

CRISPR-Cas9 enrichment, a new strategy in microbial metagenomics to investigate complex genomic regions: The case of an environmental integron

Eva Sandoval-Quintana, Christina Stangl, Lionel Huang, Ivo Renkens, Robert Duran, Gijs van Haaften, Glen Monroe, Béatrice Lauga, Christine Cagnon

▶ To cite this version:

Eva Sandoval-Quintana, Christina Stangl, Lionel Huang, Ivo Renkens, Robert Duran, et al.. CRISPR-Cas9 enrichment, a new strategy in microbial metagenomics to investigate complex genomic regions: The case of an environmental integron. Molecular Ecology Resources, 2023, 23 (6), pp.1288-1298. 10.1111/1755-0998.13798 . hal-04096642

HAL Id: hal-04096642 https://univ-pau.hal.science/hal-04096642

Submitted on 25 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MOLECULAR ECOLOGY RESOURCES

CRISPR-Cas9 enrichment, a new strategy in microbial metagenomics to investigate complex genomic regions: the case of an environmental integron

Journal:	Molecular Ecology Resources
Manuscript ID	MER-22-0388
Manuscript Type:	Resource Article
Date Submitted by the Author:	08-Sep-2022
Complete List of Authors:	Sandoval-Quintana, Eva; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA Stangl, Christina; University Medical Centre Utrecht, Department of Genetics Huang, Lionel; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA Renkens, Ivo; University Medical Centre Utrecht, Department of Genetics Duran, Robert; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA van Haaften, Gijs; University Medical Centre Utrecht, Department of Genetics Monroe , Glen; University Medical Centre Utrecht, Department of Genetics Lauga, Béatrice; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA Cagnon, Christine; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA
Keywords:	complex genomic regions, CRISPR-Cas9 enrichment, environmental integrons, microbial communities, microbial metagenomics, mobile genetic elements

- 1 CRISPR-CAS9 ENRICHMENT, A NEW STRATEGY IN MICROBIAL
- 2 METAGENOMICS TO INVESTIGATE COMPLEX GENOMIC REGIONS: THE CASE
- **3 OF AN ENVIRONMENTAL INTEGRON**
- 4
- 5 Running title
- 6 CRISPR-Cas9 enrichment for metagenomics
- 7
- 8 Eva Sandoval-Quintana¹, Christina Stangl², Lionel Huang¹, Ivo Renkens², Robert Duran¹, Gijs
- 9 van Haaften², Glen Monroe², Béatrice Lauga^{1,*,§}, Christine Cagnon^{1,*,§}.
- ¹ Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA, Pau, France
- ² Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands.
- 12 * Correspondence: christine.cagnon@univ-pau.fr (C. Cagnon); beatrice.lauga@univ-pau.fr (B.
- 13 Lauga)
- 14 § Co-last authors

15 Abstract

16	Environmental integrons are ubiquitous in natural microbial communities, but they are
17	mostly uncharacterized and their role remains elusive. Thus far, research has been
18	hindered by methodological limitations. Here, we successfully used an innovative approach
19	combining CRISPR-Cas9 enrichment with long-read nanopore sequencing to target, in a
20	complex microbial community, a putative adaptive environmental integron, InOPS, and to
21	unravel its complete structure and genetic context. A contig of 20 kb was recovered
22	containing the complete integron from the microbial metagenome of oil-contaminated
23	coastal sediments. InOPS exhibited typical integron features. The integrase, close to
24	integrases of marine Desulfobacterota, possessed all the elements of a functional integron
25	integrase. The gene cassettes harboured mostly unknown functions hampering inferences
26	about their ecological importance. Moreover, the putative InOPS host, likely a
27	hydrocarbonoclastic marine bacteria, might question the adaptive potential of InOPS in
28	response to oil contamination. Additionally, several mobile genetic elements were
29	intertwined with InOPS highlighting likely genomic plasticity, and providing a source of
30	genetic novelty. This case study showed the power of CRISPR-Cas9 enrichment to
31	elucidate the structure and context of specific DNA regions for which only a short sequence
32	is known. This method is a new tool for environmental microbiologists working with complex

33	microbial communities to target low abundant, large or repetitive genetic structures that are
34	hard to recover by classical metagenomics. More precisely, here, it offers new perspectives
35	to comprehensively assess the eco-evolutionary significance of environmental integrons.
36	
37	Keywords
38	complex genomic regions, CRISPR-Cas9 enrichment, environmental integrons, microbial
39	communities, microbial metagenomics, mobile genetic elements
40	
41	
42	
43	
44	1. Introduction
45	Integrons are genetic elements that acquire, excise, rearrange and express gene cassettes
46	(Fig. 1) (Escudero et al., 2015; Stokes & Hall, 1989). They are notorious for mediating bacterial
47	adaptation in clinical settings through the spread of antibiotic resistance genes (Escudero et
48	al., 2015; Gillings, 2014; Souque et al., 2021). Several clues suggest that integrons in the

49	environmental may also participate in the bacterial functional response to selective pressures,
50	<i>e.g.,</i> their occurrence in numerous environments (e.g., Abella, Bielen, <i>et al.,</i> 2015; Abella,
51	Fahy, <i>et al.,</i> 2015; Antelo <i>et al.,</i> 2021; Boucher <i>et al.,</i> 2007; Elsaied, Stokes, Nakamura <i>et al.,</i>
52	2007; Elsaied, Stokes, Kitamura <i>et al.,</i> 2011; Elsaied, Stokes, Yoshioka <i>et al.,</i> 2014; Ghaly,
53	Penesyan <i>et al.,</i> 2022; Mazel, 2006; Nemergut <i>et al.,</i> 2004; Stokes <i>et al.,</i> 2001), distribution in
54	diverse bacterial taxa (Cambray et al., 2010; Cury et al., 2016), wide gene cassette functional
55	repertory (e.g., Ghaly, Geoghegan et al., 2019; Pereira et al., 2020), and relation to
56	environmental disturbances (Abella, Fahy, <i>et al.,</i> 2015; Elsaied, Stokes, Kitamura <i>et al.,</i> 2011;
57	Koenig, Boucher <i>et al.,</i> 2008; Koenig, Sharp <i>et al.,</i> 2009; Nemergut <i>et al.,</i> 2004). Nonetheless,
58	in contrast to clinical integrons, environmental integrons remain mostly uncharacterized and
58 59	in contrast to clinical integrons, environmental integrons remain mostly uncharacterized and their role is still elusive (Sandoval-Quintana <i>et al.,</i> 2022).
59	their role is still elusive (Sandoval-Quintana <i>et al.,</i> 2022).
59 60	their role is still elusive (Sandoval-Quintana <i>et al.,</i> 2022). Establishing their adaptive role in the environment requires the characterization of their
59 60 61	their role is still elusive (Sandoval-Quintana <i>et al.,</i> 2022). Establishing their adaptive role in the environment requires the characterization of their complete genetic structures including the integrase gene, gene cassettes, recombination sites,
59 60 61 62	their role is still elusive (Sandoval-Quintana <i>et al.</i> , 2022). Establishing their adaptive role in the environment requires the characterization of their complete genetic structures including the integrase gene, gene cassettes, recombination sites, and the genetic context, to reveal the function of their gene cassettes, their functionality, their
59 60 61 62 63	their role is still elusive (Sandoval-Quintana <i>et al.</i> , 2022). Establishing their adaptive role in the environment requires the characterization of their complete genetic structures including the integrase gene, gene cassettes, recombination sites, and the genetic context, to reveal the function of their gene cassettes, their functionality, their dynamics and eventually, their host. However, targeting putative adaptive integrons and their

67	<i>et al.,</i> 2015; Antelo <i>et al.,</i> 2021; Ghaly, Geoghegan <i>et al.,</i> 2019; Ghaly, Penesyan <i>et al.,</i> 2022).
68	Because of the constraints imposed by the design of the primers located in the conserved and
69	known regions of integrases and recombination sites (Elsaied, Stokes, Nakamura <i>et al.,</i> 2007;
70	Stokes et al., 2001) and the impediments in amplifying large fragments, efforts have until
71	recently mainly focused either on gene cassettes (e.g., Ghaly, Geoghegan et al., 2019; Koenig,
72	Boucher <i>et al.,</i> 2008; Koenig, Sharp <i>et al.,</i> 2009; Stokes <i>et al.,</i> 2001) or integrase genes (e.g.
73	Abella, Bielen <i>et al.,</i> 2015; Elsaied, Stokes, Nakamura <i>et al.,</i> 2007; Nield <i>et al.,</i> 2001),
74	preventing the comprehensive examination of entire environmental integron platforms.
75	Although these efforts did reveal the extent of their diversity, their dynamics (integration,
76	excision events, dispersal) were poorly assessed, despite attempts to infer ongoing integron-
77	response to selective pressures being developed (Huang et al., 2009). Overall, however, all
78	these PCR-based strategies are still impaired by the well-known PCR bias, the inability to
79	position gene cassettes in the array, and the difficulties of designing universal primers to target
80	environmental integrons. Together with PCR approaches, DNA/DNA hybridization screening
81	techniques were also used to recover novel environmental integrases from large metagenomic
82	clone libraries (Jacquiod et al., 2014, Moura, Henriques et al., 2010). Nevertheless, this
83	approach can suffer from parasite signals, unspecific probe hybridization, and low target
84	recovery (Jacquiod <i>et al.,</i> 2014; Moura, Henriques <i>et al.,</i> 2010).

