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15 Abstract 

16 Environmental integrons are ubiquitous in natural microbial communities, but they are 

17 mostly uncharacterized and their role remains elusive. Thus far, research has been 

18 hindered by methodological limitations. Here, we successfully used an innovative approach 

19 combining CRISPR-Cas9 enrichment with long-read nanopore sequencing to target, in a 

20 complex microbial community, a putative adaptive environmental integron, InOPS, and to 

21 unravel its complete structure and genetic context. A contig of 20 kb was recovered 

22 containing the complete integron from the microbial metagenome of oil-contaminated 

23 coastal sediments. InOPS exhibited typical integron features. The integrase, close to 

24 integrases of marine Desulfobacterota, possessed all the elements of a functional integron 

25 integrase. The gene cassettes harboured mostly unknown functions hampering inferences 

26 about their ecological importance. Moreover, the putative InOPS host, likely a 

27 hydrocarbonoclastic marine bacteria, might question the adaptive potential of InOPS in 

28 response to oil contamination. Additionally, several mobile genetic elements were 

29 intertwined with InOPS highlighting likely genomic plasticity, and providing a source of 

30 genetic novelty. This case study showed the power of CRISPR-Cas9 enrichment to 

31 elucidate the structure and context of specific DNA regions for which only a short sequence 

32 is known. This method is a new tool for environmental microbiologists working with complex 
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33 microbial communities to target low abundant, large or repetitive genetic structures that are 

34 hard to recover by classical metagenomics. More precisely, here, it offers new perspectives 

35 to comprehensively assess the eco-evolutionary significance of environmental integrons. 

36

37 Keywords

38 complex genomic regions, CRISPR-Cas9 enrichment, environmental integrons, microbial 

39 communities, microbial metagenomics, mobile genetic elements 

40

41

42

43

44 1. Introduction 

45 Integrons are genetic elements that acquire, excise, rearrange and express gene cassettes 

46 (Fig. 1) (Escudero et al., 2015; Stokes & Hall, 1989). They are notorious for mediating bacterial 

47 adaptation in clinical settings through the spread of antibiotic resistance genes (Escudero et 

48 al., 2015; Gillings, 2014; Souque et al., 2021). Several clues suggest that integrons in the 
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49 environmental may also participate in the bacterial functional response to selective pressures, 

50 e.g., their occurrence in numerous environments (e.g., Abella, Bielen, et al., 2015; Abella, 

51 Fahy, et al., 2015; Antelo et al., 2021; Boucher et al., 2007; Elsaied, Stokes, Nakamura et al., 

52 2007; Elsaied, Stokes, Kitamura et al., 2011; Elsaied, Stokes, Yoshioka et al., 2014; Ghaly, 

53 Penesyan et al., 2022; Mazel, 2006; Nemergut et al., 2004; Stokes et al., 2001), distribution in 

54 diverse bacterial taxa (Cambray et al., 2010; Cury et al., 2016), wide gene cassette functional 

55 repertory (e.g., Ghaly, Geoghegan et al., 2019; Pereira et al., 2020), and relation to 

56 environmental disturbances (Abella, Fahy, et al., 2015; Elsaied, Stokes, Kitamura et al., 2011; 

57 Koenig, Boucher et al., 2008; Koenig, Sharp et al., 2009; Nemergut et al., 2004). Nonetheless, 

58 in contrast to clinical integrons, environmental integrons remain mostly uncharacterized and 

59 their role is still elusive (Sandoval-Quintana et al., 2022).

60 Establishing their adaptive role in the environment requires the characterization of their 

61 complete genetic structures including the integrase gene, gene cassettes, recombination sites, 

62 and the genetic context, to reveal the function of their gene cassettes, their functionality, their 

63 dynamics and eventually, their host. However, targeting putative adaptive integrons and their 

64 complete platforms in complex communities is a difficult task hindered by methodological 

65 limitations (Pereira et al., 2020; Sandoval-Quintana et al., 2022). To date, integrons in natural 

66 environments have been mainly recovered through amplicon sequencing (e.g., Abella, Bielen 
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67 et al., 2015; Antelo et al., 2021; Ghaly, Geoghegan et al., 2019; Ghaly, Penesyan et al., 2022). 

