∈ N, xn ∈ Atn

}
,

w-lim supAt :=
{
x ∈ H | ∃(tn)n∈N → 0+,∃ (xn)n∈N ⇀ x,∀n ∈ N, xn ∈ Atn

}
,

lim inf At :=
{
x ∈ H | ∀(tn)n∈N → 0+,∃ (xn)n∈N → x, ∃N ∈ N,∀n ≥ N, xn ∈ Atn

}
,

w-lim inf At :=
{
x ∈ H | ∀(tn)n∈N → 0+,∃ (xn)n∈N ⇀ x,∃N ∈ N,∀n ≥ N, xn ∈ Atn

}
.

The family (At)t>0 is said to be Mosco-convergent if w-lim supAt ⊂ lim inf At. In that case all
the previous limits are equal and we write

M-limAt := lim inf At = lim supAt = w-lim inf At = w-lim supAt.

Definition 2.6 (Mosco epi-convergence). Let (ϕt)t>0 be a parameterized family of functions ϕt :
H → R∪{±∞} for all t > 0. We say that (ϕt)t>0 is Mosco epi-convergent if (epi(ϕt))t>0 is Mosco-
convergent in H× R. Then we denote by ME-lim ϕt : H → R ∪ {±∞} the function characterized
by its epigraph epi (ME-lim ϕt) := M-lim epi (ϕt) and we say that (ϕt)t>0 Mosco epi-converges
to ME-lim ϕt.

The proof of the next proposition can be found in [8, Proposition 3.19 p.297].

Proposition 2.7 (Characterization of Mosco epi-convergence). Let (ϕt)t>0 be a parameterized
family of functions ϕt : H → R ∪ {±∞} for all t > 0 and let ϕ : H → R ∪ {±∞}. Then (ϕt)t>0

Mosco epi-converges to ϕ if and only if, for all x ∈ H, the two conditions:

(i) there exists (xt)t>0 → x such that lim supϕt(xt) ≤ ϕ(x);

(ii) for all (xt)t>0 ⇀ x, lim inf ϕt(xt) ≥ ϕ(x);

are both satisfied.

Now let us recall the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985
(see [26]) that generalizes the classical notion of second-order derivative to nonsmooth convex
functions.

Definition 2.8 (Twice epi-differentiability). A proper lower semi-continuous convex function ϕ :
H → R ∪ {+∞} is said to be twice epi-differentiable at x ∈ dom(ϕ) for y ∈ ∂ϕ(x) if the family of
second-order difference quotient functions (δ2t ϕ(x | y))t>0 defined by

δ2t ϕ(x | y) : H −→ R ∪ {+∞}

z 7−→
ϕ(x+ tz)− ϕ(x)− t ⟨y, z⟩H

t2
,

for all t > 0, is Mosco epi-convergent. In that case we denote by

d2eϕ(x | y) := ME-lim δ2t ϕ(x | y),

which is called the second-order epi-derivative of ϕ at x for y.
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Remark 2.9. In the case where ϕ is twice Fréchet differentiable at x ∈ H, then ϕ is twice epi-
differentiable at x for ∇ϕ(x) and

d2eϕ(x | ∇ϕ(x))(z) = 1

2
D2ϕ(x)(z, z), ∀z ∈ H,

where D2ϕ(x) stands for the second-order Fréchet differential of ϕ at x. Note that the factor 1
2 could

be removed if the family of second-order difference quotient functions is defined with a factor 1
2 in

the denominator (see the original definition in [26]).

Before proving the twice epi-differentiability of the support function of a nonempty closed
convex set, let us recall the definition of the normal cone.

Definition 2.10 (Normal cone). Let C be a nonempty closed convex subset of H. The normal
cone to C at y ∈ C is the nonempty closed convex cone of H defined by

NC(y) := {z ∈ H | ⟨z, c− y⟩H ≤ 0,∀c ∈ C} .

The following proposition is an extension of a result proved in [14, Example 2.7 p.286] that will
be useful in Section 3 to compute the twice epi-differentiability of the tangential norm map (see
Lemma 3.20).

Proposition 2.11. Let ξC be the support function of a nonempty closed convex subset C of H
defined by

ξC : H −→ R ∪ {+∞}
x 7−→ ξC(x) := sup

y∈C
⟨x, y⟩H .

Then, for all x ∈ C⊥ := {z ∈ H | ⟨z, c⟩H = 0,∀c ∈ C}, one has ∂ξC(x) = C and ξC is twice
epi-differentiable at x for any y ∈ C with

d2eξC(x | y) = ιNC(y),

where ιNC(y) stands for the indicator function of NC(y) defined by ιNC(y)(z) := 0 if z ∈ NC(y),
and ιNC(y)(z) := +∞ otherwise.

Proof. Let x ∈ C⊥. From [17, Lesson E], it holds that:

(i) y ∈ ∂ξC(x) ⇔ x ∈ ∂ιC(y) ⇔ y ∈ C;

(ii) if y ∈ C, then z ∈ NC(y) ⇔ ξC(z) = ⟨z, y⟩H.

From the first item one deduces that ∂ξC(x) = C. Let y ∈ C and let us prove that hC is twice epi-
differentiable at x for y. To this aim we use Proposition 2.7. Consider z ∈ NC(y) and thus ξC(z) =
⟨y, z⟩. By considering the sequence zt := z for all t > 0, one gets

δ2t ξC(x | y)(zt) =
ξC(x+ tz)− ξC(x)− t ⟨y, z⟩H

t2
=

supc∈C ⟨x+ tz, c⟩H − t ⟨y, z⟩H
t2

=
ξC(z)− ξC(z)

t
= 0.

Moreover, since δ2t ξC(x | y)(v) ≥ 0 for all v ∈ H, one deduces that d2eξC(x | y)(z) = 0. Now
consider z /∈ NC(y). There exists c0 ∈ C such that ⟨z, c0⟩H > ⟨z, y⟩H, thus ξC(z) > ⟨z, y⟩H.
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Consider any sequence (zt)t>0 ⇀ z. Since ξC is convex and lower semi-continuous, then ξC is also
weakly lower semi-continuous (see, e.g., [12, Corollary 3.9 p.61]), thus one has

lim inf ξC(zt) ≥ ξC(z) and ⟨y, zt⟩H −→⟨y, z⟩H ,

when t→ 0+. Therefore there exists ε > 0 such that

ξC(zt) ≥ ξC(z)−
ξC(z)− ⟨y, z⟩H

4
and − ⟨y, zt⟩H ≥ −⟨y, z⟩H −

ξC(z)− ⟨y, z⟩H
4

,

for all t ≤ ε, and thus

δ2t ξC(x | y)(zt) =
ξC(zt)− ⟨y, zt⟩H

t
≥
ξC(z)− ⟨y, z⟩H

2t
−→+∞,

when t→ 0+. Hence d2eξC(x | y)(z) = +∞ which concludes the proof.

In the above classical definition of twice epi-differentiability, the function ϕ does not depend
on the parameter t. However, in this paper, the parameterized Tresca friction functional does (see
Introduction). Therefore we will use an extended version of twice epi-differentiability which has
been recently introduced in [2]. To this aim, when considering a function Φ : R+×H → R∪{+∞}
such that, for all t ≥ 0, Φ(t, ·) is a proper function on H, we will make use of the two following
notations: ∂Φ(0, ·)(x) stands for the convex subdifferential operator at x ∈ H of the map w ∈ H 7→
Φ(0, w) ∈ R ∪ {+∞}, and Φ−1(·,R) := {x ∈ H | ∀t ≥ 0, Φ(t, x) ∈ R}.

Definition 2.12 (Twice epi-differentiability depending on a parameter). Let Φ : R+ × H →
R ∪ {+∞} be a function such that, for all t ≥ 0, Φ(t, ·) is a proper lower semi-continuous convex
function on H. The function Φ is said to be twice epi-differentiable at x ∈ Φ−1(·,R) for y ∈
∂Φ(0, ·)(x) if the family of second-order difference quotient functions (∆2

tΦ(x | y))t>0 defined by

∆2
tΦ(x | y) : H −→ R ∪ {+∞}

z 7−→
Φ(t, x+ tz)− Φ(t, x)− t ⟨y, z⟩H

t2
,

for all t > 0, is Mosco epi-convergent. In that case, we denote by

D2
eΦ(x | y) := ME-lim ∆2

tΦ(x | y),

which is called the second-order epi-derivative of Φ at x for y.

Note that, if the function Φ is t-independent in Definition 2.12, then we recover Definition 2.8.
Finally the following theorem is the key point in order to derive our main result in this paper. It
is a particular case of a more general theorem that can be found in [2, Theorem 4.15 p.1714].

Theorem 2.13. Let Φ : R+ × H → R ∪ {+∞} be a function such that, for all t ≥ 0, Φ(t, ·) is
a proper lower semi-continuous convex function on H. Let F : R+ → H and let u : R+ → H be
defined by

u(t) := proxΦ(t,·)(F (t)),

for all t ≥ 0. If the conditions:

(i) F is differentiable at t = 0;

(ii) Φ is twice epi-differentiable at u(0) for F (0)− u(0) ∈ ∂Φ(0, ·)(u(0));

(iii) D2
eΦ(u(0)|F (0)− u(0)) is a proper function on H;

are satisfied, then u is differentiable at t = 0 with

u′(0) = proxD2
eΦ(u(0)|F (0)−u(0))(F

′(0)).
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2.2 Functional framework
Let d ∈ {2, 3} and Ω be a nonempty bounded connected open subset of Rd with a C1-

boundary Γ := ∂Ω and n be the outward-pointing unit normal vector to Γ. We denote by L2(Ω,Rd),
L2(Γ,Rd), L1(Γ,Rd), H1(Ω,Rd), H1/2(Γ,Rd), H−1/2(Γ,Rd) the usual Lebesgue and Sobolev spaces
endowed with their standard norms. Moreover the notation D(Ω,Rd) stands for the set of in-
finitely differentiable functions φ : Ω → Rd with compact support in Ω, and D′(Ω,Rd) for the set
of distributions on Ω. Moreover, all along this paper, we denote by : the scalar product defined
by B : C =

∑d
i=1 Bi · Ci for all B,C ∈ Rd×d, where Bi ∈ Rd (resp. Ci ∈ Rd) is the i-th line of B

(resp. C) for all i ∈ [[1, d]]. In what follows we consider a decomposition Γ =: Γ1 ∪ Γ2 where Γ1

and Γ2 are two measurable disjoint subsets of Γ. Let us recall some embeddings useful in this
work, that can be found for instance in [1, Chapter 4, p.79], [9], [12], and [13, Chapter 7, Section 2
p.395].

Proposition 2.14. The continuous and dense embeddings:

• H1(Ω,Rd)↪→H1/2(Γ,Rd)↪→L2(Γ,Rd)↪→H−1/2(Γ,Rd);

• L2(Γ,Rd)↪→L1(Γ,Rd);

• H1(Ω,Rd)↪→L2(Ω,Rd);

• H
1/2
00 (Γ1,Rd)↪→L2(Γ1,Rd)↪→H

−1/2
00 (Γ1,Rd);

are satisfied, where H
1/2
00 (Γ1,Rd) can be identified to a linear subspace of H1/2(Γ,Rd) defined by

H
1/2
00 (Γ1,Rd) :=

{
w ∈ L2(Γ1,Rd) | ∃v ∈ H1(Ω,Rd), v = w a.e. on Γ1 and v = 0 a.e. on Γ2

}
,

and H
−1/2
00 (Γ1,Rd) stands for its dual space. Furthermore the dense and compact embedding

H1(Ω,Rd) ↪→→ L2(Γ,Rd),

holds true, and since d ∈ {2, 3}, then we have the continuous embedding H1(Ω,Rd)↪→L4(Γ,Rd).

The next proposition is a particular case of a more general statement that can be found in [33,
Section 2.9 p.56].

