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Shape optimization for contact problem involving Signorini
unilateral conditions

Aymeric Jacob de Cordemoy∗

March 26, 2023

Abstract

This paper investigates a shape optimization problem involving the Signorini unilateral
conditions in a linear elastic model, without any penalization procedure. The shape sensitiv-
ity analysis is performed using tools from convex and variational analysis such as proximal
operators and the notion of twice epi-differentiability. We prove that the solution to the Sig-
norini problem admits a directional derivative with respect to the shape, and we characterize
it as the solution to another Signorini problem. Then, the shape gradient of the corresponding
energy functional is explicitly characterized which allows us to perform numerical simulations
to illustrate this methodology.

Keywords: Shape optimization, shape sensitivity analysis, shape derivative, Signorini unilat-
eral conditions, variational inequalities, proximal operator, twice epi-differentiability.

AMS Classification: 49Q10, 49J40, 35J86, 74M15, 74P10.

1 Introduction
Motivation. On the one hand, mechanical contact models are used to study the deformation
of solids that touch each other on parts of their boundaries. One of the mechanical setting con-
sists in a deformable body which is in contact with a rigid foundation without penetrating it
and frictionless. From the mathematical point of view, the non-permeability conditions take the
form of inequalities on the contact surface called Signorini unilateral conditions (see, e.g., [37, 38]).
Thus, those mechanical contact problems are usually investigated through the theory of variational
inequalities, and the Signorini unilateral conditions cause nonlinearities in the corresponding vari-
ational formulations. On the other hand, shape optimization is the mathematical field aimed at
finding the optimal shape of a given object for a given criterion, that is the shape which mini-
mizes a certain cost functional while satisfying given constraints. In order to numerically solve a
shape optimization problem, the standard gradient descent method requires to compute the shape
gradient of the cost functional.

Shape optimization problems with mechanical contact models involving Signorini unilateral
conditions have already been studied in the literature, and classical techniques to compute material
and shape derivatives are based on Mignot’s theorem (see [26]) about the conical differentiability of
projection operators on nonempty polyhedric closed convex sets (see, e.g, [16, 25, 39]). The material
and shape derivatives are usually characterized with abstract variational inequalities, thus cause
difficulties to compute a suitable shape gradient of the cost functional. These difficulties are
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usually solved in the literature using a penalization procedure (see, e.g., [22]), which consists in
adding a penalty functional in the optimization problem associated with the model, in order to
handle the constraints due to the Signorini unilateral conditions (for instance by considering the
Moreau’s envelope of the indicator function of the constraint set). Hence, the optimality condition
is described by a variational equality (see, e.g., [6, 9, 21, 23]). However this penalization method
does not take into account the exact characterization of the solution and may perturb the original
nature of the model.

In this paper we investigate a shape optimization problem involving the Signorini unilateral
conditions, using a new methodology based on tools from convex and variational analysis such as
the notion of proximal operator introduced by J.J. Moreau in 1965 (see [28]) and the notion of twice
epi-differentiability introduced by R.T. Rockafellar in 1985 (see [31]). Note that we have already
studied the feasibility of this methodology on a shape optimization problem involving the scalar
Tresca friction law (see [3]). First this new methodology allows us to recover the same results
obtained in [9], [25, Chapter 5 Section 5.2 p.111] and [39, Chapter 4 Section 4.6 p.205]. Indeed, if a
nonempty closed convex set is polyhedric, then from Mignot’s theorem the projection operator on
this set is conically differentiable, and its conical derivative coincides with the proximal operator
associated with the second-order epi-derivative of the appropriate indicator function, and thus our
approach coincides with that used in the literature. Second the main novelty of the present work is
that, under appropriate assumptions, our method permits to characterize the material and shape
derivatives of the solution to the Signorini problem as the solutions to other Signorini problems.
This point, to the best of our knowledge, has never been noticed in the literature. Furthermore,
by using this new characterization, we obtain an explicit expression of the shape gradient of the
corresponding energy functional. Therefore, without using any penalization procedure, the present
work can be seen as a complement and an extension of the previous articles on this subject.