68 Because of the constraints imposed by the design of the primers located in the conserved and 

69 known regions of integrases and recombination sites (Elsaied, Stokes, Nakamura et al., 2007; 

70 Stokes et al., 2001) and the impediments in amplifying large fragments, efforts have until 

71 recently mainly focused either on gene cassettes (e.g., Ghaly, Geoghegan et al., 2019; Koenig, 

72 Boucher et al., 2008; Koenig, Sharp et al., 2009; Stokes et al., 2001) or integrase genes (e.g. 

73 Abella, Bielen et al., 2015; Elsaied, Stokes, Nakamura et al., 2007; Nield et al., 2001), 

74 preventing the comprehensive examination of entire environmental integron platforms. 

75 Although these efforts did reveal the extent of their diversity, their dynamics (integration, 

76 excision events, dispersal) were poorly assessed, despite attempts to infer ongoing integron-

77 response to selective pressures being developed (Huang et al., 2009). Overall, however, all 

78 these PCR-based strategies are still impaired by the well-known PCR bias, the inability to 

79 position gene cassettes in the array, and the difficulties of designing universal primers to target 

80 environmental integrons. Together with PCR approaches, DNA/DNA hybridization screening 

81 techniques were also used to recover novel environmental integrases from large metagenomic 

82 clone libraries (Jacquiod et al., 2014, Moura, Henriques et al., 2010). Nevertheless, this 

83 approach can suffer from parasite signals, unspecific probe hybridization, and low target 

84 recovery (Jacquiod et al., 2014; Moura, Henriques et al., 2010). 
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85 Whole genome and metagenome sequencing and subsequent analyses with adequate 

86 bioinformatic tools offer the opportunity to mine for integrons in isolated strains and in 

87 uncultured microorganisms, respectively (Cury et al., 2016; Pereira et al., 2020). Nevertheless, 

88 the highly fragmented nature of shotgun sequence data and the frequent association of 

89 integrons to repetitive regions (Pereira et al., 2020; Sonbol & Siam, 2021) have often impeded 

90 the assembly of large contigs, and thus, the recovery of full-length integrons preventing further 

91 conclusions about their ecological-evolutionary significance. 

92 The main objective of our study was to propose a new methodology to recover the complete 

93 platforms of putative adaptive integrons to investigate their role in the environment. The first 

94 step of the study consisted in the identification of a putative adaptive integron in a complex 

95 microbial community. We thus experimentally mimicked an environmental disturbance, an oil 

96 contamination, on coastal sediments maintained in mesocosms. We then proposed a new 

97 approach based on CRISPR-Cas9 enrichment to recover the InOPS environmental integron 

98 from the complex microbial metagenome. This method allowed successfully to decipher the 

99 complete structure of InOPS, highlighting its relevance to assess the eco-evolutionary 

100 significance of this integron. 

101

102 2. Material and methods
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103 2.1.Coastal sediment samples

104 Coastal marine sediments (Atlantic Ocean, Brittany, France) were maintained during 9 

105 months in mesocosms as previously described (Stauffert et al., 2013). Mesocosms were 

106 contaminated by oil addition (OIL). Control mesocosms (CTRL) were maintained without 

107 contamination. Samples (0 to 2 cm depth) were collected at different times: just after the oil 

108 contamination (T0), after one month, six months, and nine months. 

109 2.2. Identification and quantification of intIOPS

110 Metagenomic DNA was extracted with Ultraclean soil DNA isolation kit (MoBio Laboratories, 

111 Carlsbad, CA, USA). Integron integrase gene (intI) libraries of approximately 770 bp fragments 

112 were obtained from mesocosms incubated during 9 months under oil contamination or no 

113 contamination as previously described (Abella, Fahy, et al., 2015). Sanger sequencing was 

114 performed by GATC Biotech (Ebersberg, Germany). Sequences were corrected with 

115 Sequencher® (Accession numbers: FR718193-FR718248), then were clustered at 100% 

116 identity using CD-HIT (Fu et al., 2012) before calculating Shannon (Shannon, 1948), evenness 

117 (Pielou, 1966), and coverage (Good, 1953) indexes. 