85	Whole genome and metagenome sequencing and subsequent analyses with adequate
86	bioinformatic tools offer the opportunity to mine for integrons in isolated strains and in
87	uncultured microorganisms, respectively (Cury et al., 2016; Pereira et al., 2020). Nevertheless,
88	the highly fragmented nature of shotgun sequence data and the frequent association of
89	integrons to repetitive regions (Pereira et al., 2020; Sonbol & Siam, 2021) have often impeded
90	the assembly of large contigs, and thus, the recovery of full-length integrons preventing further
91	conclusions about their ecological-evolutionary significance.
92	The main objective of our study was to propose a new methodology to recover the complete
93	platforms of putative adaptive integrons to investigate their role in the environment. The first
94	step of the study consisted in the identification of a putative adaptive integron in a complex
95	microbial community. We thus experimentally mimicked an environmental disturbance, an oil
96	contamination, on coastal sediments maintained in mesocosms. We then proposed a new
97	approach based on CRISPR-Cas9 enrichment to recover the InOPS environmental integron
98	from the complex microbial metagenome. This method allowed successfully to decipher the
99	complete structure of InOPS, highlighting its relevance to assess the eco-evolutionary
100	significance of this integron.

102 2. Material and methods

103 2.1. Coastal sediment sample	S
----------------------------------	---

104	Coastal marine sediments (Atlantic Ocean, Brittany, France) were maintained during 9
105	months in mesocosms as previously described (Stauffert et al., 2013). Mesocosms were
106	contaminated by oil addition (OIL). Control mesocosms (CTRL) were maintained without
107	contamination. Samples (0 to 2 cm depth) were collected at different times: just after the oil
108	contamination (T0), after one month, six months, and nine months.
109	2.2. Identification and quantification of intIOPS
110	Metagenomic DNA was extracted with Ultraclean soil DNA isolation kit (MoBio Laboratories,
111	Carlsbad, CA, USA). Integron integrase gene (<i>intl)</i> libraries of approximately 770 bp fragments
112	were obtained from mesocosms incubated during 9 months under oil contamination or no
113	contamination as previously described (Abella, Fahy, et al., 2015). Sanger sequencing was
114	performed by GATC Biotech (Ebersberg, Germany). Sequences were corrected with
115	Sequencher $\ensuremath{\mathbb{R}}$ (Accession numbers: FR718193-FR718248), then were clustered at 100%
116	identity using CD-HIT (Fu <i>et al.,</i> 2012) before calculating Shannon (Shannon, 1948), evenness

- 117 (Pielou, 1966), and coverage (Good, 1953) indexes.
- 118 Quantitative PCRs were performed in duplicate on metagenomic DNA from mesocosms.
- 119 DNA was quantified with Quant-iT[™] PicoGreen® dsDNA (Invitrogen, Waltham, MA, USA).

120	Standard curves, constructed with plasmid carrying cloned genes, were used to quantify
121	intIOPS and 16S rRNA genes, respectively. The primers ICC60 (5'-
122	GAAACCGTTCGGTTGAGGGTC-3') and ICC71 (5'-TTTACGGGCCAGCGCACCGGG-3')
123	were used to specifically amplify <i>intIOPS</i> . The primers 338F and 518R (Lane, 1991) were used
124	to amplify the 16S rRNA genes. The reaction mixture contained 1 μL of template DNA, 0.2 μM
125	of each primer and 12.5 μL of Power SYBR® green PCR master mix (Applied Biosystem,
126	Waltham, MA, USA) for a final volume of 25 $\mu L.$ All real-time PCRs were performed on a
127	MX3005P (Stratagene, San Diego, CA, USA). Amplification parameters were as follows: 10
128	min at 95°C, 40 cycles of 30 s at 95°C, 30 s at 56°C (<i>intIOPS</i> gene) or 55°C (16S rRNA gene),
129	and 45 s at 72°C. After amplification, a melting curve was carried out to confirm the
130	amplification of specific products.
131	2.3. CRISPR-Cas9 targeted enrichment of InOPS from metagenomic DNA coupled
132	to nanopore sequencing
133	High molecular weight (HMW) DNA was obtained using the DNeasy PowerSoil Pro Kit
134	(QiAgen, Hilden, Germany) with slight modifications to prevent DNA shearing. DNA
135	quantification was performed using the Qubit™ dsDNA BR Assay Kit (Thermo Fisher Scientific,
136	Waltham, MA, USA). DNA quality and integrity were assessed through standard absorbance
137	ratios and using a 4200 TapeStation System (Agilent, Santa Clara, CA, USA), respectively.

138	CRISPR RNA (crRNA) specific probes were designed to target <i>intIOPS</i> within the integron
139	integrase additional domain region (Messier & Roy, 2001), according to several criteria,
140	including probe directionality (here, upstream or downstream the region of interest),
141	downstream presence of a protospacer adjacent motif (PAM) site (5' - NGG – 3'), and on-target
142	efficiency score (Stangl et al., 2020). crRNA were designed mainly using the IDT Custom Alt-
143	R® CRISPR-Cas9 gRNA tool (IDT, Coralville, IA, USA) and additionally CHOPCHOP (Labun
144	et al., 2019) and CRISPOR (Concordet & Haeussler, 2018). As working with metagenomes,
145	no reference genome and no off-target values were considered. One crRNA (5'-
146	AAAAAGGCGGAAAAGAGCTG -3') was designed to uncover the unknown 5' part of the
147	integron, expected to be its genetic context. The other crRNA (5'-
148	TCCACCGACAAGGTTTTGGA -3') was designed to uncover the unknown 3' part of the
149	integron, expected to be the gene cassette array. Custom Alt-R® crRNAs were ordered from
150	Integrated DNA Technologies (IDT, Coralville, IA, USA).

Cleavage of a 378 bp amplicon of the target DNA obtained with ICC66 151 (5'-GATCGACAACCATGGGGGGGAG-3') and ICC67 (5'-TGGTGACGCCGCTTGACACC-3') 152 primers was performed to validate the efficiency of the crRNAs prior to metagenomic 153 enrichment. Digestion was performed according to IDT recommendation (Alt-R CRISPR-Cas9 154 system—in vitro cleavage of target DNA with RNP complex protocol) with slight modifications 155

156 (excess of ribonucleoprotein complexes (RNPs) for digestion, 20 min digestion and addition of 157 a final step at 72°C for 5 min to inactivate proteinase K and obtain the complete Cas9 release) 158 and checked on a 4200 TapeStation System (Agilent). CRISPR-Cas9 mediated enrichment of InOPS from HMW metagenomic DNA was 159 performed following the protocol of (Stangl et al., 2020). Two enrichments were independently 160 performed, one with the crRNA targeting the genetic context and the other with the crRNA 161 162 targeting the gene cassette array. In brief, approximately 4.3 µg of HMW metagenomic DNA were dephosphorylated. crRNA was annealed to the trans-activating CRISPR RNA (tracrRNA) 163 164 and then, RNP were formed by adding HiFi Cas9 enzyme (IDT, Coralville, IA, USA). The Cas9 RNP were mixed with the dephosphorylated DNA, dATP and Tag polymerase to produce the 165 targeted double-strand breaks and facilitate dA-tailing. Oxford Nanopore Technologies (ONT) 166 specific sequencing adapters (SQK-LSK109, ONT, Oxford, UK) were ligated to the free 167 168 phosphorylated ends. Libraries were purified with Agencourt AMPure XP beads (Beckman 169 Coulter, Brea, CA, USA) with fragments below 3 kb washed away. The DNA concentration of 170 the enriched libraries was measured using the Qubit™ dsDNA BR Assay Kit (Thermo Fisher Scientific). The two libraries were pooled prior to sequencing on a single ONT flow cell (R9.4, 171 ONT, Oxford, UK) according to the manufacturer's protocol. Sequencing was performed on a 172

- 173 GridION X5 instrument (ONT, Oxford, UK; Utrecht Sequencing Facility, Utrecht, The174 Netherlands).
- 175 **2.4. Characterization of the InOPS contig**

176	Base-calling of nanopore reads was performed by Guppy (ONT, Oxford, UK) with the high
177	accuracy model (Q-score cut-off >7). Sequencing library statistics were generated using
178	Nanoplot (v 1.28.2) (De Coster et al., 2018). ONT adapters were trimmed off using Porechop
179	(v. 0.2.4) (Wick, 2018) with default parameters. Reads were mapped to the <i>int/OPS</i> reference
180	sequence (FR718193.1) using primarily minimap2 (-x -map-ont) (v. 2.6) (Li, 2018), then BWA-
181	MEM (-k:12, -O:4, -L: 5, -B: 1, -U:12) (v. 0.7.17) (Li & Durbin, 2010) and NCBI BLAST+ blastn
182	(v. 2.10.1) (Camacho et al., 2009) with default parameters for accuracy. Files were sorted and
183	indexed with Samtools (v. 1.4.1) (Li et al., 2009) and Bamtools (v. 2.4.0) (Barnett et al., 2011).
184	Sequences were aligned to the intIOPS reference sequence with the MUSCLE Multiple
185	Alignment tool (Edgar, 2004). A manually curated consensus was created. This contig (InOPS
186	contig) bearing the InOPS integron was validated by Sanger sequencing.
187	The contig was annotated using different annotation tools and pipelines to gain as much
188	accuracy as possible. The open reading frames (ORFs) and coding sequences were predicted
189	using Prokka (meta andevalue 1e-06) (v. 1.14.6) (Seemann, 2014), DFAST (