Proposition 2.15. Let v ∈ H
−1/2
00 (Γ1,Rd). If there exists C ≥ 0 such that

⟨v, w⟩
H

−1/2
00 (Γ1,Rd)×H

1/2
00 (Γ1,Rd)

≤ C ∥w∥L2(Γ1,Rd) ,

for all w ∈ H
1/2
00 (Γ1,Rd), then v can be identified to an element h ∈ L2(Γ1,Rd) with

⟨v, w⟩
H

−1/2
00 (Γ1,Rd)×H

1/2
00 (Γ1,Rd)

= ⟨h,w⟩L2(Γ1,Rd) ,

for all w ∈ H
1/2
00 (Γ1,Rd).

The next proposition, known as divergence formula, can be found in [6, Theorem 4.4.7 p.104].

Theorem 2.16 (Divergence formula). Let v ∈ Hdiv(Ω,Rd×d) where

Hdiv(Ω,Rd×d) :=
{
w ∈ L2(Ω,Rd×d) | div(w) ∈ L2(Ω,Rd)

}
,

and where div(v) is the vector whose the i-th component is defined by div(v)i := div(vi) ∈ L2(Ω,R),
where vi ∈ L2(Ω,Rd) is the i-th line of v for all i ∈ [[1, d]]. Then v admits a normal trace, denoted
by vn ∈ H−1/2(Γ,Rd), satisfying∫

Ω

div(v) · w +

∫
Ω

v : ∇w = ⟨vn, w⟩H−1/2(Γ,Rd)×H1/2(Γ,Rd) , ∀w ∈ H1(Ω,Rd).
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3 Main result
In this section let d ∈ {2, 3} and Ω be a nonempty bounded connected open subset of Rd

with a C1-boundary denoted by Γ := ∂Ω (see Remark 3.17 for comments on this C1-regularity
assumption). We consider the decomposition

Γ =: ΓD ∪ ΓN,

where ΓD and ΓN are two measurable (with positive measure) pairwise disjoint subsets of Γ such
that almost every point of ΓN belongs to intΓ(ΓN) (see Remark 3.15 for comments on this last
assumption). We introduce H1

D(Ω,Rd) the linear subspace of H1(Ω,Rd) defined by

H1
D(Ω,Rd) :=

{
w ∈ H1(Ω,Rd) | w = 0 a.e. on ΓD

}
.

Moreover, we assume that Ω is an elastic solid satisfying the linear elastic model (see, e.g., [28]),
that is

σ(w) = Ae(w),

where σ is the Cauchy stress tensor, A the stiffness tensor, and e is the infinitesimal strain tensor
defined by

e(w) :=
1

2
(∇w +∇w⊤),

for all displacement field w ∈ H1(Ω,Rd). We also assume that all coefficients of A are measurable
(denoted by aijkl for all (i, j, k, l) ∈ {1, ..., d}4) and that there exist two constants α > 0 and γ > 0

such that all coefficients of A and e (denoted by ϵij for all (i, j) ∈ {1, ..., d}2) satisfy

aijkl(x) = ajikl(x) = alkij(x), |aijkl(x)| ≤ α,

and also
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

aijklϵij(w1)(x)ϵkl(w2)(x) ≥ γ

d∑
i=1

d∑
j=1

ϵij(w1)(x)ϵij(w2)(x),

for all displacement field w1, w2 ∈ H1(Ω,Rd) and for almost all x ∈ Ω. Moreover, since ΓD has a
positive measure, then we can deduce that

⟨·, ·⟩H1
D(Ω,Rd) :

(
H1

D(Ω,Rd)
)2 −→ R

(w1, w2) 7−→
∫
Ω

Ae(w1) : e(w2),

is a scalar product on H1
D(Ω,Rd) (see, e.g., [15, Chapter 3]) and we denote by ∥·∥H1

D(Ω,Rd) the
corresponding norm. Moreover, from the assumptions on A, note that Ae(w) = A∇w for all w ∈
H1

D(Ω,Rd).
We denote by n ∈ C0(Γ) the outward-pointing unit normal vector to Γ. Therefore, for any w ∈

L2(Γ,Rd), one has w = wnn + wτ , where wn := w · n ∈ L2(Γ,R) and wτ := w − wnn ∈ L2(Γ,Rd).
In particular, if the stress vector Ae(w)n is in L2(ΓN,Rd) for some w ∈ H1(Ω,Rd), then we use the
notation

Ae(w)n = σn(w)n + στ (w),

where σn(w) ∈ L2(ΓN,R) is the normal stress and στ (w) ∈ L2(ΓN,Rd) is the shear stress. We also
denote by ∥·∥ the Euclidean norm on Rd and, for all w ∈ L2(Γ,Rd), ∥wτ∥ ∈ L2(Γ) is defined by

∥wτ∥ : Γ −→ R
s 7−→ ∥wτ (s)∥ .
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The rest of this section is organized as follows. Subsection 3.1 introduces three boundary value
problems involved all along the paper: a Dirichlet-Neumann problem (see Problem (DN)), a tan-
gential Signorini problem (see Problem (SP)) and a Tresca friction problem (see Problem TP). In
Subsection 3.2, the sensitivity analysis of the Tresca friction problem is performed and we establish
the main result of this paper (see Theorem 3.23).

3.1 Three boundary value problems
For the needs of this subsection, let us fix f ∈ L2(Ω,Rd). Only the proofs of Subsection 3.1.2

are detailed since the tangential Signorini problem is, to the best of our knowledge, new in the
literature. For the proofs of the other problems, they are classical and close to the ones presented
in [3] and thus they are left to the reader.

3.1.1 A problem with Dirichlet-Neumann conditions

Let z ∈ L2(ΓN,Rd) and consider the Dirichlet-Neumann problem given by−div(Ae(F )) = f in Ω,
F = 0 on ΓD,

Ae(F )n = z on ΓN.
(DN)

Definition 3.1 (Strong solution to the Dirichlet-Neumann problem). A (strong) solution to
the Dirichlet-Neumann problem (DN) is a function F ∈ H1(Ω,Rd) such that −div(Ae(F )) = f
in D′(Ω,Rd), F = 0 a.e. on ΓD, Ae(F )n ∈ L2(ΓN,Rd) with Ae(F )n = z a.e. on ΓN.

Definition 3.2 (Weak solution to the Dirichlet-Neumann problem). A weak solution to the
Dirichlet-Neumann problem (DN) is a function F ∈ H1

D(Ω,Rd) such that∫
Ω

Ae(F ) : e(w) =

∫
Ω

f · w +

∫
ΓN

z · w, ∀w ∈ H1
D(Ω,Rd).

Proposition 3.3. A function F ∈ H1(Ω,Rd) is a (strong) solution to the Dirichlet-Neumann
problem (DN) if and only if F is a weak solution to the Dirichlet-Neumann problem (DN).

Using the Riesz representation theorem, we obtain the following existence/uniqueness result.

Proposition 3.4. The Dirichlet-Neumann problem (DN) admits a unique solution F ∈ H1
D(Ω,Rd).

Moreover there exists a constant C ≥ 0 (depending only on Ω) such that

∥F∥H1
D(Ω,Rd) ≤ C

(
∥f∥L2(Ω,Rd) + ∥z∥L2(ΓN,Rd)

)
.

3.1.2 A tangential Signorini problem

In this part we assume that ΓN is decomposed (up to a null set) as

ΓN =: ΓNT
∪ ΓNR

∪ ΓNS
,

where ΓNT , ΓNR , ΓNS are three measurable pairwise disjoint subsets of ΓN. Moreover let h ∈
L2(ΓN), ℓ ∈ L2(ΓN), v ∈ L∞(ΓN,Rd) such that ||v||L∞(ΓNR

∪ΓNS
,Rd) ≤ 1, k ∈ L4(ΓNR

) such that k >
0 a.e. on ΓNR

, and we denote, for almost all s ∈ ΓNS
, R−vτ (s) := {y ∈ Rd | ∃ν ≤ 0 such that y =

νvτ (s)}. The tangential Signorini problem is given by
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−div(Ae(u)) = f in Ω,
u = 0 on ΓD,

σn(u) = h on ΓN,
uτ = 0 on ΓNT ,

στ (u) + k (uτ − (uτ · vτ ) vτ ) = ℓvτ on ΓNR
,

uτ ∈ R−vτ , (στ (u)− ℓvτ ) · vτ ≤ 0 and uτ · (στ (u)− ℓvτ ) = 0 on ΓNS
.

(SP)

Definition 3.5 (Strong solution to the tangential Signorini problem). A (strong) solution to
the tangential Signorini problem (SP) is a function u ∈ H1(Ω,Rd) such that −div(Ae(u)) = f
in D′(Ω,Rd), u = 0 a.e. on ΓD, uτ = 0 a.e. on ΓNT

, Ae(u)n ∈ L2(ΓN,Rd) with σn(u) = h
a.e. on ΓN, στ (u) + k (uτ − (uτ · vτ )vτ ) = ℓvτ a.e. on ΓNR

, uτ ∈ R−vτ , (στ (u)− ℓvτ ) · vτ ≤
0 and uτ · (στ (u)− ℓvτ ) = 0 a.e. on ΓNS

.

Definition 3.6 (Weak solution to the tangential Signorini problem). A weak solution to the tan-
gential Signorini problem (SP) is a function u ∈ K1(Ω,Rd) such that∫

Ω

Ae(u) : e(w−u) ≥
∫
Ω

f ·(w−u)+
∫
ΓN

h(wn−un)+
∫
ΓNR

(ℓvτ − k (uτ − (uτ · vτ )vτ ))·(wτ−uτ )

+

∫
ΓNS

ℓvτ · (wτ − uτ ), ∀w ∈ K1(Ω,Rd), (3.1)

where K1(Ω,Rd) is the nonempty closed convex subset of H1
D(Ω,Rd) given by

K1(Ω,Rd) :=
{
w ∈ H1

D(Ω,Rd) | wτ = 0 a.e. on ΓNT and wτ ∈ R−vτ a.e. on ΓNS

}
.

One can easily prove that a (strong) solution to the tangential Signorini problem (SP) is also a
weak solution. However, to the best of our knowledge, without additional assumptions one cannot
prove the converse. To get the equivalence, one can assume, in particular, that the decomposi-
tion ΓD ∪ ΓNT

∪ ΓNR
∪ ΓNS

of Γ is consistent in the following sense.

Definition 3.7 (Consistent decomposition). The decomposition ΓD∪ΓNT
∪ΓNR

∪ΓNS
of Γ is said

to be consistent if:

(i) for almost all s ∈ ΓNS , s ∈ intΓ(ΓNS);

(ii) the nonempty closed convex subset K1/2(Γ,Rd) of H1/2(Γ,Rd) defined by

K1/2(Γ,Rd) :=

{
w ∈ H1/2(Γ,Rd) | w = 0 a.e. on ΓD, wτ = 0 a.e. on ΓNT

and wτ ∈ R−vτ a.e. on ΓNS

}
,

is dense in the nonempty closed convex subset K0(Γ,Rd) of L2(Γ,Rd) given by

K0(Γ,Rd) :=

{
w ∈ L2(Γ,Rd) | w = 0 a.e. on ΓD, wτ = 0 a.e. on ΓNT

and wτ ∈ R−vτ a.e. on ΓNS

}
.
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Proposition 3.8. Let u ∈ H1(Ω,Rd).

(i) If u is a (strong) solution to the tangential Signorini problem (SP), then u is a weak solution
to the Signorini problem (SP).

(ii) If u is a weak solution to the tangential Signorini problem (SP) such that Ae(u)n ∈ L2(ΓN,Rd)
and the decomposition ΓD ∪ΓNT

∪ΓNR
∪ΓNS

of Γ is consistent, then u is a (strong) solution
to the tangential Signorini problem (SP).