Description of the shape optimization problem and methodology. In this paragraph, we
use standard notations which are recalled in Subsection 2.4. Let d ∈ {2, 3} which represents the
dimension, f be a function in H1(Rd,Rd), Ωref be a nonempty connected bounded open subset
of Rd with Lipschitz boundary Γref := ∂Ωref , such that Γref = ΓD ∪ ΓSref

, where ΓD and ΓSref
are

two measurable pairwise disjoint subsets of Γref , and ΓD has a positive measure.
In this paper we consider the shape optimization problem given by

minimize
Ω∈Uref

|Ω|=|Ωref |

J (Ω), (1.1)

where

Uref :=

{
Ω ⊂ Rd | Ω nonempty connected bounded open subset of Rd

with Lipschitz boundary Γ := ∂Ω such that ΓD ⊂ Γ}, (1.2)

with the volume constraint |Ω| = |Ωref | > 0, Ω is an elastic solid satisfying the linear elastic model,
for all Ω ∈ Uref , and where J : Uref → R is the Signorini energy functional defined by

J (Ω) :=
1

2

∫
Ω

Ae (uΩ) : e (uΩ)−
∫
Ω

f · uΩ, (1.3)

where uΩ ∈ H1
D(Ω,Rd) stands for the unique solution to the Signorini problem given by

−div(Ae(u)) = f in Ω,
u = 0 on ΓD,

στ (u) = 0 on ΓS,
un ≤ 0, σn(u) ≤ 0 and unσn(u) = 0 on ΓS,

(SPΩ)
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where, for all Ω ∈ Uref , Γ := ∂Ω, ΓS := Γ\ΓD, n is the outward-pointing unit normal vector to Γ
and

H1
D(Ω,Rd) :=

{
v ∈ H1(Ω,Rd) | v = 0 a.e. on ΓD

}
.

Recall that, in linear elasticity, A is the stiffness tensor, e is the infinitesimal strain tensor, σn

is the normal stress, στ is the shear stress, and f models volume forces (see Subsection 2.4 for
details). The normal boundary condition on ΓS is known as the Signorini unilateral conditions
which described the non-permeability of ΓS (that is un ≤ 0), and that there are only compressive
stresses exerted on ΓS (that is σn(u) ≤ 0). Note that we focus here on minimizing the energy
functional (as in [15, 19, 40]) which corresponds to maximize the compliance (see [5]).

For any Ω ∈ Uref , the unique solution uΩ to (SPΩ) satisfies∫
Ω

Ae(uΩ) : e(v − uΩ) ≥
∫
Ω

f · (v − uΩ), ∀v ∈ K1(Ω),

where K1(Ω) is the nonempty closed convex subset of H1
D(Ω,Rd) given by

K1(Ω) :=
{
v ∈ H1

D(Ω,Rd) | vn ≤ 0 a.e. on ΓS

}
,

and is characterized by uΩ = projK1(Ω)(FΩ), where FΩ ∈ H1
D(Ω,Rd) is the unique solution to the

Dirichlet-Neumann problem −div(Ae(F )) = f in Ω,
F = 0 on ΓD,

Ae(F )n = 0 on ΓS,

and where projK1(Ω) stands for the projection operator on K1(Ω). We refer for instance to [2] for
details on existence/uniqueness and characterization of the solution to Problem (SPΩ). In order
to use our methodology, which is based, in particular, on the twice epi-differentiability and on the
proximal operator, we characterize uΩ as (see Remark 2.10)

uΩ = proxιK1(Ω)
(FΩ),

where proxιK1(Ω)
is the proximal operator associated with the Signorini indicator function ιK1(Ω),

which is defined by ιK1(Ω)(v) := 0 if v ∈ K1(Ω), and ιK1(Ω)(v) := +∞ otherwise. To deal with the
numerical treatment of the above shape optimization problem, a suitable expression of the shape
gradient of J is required. To this aim, we follow the classical strategy developed in the shape
optimization literature (see, e.g., [5, 20]). Consider Ω0 ∈ Uref and a direction θ ∈ C2,∞

D (Rd,Rd),
where

C2,∞
D (Rd,Rd) :=

{
θ ∈ C2(Rd,Rd) ∩W2,∞(Rd,Rd) | θ = 0 on ΓD

}
.