190 Metageannotator) (v. 1.5.0) (Tanizawa et al., 2018), RASTtk (Brettin et al., 2015), Contig

191	Annotation Tool (CAT_prepare_20210107 andadd_names) (v. 5.0.3) (von Meijenfeldt <i>et al.,</i>
192	2019), MetaGeneAnnotator (meta option) (Noguchi et al., 2008), MetaGeneMark (v. 3.25)
193	(Zhu et al., 2010) and/or GeneMarkS (Besemer et al., 2001)/S-2 (Lomsadze et al., 2018).
194	Integron Finder (v. 1.5.1) (Cury et al., 2016) was used for integron detection (local-max
195	evalue-attc 1) and attC sites detection (local-maxevalue-attc 4 anddt 6000). attC
196	secondary structure was predicted using <i>mfold</i> (UNAFold) (Markham & Zuker, 2008) and the
197	RNAfold program (ViennaRNA Package) (p -d2) (Lorenz et al., 2011). The attl site was
198	searched manually and aligned against an <i>attl</i> site database constructed from (Collis & Hall,
199	2004; Elsaied, Stokes, Kitamura <i>et al.,</i> 2011; Nield <i>et al.,</i> 2001; Partridge <i>et al.,</i> 2000).
200	Promoters were identified using BPROM (Solovyev & Salamov, 2011) and PePPER (de Jong
201	et al., 2012) and further manually curated. The putative functionality of the annotated genes
202	was inferred through Prokka, DFAST, RASTtk, EggNOG-mapper (evalue 0.001itype
203	metagenomegenepred prodigalpfam_realign none) (v. 2.1.6) (Cantalapiedra <i>et al.,</i> 2021),
204	InterProScan (pathwaysgoterms) (v. 5.54-87.0) (Jones et al., 2014) and HMMER (
205	hmmscan) (v. 2.41.2) (Potter et al., 2018) against different databases (NCBI, SEED, Clusters
206	of Orthologs Groups (COGs), Pfam, SMART, TIGRFAM, SFLD, SUPERFAMILY, PANTHER,
207	Gene3d, HAMAP, PROSITE, Coils, PRINTS, PIRSR, PIRSF). The genes annotated as
208	putative gene cassettes were confronted to the INTEGRALL database (Moura, Soares et al.,

209	2009) using local BLASTn algorithm. Kraken2 (v. 2.1.1) (Wood et al., 2019) and CAT were
210	used to perform taxonomic classification of the annotated genes.
211	Insertion sequences (IS) were annotated using ISsaga (v. 2.0) (Varani et al., 2011) and
212	OASIS (Robinson et al., 2012). The putative insertion sequences (IS) were further analysed
213	with the ISFinder (Siguier et al., 2006) BLAST interface. IS putative ORFs were compared
214	against local IS91 and ISCR databases through local Blastp algorithm. Group II introns were
215	identified against the bacterial Group II intron database (Candales et al., 2012).
216	For synteny analysis, the annotated genes within the InOPS contig were compared to
217	databases through BLAST searches (https://blast.ncbi.nlm.nih.gov/Blast.cgi): blastn against
218	the <i>nr/nt</i> database and the <i>wgs</i> database (<i>Desulfobacterales</i> taxid: 23118); <i>blastx</i> and <i>blastp</i>
219	against <i>nr/nt</i> and <i>env_nr</i> databases (NCBI). Resultant genomes (> 70% identity and 50%
220	coverage) were downloaded from NCBI constituting a database of 76 genomes after
221	dereplication. The genomic dataset was submitted to M1CR0B1AL1Z3R (Avram <i>et al.,</i> 2019)
222	along with the InOPS contig. Two different ortholog detections (≥ 80 or 50% identity and 0.01
223	as maximal <i>e-value</i>) were performed. To refine the ortholog detection, a second
224	M1CR0B1AL1Z3R was run over the genomes which produced a hit in the first run.
225	SimpleSynteny (Veltri et al., 2016) was used for visualization with parameters in regular mode
226	(1 <i>e-value</i> and 25% coverage) using the <i>all-to-all comparison</i> mode.

2	2
2	2

2.5. Conservation and phylogeny of the InOPS integrase

228	InOPS integrase (IntIOPS) was compared against available databases (INTEGRALL
229	(Moura, Soares et al., 2009) and NCBI) using BLAST (<u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>)
230	in <i>blastn, blastx</i> and <i>blastp</i> mode. IntIOPS, IntI1-4 (AHL30833.1, AAT72891.1, AAO32355.1,
231	AAC38424.1) whose functionality has been largely studied, Intls issued from natural
232	environments (IntINeu: WP_011112687.1, InPstQ: AAN16061.1, SamIntIA: WP_011759470.1,
233	IntlPac: AAK73287.1, IntlSon: WP_011072111.1) whose activity has been experimentally
234	proved and the Escherichia coli XerD recombinase (P0A8P8.1) were aligned using MUSCLE
235	Multiple Alignment tool (Edgar, 2004). The alignment was manually edited with BioEdit®
236	software.

For the Intl tree, a dataset was built by selecting 128 amino acid sequences of complete 237 integron integrases (Intl). Sequences were retrieved from *nr/nt* and *env_nr* databases (NCBI) 238 239 using both *blastx* and *blastp* and selected based on their identity to the integrase of the InOPS 240 integron, IntIOPS (≥ 50% identity and coverage). To avoid redundancy, the sequences were clustered to 90% identity using CD-HIT. Within each cluster, the representative sequence was 241 242 kept and, considering its environmental origin, the closest sequence from each different environmental origin, if any, were identified and kept too. Sequences of clinical Intls, Intl1-Intl4 243 (AHL30833.1, AAT72891.1, AAO32355.1, AAC38424.1), and the integron integrases 244

245	belonging to the	e genus <i>Desulfos</i>	<i>arcina</i> (WP_0513	74975.1, WP_027353	8082.1, BBO66607.1,
246	BBO93164.1,	BBO87010.1,	BBO79603.1,	WP_083456647.1,	WP_198012316.1,
247	WP_155322972	.1) were also inc	luded. The final	dataset comprised 10)7 integron integrase
248	sequences. The	tyrosine recomb	binase XerD sequ	ience of <i>Escherichia</i>	<i>coli</i> (P0A8P8.1) was
249	included as outg	roup for the const	ruction of the tree	. Analysis were done ι	ising NGPhylogeny.fr
250	(Lemoine <i>et al.,</i>	2019) with the c	ptions of MAFFT	align and BMGE alig	nment curation. The
251	PhyML program	(Guindon <i>et al.,</i>	2010) was used	for tree construction	with the SMS option
252	(Lefort <i>et al.,</i> 20	17) and a bootst	rapping branch s	upport of 1000. The t	ree was submitted to
253	iTOL (Letunic &	Bork, 2021) for v	isualization and d	esign.	

255 **3. Results**

3.1. Mimicking environmental disturbance identified InOPS as a putative adaptive integrons We investigated coastal sediments exposed to oil contamination in mesocosms to trigger microbial community adaptive response (Stauffert *et al.*, 2013). We revealed, using PCR targeting integron integrase genes (*intl*) (Abella, Bielen, *et al.*, 2015), the predominance of a sequence, named *intlOPS*. This sequence represented nearly 27% (over 156 amplicon sequences) of the *intl* pool in the amplicon libraries generated from the mesocosms incubated under oil contamination while no *intlOPS* sequences (over 46 amplicon sequences) were

263	detected in the library generated from the control (without contamination). Diversity indexes
264	supported the lower diversity and divergent relative abundance of <i>intl</i> in the contaminated
265	sediments compared to the control (Shannon: 3.14 and 3.41 vs 3.61, Evenness: 0.82 and 0.87
266	vs 0.98). The increase of <i>intIOPS</i> after contamination was further supported using quantitative
267	PCR (Fig. S1). Therefore, <i>intIOPS</i> might belong to an environmental integron responding to
268	the oil contamination. We named this integron InOPS.
269	3.2. Based FUDGE CRISPR-Cas9 enrichment to target <i>intIOPS</i> integrase gene
270	The InOPS integron was recovered from the complex microbial metagenome by an
271	innovative approach derived from FUDGE (Stangl et al., 2020), a CRISPR-Cas9 enrichment
272	method coupled to nanopore sequencing, that only targets a short-conserved sequence (Fig.
273	2A for full description). Two crRNAs were designed within a 62 bp region of the intIOPS
274	additional domain to obtain both flanking unknown regions (Fig. 2A, 2B). Sequencing of the
275	enriched nanopore libraries representing 1.21 Gb of sequence data resulted in 546 194 good
276	quality reads (N50: 3 337 bp, average read length: 1 453.6 bp). We recovered 90 reads
277	towards the 3' unknown part of the integron containing the array of gene cassettes (N50: 4 258
278	bp, longest read: 13 201 bp) and 51 reads towards the 5' unknown part of the integron
279	corresponding to the genetic context (N50: 4 146 bp, longest read: 8 606 bp) (Fig. 2B). Overall,

280	0.03% of the reads covered the targeted sequences. The consensus contig (20 069 bp) was
281	further polished using Sanger sequencing.
282	3.3. Unraveling the InOPS full integron platform structure and its genetic context
283	The contig annotation showed that the complete InOPS integron was recovered. It exhibited
284	the typical integron features (Sandoval-Quintana et al., 2022): an integron integrase gene,
285	putative functional attl site, Pintl and Pc promoters and regulator binding sites, as well a gene
286	cassette array (Fig. 3; Fig. S2; Tables S1 and S2). The integrase possessed the catalytic
287	residues and most of the conserved motifs of integron integrases (Messier & Roy, 2001) (Fig.
288	S3) suggesting the enzyme is functional. It only presented 72% identity to its closest relative
289	and was divergent from the clinical integron integrase classes (\leq 50% identity). InOPS
290	integrase clustered with integron integrases issued from environmental sources, in a
291	consistent manner from marine environments from which InOPS originated, and with integron
292	integrases belonging to Desulfobacterota (Fig. S4).