Proof. (i) Assume that u is a (strong) solution to the tangential Signorini problem (SP). Then,
from the boundary conditions, u ∈ K1(Ω,Rd). Moreover, since −div(Ae(u)) = f in D′(Ω,Rd)
and f ∈ L2(Ω,Rd), then −div(Ae(u)) = f in L2(Ω,Rd). Hence, from divergence formula (see
Proposition 2.16), one gets∫

Ω

Ae(u) : e(w − u)− ⟨Ae(u)n, w − u⟩H−1/2(Γ,Rd)×H1/2(Γ,Rd) =

∫
Ω

f · (w − u),

for all w ∈ K1(Ω,Rd). Moreover, for all w ∈ K1(Ω,Rd), w ∈ H
1/2
00 (ΓN,Rd) which can be identified

to a linear subspace of H1/2(Γ,Rd), hence∫
Ω

Ae(u) : e(w − u)− ⟨Ae(u)n, w − u⟩
H

−1/2
00 (ΓN,Rd)×H

1/2
00 (ΓN,Rd)

=

∫
Ω

f · (w − u),

for all w ∈ K1(Ω,Rd). Furthermore, since Ae(u)n ∈ L2(ΓN,Rd), it follows that

⟨Ae(u)n, w − u⟩
H

−1/2
00 (ΓN,Rd)×H

1/2
00 (ΓN,Rd)

=

∫
ΓN

Ae(u)n · (w − u),

for all w ∈ K1(Ω,Rd). Using the decomposition of Ae(u)n on its tangential and normal components,
one has ∫

ΓN

Ae(u)n · (w − u) =

∫
ΓN

σn(u)(wn − un) +

∫
ΓNR

∪ΓNS

στ (u) · (wτ − uτ ),

for all w ∈ K1(Ω,Rd). From the boundary conditions, one has σn(u) = h a.e. on ΓN and στ (u) =
ℓvτ − k (uτ − (uτ · vτ )vτ ) a.e. on ΓNR . Moreover one has

στ (u) · (wτ − uτ ) = στ (u) · wτ − στ (u) · uτ ≥ ℓvτ · wτ − ℓvτ · uτ = ℓvτ · (wτ − uτ ) ,

a.e. on ΓNS
. This concludes the proof of the first item.

(ii) Assume that u is a weak solution to the tangential Signorini problem (SP). Then u ∈
K1(Ω,Rd). For all φ ∈ D(Ω,Rd), considering w := u ± φ ∈ K1(Ω,Rd) in Inequality (3.1), one
gets −div(Ae(u)) = f in D′(Ω,Rd), then also in L2(Ω,Rd) since f ∈ L2(Ω,Rd). Hence we can
apply the divergence formula (see Proposition 2.16) in Inequality (3.1) to get that

⟨Ae(u)n, w − u⟩H−1/2(Γ,Rd)×H1/2(Γ,Rd) ≥
∫
ΓN

h(wn − un)

+

∫
ΓNR

(ℓvτ − k (uτ − (uτ · vτ )vτ )) · (wτ − uτ ) +

∫
ΓNS

ℓvτ · (wτ − uτ ),

for all w ∈ K1(Ω,Rd). Moreover, similarly to (i) and from the assumption Ae(u)n ∈ L2(ΓN,Rd),
one gets
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∫
ΓN

σn(u)(wn − un) +

∫
ΓNR

∪ΓNS

στ (u) · (wτ − uτ ) ≥
∫
ΓN

h(wn − un)

+

∫
ΓNR

(ℓvτ − k (uτ − (uτ · vτ )vτ )) · (wτ − uτ ) +

∫
ΓNS

ℓvτ · (wτ − uτ ), (3.2)

for all w ∈ K1(Ω,Rd), then also for all w ∈ K1/2(Γ,Rd). From the assumption that the decomposi-
tion ΓD∪ΓNT∪ΓNR∪ΓNS of Γ is consistent, K1/2(Γ,Rd) is dense in K0(Γ,Rd). Therefore, since k ∈
L4(ΓNR), ||v||L∞(ΓNR

∪ΓNS
,Rd) ≤ 1 and from the continuous embedding H1(Ω,Rd)↪→L4(Γ,Rd), we

deduce that Inequality (3.2) is still true for all w ∈ K0(Γ,Rd).
By considering the function w := u ± ψn ∈ K0(Γ,Rd) in Inequality (3.2), where ψ ∈ L2(Γ) is

given by

ψ =

{
0 on ΓD,
ϕ on ΓN,

with ϕ any function in L2(ΓN), one deduces that σn(u) = h a.e. on ΓN.
By considering w := u± wϕ ∈ K0(Γ,Rd) in Inequality (3.2), where wϕ ∈ L2(Γ,Rd) is given by

wϕ =

{
0 on ΓD ∪ ΓNT ∪ ΓNS ,
ϕ on ΓNR ,

with ϕ any function in L2(ΓNR ,Rd), one gets that στ (u) = ℓvτ − k (uτ − (uτ · vτ )vτ ) a.e. on ΓNR .
Hence Inequality (3.2) becomes∫

ΓNS

στ (u) · (wτ − uτ ) ≥
∫
ΓNS

ℓvτ · (wτ − uτ ), (3.3)

for all w ∈ K0(Γ,Rd). Let s ∈ ΓNS
be a Lebesgue point of στ (u) · vτ ∈ L2(ΓNR

∪ ΓNS
) and

of ℓ ∥vτ∥22 ∈ L2(ΓNR
∪ ΓNS

), such that s ∈ intΓ(ΓNS
). By considering the function w := u− ψvτ ∈

K0(Γ,Rd) in Inequality (3.3), where ψ ∈ L2(Γ) is defined by

ψ :=

{
1 on BΓ(s, ε),
0 on Γ\BΓ(s, ε),

for ε > 0 such that BΓ(s, ε) ⊂ ΓNS , one gets that

1

|BΓ(s, ε)|

∫
BΓ(s,ε)

στ (u) · vτ ≤ 1

|BΓ(s, ε)|

∫
BΓ(s,ε)

ℓ ∥vτ∥22 ,

and thus (στ (u)(s)− ℓ(s)vτ (s)) · vτ (s) ≤ 0 by letting ε→ 0+. Moreover, since almost every point
of ΓNS are in intΓ(ΓNS) and are Lesbegue points of στ (u) · vτ ∈ L2(ΓNR ∪ ΓNS) and of ℓ ∥vτ∥22 ∈
L2(ΓNR ∪ ΓNS), one deduces

(στ (u)− ℓvτ ) · vτ ≤ 0,

a.e. on ΓNS . Finally, by considering w = 0 and w = 2u in Inequality (3.3), one gets∫
ΓNS

uτ · (στ (u)− ℓvτ ) = 0,

therefore uτ · (στ (u)− ℓvτ ) = 0 a.e. on ΓNS since u ∈ K1(Ω,Rd). The proof is complete.
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Now let us prove that there exists a unique solution to the tangential Signorini problem (SP).
To this aim let us introduce the functional Ψ defined by

Ψ : H1
D(Ω,Rd) −→ R

w 7−→ Ψ(w) :=

∫
ΓNR

k

2

(
∥wτ∥2 − |wτ · vτ |2

)
.

Note that Ψ is well defined since k ∈ L4(ΓNR
), ||v|| ≤ 1 a.e. on ΓNR

and from the continuous
embedding H1(Ω,Rd)↪→L4(Γ,Rd).

Lemma 3.9. The functional Ψ is convex and Fréchet differentiable on H1
D(Ω,Rd) and, for all w0 ∈

H1
D(Ω,Rd), ∇Ψ(w0) ∈ H1

D(Ω,Rd) is the unique solution to the Dirichlet-Neumann problem
−div(Ae(∇Ψ(w0))) = 0 in Ω,

∇Ψ(w0) = 0 on ΓD,
Ae(∇Ψ(w0))n = 0 on ΓNT

∪ ΓNS
,

σn(∇Ψ(w0)) = 0 on ΓNR
,

στ (∇Ψ(w0)) = k (w0τ − (w0τ · vτ ) vτ ) on ΓNR
.

(3.4)

Proof. Let us start with the convexity of Ψ. Take w1, w2 ∈ H1
D(Ω,Rd) and ν ∈ (0, 1). Then

Ψ(νw1 + (1− ν)w2)− νΨ(w1)− (1− ν)Ψ(w2) =∫
ΓNR

−k
2
ν(1−ν)[

[
∥w1τ ∥

2
+ ∥w2τ ∥

2
+ 2w1τ · w2τ − |w1τ · vτ |2 − |w2τ · vτ |2 − 2(w1τ · vτ )(w2τ · vτ )

]
=

∫
ΓNR

−k
2
ν(1− ν) ∥w1τ + w2τ ∥

2
+

∫
ΓNR

k

2
ν(1− ν) |(w1τ + w2τ ) · vτ |

2
.

Since k > 0 and ∥v∥ ≤ 1 a.e. on ΓNR
, one deduces

Ψ(νw1 + (1− ν)w2)− νΨ(w1)− (1− ν)Ψ(w2) ≤∫
ΓNR

−k
2
ν(1− ν) ∥w1τ + w2τ ∥

2
+

∫
ΓNR

k

2
ν(1− ν) ∥w1τ + w2τ ∥

2 ∥vτ∥2 ≤ 0.

Thus Ψ is convex on H1
D(Ω,Rd). Now let us prove that Ψ is Fréchet differentiable. For w0 ∈

H1
D(Ω,Rd) and w ∈ H1

D(Ω,Rd), it holds that

Ψ(w0 + w) = Ψ(w0) +

∫
ΓNR

k (w0τ − (w0τ · vτ ) vτ ) · wτ +

∫
ΓNR

k

2

(
∥wτ∥2 − |wτ · vτ |2

)
.

Moreover one has ∫
ΓNR

k

2

(
∥wτ∥2 − |wτ · vτ |2

)
= o(w),

where o stands for the standard Bachmann-Landau notation for the H1
D(Ω,Rd)-norm. Moreover

the map

w ∈ H1
D(Ω,Rd) 7→

∫
ΓNR

k (w0τ − (w0τ · vτ ) vτ ) · wτ ∈ R,
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is linear and continuous. Therefore Ψ is Fréchet differentiable in w0 ∈ H1
D(Ω,Rd) and

⟨∇Ψ(w0), w⟩H1
D(Ω,Rd) =

∫
ΓNR

k (w0τ − (w0τ · vτ ) vτ ) · wτ , ∀w ∈ H1
D(Ω,Rd).

In other words ∇Ψ(w0) ∈ H1
D(Ω,Rd) is the unique solution to the Dirichlet-Neumann problem (3.4).

The proof is complete.

Proposition 3.10. The tangential Signorini problem (SP) admits a unique weak solution u ∈
H1

D(Ω,Rd) which is given by
u = proxΨ+ιK1(Ω,Rd)

(F ),

where F ∈ H1
D(Ω,Rd) is the unique solution to the Dirichlet-Neumann problem (DN) with z :=

hn + ℓvτ ∈ L2(ΓN,Rd), and proxΨ+ιK1(Ω,Rd)
stands for the proximal operator associated with the

functional Ψ+ ιK1(Ω,Rd).

Proof. Let F ∈ H1
D(Ω,Rd) be the solution to the Dirichlet-Neumann problem (DN) with z :=

hn + ℓvτ ∈ L2(ΓN,Rd). Then

⟨F,w⟩H1
D(Ω,Rd) =

∫
Ω

f · w +

∫
ΓN

hwn +

∫
ΓN

ℓvτ · wτ , ∀w ∈ H1
D(Ω,Rd).

Let u ∈ H1
D(Ω,Rd) and note that Ψ+ ιK1(Ω,Rd) is a proper lower semi-continuous convex function

on H1
D(Ω,Rd). Then u is the weak solution to the tangentiel Signorini problem (SP) if and only

if u ∈ K1(Ω,Rd) and

⟨u,w − u⟩H1
D(Ω,Rd) ≥

∫
Ω

f · (w − u) +

∫
ΓN

h (wn − un)

+

∫
ΓNR

(ℓvτ − k (uτ − (uτ · vτ ) vτ )) · (wτ − uτ ) +

∫
ΓNS

ℓvτ · (wτ − uτ ) , ∀w ∈ K1(Ω,Rd),

i.e. if and only if∫
ΓNR

k (uτ − (uτ · vτ ) vτ ) · (wτ − uτ ) ≥ ⟨F − u,w − u⟩H1
D(Ω,Rd) , ∀w ∈ K1(Ω,Rd),

i.e. if and only if (see Proposition 2.4)

Ψ(w)−Ψ(u) ≥ ⟨F − u,w − u⟩H1
D(Ω,Rd) , ∀w ∈ K1(Ω,Rd),

i.e. if and only if

⟨F − u,w − u⟩H1
D(Ω,Rd) ≤ Ψ(w)−Ψ(u) + ιK1(Ω,Rd)(w)− ιK1(Ω,Rd)(u), ∀w ∈ H1

D(Ω,Rd),

i.e. if and only if F − u ∈ ∂
(
Ψ+ ιK1(Ω,Rd)

)
(u), i.e. if and only if u = proxΨ+ιK1(Ω,Rd)

(F ), which
concludes the proof.