Then, for any t ≥ 0 sufficiently small such that id + tθ is a C2-diffeomorphism of Rd, we denote
by Ωt := (id + tθ)(Ω0) ∈ Uref and by ut := uΩt ∈ H1

D(Ωt,Rd), where id : Rd → Rd stands for
the identity operator. To get an expression of the shape gradient of J at Ω0 in the direction θ,
the first step naturally consists in obtaining an expression of the derivative of the map t ∈ R+ 7→
ut ∈ H1

D(Ωt,Rd) at t = 0. To overcome the issue that ut is defined on the moving domain Ωt, the
classical change of variables id+tθ is considered, and we prove that ut := ut◦(id+tθ) ∈ H1

D(Ω0,Rd)
is the unique solution to the variational inequality∫

Ω0

JtA
[
∇ut (I + t∇θ)

−1
]
: ∇(v − ut) (I + t∇θ)

−1 ≥
∫
Ω0

ftJt · (v − ut) ,

for all v ∈ K1
t (Ω0) :=

{
v ∈ H1

D(Ω0,Rd) | v · (I + t∇θ⊤)−1n ≤ 0 a.e. on ΓS0

}
, where n refers now to

the outward-pointing unit normal vector to Γ0, ft := f ◦(id+tθ) ∈ H1(Rd,Rd), Jt := det(I+t∇θ) ∈
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L∞(Rd,R) is the Jacobian, ∇θ stands for the standard Jacobian matrix of θ and I is the identity
matrix of Rd×d. Now, to obtain an expression of the derivative of the map t ∈ R+ 7→ ut ∈
H1

D(Ω0,Rd) at t = 0, which will be denoted by u′
0 ∈ H1

D(Ω0,Rd) and called material directional
derivative, we write that ut = proxι

K1
t (Ω0)

(Ft), where Ft ∈ H1(Ω0,Rd) is the unique solution to the
parameterized variational equality∫

Ω0

JtA
[
∇Ft (I + t∇θ)

−1
]
: ∇v (I + t∇θ)

−1
=

∫
Ω0

ftJt · v, ∀v ∈ H1
D(Ω0,Rd),

and proxι
K1

t (Ω0)
is the proximal operator associated with the indicator function ιK1

t (Ω0) consid-

ered on the Hilbert space H1
D(Ω0,Rd) endowed with a perturbed scalar product (see details in

Subsection 3.1).
To deal with the differentiability (in a generalized sense) of the proximal operator, we use

the same methodology already described in our paper [3], where we invoke the notion of twice
epi-differentiability for convex functions (see [31]), which leads to the protodifferentiability of the
corresponding proximal operators.

Let us emphasize that, in this paper, we do not prove theoretically the existence of a solution
to the shape optimization problem (1.1). The interested reader can find some related existence
results (for very specific geometries in the two dimensional case) in [17].

Main theoretical results. We summarize here our main theoretical results (given in Theo-
rems 3.5 and 3.10). However we present the material and shape directional derivatives, and the
shape gradient of J under some additional regularity assumptions, precisely in the framework of
Corollaries 3.6, 3.8 and 3.11, because their expressions are more elegant in that case.

(i) Under some appropriate assumptions described in Corollary 3.6, the map t ∈ R+ 7→ ut ∈
H1

D(Ω0,Rd) is differentiable at t = 0, and the material directional derivative u′
0 ∈ H1