The cassette array consists of 12 gene cassettes with their own *attC* recombination site. Variable in length and sequences, 8 *attC* presented the typical secondary structure of *attC* sites suggesting their possible recombinogenic activity (Fig. S5). Most gene cassettes (apart the first one) encoded unknown functions or were ORFans, while others exhibited conserved

297	domains without obvious relationships with the oil contamination. Moreover, none were
298	referenced as gene cassettes in the INTEGRALL database (Moura, Soares et al., 2009).
299	Interestingly, several mobile genetic elements (MGEs) were intertwined with InOPS. The
300	first gene cassette contained a complete IS of the IS91 family. IS91 can mobilize adjacent DNA
301	sequences and therefore participate in genomic plasticity (Garcillán-Barcia & de la Cruz,
302	2002). Here, it might disseminate InOPS elements. The 5' InOPS genetic context harbored a
303	complete IS1634 as well as other putative IS-like elements (Table S3). Such configurations
304	have been previously described (Cury et al., 2016; Huyan et al., 2020). A putative CALIN
305	embedded within this IS-rich region was also consistent with their frequent association with IS
306	(Cury et al., 2016). Additionally, reverse transcriptase and maturase domains of a putative
307	group IIB intron were identified in the 3' InOPS genetic context. Of note, group II introns have
308	previously been observed associated with integrons (Léon & Roy, 2009; Sonbol & Siam, 2021),
309	and in some cases, hypothesized to be implicated in the genesis of gene cassettes (Léon &
310	Roy, 2009).

3.4. Deciphering the origin of InOPS 311

The lack of synteny evidenced that the configuration of ORFs within the contig is unique. 312 Variation in GC content over the contig clearly distinguished the gene cassettes (except IS91) 313 from the genetic context (Fig. 3), suggesting a different origin. The genetic context gave clues 314

about the InOPS host, likely belonging to Desulfobacterales (Table S1) and more precisely to *Desulfosarcina ovata,* a sulfate-reducing hydrocarbon-degrading and marine bacteria
(Watanabe *et al.,* 2020). However, InOPS integrase divergence from *Desulfosarcina*integrases suggests the acquisition of InOPS functional platform from another
Desulfobacterota (Fig. S4).

320

321 4. Discussion

322 With CRISPR-Cas9 enrichment we propose a new strategy in microbial metagenomics to 323 capture large and specific regions in a simple way, without DNA amplification, with minimum required information, and avoiding time-consuming and haphazard metagenomic mining. 324 While all our previous attempts failed, thanks to CRISPR-Cas9 enrichment, we retrieved and 325 reliably deciphered the complete structure of the InOPS environmental integron. InOPS is an 326 327 example of low abundant metagenomic regions but also complex, harboring repetitive 328 sequences that jeopardize the use of standard metagenomic approaches. Although the percentage of reads targeting the region we wished to study appeared low, 329 the reads generated was abundant enough to retrieve InOPS. This case study demonstrated 330 331 the efficiency of CRISPR-Cas9 enrichment in microbial metagenomics. It allowed to reach a

level of resolution rarely equaled in the study of environmental integrons. Most gene cassettes

333	encoded unknown functions or were ORFans, a common feature for environmental integrons
334	(Pereira <i>et al.,</i> 2020), raising more broadly the question about the origin of gene cassettes of
335	integrons. Thus, the functions of InOPS gene cassettes are mostly unresolved, precluding
336	conclusions about their ecological importance. Because we inferred the InOPS host, likely a
337	hydrocarbonoclastic marine bacteria, the adaptive potential of InOPS facing oil contamination
338	remains questionable. Tight association of InOPS with MGEs highlight that this region is
339	subjected to genomic plasticity, as previously suggested for integrons in hypersaline
340	environments (Sonbol & Siam, 2021), and might promote genetic novelty.
341	CRISPR-Cas9 enrichment offers the opportunity to reconsider studies that have previously
342	identified adaptive gene cassettes (e.g., Elsaied, Stokes, Yoshioka <i>et al.,</i> 2014; Koenig, Sharp
343	et al., 2009; Nemergut et al., 2004) or environmental integron integrases (e.g., Abella, Fahy,
344	<i>et al.,</i> 2015; Elsaied, Stokes, Nakamura <i>et al.,</i> 2007; Nield <i>et al.,</i> 2001). Compiling such case
345	studies, complemented with further molecular investigation on functionality and dynamics of
346	integrons, could serve as a lever to assess the eco-evolutionary significance of environmental
347	integrons. For instance, it could be of interest to decipher the interplay of environmental
348	integrons with MGEs more comprehensively.
349	Overall, InOPS constitute a proof of concept that opens perspectives to document the dark

350 matter of metagenomes and for which little information is available.

352 Acknowledgements

Research on environmental integrons was supported by funds from E2S-UPPA programs 353 354 to CC (Initiative program and Innovation Research MIRA program) and BL (Hub-MeSMic project), and the ANR/SEST (06SEST09 and ANR450 CESA-2011-006 01 projects). ESQ was 355 supported by PhD and mobility grants from E2S-UPPA programs and an EMBO Short-Term 356 fellowship (STF-8420). LH was supported by a PhD grant from the Ministère de 357 l'Enseignement Supérieur et de la Recherche (France). The authors thank Ophélie Tramoni 358 for technical assistance. We thank Utrecht Sequencing Facility for providing sequencing 359 service and data. Utrecht Sequencing Facility is subsidized by the University Medical Center 360 Utrecht, Hubrecht Institute, Utrecht University and The Netherlands X-omics Initiative (NWO 361 project 184.034.019). 362

363

364 **References**

- Abella, J., Bielen, A., Huang, L., Delmont, T. O., Vujaklija, D., Duran, R., & Cagnon, C. (2015).
 Integron diversity in marine environments. *Environmental Science and Pollution Research*, *22*(20), 15360–15369. https://doi.org/10.1007/s11356-015-5085-3
 Abella, J., Fahy, A., Duran, R., & Cagnon, C. (2015). Integron diversity in bacterial communities
- of freshwater sediments at different contamination levels. *FEMS Microbiology Ecology*,
 91(12), fiv140. https://doi.org/10.1093/femsec/fiv140

Antelo, V., Giménez, M., Azziz, G., Valdespino-Castillo, P., Falcón, L. I., Ruberto, L. A. M.,
 Mac Cormack, W. P., Mazel, D., & Batista, S. (2021). Metagenomic strategies identify
 diverse integron-integrase and antibiotic resistance genes in the Antarctic environment.
 MicrobiologyOpen, *10*(5), e1219. https://doi.org/10.1002/mbo3.1219

- Avram, O., Rapoport, D., Portugez, S., & Pupko, T. (2019). M1CR0B1AL1Z3R—a user-friendly
 web server for the analysis of large-scale microbial genomics data. *Nucleic Acids Research*, *47*(W1), W88–W92. https://doi.org/10.1093/nar/gkz423
- Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P., & Marth, G. T. (2011).
 BamTools: A C++ API and toolkit for analyzing and managing BAM files. *Bioinformatics*, *27*(12), 1691–1692. https://doi.org/10.1093/bioinformatics/btr174
- Besemer, J., Lomsadze, A., & Borodovsky, M. (2001). GeneMarkS: A self-training method for
 prediction of gene starts in microbial genomes. Implications for finding sequence motifs
 in regulatory regions. *Nucleic Acids Research*, *29*(12), 2607–2618.
 https://doi.org/10.1093/nar/29.12.2607
- Boucher, Y., Labbate, M., Koenig, J. E., & Stokes, H. W. (2007). Integrons: Mobilizable
 platforms that promote genetic diversity in bacteria. *Trends in Microbiology*, *15*(7), 301–
 309. https://doi.org/10.1016/j.tim.2007.05.004
- Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R., Overbeek,
 R., Parrello, B., Pusch, G. D., Shukla, M., Thomason, J. A., Stevens, R., Vonstein, V.,
 Wattam, A. R., & Xia, F. (2015). RASTtk: A modular and extensible implementation of
 the RAST algorithm for building custom annotation pipelines and annotating batches
 of genomes. *Scientific Reports, 5*, 8365. https://doi.org/10.1038/srep08365
- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.
- L. (2009). BLAST+: Architecture and applications. *BMC Bioinformatics*, *10*(1), 421.
 https://doi.org/10.1186/1471-2105-10-421
- Cambray, G., Guerout, A.-M., & Mazel, D. (2010). Integrons. *Annual Review of Genetics*, *44*,
 141–166. https://doi.org/10.1146/annurev-genet-102209-163504
- Candales, M. A., Duong, A., Hood, K. S., Li, T., Neufeld, R. A. E., Sun, R., McNeil, B. A., Wu,
 L., Jarding, A. M., & Zimmerly, S. (2012). Database for bacterial group II introns. *Nucleic Acids Research*, *40*(D1), D187–D190. https://doi.org/10.1093/nar/gkr1043
- Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., & Huerta-Cepas, J. (2021).
 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain
 Prediction at the Metagenomic Scale. *Molecular Biology and Evolution*, *38*(12), 5825–
 5829. https://doi.org/10.1093/molbev/msab293
- 405 Collis, C. M., & Hall, R. M. (2004). Comparison of the structure-activity relationships of the 406 integron-associated recombination sites attl3 and attl1 reveals common features.