3.1.3 A Tresca friction problem

Let h ∈ L2(ΓN) and g ∈ L2(ΓN) such that g > 0 a.e. on ΓN. Consider the Tresca friction
problem given by 

−div(Ae(u)) = f in Ω,
u = 0 on ΓD,

σn(u) = h on ΓN,
∥στ (u)∥ ≤ g and uτ · στ (u) + g ∥uτ∥ = 0 on ΓN.

(TP)
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Definition 3.11 (Strong solution to the Tresca friction problem). A (strong) solution to the Tresca
friction problem (TP) is a function u ∈ H1(Ω,Rd) such that −div(Ae(u)) = f in D′(Ω,Rd), u = 0
a.e. on ΓD, Ae(u)n ∈ L2(ΓN,Rd) with σn(u) = h, ∥στ (u)∥ ≤ g and uτ · στ (u) + g ∥uτ∥ = 0 a.e.
on ΓN.

Definition 3.12 (Weak solution to the Tresca friction problem). A weak solution to the Tresca
friction problem (TP) is a function u ∈ H1

D(Ω,Rd) such that∫
Ω

Ae(u) : e(w − u) +

∫
ΓN

g ∥wτ∥ −
∫
ΓN

g ∥uτ∥ ≥
∫
Ω

f · (w − u)

+

∫
ΓN

h (wn − un) , ∀w ∈ H1
D(Ω,Rd).

Proposition 3.13. A function u ∈ H1(Ω,Rd) is a (strong) solution to the Tresca friction prob-
lem (TP) if and only if u is a weak solution to the Tresca friction problem (TP).

From definition of the proximal operator (see Definition 2.3), one deduces the following exis-
tence/uniqueness result.

Proposition 3.14. The Tresca friction problem (TP) admits a unique solution u ∈ H1
D(Ω,Rd)

given by
u = proxϕ(F ),

where F ∈ H1
D(Ω,Rd) is the solution to the Dirichlet-Neumann problem (DN) with z := hn ∈

L2(ΓN,Rd), and where proxϕ stands for the proximal operator associated with the Tresca friction
functional ϕ defined by

ϕ : H1
D(Ω,Rd) −→ R

w 7−→ ϕ(w) :=

∫
ΓN

g ∥wτ∥ .

Remark 3.15. The assumption that almost every point of ΓN is in intΓ(ΓN) is only used to prove
that a weak solution to the Tresca friction problem (TP) is also a (strong) solution (precisely to get
the Tresca friction law pointwisely on ΓN). Of course, some sets do not satisfy this assumption, for
instance the well-known Smith–Volterra–Cantor set (see, e.g, [5, Example 6.15 Section 6 Chapter
1]). Nevertheless it is trivially satisfied in most of standard cases found in practice. Furthermore,
if this assumption is not satisfied, one can also prove that the weak solution to the Tresca friction
problem (TP) is a (strong) solution by adding the assumption that g ∈ L∞(ΓN), and by using
the isometry between the dual of (L1(ΓN,Rd), ∥ · ∥L1(ΓN,Rd)g ) and L∞(ΓN,Rd) (with its standard
norm ∥ · ∥L∞(ΓN,Rd)) where ∥ · ∥L1(ΓN,Rd)g is the norm defined by

∥·∥L1(ΓN,Rd)g
: L1(ΓN,Rd) −→ R

w 7−→
∫
ΓN

g ∥w∥ .

We refer to [15, Chapitre 3] for details in a similar context.

3.2 Sensitivity analysis of the Tresca friction problem
In this section we perform the sensitivity analysis of the Tresca friction problem. To this aim

we consider the parameterized Tresca friction problem given by
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−div(Ae(ut)) = ft in Ω,

ut = 0 on ΓD,
σn(ut) = ht on ΓN,

∥στ (ut)∥ ≤ gt and utτ · στ (ut) + gt ∥utτ ∥ = 0 on ΓN,

(TPt)

where ft ∈ L2(Ω,Rd), ht ∈ L2(ΓN) and gt ∈ L2(ΓN) such that gt > 0 a.e. on ΓN, for all t ≥ 0.

3.2.1 Parameterized Tresca friction functional and twice epi-differentiability

Let us introduce the parameterized Tresca friction functional given by

Φ : R+ ×H1
D(Ω,Rd) −→ R

(t, w) 7−→ Φ(t, w) :=

∫
ΓN

gt ∥wτ∥ .

(3.5)

From Proposition 3.14, the unique solution to the parameterized Tresca friction problem (TPt) is
given by

ut = proxΦ(t,·)(Ft),

where Ft is the unique solution to the parameterized Dirichlet-Neumann problem−div(Ae(Ft)) = ft in Ω,
Ft = 0 on ΓD,

Ae(Ft)n = htn on ΓN,
(DNt)

for all t ≥ 0. Similarly to the scalar case (see [10]), since the parameterized Tresca friction
functional depends on a parameter t ≥ 0, we have to use the notion of twice epi-differentiability
depending on a parameter (see Definition 2.12), in order to apply Theorem 2.13. Let us prepare
the background for the twice epi-differentiability of the parameterized Tresca friction functional.
More specifically, let us start with the characterization of the convex subdifferential of Φ(0, ·) (see
Definition 2.2). To this aim, for all s ∈ ΓN, we introduce the tangential norm map defined by∥∥·τ(s)∥∥ : Rd −→ R

x 7−→
∥∥xτ(s)∥∥ ,

and we introduce an auxiliary problem defined, for all u ∈ H1
D(Ω,Rd), by

−div(Ae(v)) = 0 in Ω,
v = 0 on ΓD,

σn(v) = 0 on ΓN,
στ (v)(s) ∈ g0(s)∂

∥∥·τ(s)∥∥ (u(s)) on ΓN,

(APu)

where, for almost all s ∈ ΓN, ∂
∥∥·τ(s)∥∥ (u(s)) stands for the convex subdifferential of the tangential

norm map
∥∥·τ(s)∥∥ at u(s) ∈ Rd. For a given u ∈ H1

D(Ω,Rd), a solution to this problem (APu) is
a function v ∈ H1(Ω,Rd) such that −div(Ae(v)) = 0 in D′(Ω,Rd), v = 0 a.e. on ΓD, Ae(v)n ∈
L2(ΓN,Rd) with σn(v) = 0 a.e. on ΓN and στ (v)(s) ∈ g0(s)∂||·τ(s)||(u(s)) for almost all s ∈ ΓN.

Lemma 3.16. Let u ∈ H1
D(Ω,Rd). Then

∂Φ(0, ·)(u) = the set of solutions to Problem (APu).
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Proof. Let u ∈ H1
D(Ω,Rd) and let us prove the two inclusions. Firstly, let v ∈ H1(Ω,Rd) be

a solution to Problem (APu). Then v ∈ H1
D(Ω,Rd), Ae(v)n ∈ L2(ΓN,Rd) with στ (v)(s) ∈

g0(s)∂||·τ(s)||(u(s)) for almost all s ∈ ΓN. Hence one has

στ (v)(s) · (wτ (s)− uτ (s)) ≤ g0(s)(∥wτ (s)∥ − ∥uτ (s)∥),

for all w ∈ H1
D(Ω,Rd) and for almost all s ∈ ΓN. It follows that∫

ΓN

στ (v) · (wτ − uτ ) ≤
∫
ΓN

g0 ∥wτ∥ −
∫
ΓN

g0 ∥uτ∥ ,

for all w ∈ H1
D(Ω,Rd). Moreover −div(Ae(v)) = 0 in D′(Ω,Rd), thus it holds −div(Ae(v)) = 0

in L2(Ω,Rd). Hence, from divergence formula (see Proposition 2.16), one gets

⟨v, w − u⟩H1
D(Ω,Rd) = ⟨Ae(v)n, w − u⟩

H
−1/2
00 (ΓN,Rd)×H

1/2
00 (ΓN,Rd)

,

for all w ∈ H1
D(Ω,Rd). Since Ae(v)n ∈ L2(ΓN,Rd) and σn(v) = 0 a.e. on ΓN, one deduces that

⟨v, w − u⟩H1
D(Ω,Rd) =

∫
ΓN

στ (v) · (wτ − uτ ) ,

for all w ∈ H1
D(Ω,Rd). Therefore it follows that

⟨v, w − u⟩H1
D(Ω,Rd) ≤

∫
ΓN

g0 ∥wτ∥ −
∫
ΓN

g0 ∥uτ∥ ,

for all w ∈ H1
D(Ω,Rd). Thus v ∈ ∂Φ(0, ·)(u) and the first inclusion is proved. Conversely let v ∈

∂Φ(0, ·)(u). Then one has

⟨v, w − u⟩H1
D(Ω,Rd) ≤

∫
ΓN

g0 ∥wτ∥ −
∫
ΓN

g0 ∥uτ∥ , (3.6)

for all w ∈ H1
D(Ω,Rd). Considering the function w := u ± ψ ∈ H1

D(Ω,Rd) with any func-
tion ψ ∈ D(Ω,Rd), one deduces from Inequality (3.6) that −div(Ae(v)) = 0 in D′(Ω,Rd), thus it
holds −div(Ae(v)) = 0 in L2(Ω,Rd). Hence, from divergence formula (see Proposition 2.16) and
Inequality (3.6), it follows that

⟨Ae(v)n, w − u⟩
H

−1/2
00 (ΓN,Rd)×H

1/2
00 (ΓN,Rd)

≤
∫
ΓN

g0 ∥wτ∥ −
∫
ΓN

g0 ∥uτ∥ ,

for all w ∈ H1
D(Ω,Rd), and thus also for all w ∈ H

1/2
00 (ΓN,Rd). Now, by considering w := u+ φ ∈

H
1/2
00 (ΓN,Rd), for any φ ∈ H

1/2
00 (ΓN,Rd), one gets

⟨Ae(v)n, φ⟩
H

−1/2
00 (ΓN,Rd)×H

1/2
00 (ΓN,Rd)

≤
∫
ΓN

g0 ∥φτ∥ ≤ ∥g0∥L2(ΓN) ∥φ∥L2(ΓN,Rd) ,

for all φ ∈ H
1/2
00 (ΓN,Rd). From Proposition 2.15, one deduces that Ae(v)n ∈ L2(ΓN,Rd) and also

that∫
ΓN

Ae(v)n · (w − u) =

∫
ΓN

στ (v) · (wτ − uτ ) +

∫
ΓN

σn(v) (wn − un)

≤
∫
ΓN

g0 ∥wτ∥ −
∫
ΓN

g0 ∥uτ∥ , (3.7)
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for all w ∈ H
1/2
00 (ΓN,Rd), and thus for all w ∈ L2(ΓN,Rd) by density. By considering w := u±ψn ∈

L2(ΓN,Rd) in Inequality (3.7), for any ψ ∈ L2(ΓN), one gets∫
ΓN

σn(v)ψ = 0.