118 Quantitative PCRs were performed in duplicate on metagenomic DNA from mesocosms. 

119 DNA was quantified with Quant-iT™ PicoGreen® dsDNA (Invitrogen, Waltham, MA, USA). 
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120 Standard curves, constructed with plasmid carrying cloned genes, were used to quantify 

121 intIOPS and 16S rRNA genes, respectively. The primers ICC60 (5’-

122 GAAACCGTTCGGTTGAGGGTC-3’) and ICC71 (5’-TTTACGGGCCAGCGCACCGGG-3’) 

123 were used to specifically amplify intIOPS. The primers 338F and 518R (Lane, 1991) were used 

124 to amplify the 16S rRNA genes. The reaction mixture contained 1 μL of template DNA, 0.2 μM 

125 of each primer and 12.5 μL of Power SYBR® green PCR master mix (Applied Biosystem, 

126 Waltham, MA, USA) for a final volume of 25 μL. All real-time PCRs were performed on a 

127 MX3005P (Stratagene, San Diego, CA, USA). Amplification parameters were as follows: 10 

128 min at 95°C, 40 cycles of 30 s at 95°C, 30 s at 56°C (intIOPS gene) or 55°C (16S rRNA gene), 

129 and 45 s at 72°C. After amplification, a melting curve was carried out to confirm the 

130 amplification of specific products.

131 2.3.  CRISPR-Cas9 targeted enrichment of InOPS from metagenomic DNA coupled 

132 to nanopore sequencing

133 High molecular weight (HMW) DNA was obtained using the DNeasy PowerSoil Pro Kit 

134 (QiAgen, Hilden, Germany) with slight modifications to prevent DNA shearing. DNA 

135 quantification was performed using the Qubit™ dsDNA BR Assay Kit (Thermo Fisher Scientific, 

136 Waltham, MA, USA). DNA quality and integrity were assessed through standard absorbance 

137 ratios and using a 4200 TapeStation System (Agilent, Santa Clara, CA, USA), respectively. 
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138 CRISPR RNA (crRNA) specific probes were designed to target intIOPS within the integron 

139 integrase additional domain region (Messier & Roy, 2001), according to several criteria, 

140 including probe directionality (here, upstream or downstream the region of interest), 

141 downstream presence of a protospacer adjacent motif (PAM) site (5’ - NGG – 3’), and on-target 

142 efficiency score (Stangl et al., 2020). crRNA were designed mainly using the IDT Custom Alt-

143 R® CRISPR-Cas9 gRNA tool (IDT, Coralville, IA, USA) and additionally CHOPCHOP (Labun 

144 et al., 2019) and CRISPOR (Concordet & Haeussler, 2018). As working with metagenomes, 

145 no reference genome and no off-target values were considered. One crRNA (5’- 

146 AAAAAGGCGGAAAAGAGCTG -3’) was designed to uncover the unknown 5’ part of the 

147 integron, expected to be its genetic context. The other crRNA (5’- 

148 TCCACCGACAAGGTTTTGGA -3’) was designed to uncover the unknown 3’ part of the 

149 integron, expected to be the gene cassette array. Custom Alt-R® crRNAs were ordered from 

150 Integrated DNA Technologies (IDT, Coralville, IA, USA).

151 Cleavage of a 378 bp amplicon of the target DNA obtained with ICC66 

152 (5’-GATCGACAACCATGGGGGGAG-3’) and ICC67 (5’-TGGTGACGCCGCTTGACACC-3’) 

153 primers was performed to validate the efficiency of the crRNAs prior to metagenomic 

154 enrichment. Digestion was performed according to IDT recommendation (Alt-R CRISPR-Cas9 

155 system—in vitro cleavage of target DNA with RNP complex protocol) with slight modifications 
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156 (excess of ribonucleoprotein complexes (RNPs) for digestion, 20 min digestion and addition of 

157 a final step at 72°C for 5 min to inactivate proteinase K and obtain the complete Cas9 release) 

158 and checked on a 4200 TapeStation System (Agilent). 