407Microbiology(Reading, England),150(Pt5),1591–1601.408https://doi.org/10.1099/mic.0.26596-0

- Concordet, J.-P., & Haeussler, M. (2018). CRISPOR: Intuitive guide selection for
 CRISPR/Cas9 genome editing experiments and screens. *Nucleic Acids Research*,
 410 46(W1), W242–W245. https://doi.org/10.1093/nar/gky354
- Cury, J., Jové, T., Touchon, M., Néron, B., & Rocha, E. P. (2016). Identification and analysis
 of integrons and cassette arrays in bacterial genomes. *Nucleic Acids Research*, *44*(10),
 4539–4550. https://doi.org/10.1093/nar/gkw319
- 415 De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack:
 416 Visualizing and processing long-read sequencing data. *Bioinformatics*, *34*(15), 2666–
 417 2669. https://doi.org/10.1093/bioinformatics/bty149
- de Jong, A., Pietersma, H., Cordes, M., Kuipers, O. P., & Kok, J. (2012). PePPER: A webserver
 for prediction of prokaryote promoter elements and regulons. *BMC Genomics*, *13*(1),
 299. https://doi.org/10.1186/1471-2164-13-299
- 421 Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high
 422 throughput. *Nucleic Acids Research*, *32*(5), 1792–1797.
 423 https://doi.org/10.1093/nar/gkh340
- Elsaied, H., Stokes, H. W., Kitamura, K., Kurusu, Y., Kamagata, Y., & Maruyama, A. (2011).
 Marine integrons containing novel integrase genes, attachment sites, attl, and
 associated gene cassettes in polluted sediments from Suez and Tokyo Bays. *The ISME Journal*, *5*(7), 1162–1177. https://doi.org/10.1038/ismej.2010.208
- Elsaied, H., Stokes, H. W., Nakamura, T., Kitamura, K., Fuse, H., & Maruyama, A. (2007).
 Novel and diverse integron integrase genes and integron-like gene cassettes are
 prevalent in deep-sea hydrothermal vents. *Environmental Microbiology*, *9*(9), 2298–
 2312. https://doi.org/10.1111/j.1462-2920.2007.01344.x
- Elsaied, H., Stokes, H. W., Yoshioka, H., Mitani, Y., & Maruyama, A. (2014). Novel integrons
 and gene cassettes from a Cascadian submarine gas-hydrate-bearing core. *FEMS Microbiology Ecology*, *87*(2), 343–356. https://doi.org/10.1111/1574-6941.12227
- Escudero, J. A., Loot, C., Nivina, A., & Mazel, D. (2015). The Integron: Adaptation on demand.
 Microbiology Spectrum, 3(2), 1–22, MDNA3-0019–2014.
 https://doi.org/10.1128/microbiolspec.MDNA3-0019-2014
- Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the nextgeneration sequencing data. *Bioinformatics (Oxford, England)*, *28*(23), 3150–3152.
 https://doi.org/10.1093/bioinformatics/bts565

Garcillán-Barcia, M. P., & de la Cruz, F. (2002). Distribution of IS91 family insertion sequences
in bacterial genomes: Evolutionary implications. *FEMS Microbiology Ecology*, *42*(2),
303–313. https://doi.org/10.1111/j.1574-6941.2002.tb01020.x

- Ghaly, T. M., Geoghegan, J. L., Alroy, J., & Gillings, M. R. (2019). High diversity and rapid
 spatial turnover of integron gene cassettes in soil. *Environmental Microbiology*, *21*(5),
 1567–1574. https://doi.org/10.1111/1462-2920.14551
- Ghaly, T. M., Penesyan, A., Pritchard, A., Qi, Q., Rajabal, V., Tetu, S. G., & Gillings, M. R. Y.
 2022. (2022). Methods for the targeted sequencing and analysis of integrons and their
 gene cassettes from complex microbial communities. *Microbial Genomics*, *8*(3),
 000788. https://doi.org/10.1099/mgen.0.000788
- Gillings, M. R. (2014). Integrons: Past, present, and future. *Microbiology and Molecular Biology Reviews: MMBR*, *78*(2), 257–277. https://doi.org/10.1128/MMBR.00056-13
- 453 Good, I. J. (1953). The population frequencies of species and the estimation of population 454 parameters. *Biometrika*, *40*(3–4), 237–264. https://doi.org/10.1093/biomet/40.3-4.237
- Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New
 algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the
 performance of PhyML 3.0. *Systematic Biology*, *59*(3), 307–321.
 https://doi.org/10.1093/sysbio/syq010
- Huang, L., Cagnon, C., Caumette, P., & Duran, R. (2009). First gene cassettes of integrons as
 targets in finding adaptive genes in metagenomes. *Applied and Environmental Microbiology*, *75*(11), 3823–3825. https://doi.org/10.1128/AEM.02394-08
- Huyan, J., Tian, Z., Zhang, Y., Zhang, H., Shi, Y., Gillings, M. R., & Yang, M. (2020). Dynamics
 of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. *Environment International*, *140*, 105816. https://doi.org/10.1016/j.envint.2020.105816
- Jacquiod, S., Demanèche, S., Franqueville, L., Ausec, L., Xu, Z., Delmont, T. O., Dunon, V.,
 Cagnon, C., Mandic-Mulec, I., Vogel, T. M., & Simonet, P. (2014). Characterization of
 new bacterial catabolic genes and mobile genetic elements by high throughput genetic
 screening of a soil metagenomic library. *Journal of Biotechnology*, *190*, 18–29.
 https://doi.org/10.1016/j.jbiotec.2014.03.036
- Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J.,
 Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew,
 M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein
 function classification. *Bioinformatics*, *30*(9), 1236–1240.
 https://doi.org/10.1093/bioinformatics/btu031
- Koenig, J. E., Boucher, Y., Charlebois, R. L., Nesbø, C., Zhaxybayeva, O., Bapteste, E.,
 Spencer, M., Joss, M. J., Stokes, H. W., & Doolittle, W. F. (2008). Integron-associated

477 gene cassettes in Halifax Harbour: Assessment of a mobile gene pool in marine
478 sediments. *Environmental Microbiology*, *10*(4), 1024–1038.
479 https://doi.org/10.1111/j.1462-2920.2007.01524.x

Koenig, J. E., Sharp, C., Dlutek, M., Curtis, B., Joss, M., Boucher, Y., & Doolittle, W. F. (2009).
Integron gene cassettes and degradation of compounds associated with industrial
waste: The case of the Sydney tar ponds. *PLOS ONE*, *4*(4), e5276.
https://doi.org/10.1371/journal.pone.0005276

- Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., & Valen, E.
 (2019). CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. *Nucleic Acids Research*, *47*(W1), W171–W174. https://doi.org/10.1093/nar/gkz365
- Lane, D. J. (1991). 16S/23S rRNA sequencing. *Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematic*, 115–175.

Lefort, V., Longueville, J.-E., & Gascuel, O. (2017). SMS: Smart Model Selection in PhyML. *Molecular Biology and Evolution*, *34*(9), 2422–2424.
https://doi.org/10.1093/molbev/msx149

- Lemoine, F., Correia, D., Lefort, V., Doppelt-Azeroual, O., Mareuil, F., Cohen-Boulakia, S., &
 Gascuel, O. (2019). NGPhylogeny.fr: New generation phylogenetic services for nonspecialists. *Nucleic Acids Research*, *47*(W1), W260–W265.
 https://doi.org/10.1093/nar/gkz303
- Léon, G., & Roy, P. H. (2009). Potential Role of Group IIC-attC Introns in Integron Cassette
 Formation. *Journal of Bacteriology*, *191*(19), 6040–6051.
 https://doi.org/10.1128/JB.00674-09
- Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic
 tree display and annotation. *Nucleic Acids Research*, *49*(W1), W293–W296.
 https://doi.org/10.1093/nar/gkab301
- Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*, *34*(18),
 3094–3100. https://doi.org/10.1093/bioinformatics/bty191
- Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. *Bioinformatics*, *26*(5), 589–595. https://doi.org/10.1093/bioinformatics/btp698
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
 & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, *25*(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
- Lomsadze, A., Gemayel, K., Tang, S., & Borodovsky, M. (2018). Modeling leaderless transcription and atypical genes results in more accurate gene prediction in