Therefore σn(v) = 0 a.e. on ΓN and Inequality (3.7) becomes∫
ΓN

στ (v) · (wτ − uτ ) ≤
∫
ΓN

g0 ∥wτ∥ −
∫
ΓN

g0 ∥uτ∥ , (3.8)

for all w ∈ L2(ΓN,Rd). Now let s0 ∈ ΓN be a Lebesgue point of (στ (v))i ∈ L2(ΓN) for i ∈
[[1, d]], στ (v) · uτ ∈ L1(ΓN), g0 ∈ L2(ΓN) and of g0 ∥uτ∥ ∈ L1(ΓN), such that s0 ∈ intΓ(ΓN). Let us
consider the function w ∈ L2(ΓN,Rd) defined by

w :=

{
x on BΓ(s0, ε),
u on ΓN\BΓ(s0, ε),

with x ∈ Rd and ε > 0 such that BΓ(s0, ε) ⊂ ΓN. Then one has from Inequality (3.8)

1

|BΓ(s0, ε)|

∫
BΓ(s0,ε)

στ (v) · (xτ − uτ ) ≤
1

|BΓ(s0, ε)|

∫
BΓ(s0,ε)

g0 ∥xτ∥ −
1

|BΓ(s0, ε)|

∫
BΓ(s0,ε)

g0 ∥uτ∥ .

The map s ∈ Γ 7→
∥∥xτ(s)∥∥ ∈ R+ is continuous since n ∈ C0(Γ), thus s0 is a Lebesgue point

of g0 ∥xτ∥ ∈ L2(ΓN), then στ (v)(s0) · (xτ(s0) − uτ (s0)) ≤ g0(s0)
∥∥xτ(s0)∥∥ − g0(s0) ∥uτ (s0)∥ by

letting ε→ 0+. This inequality is true for any x ∈ Rd, therefore στ (v)(s0) ∈ g0(s0)∂||·τ(s0)||(u(s0)).
Moreover, almost every point of ΓN are in intΓ(ΓN) and are Lesbegue points of (στ (v))i ∈ L2(ΓN)
for i ∈ [[1, d]], στ (v) · uτ ∈ L1(ΓN), g0 ∈ L2(ΓN) and of g0 ∥uτ∥ ∈ L1(ΓN), hence one deduces

στ (v)(s) ∈ g0(s)∂||·τ(s)||(u(s)),

for almost all s ∈ ΓN, and this proves the second inclusion.

Remark 3.17. As one can see in the proof of Lemma 3.16, the assumption that Γ is of class C1

is only used to ensure that n ∈ C0(Γ), and thus to characterize the convex subdifferential of Φ(0, ·)
as the set of solutions to Problem (APu).

Since the twice epi-differentiability is defined using the second-order difference quotient func-
tions, let us compute the second-order difference quotient functions of Φ at u ∈ H1

D(Ω,Rd)
for v ∈ ∂Φ(0, ·)(u).

Proposition 3.18. For all t > 0, all u ∈ H1
D(Ω,Rd) and all v ∈ ∂Φ(0, ·)(u), it holds that

∆2
tΦ(u | v)(w) =

∫
ΓN

∆2
tG(s)(u(s) | στ (v)(s))(w(s)) ds, (3.9)

for all w ∈ H1
D(Ω,Rd), where, for almost all s ∈ ΓN, ∆2

tG(s)(u(s) | στ (v)(s)) stands for the
second-order difference quotient function of G(s) at u(s) ∈ Rd for στ (v)(s) ∈ g0(s)∂||·τ(s)||(u(s)),
with G(s) defined by

G(s) : R+ × Rd −→ R
(t, x) 7−→ G(s)(t, x) := gt(s)

∥∥xτ(s)∥∥ .
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Remark 3.19. Note that, for almost all s ∈ ΓN and all t ≥ 0, G(s)(t, ·) := gt(s)
∥∥·τ(s)∥∥ is a proper

lower semi-continuous convex function on Rd. Moreover, since g0 > 0 a.e. on ΓN, it follows that

∂ [G(s)(0, ·)] (x) = g0(s)∂||·τ(s)||(x),

for all x ∈ Rd and for almost all s ∈ ΓN.

Proof of Proposition 3.18. Let t > 0, u ∈ H1
D(Ω,Rd) and v ∈ ∂Φ(0, ·)(u). From Lemma 3.16 and

the divergence formula (see Proposition 2.16), one deduces that

⟨v, w⟩H1
D(Ω,Rd) =

∫
ΓN

στ (v) · w,

for all w ∈ H1
D(Ω,Rd). It follows that

∆2
tΦ(u | v)(w) =

∫
ΓN

gt(s) ∥uτ (s) + twτ (s)∥ − gt(s) ∥uτ (s)∥ − tστ (v)(s) · w(s)
t2

ds,

for all w ∈ H1
D(Ω,Rd). Moreover, since στ (v)(s) ∈ g0(s)∂||·τ(s)||(u(s)) for almost all s ∈ ΓN, one

deduces that
∆2

tΦ(u | v)(w) =
∫
ΓN

∆2
tG(s)(u(s) | στ (v)(s))(w(s)) ds,

for all w ∈ H1
D(Ω,Rd), which concludes the proof.

From Proposition 3.18, it is clear that the twice epi-differentiability of the parameterized Tresca
friction functional Φ is related to the twice epi-differentiability of the parameterized function G(s).
Hence we have to compute the second-order epi-derivative of G(s) for almost all s ∈ ΓN. To this
aim, let us start with the computation of the twice epi-differentiability of the tangential norm map.

Lemma 3.20. For all s ∈ ΓN, the map
∥∥·τ(s)∥∥ is twice epi-differentiable at any x ∈ Rd for

any y ∈ ∂
∥∥·τ(s)∥∥(x) and its second-order epi-derivative is given by

d2e
∥∥·τ(s)∥∥ (x | y)(z) =


1

2∥xτ(s)∥

(∥∥zτ(s)∥∥2 − ∣∣∣∣zτ(s) · xτ(s)

∥xτ(s)∥

∣∣∣∣2
)

if xτ(s) ̸= 0,

ιN
B(0,1)∩(Rn(s))⊥ (y)(z) if xτ(s) = 0,

for all z ∈ Rd, where N
B(0,1)∩(Rn(s))⊥(y) is the normal cone to B(0, 1) ∩ (Rn(s))⊥ at y.

Proof. Let s ∈ ΓN. Note that

∂
∥∥·τ(s)∥∥(x) :=


{

xτ(s)

∥xτ(s)∥

}
if xτ(s) ̸= 0,

B(0, 1) ∩ (Rn(s))⊥ if xτ(s) = 0,

and that
∥∥·τ(s)∥∥ = ξ

B(0,1)∩(Rn(s))⊥ , where ξ
B(0,1)∩(Rn(s))⊥ is the support function of B(0, 1) ∩ (Rn(s))⊥

which is a nonempty convex closed subset of Rd. Moreover, since

(B(0, 1) ∩ (Rn(s))⊥)⊥ = Rn(s),

one can apply Proposition 2.11 to get that

d2e
∥∥·τ(s)∥∥ (x | y) = ιN

B(0,1)∩(Rn(s))⊥ (y),
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for all x ∈ Rn(s) and all y ∈ B(0, 1) ∩ (Rn(s))⊥. In the case where x /∈ Rn(s) (i.e. xτ(s) ̸= 0), one
can easily prove that

∥∥·τ(s)∥∥ is twice Fréchet differentiable at x with

D2
∥∥·τ(s)∥∥ (x)(z1, z2) =

1∥∥xτ(s)∥∥
(
z1τ(s)

· z2τ(s)
−
(
xτ(s) · z2τ(s)

)
z1τ(s)

·
xτ(s)∥∥xτ(s)∥∥2

)
, ∀ (z1, z2) ∈ Rd × Rd.

From Remark 2.9, one gets

d2e
∥∥·τ(s)∥∥

(
x |

xτ(s)∥∥xτ(s)∥∥
)
(z) =

1

2
D2
∥∥·τ(s)∥∥ (x)(z, z) = 1

2
∥∥xτ(s)∥∥

∥∥zτ(s)∥∥2 −
∣∣∣∣∣zτ(s) · xτ(s)∥∥xτ(s)∥∥

∣∣∣∣∣
2
 ,

for all z ∈ Rd, which concludes the proof.

Now, with additional assumptions, let us compute the second-order epi-derivative of G(s) for
almost all s ∈ ΓN.

Proposition 3.21. Assume that, for almost all s ∈ ΓN, the map t ∈ R+ 7→ gt(s) ∈ R+ is
differentiable at t = 0, with its derivative denoted by g′0(s). Then, for almost all s ∈ ΓN, the
map G(s) is twice epi-differentiable at any x ∈ Rd for all y ∈ g0(s)∂||·τ(s)||(x) with

D2
eG(s)(x | y)(z) :=


g0(s)

2∥xτ(s)∥

(∥∥zτ(s)∥∥2 − ∣∣∣∣zτ(s) · xτ(s)

∥xτ(s)∥

∣∣∣∣2
)

+ g′0(s)
xτ(s)

∥xτ(s)∥ · z if xτ(s) ̸= 0,

ιN
B(0,1)∩(Rn(s))⊥ ( y

g0(s)
)(z) + g′0(s)

y
g0(s)

· z if xτ(s) = 0,

for all z ∈ Rd.

Proof. We use the same notations as in Definitions 2.8 and 2.12. Let x ∈ Rd. Then, for almost
all s ∈ ΓN, for all y ∈ g0(s)∂||·τ(s)||(x) and all z ∈ Rd, one has

∆2
tG(s)(x | y)(z) =

gt(s)
∥∥xτ(s) + tzτ(s)

∥∥− gt(s)
∥∥xτ(s)∥∥− ty · z

t2

= gt(s)

∥∥xτ(s) + tzτ(s)
∥∥− ∥∥xτ(s)∥∥− t y

g0(s)
· z

t2
+

(gt(s)− g0(s))

tg0(s)
y · z,

that is
∆2

tG(s)(x | y)(z) = gt(s)δ
2
t ||·τ(s)||

(
x | y

g0(s)

)
(z) +

(gt(s)− g0(s))

tg0(s)
y · z,

with y
g0(s)

∈ ∂||·τ(s)||(x), and where δ2t ||·τ(s)||(x|
y

g0(s)
) is the second-order difference quotient func-

tion of ||·τ(s)|| at x for y
g0(s)

(see Definition 2.8 since ||·τ(s)|| is a t-independent function). Using
the characterization of Mosco epi-convergence (see Proposition 2.7) and Lemma 3.20, one gets

D2
eG(s)(x | y)(z) = g0(s)d

2
e

∥∥·τ(s)∥∥(x | y

g0(s)

)
+ g′0(s)

y

g0(s)
· z.

The proof is complete.

To conclude this part, let us characterize N
B(0,1)∩(Rn(s))⊥(y) for almost all s ∈ ΓN.
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Lemma 3.22. Let s ∈ ΓN. It holds that

N
B(0,1)∩(Rn(s))⊥(y) =

{
Rn(s) if y ∈ B(0, 1) ∩ (Rn(s))⊥ ,
Rn(s) + R+y if y ∈ ∂B(0, 1) ∩ (Rn(s))⊥ ,

for all y ∈ B(0, 1) ∩ (Rn(s))⊥, where R+y := {z ∈ Rd | ∃ν ≥ 0 such that z = νy}.

Proof. Let s ∈ ΓN and y ∈ B(0, 1) ∩ (Rn(s))⊥ .

(i) First, let y ∈ B(0, 1) ∩ (Rn(s))⊥. If v ∈ Rn(s), then

v · (y − z) = 0, ∀z ∈ B(0, 1) ∩ (Rn(s))⊥ ,

thus v ∈ N
B(0,1)∩(Rn(s))⊥(y). Since this is true for any v ∈ Rn(s), one deduces that

Rn(s) ⊂ N
B(0,1)∩(Rn(s))⊥(y).

Consider v ∈ N
B(0,1)∩(Rn(s))⊥(y). Then it holds that

v · (z − y) ≤ 0, ∀z ∈ B(0, 1) ∩ (Rn(s))⊥ .

Moreover there exists ε > 0 such that B(y, ε)∩ (Rn(s))⊥ ⊂ B(0, 1)∩ (Rn(s))⊥. Therefore by
considering z := y + ε w

2∥w∥ for any w ∈ (Rn(s))⊥, one deduces that

v · w = 0, ∀w ∈ (Rn(s))⊥ .

Thus v ∈ ((Rn(s))⊥)⊥ = Rn(s). Since this is true for any v ∈ N
B(0,1)∩(Rn(s))⊥(y), one deduces

that
N

B(0,1)∩(Rn(s))⊥(y) ⊂ Rn(s).