159 CRISPR-Cas9 mediated enrichment of InOPS from HMW metagenomic DNA was 

160 performed following the protocol of (Stangl et al., 2020). Two enrichments were independently 

161 performed, one with the crRNA targeting the genetic context and the other with the crRNA 

162 targeting the gene cassette array. In brief, approximately 4.3 µg of HMW metagenomic DNA 

163 were dephosphorylated. crRNA was annealed to the trans-activating CRISPR RNA (tracrRNA) 

164 and then, RNP were formed by adding HiFi Cas9 enzyme (IDT, Coralville, IA, USA). The Cas9 

165 RNP were mixed with the dephosphorylated DNA, dATP and Taq polymerase to produce the 

166 targeted double-strand breaks and facilitate dA-tailing. Oxford Nanopore Technologies (ONT) 

167 specific sequencing adapters (SQK-LSK109, ONT, Oxford, UK) were ligated to the free 

168 phosphorylated ends. Libraries were purified with Agencourt AMPure XP beads (Beckman 

169 Coulter, Brea, CA, USA) with fragments below 3 kb washed away. The DNA concentration of 

170 the enriched libraries was measured using the Qubit™ dsDNA BR Assay Kit (Thermo Fisher 

171 Scientific). The two libraries were pooled prior to sequencing on a single ONT flow cell (R9.4, 

172 ONT, Oxford, UK) according to the manufacturer's protocol. Sequencing was performed on a 
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173 GridION X5 instrument (ONT, Oxford, UK; Utrecht Sequencing Facility, Utrecht, The 

174 Netherlands). 

175 2.4. Characterization of the InOPS contig

176 Base-calling of nanopore reads was performed by Guppy (ONT, Oxford, UK) with the high 

177 accuracy model (Q-score cut-off >7). Sequencing library statistics were generated using 

178 Nanoplot (v 1.28.2) (De Coster et al., 2018). ONT adapters were trimmed off using Porechop 

179 (v. 0.2.4) (Wick, 2018) with default parameters. Reads were mapped to the intIOPS reference 

180 sequence (FR718193.1) using primarily minimap2 (-x -map-ont) (v. 2.6) (Li, 2018), then BWA-

181 MEM (-k:12, -O:4, -L: 5, -B: 1, -U:12) (v. 0.7.17) (Li & Durbin, 2010) and NCBI BLAST+ blastn 

182 (v. 2.10.1) (Camacho et al., 2009) with default parameters for accuracy. Files were sorted and 

183 indexed with Samtools (v. 1.4.1) (Li et al., 2009) and Bamtools (v. 2.4.0) (Barnett et al., 2011). 

184 Sequences were aligned to the intIOPS reference sequence with the MUSCLE Multiple 

185 Alignment tool (Edgar, 2004). A manually curated consensus was created. This contig (InOPS 

186 contig) bearing the InOPS integron was validated by Sanger sequencing. 

187 The contig was annotated using different annotation tools and pipelines to gain as much 

188 accuracy as possible. The open reading frames (ORFs) and coding sequences were predicted 

189 using Prokka (--meta and --evalue 1e-06) (v. 1.14.6) (Seemann, 2014), DFAST (--

190 Metageannotator) (v. 1.5.0) (Tanizawa et al., 2018), RASTtk (Brettin et al., 2015), Contig 
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191 Annotation Tool (CAT_prepare_20210107 and --add_names) (v. 5.0.3) (von Meijenfeldt et al., 

192 2019), MetaGeneAnnotator (--meta option) (Noguchi et al., 2008), MetaGeneMark (v. 3.25) 

193 (Zhu et al., 2010) and/or GeneMarkS (Besemer et al., 2001)/S-2 (Lomsadze et al., 2018). 

194 Integron Finder (v. 1.5.1) (Cury et al., 2016) was used for integron detection (--local-max 

195 --evalue-attc 1) and attC sites detection (--local-max --evalue-attc 4 and --dt 6000). attC 

196 secondary structure was predicted using mfold (UNAFold) (Markham & Zuker, 2008) and the 

197 RNAfold program (ViennaRNA Package) (-- p –d2) (Lorenz et al., 2011). The attI site was 

198 searched manually and aligned against an attI site database constructed from (Collis & Hall, 

199 2004; Elsaied, Stokes, Kitamura et al., 2011; Nield et al., 2001; Partridge et al., 2000). 