512prokaryotes.GenomeResearch,28(7),1079–1089.513https://doi.org/10.1101/gr.230615.117

- Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., &
 Hofacker, I. L. (2011). ViennaRNA Package 2.0. *Algorithms for Molecular Biology*, *6*(1),
 26. https://doi.org/10.1186/1748-7188-6-26
- Markham, N. R., & Zuker, M. (2008). UNAFold: Software for nucleic acid folding and
 hybridization. *Methods in Molecular Biology (Clifton, N.J.), 453*, 3–31.
 https://doi.org/10.1007/978-1-60327-429-6_1
- Mazel, D. (2006). Integrons: Agents of bacterial evolution. *Nature Reviews. Microbiology*, *4*(8),
 608–620. https://doi.org/10.1038/nrmicro1462
- Messier, N., & Roy, P. H. (2001). Integron integrases possess a unique additional domain
 necessary for activity. *Journal of Bacteriology*, *183*(22), 6699–6706.
 https://doi.org/10.1128/JB.183.22.6699-6706.2001
- Moura, A., Henriques, I., Smalla, K., & Correia, A. (2010). Wastewater bacterial communities
 bring together broad-host range plasmids, integrons and a wide diversity of
 uncharacterized gene cassettes. *Research in Microbiology*, *161*(1), 58–66.
 https://doi.org/10.1016/j.resmic.2009.11.004
- Moura, A., Soares, M., Pereira, C., Leitão, N., Henriques, I., & Correia, A. (2009). INTEGRALL:
 A database and search engine for integrons, integrases and gene cassettes. *Bioinformatics (Oxford, England)*, 25(8), 1096–1098.
 https://doi.org/10.1093/bioinformatics/btp105
- Nemergut, D. R., Martin, A. P., & Schmidt, S. K. (2004). Integron diversity in heavy-metalcontaminated mine tailings and inferences about integron evolution. *Applied and Environmental Microbiology*, *70*(2), 1160–1168.
 https://doi.org/10.1128/AEM.70.2.1160-1168.2004
- Nield, B. S., Holmes, A. J., Gillings, M. R., Recchia, G. D., Mabbutt, B. C., Nevalainen, K. M.,
 & Stokes, H. W. (2001). Recovery of new integron classes from environmental DNA. *FEMS Microbiology Letters*, *195*(1), 59–65. https://doi.org/10.1111/j.15746968.2001.tb10498.x
- Noguchi, H., Taniguchi, T., & Itoh, T. (2008). MetaGeneAnnotator: Detecting species-specific
 patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic
 and phage genomes. *DNA Research*, *15*(6), 387–396.
 https://doi.org/10.1093/dnares/dsn027
- Partridge, S. R., Recchia, G. D., Scaramuzzi, C., Collis, C. M., Stokes, H. W., & Hall, R. M. Y.
 2000. (2000). Definition of the attl1 site of class 1 integrons. *Microbiology*, *146*(11),
 2855–2864. https://doi.org/10.1099/00221287-146-11-2855

- Pereira, M., Österlund, T., Eriksson, K. M., Backhaus, T., Axelson-Fisk, M., & Kristiansson, E.
 (2020). A comprehensive survey of integron-associated genes present in
 metagenomes. *BMC Genomics*, *21*(1), 495. https://doi.org/10.1186/s12864-02006830-5
- Pielou, E. C. (1966). The measurement of diversity in different types of biological collections.
 Journal of Theoretical Biology, *13*, 131–144. https://doi.org/10.1016/0022 5193(66)90013-0
- Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R., & Finn, R. D. (2018). HMMER web
 server: 2018 update. *Nucleic Acids Research*, *46*(W1), W200–W204.
 https://doi.org/10.1093/nar/gky448
- Robinson, D. G., Lee, M.-C., & Marx, C. J. (2012). OASIS: An automated program for global
 investigation of bacterial and archaeal insertion sequences. *Nucleic Acids Research*,
 40(22), e174. https://doi.org/10.1093/nar/gks778
- Sandoval-Quintana, E., Lauga, B., & Cagnon, C. (2022). Environmental integrons: The dark
 side of the integron world. *Trends in Microbiology*.
 https://doi.org/10.1016/j.tim.2022.01.009
- Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. *Bioinformatics (Oxford, England)*, *30*(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153
- Shannon, C. E. (1948). A Mathematical Theory of Communication. *Bell System Technical Journal*, *27*(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Siguier, P., Perochon, J., Lestrade, L., Mahillon, J., & Chandler, M. (2006). ISfinder: The
 reference centre for bacterial insertion sequences. *Nucleic Acids Research*,
 34(Database issue), D32-36. https://doi.org/10.1093/nar/gkj014
- Solovyev, V., & Salamov, A. (2011). Automatic annotation of microbial genomes and
 metagenomic sequences. *Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies*, 61–78.
- Sonbol, S., & Siam, R. (2021). The association of group IIB intron with integrons in hypersaline
 environments. *Mobile DNA*, *12*(1), 8. https://doi.org/10.1186/s13100-021-00234-2
- Souque, C., Escudero, J. A., & MacLean, R. C. (2021). Integron activity accelerates the
 evolution of antibiotic resistance. *ELife*, *10*, e62474.
 https://doi.org/10.7554/eLife.62474
- Stangl, C., de Blank, S., Renkens, I., Westera, L., Verbeek, T., Valle-Inclan, J. E., González,
 R. C., Henssen, A. G., van Roosmalen, M. J., Stam, R. W., Voest, E. E., Kloosterman,
 W. P., van Haaften, G., & Monroe, G. R. (2020). Partner independent fusion gene
 detection by multiplexed CRISPR-Cas9 enrichment and long read nanopore

sequencing. *Nature Communications*, *11*(1), 2861. https://doi.org/10.1038/s41467 020-16641-7

- Stauffert, M., Cravo-Laureau, C., Jézéquel, R., Barantal, S., Cuny, P., Gilbert, F., Cagnon, C.,
 Militon, C., Amouroux, D., Mahdaoui, F., Bouyssiere, B., Stora, G., Merlin, F.-X., &
 Duran, R. (2013). Impact of oil on bacterial community structure in bioturbated
 sediments. *PLoS ONE*, *8*(6), e65347. https://doi.org/10.1371/journal.pone.0065347
- Stokes, H. W., & Hall, R. M. (1989). A novel family of potentially mobile DNA elements
 encoding site-specific gene-integration functions: Integrons. *Molecular Microbiology*,
 3(12), 1669–1683. https://doi.org/10.1111/j.1365-2958.1989.tb00153.x
- Stokes, H. W., Holmes, A. J., Nield, B. S., Holley, M. P., Nevalainen, K. M., Mabbutt, B. C., &
 Gillings, M. R. (2001). Gene cassette PCR: Sequence-independent recovery of entire
 genes from environmental DNA. *Applied and Environmental Microbiology*, *67*(11),
 5240–5246. https://doi.org/10.1128/AEM.67.11.5240-5246.2001
- Tanizawa, Y., Fujisawa, T., & Nakamura, Y. (2018). DFAST: A flexible prokaryotic genome
 annotation pipeline for faster genome publication. *Bioinformatics (Oxford, England)*,
 34(6), 1037–1039. https://doi.org/10.1093/bioinformatics/btx713
- Varani, A. M., Siguier, P., Gourbeyre, E., Charneau, V., & Chandler, M. (2011). ISsaga is an
 ensemble of web-based methods for high throughput identification and semi-automatic
 annotation of insertion sequences in prokaryotic genomes. *Genome Biology*, *12*(3),
 R30. https://doi.org/10.1186/gb-2011-12-3-r30
- Veltri, D., Wight, M. M., & Crouch, J. A. (2016). SimpleSynteny: A web-based tool for
 visualization of microsynteny across multiple species. *Nucleic Acids Research*, *44*(W1),
 W41–W45. https://doi.org/10.1093/nar/gkw330
- von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H., & Dutilh, B. E. (2019).
 Robust taxonomic classification of uncharted microbial sequences and bins with CAT
 and BAT. *Genome Biology*, *20*(1), 217. https://doi.org/10.1186/s13059-019-1817-x
- and BAT. *Genome Biology*, *20*(1), 217. https://doi.org/10.1186/s13059-019-1817-x
 Watanabe, M., Higashioka, Y., Kojima, H., & Fukui, M. (2020). Proposal of Desulfosarcina
- ovata subsp. Sediminis subsp. Nov., a novel toluene-degrading sulfate-reducing
 bacterium isolated from tidal flat sediment of Tokyo Bay. *Systematic and Applied Microbiology*, *43*(5), 126109. https://doi.org/10.1016/j.syapm.2020.126109
- 613 Wick, R. (2018). Porechop. *Github*. https://github.com/rrwick/Porechop
- Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2.
 Genome Biology, *20*(1), 257. https://doi.org/10.1186/s13059-019-1891-0
- Zhu, W., Lomsadze, A., & Borodovsky, M. (2010). Ab initio gene identification in metagenomic
 sequences. *Nucleic Acids Research*, *38*(12), e132. https://doi.org/10.1093/nar/gkq275
- 618

620 Data Accessibility and Benefit-Sharing

621 Data Accessibility Statement

- The raw sequences of the intl libraries are available in GenBank under the accession
- numbers: FR718193-FR718248. The InOPS contig is available in Genbank under the
- 624 accession number ON260918.
- 625 Benefit-Sharing Statement
- 626 Benefits from this research accrue from the sharing of our data and results on public

627 databases as described above.