D(Ω0,Rd)
is the unique weak solution to the Signorini problem



−div(Ae(u′
0)) = ℓ(θ) in Ω0,
u′
0 = 0 on ΓD,

στ (u′
0) = hm(θ)τ on ΓS0

,
σn(u′

0) = hm(θ)n on Γ
S
u0n
0,N

,

u′
0n = (∇θu0)n on Γ

S
u0n
0,D

,

u′
0n ≤ (∇θu0)n , σn(u′

0) ≤ hm(θ)n and
(
u′
0n − (∇θu0)n

) (
σn(u′

0)− hm(θ)n
)
= 0 on Γ

S
u0n
0,S

,

where hm(θ) := ((Ae(u0))∇θ⊤ +A(∇u0∇θ)− σn(u0)(div(θ)I +∇θ⊤))n ∈ L2(Γ0,Rd), ℓ(θ)
= −div(Ae(∇u0θ)) ∈ L2(Ω0,Rd) and ΓS0

is decomposed, up to a null set, as ΓS
u0n
0,N

∪ΓS
u0n
0,D

∪
ΓS

u0n
0,S

(see details in Corollary 3.6).

(ii) We deduce in Corollary 3.8 that, under appropriate assumptions, the shape directional deriva-
tive, defined by u′

0 := u′
0 −∇u0θ ∈ H1

D(Ω0,Rd) (which corresponds, roughly speaking, to the
derivative of the map t ∈ R+ 7→ ut ∈ H1

D(Ωt,Rd) at t = 0), is the unique weak solution to
the Signorini problem

−div(Ae(u′
0)) = 0 in Ω0,
u′
0 = 0 on ΓD,

στ (u
′
0) = hs(θ)τ on ΓS0 ,

σn(u
′
0) = hs(θ)n on Γ

S
u0n
0,N

,

u′
0n = W (θ)n on Γ

S
u0n
0,D

,

u′
0n ≤ W (θ)n, σn(u

′
0) ≤ hs(θ)n and (u′

0n −W (θ)n) (σn(u
′
0)− hs(θ)n) = 0 on Γ

S
u0n
0,S

,
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where W (θ) := (∇θu0)− (∇u0θ) ∈ H1/2(Γ0,Rd),

hs(θ) := θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)
−∇(Ae(u0)n)θ − σn(u0)

(
divτ (θ)I +∇θ⊤

)
n ∈ L2(Γ0,Rd),

and where ∂n (Ae(u0)n) := ∇(Ae(u0)n)n is the normal derivative of Ae(u0)n, and ∂n (Ae(u0))
is the matrix whose the i-th line is the vector ∂n (Ae(u0)i) := ∇(Ae(u0)i)n, where Ae(u0)i is
the i-th line of the matrix Ae(u0), for all i ∈ [[1, d]].

(iii) Finally the two previous items are used to obtain Corollary 3.11 asserting that, under ap-
propriate assumptions, the shape gradient of J at Ω0 in the direction θ is given by

J ′(Ω0)(θ) =

∫
ΓS0

(
θ · n

(
Ae(u0) : e(u0)

2
− f · u0

)
+Ae(u0)n · (∇θu0 −∇u0θ)

)
.

One can notice that J ′(Ω0) depends only on u0 (and not on u′
0), thus its expression is explicit

and linear with respect to the direction θ and allows us to exhibit a descent direction of J
(see Section 4 for details). Hence, using this descent direction together with a basic Uzawa
algorithm to take into account the volume constraint, we perform in Section 4 numerical
simulations to solve the shape optimization problem (1.1) on a two-dimensional example.

Organization of the paper. The paper is organized as follows. Section 2 is dedicated to some
basic recalls from convex, variational and functional analysis, capacity theory, differential geometry
and boundary value problems involved all along the paper. Section 3 is the core of the present
work where the main theoretical results are stated and proved. Finally, in Section 4, numerical
simulations are performed to solve the shape optimization problem (1.1) on a two-dimensional
example.

2 Reminders
In this section we start with some notions from convex, variational and functional analysis in

Subsection 2.1, some concepts from capacity theory in Subsection 2.2, some results on differential
geometry in Subsection 2.3, and then we conclude with some reminders on boundary value problems
in Subsection 2.4.

2.1 Notions from convex, variational and functional analysis
For notions and results presented in this section, we refer to standard references such as [8, 27,

30] and [33, Chapter 12]. In what follows (H, ⟨·, ·⟩H) stands for a general real Hilbert space.