(ii) Let y ∈ ∂B(0, 1) ∩ (Rn(s))⊥. If v ∈ Rn(s) + R+y, then

v · (z − y) = vτ(s) · (z − y) ≤
∥∥vτ(s)∥∥ ∥z∥ − vτ(s) · y ≤

∥∥vτ(s)∥∥− ∥∥vτ(s)∥∥ = 0,

for all z ∈ B(0, 1) ∩ (Rn(s))⊥. Thus it follows that

Rn(s) + R+y ⊂ N
B(0,1)∩(Rn(s))⊥(y).

Let v ∈ N
B(0,1)∩(Rn(s))⊥(y), and consider z := 1

2

(
vτ(s)

∥vτ(s)∥ ∥y∥+ y

)
∈ B(0, 1)∩ (Rn(s))⊥. One

deduces that

0 ≥ v · (z − y) = vτ(s) ·
1

2

(
vτ(s)∥∥vτ(s)∥∥ ∥y∥ − y

)
=

1

2

(∥∥vτ(s)∥∥ ∥y∥ − vτ(s) · y
)
≥ 0,

thus
∥∥vτ(s)∥∥ ∥y∥ = vτ(s)·y, hence vτ(s) ∈ R+y. Since this is true for any v ∈ N

B(0,1)∩(Rn(s))⊥(y),
one deduces that

N
B(0,1)∩(Rn(s))⊥(y) ⊂ Rn(s) + R+y.

The proof is complete.
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3.2.2 The derivative of the solution to the parameterized Tresca friction problem

From the previous results and some additional assumptions detailed below, we are now in a
position to state and prove the main result of this paper which characterizes the derivative of the
solution to the parameterized Tresca friction problem (TPt).

Theorem 3.23. Let ut ∈ H1
D(Ω,Rd) be the unique solution to the parameterized Tresca friction

problem (TPt) for all t ≥ 0. Let us assume that:

(i) the map t ∈ R+ 7→ ft ∈ L2(Ω,Rd) is differentiable at t = 0, with its derivative denoted
by f ′0 ∈ L2(Ω,Rd);

(ii) the map t ∈ R+ 7→ ht ∈ L2(ΓN) is differentiable at t = 0, with its derivative denoted
by h′0 ∈ L2(ΓN);

(iii) for almost all s ∈ ΓN, the map t ∈ R+ 7→ gt(s) ∈ R+ is differentiable at t = 0, with its
derivative denoted by g′0(s), and also g′0 ∈ L2(ΓN);

(iv) the map s ∈ ΓN
u0,g0
R

7→ g0(s)
∥u0τ (s)∥

∈ R+ belongs to L4(ΓN
u0,g0
R

) (see below for the set ΓN
u0,g0
R

);

(v) the parameterized Tresca friction functional Φ defined in (3.5) is twice epi-differentiable (see
Definition 2.12) at u0 for F0 − u0 ∈ ∂Φ(0, ·)(u0), with

D2
eΦ(u0 | F0 − u0)(w) =

∫
ΓN

D2
eG(s)(u0(s) | στ (F0 − u0)(s))(w(s)) ds, (3.10)

for all w ∈ H1
D(Ω,Rd), where F0 ∈ H1

D(Ω,Rd) is the unique solution to the parameterized
Dirichlet-Neumann problem (DNt) for the parameter t = 0.

Then the map t ∈ R+ 7→ ut ∈ H1
D(Ω,Rd) is differentiable at t = 0, and its derivative denoted

by u′0 ∈ H1
D(Ω,Rd) is the unique weak solution to the tangential Signorini problem

−div(Ae(u′0)) = f ′0 in Ω,

u′0 = 0 on ΓD,

σn(u
′
0) = h′0 on ΓN,

u′0τ = 0 on ΓN
u0,g0
T

,

στ (u
′
0) +

g0
∥u0τ ∥

(
u′0τ −

(
u′0τ · u0τ

∥u0τ ∥

)
u0τ

∥u0τ ∥

)
= −g′0

u0τ

∥u0τ ∥
on ΓN

u0,g0
R

,

u′0τ ∈ R−
στ (u0)

g0
,
(
στ (u

′
0)− g′0

στ (u0)
g0

)
· στ (u0)

g0
≤ 0

and u′0τ ·
(
στ (u

′
0)− g′0

στ (u0)
g0

)
= 0 on ΓN

u0,g0
S

,

(SP′
0)

where ΓN is decomposed (up to a null set) as ΓN
u0,g0
T

∪ ΓN
u0,g0
R

∪ ΓN
u0,g0
S

with

ΓN
u0,g0
R

:= {s ∈ ΓN | u0τ (s) ̸= 0} ,
ΓN

u0,g0
T

:=
{
s ∈ ΓN | u0τ (s) = 0 and στ (u0)(s)

g0(s)
∈ B(0, 1) ∩ (Rn(s))⊥

}
,

ΓN
u0,g0
S

:=
{
s ∈ ΓN | u0τ (s) = 0 and στ (u0)(s)

g0(s)
∈ ∂B(0, 1) ∩ (Rn(s))⊥

}
.

Remark 3.24. As mentioned in our previous papers [3, 10], one can naturally expect from Propo-
sition 3.18 that the second-order epi-derivative of the parameterized Tresca friction functional Φ
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at u0 for F0 − u0 is given by Equality (3.10), which corresponds to the inversion of the symbols
ME-lim and

∫
ΓN

in Equality (3.9). Nevertheless, to the best of our knowledge, the validity of this
inversion is an open question in the literature. Precisely, we do not know, in general, if the pa-
rameterized Tresca friction functional is twice epi-differentiable at u0 for F0 − u0. Nevertheless,
similarly to [10, Appendix A], one can prove it in some practical situations.

Proof of Theorem 3.23. From Hypotheses (iii), (v) and Proposition 3.21, it follows that

D2
eΦ(u0 | F0 − u0)(w) =

∫
Γ
N
u0,g0
R

(
g0

2 ∥u0τ ∥

(
∥wτ∥2 −

∣∣∣∣wτ · u0τ
∥u0τ ∥

∣∣∣∣2
)

+ g′0
u0τ
∥u0τ ∥

· w

)

+

∫
ΓN\Γ

N
u0,g0
R

ι
N

B(0,1)∩(Rn(s))⊥ (
στ (F0−u0)(s)

g0(s)
)
(w(s))ds+

∫
ΓN\Γ

N
u0,g0
R

g′0
στ (F0 − u0)

g0
· w,

which can be rewritten as

D2
eΦ(u0 | F0 − u0)(w) =

Ψ(w) +

∫
Γ
N
u0,g0
R

g′0
u0τ
∥u0τ ∥

· wτ + ιK
u0,

στ (F0−u0)
g0

(w) +

∫
ΓN\Γ

N
u0,g0
R

g′0
στ (F0 − u0)

g0
· wτ ,

for all w ∈ H1
D(Ω,Rd), where Ψ is defined by

Ψ : H1
D(Ω,Rd) −→ R

w 7−→ Ψ(w) :=

∫
Γ
N
u0,g0
R

g0
2 ∥u0τ ∥

(
∥wτ∥2 −

∣∣∣∣wτ · u0τ
∥u0τ ∥

∣∣∣∣2
)
,

which is well defined from the continuous embedding H1(Ω,Rd)↪→L4(Γ,Rd) and from Hypothe-
sis (iv), and where K

u0,
στ (F0−u0)

g0

is the nonempty closed convex subset of H1
D(Ω,Rd) defined by

K
u0,

στ (F0−u0)
g0

:=

{
w ∈ H1

D(Ω,Rd) | w(s) ∈ N
B(0,1)∩(Rn(s))⊥

(
στ (F0 − u0) (s)

g0(s)

)
for almost all s ∈ ΓN\ΓN

u0,g0
R

}
.

Moreover, from Lemma 3.22 and since στ (F0) = 0 a.e. on ΓN, it follows that

K
u0,

στ (F0−u0)
g0

=

{
w ∈ H1

D(Ω,Rd) | wτ = 0 a.e. on ΓN
u0,g0
T

and wτ ∈ R−
στ (u0)

g0
a.e. on ΓN

u0,g0
S

}
.

Since g0
||u0τ ||

> 0 a.e. on ΓN
u0,g0
R

and from Lemma 3.9, one deduces that Ψ is convex and Fréchet
differentiable on H1

D(Ω,Rd). In particular we get that D2
eΦ(u0|F0 − u0) is a proper lower semi-

continuous convex function on H1
D(Ω,Rd). Moreover, from Hypotheses (i) and (ii) and from the

linearity of the Dirichlet-Neumann problem (DN) and Proposition 3.4, we can easily prove that
the map t ∈ R+ 7→ Ft ∈ H1

D(Ω,Rd) is differentiable at t = 0, with its derivative F ′
0 ∈ H1

D(Ω,Rd)
being the unique solution to the Dirichlet-Neumann problem−div(Ae(F ′

0)) = f ′0 in Ω,
F ′
0 = 0 on ΓD,

Ae(F ′
0)n = h′0n on ΓN.
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Thus one can apply Theorem 2.13 to deduce that the map t ∈ R+ 7→ ut ∈ H1
D(Ω,Rd) is differen-

tiable at t = 0, and its derivative u′0 ∈ H1
D(Ω,Rd) satisfies

u′0 = proxD2
eΦ(u0|F0−u0)(F

′
0),

which, from the definition of the proximal operator (see Proposition 2.3), leads to

F ′
0 − u′0 ∈ ∂D2

eΦ(u0 | F0 − u0)(u
′
0),

which means that

⟨F ′
0 − u′0, w − u′0⟩H1

D(Ω,Rd) ≤ D2
eΦ(u0 | F0 − u0)(w)−D2

eΦ(u0 | F0 − u0)(u
′
0),

for all w ∈ H1
D(Ω,Rd). Hence we get that

⟨F ′
0 − u′0, w − u′0⟩H1

D(Ω,Rd) ≤ Ψ(w)−Ψ(u′0) + ιK
u0,

στ (F0−u0)
g0

(w)− ιK
u0,

στ (F0−u0)
g0

(u′0)

+

∫
Γ
N
u0,g0
R

g′0
u0τ
∥u0τ ∥

·
(
wτ − u′0τ

)
+

∫
ΓN\Γ

N
u0,g0
R

g′0
στ (F0 − u0)

g0
·
(
wτ − u′0τ

)
,

for all w ∈ H1
D(Ω,Rd). Moreover, since στ (F0) = 0 a.e. on ΓN, and for all w ∈ K

u0,
στ (F0−u0)

g0

, wτ = 0

a.e. ΓN
u0,g0
T

, one deduces that u′0 ∈ K
u0,

στ (F0−u0)
g0

and

⟨u′0, w − u′0⟩H1
D(Ω,Rd) +Ψ(w)−Ψ(u′0) ≥

∫
Ω

f ′0 · (w − u′0) +

∫
ΓN

h′0
(
wn − u′0n

)
−
∫
Γ
N
u0,g0
R

g′0
u0τ

∥u0τ ∥
·
(
wτ − u′0τ

)
+

∫
Γ
N
u0,g0
S

g′0
στ (u0)

g0
·
(
wτ − u′0τ

)
,

for all w ∈ K
u0,

στ (F0−u0)
g0

. Moreover, since Ψ is convex and Fréchet differentiable on H1
D(Ω,Rd) (see

Lemma 3.9), one gets from Proposition 2.4 that

⟨∇Ψ(u′0), w − u′0⟩H1
D(Ω,Rd) ≥ −⟨u′0, w − u′0⟩H1

D(Ω,Rd) +

∫
Ω

f ′0 · (w − u′0) +

∫
ΓN

h′0
(
wn − u′0n

)
−
∫
Γ
N
u0,g0
R

g′0
u0τ

∥u0τ ∥
·
(
wτ − u′0τ

)
+

∫
Γ
N
u0,g0
S

g′0
στ (u0)

g0
·
(
wτ − u′0τ

)
,

for all w ∈ K
u0,

στ (F0−u0)
g0

. Finally, using the expression of ∇Ψ(u′0) ∈ H1
D(Ω,Rd), one gets

⟨u′0, w − u′0⟩H1
D(Ω,Rd) ≥

∫
Ω

f ′0 · (w − u′0) +

∫
ΓN

h′0
(
wn − u′0n

)
+

∫
Γ
N
u0,g0
S

g′0
στ (u0)

g0
·
(
wτ − u′0τ

)
+

∫
Γ
N
u0,g0
R

(
−g′0

u0τ
∥u0τ ∥

− g0
∥u0τ ∥

(
u′0τ −

(
u′0τ · u0τ

∥u0τ ∥

)
u0τ

∥u0τ ∥

))
·
(
wτ − u′0τ

)
,

for all w ∈ K
u0,

στ (F0−u0)
g0

. From Definition 3.6 one deduces that u′0 is the unique weak solution to

the tangential Signorini problem (SP′
0) which concludes the proof.