200 Promoters were identified using BPROM (Solovyev & Salamov, 2011) and PePPER (de Jong 

201 et al., 2012) and further manually curated. The putative functionality of the annotated genes 

202 was inferred through Prokka, DFAST, RASTtk, EggNOG-mapper (--evalue 0.001 --itype 

203 metagenome --genepred prodigal --pfam_realign none) (v. 2.1.6) (Cantalapiedra et al., 2021), 

204 InterProScan (--pathways --goterms) (v. 5.54-87.0) (Jones et al., 2014) and HMMER (--

205 hmmscan) (v. 2.41.2) (Potter et al., 2018) against different databases (NCBI, SEED, Clusters 

206 of Orthologs Groups (COGs), Pfam, SMART, TIGRFAM, SFLD, SUPERFAMILY, PANTHER, 

207 Gene3d, HAMAP, PROSITE, Coils, PRINTS, PIRSR, PIRSF). The genes annotated as 

208 putative gene cassettes were confronted to the INTEGRALL database (Moura, Soares et al., 
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209 2009) using local BLASTn algorithm. Kraken2 (v. 2.1.1) (Wood et al., 2019) and CAT were 

210 used to perform taxonomic classification of the annotated genes. 

211 Insertion sequences (IS) were annotated using ISsaga (v. 2.0) (Varani et al., 2011) and 

212 OASIS (Robinson et al., 2012). The putative insertion sequences (IS) were further analysed 

213 with the ISFinder (Siguier et al., 2006) BLAST interface. IS putative ORFs were compared 

214 against local IS91 and ISCR databases through local Blastp algorithm. Group II introns were 

215 identified against the bacterial Group II intron database (Candales et al., 2012). 

216 For synteny analysis, the annotated genes within the InOPS contig were compared to 

217 databases through BLAST searches (https://blast.ncbi.nlm.nih.gov/Blast.cgi): blastn against 

218 the nr/nt database and the wgs database (Desulfobacterales taxid: 23118); blastx and blastp 

219 against nr/nt and env_nr databases (NCBI). Resultant genomes (> 70% identity and 50% 

220 coverage) were downloaded from NCBI constituting a database of 76 genomes after 

221 dereplication. The genomic dataset was submitted to M1CR0B1AL1Z3R (Avram et al., 2019) 

222 along with the InOPS contig. Two different ortholog detections (≥ 80 or 50% identity and 0.01 

223 as maximal e-value) were performed. To refine the ortholog detection, a second 

224 M1CR0B1AL1Z3R was run over the genomes which produced a hit in the first run. 

225 SimpleSynteny (Veltri et al., 2016) was used for visualization with parameters in regular mode 

226 (1 e-value and 25% coverage) using the all-to-all comparison mode. 
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227 2.5. Conservation and phylogeny of the InOPS integrase

228 InOPS integrase (IntIOPS) was compared against available databases (INTEGRALL 

229 (Moura, Soares et al., 2009) and NCBI) using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 

230 in blastn, blastx and blastp mode. IntIOPS, IntI1-4 (AHL30833.1, AAT72891.1, AAO32355.1, 

231 AAC38424.1) whose functionality has been largely studied, IntIs issued from natural 

232 environments (IntINeu: WP_011112687.1, InPstQ: AAN16061.1, SamIntIA: WP_011759470.1, 

233 IntIPac: AAK73287.1, IntISon: WP_011072111.1) whose activity has been experimentally 

234 proved and the Escherichia coli XerD recombinase (P0A8P8.1) were aligned using MUSCLE 

235 Multiple Alignment tool (Edgar, 2004). The alignment was manually edited with BioEdit® 

236 software. 

237 For the IntI tree, a dataset was built by selecting 128 amino acid sequences of complete 

238 integron integrases (IntI). Sequences were retrieved from nr/nt and env_nr databases (NCBI) 

239 using both blastx and blastp and selected based on their identity to the integrase of the InOPS 

240 integron, IntIOPS (≥ 50% identity and coverage). To avoid redundancy, the sequences were 

241 clustered to 90% identity using CD-HIT. Within each cluster, the representative sequence was 

242 kept and, considering its environmental origin, the closest sequence from each different 

243 environmental origin, if any, were identified and kept too. Sequences of clinical IntIs, IntI1-IntI4 

244 (AHL30833.1, AAT72891.1, AAO32355.1, AAC38424.1), and the integron integrases 
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245 belonging to the genus Desulfosarcina (WP_051374975.1, WP_027353082.1, BBO66607.1, 

246 BBO93164.1, BBO87010.1, BBO79603.1, WP_083456647.1, WP_198012316.1, 

247 WP_155322972.1) were also included. The final dataset comprised 107 integron integrase 

248 sequences. The tyrosine recombinase XerD sequence of Escherichia coli (P0A8P8.1) was 

249 included as outgroup for the construction of the tree. Analysis were done using NGPhylogeny.fr 

250 (Lemoine et al., 2019) with the options of MAFFT align and BMGE alignment curation. The 

251 PhyML program (Guindon et al., 2010) was used for tree construction with the SMS option 

252 (Lefort et al., 2017) and a bootstrapping branch support of 1000. The tree was submitted to 

253 iTOL (Letunic & Bork, 2021) for visualization and design. 