Definition 2.1 (Polar cone). Let P be a nonempty subset of H. The polar cone to P is the
nonempty closed convex subset of H defined by

P◦ := {z ∈ H | ⟨z, p⟩H ≤ 0,∀p ∈ P} .

Definition 2.2 (Normal cone). Let C be a nonempty closed convex subset of H and x ∈ C. The
normal cone to C at x is the nonempty closed convex cone of H defined by

NC(x) := {z ∈ H | ⟨z, c− x⟩H ≤ 0,∀c ∈ C} .
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Definition 2.3 (Tangent cone). Let C be a nonempty closed convex subset of H and x ∈ C. The
tangent cone to C at x is the nonempty closed convex cone of H defined by

TC(x) := {z ∈ H | ∃λ > 0, x+ λz ∈ C}.

Definition 2.4 (Polyhedric set). Let C be a nonempty closed convex subset of H. We say that C
is polyhedric at x ∈ C for y ∈ NC(x) if

TC(x) ∩ (Ry)⊥ = {z ∈ H | ∃λ > 0, x+ λz ∈ C} ∩ (Ry)⊥.

Remark 2.5. Recall that, in finite dimension, polyhedric sets reduce to polyhedral sets, which is
the intersection of a finite set of closed half-spaces (see, e.g., [24]).

Definition 2.6 (Domain and epigraph). Let ϕ : H → R ∪ {±∞}. The domain and the epigraph
of ϕ are respectively defined by

dom (ϕ) := {x ∈ H | ϕ(x) < +∞} and epi (ϕ) := {(x, t) ∈ H × R | ϕ(x) ≤ t} .

Recall that ϕ : H → R∪{±∞} is said to be proper if dom(ϕ) ̸= ∅ and ϕ(x) > −∞ for all x ∈ H.
Moreover, ϕ is a convex (resp. lower semi-continuous) function on H if and only if epi(ϕ) is a convex
(resp. closed) subset of H× R.

Definition 2.7 (Convex subdifferential operator). Let ϕ : H → R ∪ {+∞} be a proper function.
We denote by ∂ϕ : H ⇒ H the convex subdifferential operator of ϕ, defined by

∂ϕ(x) := {y ∈ H | ∀z ∈ H, ⟨y, z − x⟩H ≤ ϕ(z)− ϕ(x)} ,

for all x ∈ H.

Example 2.8. Let C be a nonempty closed convex subset of H, and ιC be the indicator function
of C, defined by ιC(x) := 0 if x ∈ C, and ιC(x) := +∞ otherwise. Then, for all x ∈ C,

∂ιC(x) = NC(x).

Definition 2.9 (Proximal operator). Let ϕ : H → R ∪ {+∞} be a proper lower semi-continuous
convex function. The proximal operator associated with ϕ is the map proxϕ : H → H defined by

proxϕ(x) := argmin
y∈H

[
ϕ(y) +

1

2
∥y − x∥2H

]
= (I + ∂ϕ)−1(x),

for all x ∈ H, where I : H → H stands for the identity operator.

Remark 2.10. Note that, if ϕ := ιC, where ιC is the indicator function of a nonempty closed
convex subset C ⊂ H, then ιC is a proper lower semi-continuous convex function and

proxιC = projC,

where projC is the projection operator on C.

It is well-known that, if ϕ : H → R∪ {+∞} is a proper lower semi-continuous convex function,
then ∂ϕ is a maximal monotone operator (see, e.g., [30]), and thus the proximal operator proxϕ
is well-defined, single-valued and nonexpansive, i.e. Lipschitz continuous with modulus 1 (see,
e.g., [8, Chapter II]).
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As mentioned in Introduction, the unique solution to the Signorini problem considered in
this paper can be expressed via the proximal operator of the associated Signorini indicator func-
tion ιK1(Ω). Therefore the shape sensitivity analysis of this problem is related to the differentiability
(in a generalized sense) of the involved proximal operator. To investigate this issue, we will use the
notion of twice epi-differentiability (see [31]) defined as the Mosco epi-convergence of second-order
difference quotient functions. Our aim in what follows is to provide reminders and backgrounds
on these notions for the reader’s convenience. For more details, we refer to [33, Chapter 7, Section
B p.240] for the finite-dimensional case and to [13] for the infinite-dimensional case. The strong
(resp. weak) convergence of a sequence in H will be denoted by → (resp. ⇀) and note that all
limits with respect to t will be considered for t → 0+.