Remark 3.25. Consider the framework of Theorem 3.23. Note that u′0 is the unique weak solution
to the tangential Signorini problem (SP′

0), but is not necessarily a strong solution. Nevertheless,
in the case where Ae(u′0)n ∈ L2(ΓN,Rd) and the decomposition ΓD ∪ ΓN

u0,g0
T

∪ ΓN
u0,g0
R

∪ ΓN
u0,g0
S

of Γ is consistent (see Definition 3.7), then u′0 is a strong solution to the tangential Signorini
problem (SP′

0).
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4 Application to optimal control
Consider the functional framework introduced at the beginning of Section 3. Let f ∈ L2(Ω,Rd),

h ∈ L2(ΓN), g1 ∈ L∞(ΓN) such that g1 ≥ m a.e. on ΓN for some positive constant m > 0
and g2 ∈ L∞(ΓN) such that ||g2||L∞(ΓN) > 0. In this section we consider the optimal control
problem given by

minimize
z∈U

J (z), (4.1)

where J is the cost functional defined by

J : V −→ R
z 7−→ J (z) := 1

2 ∥u(ℓ(z))∥
2
H1

D(Ω,Rd) +
β
2 ∥ℓ(z)∥2L2(ΓN) ,

(4.2)

where V is the open subset of L∞(ΓN) defined by

V := {z ∈ L∞(ΓN) | ∃C(z) > 0, ℓ(z) > C(z) a.e. on ΓN} ,

where ℓ is the map defined by z ∈ L∞(ΓN) 7→ ℓ(z) := g1 + zg2 ∈ L∞(ΓN), and where u(ℓ(z)) ∈
H1

D(Ω,Rd) stands for the unique solution to the Tresca friction problem given by
−div(Ae(u)) = f in Ω,

u = 0 on ΓD,
σn(u) = h on ΓN,

∥στ (u)∥ ≤ ℓ(z) and uτ · στ (u) + ℓ(z) ∥uτ∥ = 0 on ΓN,

(CTPℓ(z))

where β > 0 is a positive constant and where U is a given nonempty convex subset of V such
that U is a bounded closed subset of L2(ΓN). Note that the first term in the cost functional J
corresponds to the compliance, while the second term is the energy consumption which is standard
in optimal control problems (see, e.g., [21]).

This section is organized as follows. In Subsection 4.1 we prove the existence of a solution to
Problem (4.1). In Subsection 4.2 we prove, under some assumptions, that J is Gateaux differen-
tiable on V and we characterize its gradient. Finally, in Subsection 4.3, numerical simulations are
performed to solve Problem (4.1) on a two-dimensional example.

4.1 Existence of a solution
This section is dedicated to the following existence result.

Proposition 4.1. There exists z∗ ∈ U such that J (z∗) ≤ J (z) for all z ∈ U .

Proof. In this proof the strong (resp. weak) convergence in Hilbert spaces is denoted by →
(resp. ⇀) and all limits with respect to the index i will be considered for i → +∞. Since 0 ≤
J (z) < +∞ for all z ∈ U , we get that infz∈U J (z) ∈ R+. Considering a minimizing se-
quence (zi)i∈N, there exists N ∈ N such that J (zi) ≤ 1 + infz∈U J (z) for all i ≥ N , that is

1

2
∥u(ℓ(zi))∥2H1

D(Ω,Rd) +
β

2
∥ℓ(zi)∥2L2(ΓN) ≤ 1 + inf

z∈U
J (z),

for all i ≥ N . Thus the sequence (ℓ(zi))i∈N is bounded in L2(ΓN) and thus, up to a subsequence that
we do not relabel, weakly converges to some g∗ ∈ L2(ΓN). Moreover, since U is a bounded closed
convex subset of L2(ΓN) (and thus weakly closed in L2(ΓN)), we know that, up to a subsequence
that we do not relabel, the sequence (zi)i∈N weakly converges to some z∗ ∈ U . Moreover one has∣∣∣∣∫

ΓN

(ℓ(zi)− g1 − z∗g2)w

∣∣∣∣ = ∫
ΓN

(zi − z∗) g2w,
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for all w ∈ L2(ΓN), and, since g2 ∈ L∞(ΓN), it holds that g2w ∈ L2(ΓN) and one deduces
that ℓ(zi) ⇀ g1 + z∗g2 in L2(ΓN) and thus g∗ = g1 + z∗g2. In a similar way, up to a subsequence
that we do not relabel, the sequence (u(ℓ(zi)))i∈N weakly converges in H1

D(Ω,Rd) to some u∗ ∈
H1

D(Ω,Rd), thus u(ℓ(zi)) → u∗ in L2(Γ,Rd) from the compact embedding H1
D(Ω,Rd) ↪→→ L2(Γ,Rd)

(see Proposition 2.14). Let us prove that u(ℓ(zi)) → u∗ in H1
D(Ω,Rd). It holds that

∥u∗ − u(ℓ(zi))∥2H1
D(Ω,Rd) = ⟨u∗, u∗ − u(ℓ(zi))⟩H1

D(Ω,Rd) − ⟨u(ℓ(zi)), u∗ − u(ℓ(zi))⟩H1
D(Ω,Rd) ,

for all i ∈ N. Using the weak formulation satisfied by u(ℓ(zi)), we get that

∥u∗ − u(ℓ(zi))∥2H1
D(Ω,Rd) ≤ ⟨u∗, u∗ − u(ℓ(zi))⟩H1

D(Ω,Rd) −
∫
Ω

f · (u∗ − u(ℓ(zi)))

−
∫
ΓN

h (u∗n − u(ℓ(zi))n) +

∫
ΓN

ℓ(zi) (∥u∗τ∥ − ∥u(ℓ(zi))τ∥)

≤ ⟨u∗, u∗ − u(ℓ(zi))⟩H1
D(Ω,Rd) −

∫
Ω

f · (u∗ − u(ℓ(zi)))−
∫
ΓN

h (u∗n − u(ℓ(zi))n)

+ C ∥u∗ − u(ℓ(zi))∥L2(Γ,Rd) −→ 0,

where C ≥ 0 is a constant (depending only on Ω and on maxi∈N ||ℓ(zi)||L2(ΓN)). Now let us prove
that u∗ = u(g1 + z∗g2). For w ∈ H1

D(Ω,Rd) fixed, it holds that

⟨u(ℓ(zi)), w − u(ℓ(zi))⟩H1
D(Ω,Rd) +

∫
ΓN

ℓ(zi) ∥wτ∥ −
∫
ΓN

ℓ(zi) ∥u(ℓ(zi))τ∥

≥
∫
Ω

f · (w − u(ℓ(zi))) +

∫
ΓN

h (wn − u(ℓ(zi))n) , (4.3)

for all i ∈ N. Note that:

(i)
∣∣∣⟨u(ℓ(zi)), w − u(ℓ(zi))⟩H1

D(Ω,Rd) − ⟨u∗, w − u∗⟩H1
D(Ω,Rd)

∣∣∣ ≤ D ∥u∗ − u(ℓ(zi))∥H1
D(Ω,Rd) −→ 0;

(ii)
∣∣∣∣∫

Ω

f · (w − u(ℓ(zi)))−
∫
Ω

f · (w − u∗)

∣∣∣∣ ≤ D ∥f∥L2(Ω,Rd) ∥u
∗ − u(ℓ(zi))∥H1

D(Ω,Rd) −→ 0;

(iii)
∣∣∣∣∫

ΓN

h (wn − u(ℓ(zi))n)−
∫
ΓN

h (wn − u∗n)

∣∣∣∣ ≤ D ∥h∥L2(ΓN) ∥u
∗ − u(ℓ(zi))∥L2(Γ,Rd) −→ 0;

(iv)
∣∣∣∣∫

ΓN

ℓ(zi) (∥wτ∥ − ∥u(ℓ(zi))τ∥)−
∫
ΓN

g∗ (∥wτ∥ − ∥u∗τ∥)
∣∣∣∣ ≤∣∣∣∣∫

ΓN

(ℓ(zi)− g∗) ∥wτ∥
∣∣∣∣+ ∣∣∣∣∫

ΓN

(ℓ(zi)− g∗) ∥u∗τ∥
∣∣∣∣+D ∥u∗ − u(ℓ(zi))∥L2(Γ,Rd) −→ 0;

where D ≥ 0 is a constant (depending only on Ω, A and w). Therefore it follows in (4.3) when i→
+∞ that

⟨u∗, w − u∗⟩H1
D(Ω,Rd) +

∫
ΓN

g∗ ∥wτ∥ −
∫
ΓN

g∗ ∥u∗τ∥ ≥
∫
Ω

f · (w − u∗) +

∫
ΓN

h (wn − u∗n) .

Since this inequality is true for all w ∈ H1
D(Ω,Rd) and g∗ = g1 + z∗g2, one deduces that u∗ =

u(g1 + z∗g2), and then
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J (z∗) =
1

2
∥u(g1 + z∗g2)∥2H1

D(Ω,Rd) +
β

2
∥g1 + z∗g2∥2L2(ΓN) ≤

lim inf
i→+∞

(
1

2
∥u(ℓ(zi))∥2H1

D(Ω,Rd) +
β

2
∥ℓ(zi)∥2L2(ΓN)

)
≤ lim inf

i→+∞
J (zi) = inf

z∈U
J (z),

which concludes the proof.

Remark 4.2. Since the solution to the Tresca friction problem is not linear with respect to the
friction term, note that J is not a strictly convex functional (and thus the uniqueness of the
solution to Problem (4.1) is not guaranteed).

4.2 Gateaux differentiability of the cost functional
Consider the auxiliary functional

J : H1
D(Ω,Rd)× L∞(ΓN) −→ R

(v, g) 7−→ J(v, g) := 1
2 ∥v∥

2
H1

D(Ω,Rd) +
β
2 ∥g∥2L2(ΓN).

One can easily prove that J is Fréchet differentiable on H1
D(Ω,Rd) × L∞(ΓN) and its Fréchet

differential at some (v, g) ∈ H1
D(Ω,Rd)× L∞(ΓN), denoted by dJ(v, g), is given by

dJ(v, g)(ṽ, g̃) = ⟨v, ṽ⟩H1
D(Ω,Rd) + β ⟨g, g̃⟩L2(ΓN) ,

for all (ṽ, g̃) ∈ H1
D(Ω,Rd)× L∞(ΓN). Now let us introduce the map

F : V −→ H1
D(Ω,Rd)× L∞(ΓN)

z 7−→ F(z) := (u(ℓ(z)), ℓ(z)) ,

where u(ℓ(z)) ∈ H1
D(Ω,Rd) is the unique solution to the Tresca friction problem (CTPℓ(z)). Hence

the cost functional J is given by the composition J = J ◦ F .