254

255 3. Results

256 3.1. Mimicking environmental disturbance identified InOPS as a putative adaptive integrons

257 We investigated coastal sediments exposed to oil contamination in mesocosms to trigger 

258 microbial community adaptive response (Stauffert et al., 2013). We revealed, using PCR 

259 targeting integron integrase genes (intI) (Abella, Bielen, et al., 2015), the predominance of a 

260 sequence, named intIOPS. This sequence represented nearly 27% (over 156 amplicon 

261 sequences) of the intI pool in the amplicon libraries generated from the mesocosms incubated 

262 under oil contamination while no intIOPS sequences (over 46 amplicon sequences) were 
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263 detected in the library generated from the control (without contamination). Diversity indexes 

264 supported the lower diversity and divergent relative abundance of intI in the contaminated 

265 sediments compared to the control (Shannon: 3.14 and 3.41 vs 3.61, Evenness: 0.82 and 0.87 

266 vs 0.98). The increase of intIOPS after contamination was further supported using quantitative 

267 PCR (Fig. S1). Therefore, intIOPS might belong to an environmental integron responding to 

268 the oil contamination. We named this integron InOPS.

269 3.2. Based FUDGE CRISPR-Cas9 enrichment to target intIOPS integrase gene

270 The InOPS integron was recovered from the complex microbial metagenome by an 

271 innovative approach derived from FUDGE (Stangl et al., 2020), a CRISPR-Cas9 enrichment 

272 method coupled to nanopore sequencing, that only targets a short-conserved sequence (Fig. 

273 2A for full description). Two crRNAs were designed within a 62 bp region of the intIOPS 

274 additional domain to obtain both flanking unknown regions (Fig. 2A, 2B). Sequencing of the 

275 enriched nanopore libraries representing 1.21 Gb of sequence data resulted in 546 194 good 

276 quality reads (N50: 3 337 bp, average read length: 1 453.6 bp). We recovered 90 reads 

277 towards the 3’ unknown part of the integron containing the array of gene cassettes (N50: 4 258 

278 bp, longest read: 13 201 bp) and 51 reads towards the 5’ unknown part of the integron 

279 corresponding to the genetic context (N50: 4 146 bp, longest read: 8 606 bp) (Fig. 2B). Overall, 
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280 0.03% of the reads covered the targeted sequences. The consensus contig (20 069 bp) was 

281 further polished using Sanger sequencing.

282 3.3. Unraveling the InOPS full integron platform structure and its genetic context

283 The contig annotation showed that the complete InOPS integron was recovered. It exhibited 

284 the typical integron features (Sandoval-Quintana et al., 2022): an integron integrase gene, 

285 putative functional attI site, PintI and Pc promoters and regulator binding sites, as well a gene 

286 cassette array (Fig. 3; Fig. S2; Tables S1 and S2). The integrase possessed the catalytic 

287 residues and most of the conserved motifs of integron integrases (Messier & Roy, 2001) (Fig. 

288 S3) suggesting the enzyme is functional. It only presented 72% identity to its closest relative 

289 and was divergent from the clinical integron integrase classes (≤ 50% identity). InOPS 

290 integrase clustered with integron integrases issued from environmental sources, in a 

291 consistent manner from marine environments from which InOPS originated, and with integron 

292 integrases belonging to Desulfobacterota (Fig. S4). 

293 The cassette array consists of 12 gene cassettes with their own attC recombination site. 

294 Variable in length and sequences, 8 attC presented the typical secondary structure of attC 

295 sites suggesting their possible recombinogenic activity (Fig. S5). Most gene cassettes (apart 

296 the first one) encoded unknown functions or were ORFans, while others exhibited conserved 
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297 domains without obvious relationships with the oil contamination. Moreover, none were 

298 referenced as gene cassettes in the INTEGRALL database (Moura, Soares et al., 2009).