628

629 Author contributions

ESQ, BL and CC conceived and designed the study. BL and CC supervised the study. CC,

631 LH and RD collected the samples. CC and LH identified *intIOPS*. ESQ performed the CRISPR-

632 Cas9 experiments, analyzed the data and characterized the InOPS contig. CS, GM, and IR

633 contributed to the CRISPR-Cas9 enrichment and sequencing. BL, CC, RD and GH provided

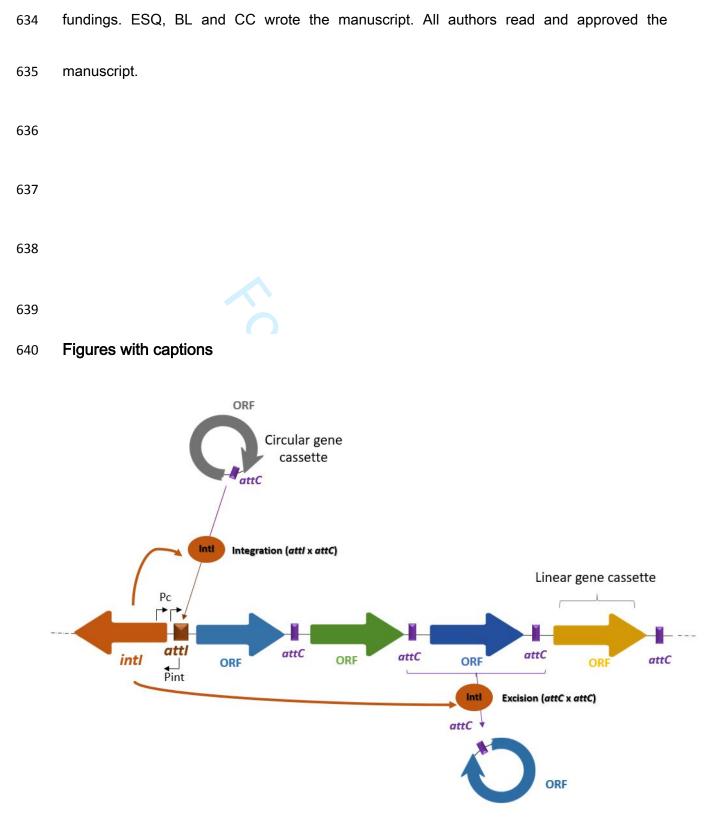
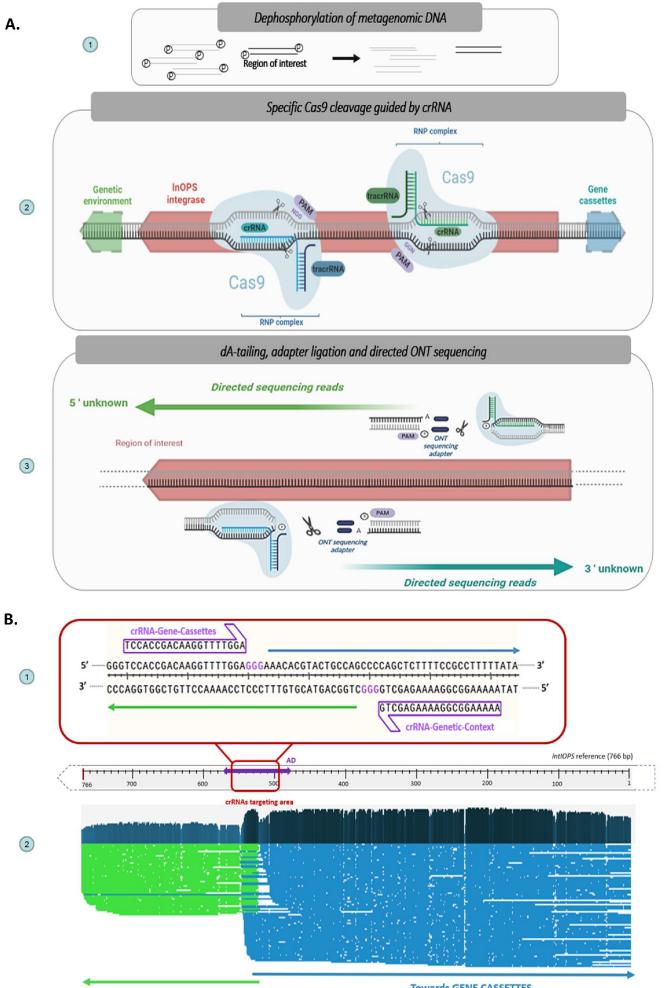



Figure 1. Integron general structure and functioning. Integrons are formed by a functional platform composed of a gene (*intl*) encoding an integrase (Intl), a promoter (Pc), and a recombination site (*attl*). Usually an array of gene cassettes follows this platform. The gene cassettes generally consist of an open reading frame (ORF) and a recombination site (*attC*).

- 645 The integron integrase catalyses the insertion and excision of gene cassettes by site-specific
- recombination. The promoters Pc (two possible locations) and Pintl allow the expression of the
- 647 gene cassettes and integrase, respectively.

Kor Review Only

649 Figure 2. Recovery of InOPS reads by CRISPR-Cas9 enrichment and nanopore sequencing. A) General workflow of CRISPR-Cas9 enrichment. 1) Dephosphorylation of metagenomic 650 DNA, 2) Specific Cas9 cleavages guided by the crRNAs. The two CRISPR RNA (crRNA) target 651 652 a short and known sequence of the region of interest, in order to ensure the sequencing of 653 both sides of this region in an overlapping manner. The design of crRNA requires the presence 654 of a PAM site (5'-NGG-3') on the target sequences. The crRNA and the trans-activating CRISPR RNA (tracrRNA) link to the Cas9 nuclease constitute the ribonucleoprotein (RNP) 655 complex. Once bound to the DNA, Cas9 produce a double-strand cleavage in the DNA in the 656 657 15-30 bp prior to the PAM site. 3) dA-tailing, adapters ligation and directed ONT sequencing. After dA-tailing, Oxford Nanopore Technology (ONT) specific sequencing adapters are ligated 658 only to the DNA containing the PAM sequence, while the other end is blocked by Cas9 enzyme. 659 660 Therefore, the sequencing is directed on only one direction spanning towards the unknown 661 region of the targeted sequence. Merging both enrichment allows to sequence at the same time the whole region of interest. B) Directional design of crRNA guides to target the gene 662 *intlOPS* and read mapping: 1) the crRNAs target a region within the additional domain (AD) of 663 the InOPS integrase gene (*intIOPS*): positions 500 to 567 of the reference sequence (partial 664 intIOPS, accession number FR718193.1). The PAM sites (5'-NGG-3') are indicated in violet. 665 The arrows, in green and in blue, represent the direction of sequencing, towards the InOPS 666 genetic context (5' unknown of the integron) and towards the gene cassette array (3' unknown 667 of the integron), respectively. 2) Mapping of the recovered reads against the *intIOPS* reference 668 669 sequence.

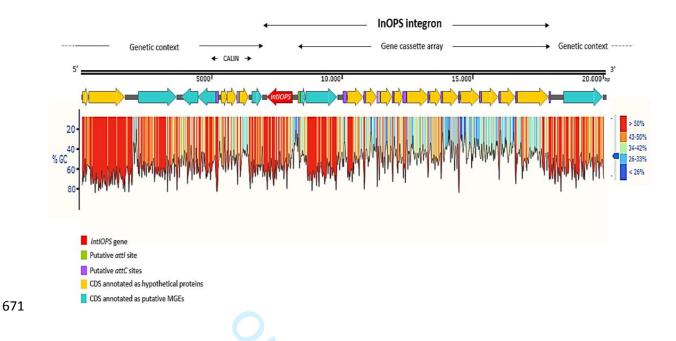


Figure 3. InOPS contig and annotated features. The 20 069 bp InOPS contig is presented. The 672 complete InOPS integron comprises the *intlOPS* gene (red) encoding an integron integrase 673 and a gene cassette array. The attl (green) and attC (purple if search parameter: --evalue-attC 674 1; lighter purple if search parameter: --evalue-attC 4) recombination sites are presented. A 675 676 CALIN (cluster of attC sites lacking integron-integrases) is found within the 5'-InOPS genetic 677 context. CDS encoding hypothetical proteins with no further annotation are represented in yellow. The CDS with annotations related to putative MGEs are represented in blue. The GC 678 percentage along the contig is presented below the contig schema. 679