Definition 2.11 (Mosco-convergence). The outer, weak-outer, inner and weak-inner limits of a
parameterized family (At)t>0 of subsets of H are respectively defined by

lim supAt :=
{
x ∈ H | ∃(tn)n∈N → 0+,∃ (xn)n∈N → x, ∀n ∈ N, xn ∈ Atn

}
,

w-lim supAt :=
{
x ∈ H | ∃(tn)n∈N → 0+,∃ (xn)n∈N ⇀ x,∀n ∈ N, xn ∈ Atn

}
,

lim inf At :=
{
x ∈ H | ∀(tn)n∈N → 0+,∃ (xn)n∈N → x, ∃N ∈ N,∀n ≥ N, xn ∈ Atn

}
,

w-lim inf At :=
{
x ∈ H | ∀(tn)n∈N → 0+,∃ (xn)n∈N ⇀ x,∃N ∈ N,∀n ≥ N, xn ∈ Atn

}
.

The family (At)t>0 is said to be Mosco-convergent if w-lim supAt ⊂ lim inf At. In that case, all
the previous limits are equal and we write

M-limAt := lim inf At = lim supAt = w-lim inf At = w-lim supAt.

Definition 2.12 (Mosco epi-convergence). Let (ϕt)t>0 be a parameterized family of functions ϕt :
H → R∪{±∞} for all t > 0. We say that (ϕt)t>0 is Mosco epi-convergent if (epi(ϕt))t>0 is Mosco-
convergent in H× R. Then we denote by ME-lim ϕt : H → R ∪ {±∞} the function characterized
by its epigraph epi (ME-lim ϕt) := M-lim epi (ϕt) and we say that (ϕt)t>0 Mosco epi-converges
to ME-lim ϕt.

Now let us recall the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985
(see [31]) that generalizes the classical notion of second-order derivative to nonsmooth convex
functions.

Definition 2.13 (Twice epi-differentiability). A proper lower semi-continuous convex function ϕ :
H → R ∪ {+∞} is said to be twice epi-differentiable at x ∈ dom(ϕ) for y ∈ ∂ϕ(x) if the family of
second-order difference quotient functions (δ2t ϕ(x|y))t>0 defined by

δ2t ϕ(x|y) : H −→ R ∪ {+∞}

z 7−→
ϕ(x+ tz)− ϕ(x)− t ⟨y, z⟩H

1
2 t

2
,

for all t > 0, is Mosco epi-convergent. In that case we denote by

d2eϕ(x|y) := ME-lim δ2t ϕ(x|y),

which is called the second-order epi-derivative of ϕ at x for y.

The following result is extracted from [13, Chapter 2, Example 2.10 p.287].

Lemma 2.14. Let C be a nonempty closed convex subset of H. If C is polyhedric at x ∈ C
for y ∈ NC(x), then ιC is twice epi-differentiable at x for y and

d2eιC(x|y) = ιTC(x)∩(Ry)⊥ ,

where NC(x) (resp. TC(x)) is the normal cone (resp. tangent cone) to C at x.
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We conclude this section with a last proposition (see, e.g., [32, 33] for the finite-dimensional
case and [1, 13] for the infinite-dimensional one). We bring to the attention of the reader that
Proposition 2.15 is the key point in order to derive our main results.

Proposition 2.15. Let Φ : H → R ∪ {+∞} be a proper lower semi-continuous convex function
on H. Let F : R+ → H and let u : R+ → H be defined by

u(t) := proxΦ(F (t)),

for all t ≥ 0. If the conditions

1. F is differentiable at t = 0;

2. Φ is twice epi-differentiable at u(0) for F (0)− u(0) ∈ ∂Φ(u(0));

are both satisfied, then u is differentiable at t = 0 with

u′(0) = proxd2
eΦ(u(0)|F (0)−u(0))(F

′(0)).