299 Interestingly, several mobile genetic elements (MGEs) were intertwined with InOPS. The 

300 first gene cassette contained a complete IS of the IS91 family. IS91 can mobilize adjacent DNA 

301 sequences and therefore participate in genomic plasticity (Garcillán-Barcia & de la Cruz, 

302 2002). Here, it might disseminate InOPS elements. The 5’ InOPS genetic context harbored a 

303 complete IS1634 as well as other putative IS-like elements (Table S3). Such configurations 

304 have been previously described (Cury et al., 2016; Huyan et al., 2020). A putative CALIN 

305 embedded within this IS-rich region was also consistent with their frequent association with IS 

306 (Cury et al., 2016). Additionally, reverse transcriptase and maturase domains of a putative 

307 group IIB intron were identified in the 3’ InOPS genetic context. Of note, group II introns have 

308 previously been observed associated with integrons (Léon & Roy, 2009; Sonbol & Siam, 2021), 

309 and in some cases, hypothesized to be implicated in the genesis of gene cassettes (Léon & 

310 Roy, 2009).

311 3.4. Deciphering the origin of InOPS

312 The lack of synteny evidenced that the configuration of ORFs within the contig is unique. 

313 Variation in GC content over the contig clearly distinguished the gene cassettes (except IS91) 

314 from the genetic context (Fig. 3), suggesting a different origin. The genetic context gave clues 
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315 about the InOPS host, likely belonging to Desulfobacterales (Table S1) and more precisely to 

316 Desulfosarcina ovata, a sulfate-reducing hydrocarbon-degrading and marine bacteria 

317 (Watanabe et al., 2020). However, InOPS integrase divergence from Desulfosarcina 

318 integrases suggests the acquisition of InOPS functional platform from another 

319 Desulfobacterota (Fig. S4).

320

321 4. Discussion 

322 With CRISPR-Cas9 enrichment we propose a new strategy in microbial metagenomics to 

323 capture large and specific regions in a simple way, without DNA amplification, with minimum 

324 required information, and avoiding time-consuming and haphazard metagenomic mining. 

325 While all our previous attempts failed, thanks to CRISPR-Cas9 enrichment, we retrieved and 

326 reliably deciphered the complete structure of the InOPS environmental integron. InOPS is an 

327 example of low abundant metagenomic regions but also complex, harboring repetitive 

328 sequences that jeopardize the use of standard metagenomic approaches. 

329 Although the percentage of reads targeting the region we wished to study appeared low, 

330 the reads generated was abundant enough to retrieve InOPS. This case study demonstrated 

331 the efficiency of CRISPR-Cas9 enrichment in microbial metagenomics. It allowed to reach a 

332 level of resolution rarely equaled in the study of environmental integrons. Most gene cassettes 
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333 encoded unknown functions or were ORFans, a common feature for environmental integrons 

334 (Pereira et al., 2020), raising more broadly the question about the origin of gene cassettes of 

335 integrons. Thus, the functions of InOPS gene cassettes are mostly unresolved, precluding 

336 conclusions about their ecological importance. Because we inferred the InOPS host, likely a 

337 hydrocarbonoclastic marine bacteria, the adaptive potential of InOPS facing oil contamination 

338 remains questionable. Tight association of InOPS with MGEs highlight that this region is 

339 subjected to genomic plasticity, as previously suggested for integrons in hypersaline 

340 environments (Sonbol & Siam, 2021), and might promote genetic novelty. 

341 CRISPR-Cas9 enrichment offers the opportunity to reconsider studies that have previously 

342 identified adaptive gene cassettes (e.g., Elsaied, Stokes, Yoshioka et al., 2014; Koenig, Sharp 

343 et al., 2009; Nemergut et al., 2004) or environmental integron integrases (e.g., Abella, Fahy, 

344 et al., 2015; Elsaied, Stokes, Nakamura et al., 2007; Nield et al., 2001). Compiling such case 

345 studies, complemented with further molecular investigation on functionality and dynamics of 

346 integrons, could serve as a lever to assess the eco-evolutionary significance of environmental 

347 integrons. For instance, it could be of interest to decipher the interplay of environmental 

348 integrons with MGEs more comprehensively.