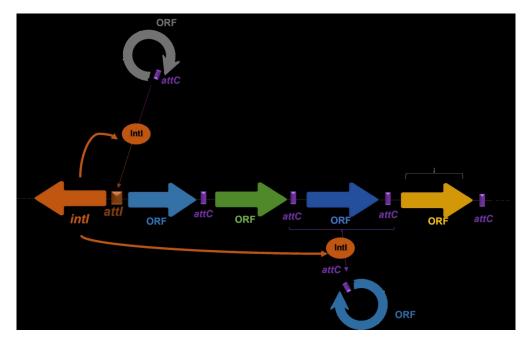
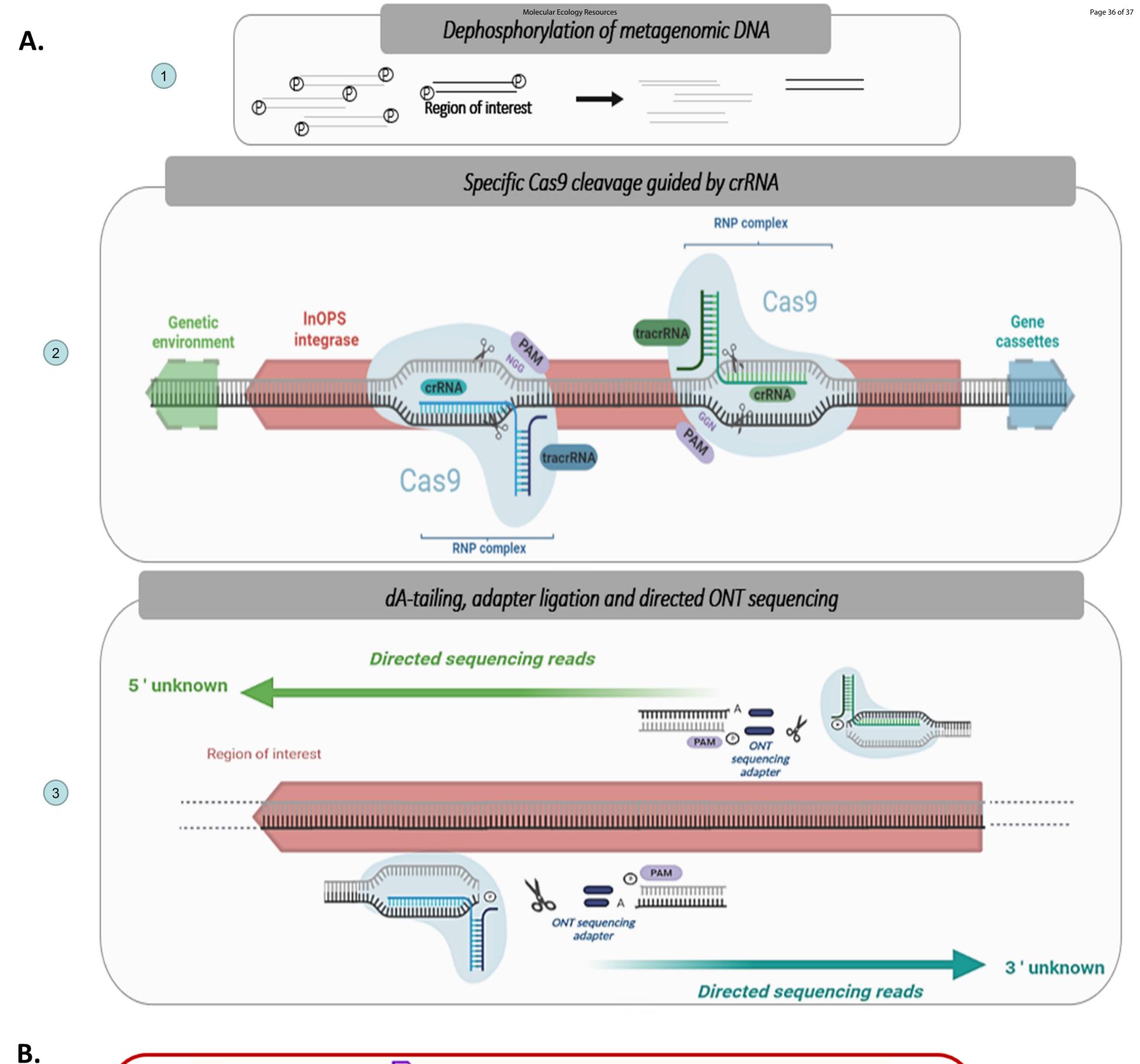
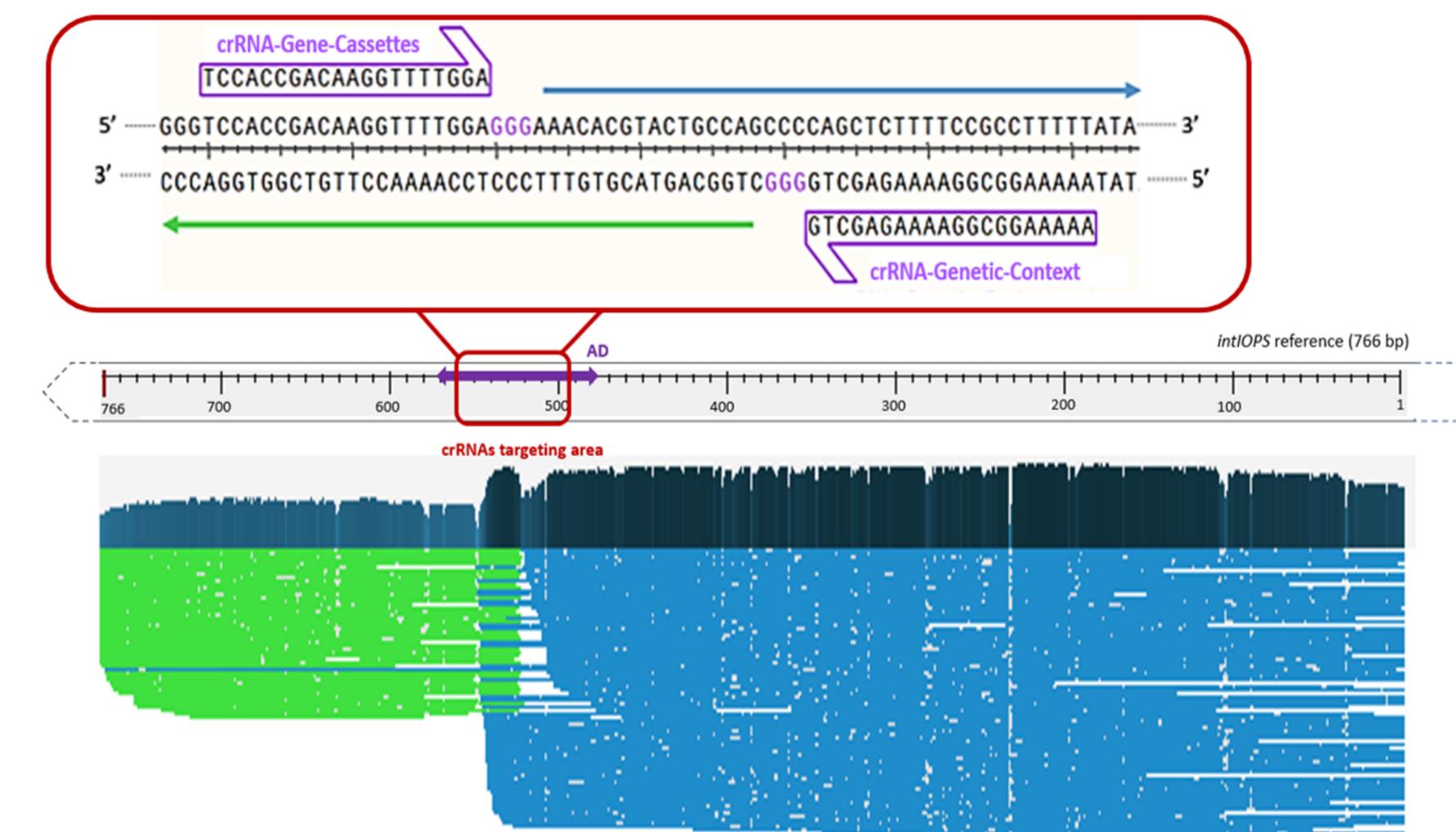




Figure 1. Integron general structure and functioning. Integrons are formed by a functional platform composed of a gene (intI) encoding an integrase (IntI), a promoter (Pc), and a recombination site (attI). Usually an array of gene cassettes follows this platform. The gene cassettes generally consist of an open reading frame (ORF) and a recombination site (attC). The integron integrase catalyses the insertion and excision of gene cassettes by site-specific recombination. The promoters Pc (two possible locations) and PintI allow the expression of the gene cassettes and integrase, respectively.

251x159mm (300 x 300 DPI)

(1)

Towards GENE CASSETTES

Towards GENETIC CONTEXT

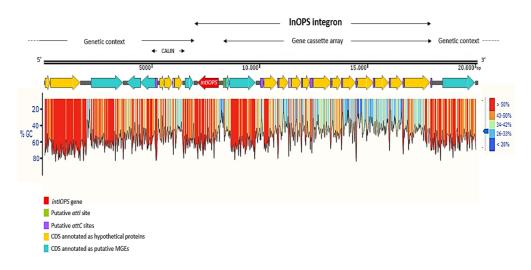


Figure 3. InOPS contig and annotated features. The 20 069 bp InOPS contig is presented. The complete InOPS integron comprises the intIOPS gene (red) encoding an integron integrase and a gene cassette array. The attI (green) and attC (purple if search parameter: --evalue-attC 1; lighter purple if search parameter: -evalue-attC 4) recombination sites are presented. A CALIN (cluster of attC sites lacking integron-integrases) is found within the 5'-InOPS genetic context. CDS encoding hypothetical proteins with no further annotation are represented in yellow. The CDS with annotations related to putative MGEs are represented in blue. The GC percentage along the contig is presented below the contig schema.

300x151mm (96 x 96 DPI)