Theorem 4.3. Let z0 ∈ V be fixed and let us denote by u0 := u(ℓ(z0)). Assume that:

(i) the map s ∈ Γ
N

u0,ℓ(z0)

R

7→ ℓ(z0)(s)
∥u0τ (s)∥

∈ R∗
+ belongs to L4(Γ

N
u0,ℓ(z0)

R

) (see below for the set Γ
N

u0,ℓ(z0)

R

);

(ii) the parameterized Tresca friction functional Φ defined in (3.5) is twice epi-differentiable at u0
for F − u0 ∈ ∂Φ(0, ·)(u0), with

D2
eΦ(u0)|F − u0)(w) =

∫
ΓN

D2
eG(s)(u0(s)|στ (F − u0)(s))(w(s)) ds, ∀w ∈ H1

D(Ω,Rd),

where, for almost all s ∈ ΓN, the map G(s) is defined in Proposition 3.18, and F ∈ H1
D(Ω,Rd)

is the unique solution to the Dirichlet-Neumann problem−div(Ae(F )) = f in Ω,
F = 0 on ΓD,

Ae(F )n = hn on ΓN.
(4.4)

Then the cost functional J is Gateaux differentiable at z0 and its differential dGJ (z0) is given by

dGJ (z0)(z) =

∫
Γ
N
u0,ℓ(z0)
R

zg2 (β (g1 + z0g2)− ∥u0τ ∥) +
∫
Γ
N
u0,ℓ(z0)
T

∪Γ
N
u0,ℓ(z0)
S

βzg2 (g1 + z0g2) ,
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for all z ∈ L∞(ΓN), where ΓN is decomposed (up to a null set) as Γ
N

u0,ℓ(z0)

T

∪ Γ
N

u0,ℓ(z0)

R

∪ Γ
N

u0,ℓ(z0)

S

with
Γ
N

u0,ℓ(z0)

R

:= {s ∈ ΓN | u0τ (s) ̸= 0} ,

Γ
N

u0,ℓ(z0)

T

:=
{
s ∈ ΓN | u0τ (s) = 0 and στ (u0)(s)

ℓ(z0)(s)
∈ B(0, 1) ∩ (Rn(s))⊥

}
,

Γ
N

u0,ℓ(z0)

S

:=
{
s ∈ ΓN | u0τ (s) = 0 and στ (u0)(s)

ℓ(z0)(s)
∈ ∂B(0, 1) ∩ (Rn(s))⊥

}
.

Proof. Let z ∈ L∞(ΓN) and t > 0 be sufficiently small such that zt := z0 + tz ∈ V. We denote
by ut := u(ℓ(zt)) ∈ H1

D(Ω,Rd). From Subsection 3, ut ∈ H1
D(Ω,Rd) is given by ut = proxΦ(t,·)(F ),

where Φ is the parameterized Tresca friction functional defined in (3.5) and F is the unique solution
to the Dirichlet-Neumann problem (4.4). From Hypotheses (i), (ii) and since the map t ∈ R+ 7→
ℓ(zt) ∈ L∞(ΓN) is differentiable at t = 0, with its derivative given by ℓ′(z0) := zg2, one can apply
Theorem 3.23 to deduce that the map t ∈ R+ 7→ ut ∈ H1

D(Ω,Rd) is differentiable at t = 0 and its
derivative, denoted by u′0 ∈ K

u0,
στ (F0−u0)

ℓ(z0)

⊂ H1
D(Ω,Rd), is the unique solution to the variational

inequality (which is the weak formulation of a tangential Signorini problem) given by

⟨u′0, w − u′0⟩H1
D(Ω,Rd) ≥

∫
Γ
N
u0,ℓ(z0)
S

ℓ′(z0)
στ (u0)

ℓ(z0)
·
(
wτ − u′0τ

)
+

∫
Γ
N
u0,ℓ(z0)
R

(
−ℓ′(z0)

u0τ
∥u0τ ∥

− ℓ(z0)

∥u0τ ∥

(
u′0τ −

(
u′0τ · u0τ

∥u0τ ∥

)
u0τ

∥u0τ ∥

))
·
(
wτ − u′0τ

)
,

for all w ∈ K
u0,

στ (F0−u0)

ℓ(z0)

, where

K
u0,

στ (F0−u0)

ℓ(z0)

:=

{
w ∈ H1

D(Ω,Rd) | wτ = 0 a.e. on Γ
N

u0,ℓ(z0)

T

and wτ ∈ R−
στ (u0)

ℓ(z0)
a.e. on Γ

N
u0,ℓ(z0)

S

}
.

Since J = J ◦ F , with J Fréchet differentiable on H1
D(Ω,Rd)×V, and

∥F(z0 + tz)−F(z0)− t (u′0, ℓ
′(z0))∥H1

D(Ω,Rd)×L∞(ΓN)

t
=

∥ut − u0 − tu′0∥H1
D(Ω,Rd)

t
−→ 0,

when t→ 0+, we deduce that J has a right derivative at z0 in the direction z given by

J ′(z0)(z) = ⟨u′0, u0⟩H1
D(Ω,Rd) + β ⟨ℓ(z0), ℓ′(z0)⟩L2(ΓN) .

Furthermore, since u′0 ± u0 ∈ K
u0,

στ (F−u0)

ℓ(z0)

, one deduces that

⟨u′0, u0⟩H1
D(Ω,Rd) =

∫
Γ
N
u0,ℓ(z0)
R

(
−ℓ′(z0)

u0τ
∥u0τ ∥

− ℓ(z0)

∥u0τ ∥

(
u′0τ −

(
u′0τ · u0τ

∥u0τ ∥

)
u0τ
∥u0τ ∥

))
· u0τ .

Since ∫
Γ
N
u0,ℓ(z0)
R

ℓ(z0)

∥u0τ ∥

(
u′0τ −

(
u′0τ · u0τ

∥u0τ ∥

)
u0τ

∥u0τ ∥

)
· u0τ = 0,

we get that

⟨u′0, u0⟩H1
D(Ω,Rd) = −

∫
Γ
N
u0,ℓ(z0)
R

ℓ′(z0) ∥u0τ ∥ ,
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and we can rewrite the right derivative of J at z0 in the direction z as

J ′(z0)(z) = −
∫
Γ
N
u0,ℓ(z0)
R

ℓ′(z0) ∥u0τ ∥+
∫
ΓN

βℓ′(z0)ℓ(z0)

=

∫
Γ
N
u0,ℓ(z0)
R

ℓ′(z0) (βℓ(z0)− ∥u0τ ∥) +
∫
Γ
N
u0,ℓ(z0)
T

∪Γ
N
u0,ℓ(z0)
S

βℓ′(z0)ℓ(z0),

and thus

J ′(z0)(z) =

∫
Γ
N
u0,ℓ(z0)
R

zg2 (β (g1 + z0g2)− ∥u0τ ∥) +
∫
Γ
N
u0,ℓ(z0)
T

∪Γ
N
u0,ℓ(z0)
S

βzg2 (g1 + z0g2) .

Note that J ′(z0) is linear and continuous on L∞(ΓN). Thus J is Gateaux differentiable at z0 with
its Gateaux differential given by dGJ (z0) := J ′(z0). The proof is complete.

Remark 4.4. In the proof of Theorem 4.3, note that the derivative u′0 depends on the pair
(ℓ(z0), ℓ

′(z0)) = (g1 + z0g2, zg2) and thus on the term z ∈ L∞(ΓN). Therefore let us denote
by u′0 := u′0(z). Note that u′0(z) is not linear with respect to z. However one can observe that the
scalar product ⟨u′0(z), u0⟩H1

D(Ω,Rd), that appears in the proof of Theorem 4.3, is linear with respect
to z. Therefore it leads to an expression of J ′(z0) that is linear with respect to z, and thus to the
Gateaux differentiability of J at z0.

4.3 Numerical simulations
In this subsection we assume that ||g2||L∞(ΓN) < m, where m > 0 is the constant introduced at

the beginning of Section 4 and we take the admissible set U given by

U :=
{
z ∈ L2(ΓN) | −1 ≤ z ≤ 1 a.e. on ΓN

}
,

which is a nonempty convex subset of V and is a bounded closed subset of L2(ΓN). In this subsection
our aim is to numerically solve an example of Problem (4.1) in the two-dimensional case d = 2, by
making use of our theoretical result obtained in Theorem 4.3.

4.3.1 Numerical methodology

Starting with an initial control z0 ∈ U , we compute zd ∈ L∞(ΓN) given by

zd :=

{
−g2 (β (g1 + z0g2)− ∥u0τ∥) on Γ

N
u0,ℓ(z0)

R

,

−βg2 (g1 + z0g2) on Γ
N

u0,ℓ(z0)

T

∪ Γ
N

u0,ℓ(z0)

S

,

which is, from Theorem 4.3, a descent direction of the functional J at z0 since it satisfies

dGJ (z0)(zd) = −||g2 (β (g1 + z0g2)− ∥u0τ∥) ||2L2(Γ
N
u0,ℓ(z0)
R

)

− ||βg2 (g1 + z0g2) ||2L2(Γ
N
u0,ℓ(z0)
T

∪Γ
N
u0,ℓ(z0)
S

) ≤ 0.

Then the control is updated as z1 = projU (z0 + ηzd), where η > 0 is a fixed parameter and projU is
the classical projection operator onto U considered in L2(ΓN). Then the algorithm restarts with z1,
and so on.
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Let us mention that the numerical simulations have been performed using Freefem++ soft-
ware [16] with P1-finite elements and standard affine mesh. The Tresca friction problem is numer-
ically solved using an adaptation of iterative switching algorithms (this adaptation is close to the
one described in [3, Appendix C] which concerns a scalar Tresca friction problem). We also precise
that, for all i ∈ N∗, the difference between the cost functional J at the iteration 20× i and at the
iteration 20× (i− 1) is computed. The smallness of this difference is used as a stopping criterion
for the algorithm.

4.3.2 Example and numerical results

In this subsection take d = 2 and let Ω be the unit disk of R2 with its boundary Γ := ∂Ω
decomposed as Γ = ΓD ∪ ΓN (see Figure 1), where

ΓD :=
{
(cos θ, sin θ) ∈ Γ | 0 ≤ θ ≤ π

2

}
,

ΓN :=
{
(cos θ, sin θ) ∈ Γ | π

2 < θ < 2π
}
.

Ω

ΓD

ΓN

Figure 1: Unit disk Ω and its boundary Γ = ΓD ∪ ΓN.

We assume that Ω is isotropic, in the sense that the Cauchy stress tensor is given by

σ(w) = 2µe(w) + λtr (e(w)) I,

for all w ∈ H1
D(Ω,Rd), where tr (e(w)) is the trace of the matrix e(w) and where µ ≥ 0 and λ ≥ 0

are Lamé parameters (see, e.g., [28]). In what follows we take µ = 0.3846 and λ = 0.5769. This
corresponds to a Young’s modulus equal to 1 and to a Poisson’s ratio equal to 0.3, which is a
typical value for a large variety of materials. Let us consider the arbitrary functions h := 0 a.e.
on ΓN, g1 := 2 a.e. on ΓN, g2 ∈ L2(ΓN) be the function defined by

g2 : ΓN −→ R
(x, y) 7−→ g2(x, y) := x2 − y2,

and f ∈ L2(Ω,R2) be the function defined by

f : Ω −→ R2

(x, y) 7−→ f(x, y) :=
(

5−x2−y2+xy
4

5−x2−y2+xy
4

)
.

With m := 2, one has g1 ≥ m a.e. on ΓN and 0 < ||g2||L∞(ΓN) < m, thus the assumptions from the
beginning of Section 4 and from Subsection 4.3 are satisfied. We consider the initial control z0 ∈ U
given by

z0 : ΓN −→ R
(x, y) 7−→ z0(x, y) := cos (x2 − y2).
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We present now the numerical results obtained for the above two-dimensional example using
the numerical methodology described in Subsection 4.3.1. Figure 2 depicts the control which solves
Problem (4.1). It is a bang–bang optimal control, that takes exclusively the two values −1 and 1
on the boundary ΓN. Figure 3 shows the evolution of the value of J with respect to the iteration.
We observe an usual decreasing of the cost functional J with respect to the iteration.

Figure 2: Values of the optimal control on the boundary ΓN :=
{
(cos θ, sin θ) ∈ Γ | π

2 < θ < 2π
}
.

Figure 3: Values of the cost functional J with respect to the iterations.
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