349 Overall, InOPS constitute a proof of concept that opens perspectives to document the dark 

350 matter of metagenomes and for which little information is available.
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639

640 Figures with captions

641 Figure 1. Integron general structure and functioning. Integrons are formed by a functional 
642 platform composed of a gene (intI) encoding an integrase (IntI), a promoter (Pc), and a 
643 recombination site (attI). Usually an array of gene cassettes follows this platform. The gene 
644 cassettes generally consist of an open reading frame (ORF) and a recombination site (attC). 
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645 The integron integrase catalyses the insertion and excision of gene cassettes by site-specific 
646 recombination. The promoters Pc (two possible locations) and PintI allow the expression of the 
647 gene cassettes and integrase, respectively. 
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649 Figure 2. Recovery of InOPS reads by CRISPR-Cas9 enrichment and nanopore sequencing. 
650 A) General workflow of CRISPR-Cas9 enrichment. 1) Dephosphorylation of metagenomic 
651 DNA, 2) Specific Cas9 cleavages guided by the crRNAs. The two CRISPR RNA (crRNA) target 
652 a short and known sequence of the region of interest, in order to ensure the sequencing of 
653 both sides of this region in an overlapping manner. The design of crRNA requires the presence 
654 of a PAM site (5’-NGG-3’) on the target sequences. The crRNA and the trans-activating 
655 CRISPR RNA (tracrRNA) link to the Cas9 nuclease constitute the ribonucleoprotein (RNP) 
656 complex. Once bound to the DNA, Cas9 produce a double-strand cleavage in the DNA in the 
657 15-30 bp prior to the PAM site. 3) dA-tailing, adapters ligation and directed ONT sequencing. 
658 After dA-tailing, Oxford Nanopore Technology (ONT) specific sequencing adapters are ligated 
659 only to the DNA containing the PAM sequence, while the other end is blocked by Cas9 enzyme. 
660 Therefore, the sequencing is directed on only one direction spanning towards the unknown 
661 region of the targeted sequence. Merging both enrichment allows to sequence at the same 
662 time the whole region of interest. B) Directional design of crRNA guides to target the gene 
663 intIOPS and read mapping: 1) the crRNAs target a region within the additional domain (AD) of 
664 the InOPS integrase gene (intIOPS): positions 500 to 567 of the reference sequence (partial 
665 intIOPS, accession number FR718193.1). The PAM sites (5’-NGG-3’) are indicated in violet. 
666 The arrows, in green and in blue, represent the direction of sequencing, towards the InOPS 
667 genetic context (5’ unknown of the integron) and towards the gene cassette array (3’ unknown 
668 of the integron), respectively. 2) Mapping of the recovered reads against the intIOPS reference 
669 sequence. 

670
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671

672 Figure 3. InOPS contig and annotated features. The 20 069 bp InOPS contig is presented. The 
673 complete InOPS integron comprises the intIOPS gene (red) encoding an integron integrase 
674 and a gene cassette array. The attI (green) and attC (purple if search parameter: --evalue-attC 
675 1; lighter purple if search parameter: --evalue-attC 4) recombination sites are presented. A 
676 CALIN (cluster of attC sites lacking integron-integrases) is found within the 5’-InOPS genetic 
677 context. CDS encoding hypothetical proteins with no further annotation are represented in 
678 yellow. The CDS with annotations related to putative MGEs are represented in blue. The GC 
679 percentage along the contig is presented below the contig schema. 

680
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Figure 1. Integron general structure and functioning. Integrons are formed by a functional platform 
composed of a gene (intI) encoding an integrase (IntI), a promoter (Pc), and a recombination site (attI). 
Usually an array of gene cassettes follows this platform. The gene cassettes generally consist of an open 
reading frame (ORF) and a recombination site (attC). The integron integrase catalyses the insertion and 
excision of gene cassettes by site-specific recombination. The promoters Pc (two possible locations) and 

PintI allow the expression of the gene cassettes and integrase, respectively. 
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Figure 3. InOPS contig and annotated features. The 20 069 bp InOPS contig is presented. The complete 
InOPS integron comprises the intIOPS gene (red) encoding an integron integrase and a gene cassette array. 
The attI (green) and attC (purple if search parameter: --evalue-attC 1; lighter purple if search parameter: --
evalue-attC 4) recombination sites are presented. A CALIN (cluster of attC sites lacking integron-integrases) 
is found within the 5’-InOPS genetic context. CDS encoding hypothetical proteins with no further annotation 
are represented in yellow. The CDS with annotations related to putative MGEs are represented in blue. The 

GC percentage along the contig is presented below the contig schema. 
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