2.2 Notions from capacity theory
Let us recall some notions from capacity theory (we refer to standard references such as [12, 16,

20, 26]). Let us consider (X,B(X), ξ) be a positively measured topological space with its borelian σ-
algebra, ξ a Radon measure, and where X ⊂ Rd is a locally compact set, admitting a countable
compact covering. Let H ⊂ L2(X, ξ) be a vector space endowed with a scalar product ⟨·, ·⟩H
and ∥·∥H the corresponding norm.

Definition 2.16. Consider B ∈ B(X) and let us introduce the closed convex subset

CB := {v ∈ H | v ≥ 1 ξ-a.e. on a neighborhood of B} .

The capacity of B is defined by
cap(B) :=

∥∥projCB
(0)

∥∥2
H ,

where projCB
is the projection operator onto the nonempty closed convex set CB.

Definition 2.17. A property holds quasi everywhere (denoted q.e.) if it holds for all elements in
a set except a subset of null capacity.

Definition 2.18. A function v : X → R is said to be quasi-continuous if there exists a decreasing
sequence of open sets (wn)n∈N such that cap(wn) → 0 when n → +∞ and v|X\wn

is continuous for
all n ∈ N.

Now, let us assume that (H, ⟨·, ·⟩H) is a Dirichlet space (see, e.g., [26]). Then, one can prove
the following propositions (see, e.g., [16, 20, 26]).

Proposition 2.19. For all v ∈ H, there exists a unique quasi-continuous representative in the
class of v (for the q.e. equivalence relation).

To conclude, let us give two examples of Dirichlet space (see [26] for the first example and [39,
Chapter 4] for the second one).

Example 2.20. Let Ω is a nonempty bounded connected open subset of Rd with a Lipschitz con-
tinuous boundary. Then H := H1(Ω,R) endowed with its standard scalar product ⟨·, ·⟩H1(Ω,R) is a
Dirichlet space.
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Example 2.21. Let Ω be a nonempty bounded connected open subset of Rd with a Lipschitz
continuous boundary Γ := ∂Ω. Assume that Γ is given by the decomposition Γ = Γ1∪Γ2, where Γ1

and Γ2 are two measurable disjoint subsets of Γ. Then,

H :=
{
v · n ∈ H1/2(Γ2,R) | v ∈ H1(Ω,Rd) and v = 0 a.e. on Γ1

}
,

is a Dirichlet space endowed with the scalar product defined in [39, Chapter 4, Eq. (4.192) p.208],
where n is the outward-pointing unit normal vector to Γ.

2.3 Reminders on differential geometry
Let d ∈ N∗ be a positive integer, Ω be a nonempty bounded connected open subset of Rd with

a Lipschitz-boundary Γ := ∂Ω and n the outward-pointing unit normal vector to Γ. In the whole
paper we denote by D(Ω,Rd) the set of functions that are infinitely differentiable with compact
support in Ω, by D′(Ω,Rd) the set of distributions on Ω, for (m, p) ∈ N × N∗, by Wm,p(Ω,Rd),
L2(Γ,Rd), H1/2(Γ,Rd), H−1/2(Γ,Rd), the usual Lebesgue and Sobolev spaces endowed with their
standard norms, and we denote by Hm(Ω,Rd) := Wm,2(Ω,Rd) and by Hdiv(Ω,Rd×d) := {w ∈
L2(Ω,Rd×d) | div(w) ∈ L2(Ω,Rd)}.

The next proposition, known as divergence formula, can be found in [4, Theorem 4.4.7 p.104].

Proposition 2.22 (Divergence formula). If w ∈ Hdiv(Ω,Rd×d), then w admits a normal trace,
denoted by wn ∈ H−1/2(Γ,Rd), satisfying∫

Ω

div(w) · v +
∫
Ω

w : ∇v = ⟨wn, v⟩H−1/2(Γ,Rd)×H1/2(Γ,Rd) , ∀v ∈ H1(Ω,Rd).

The following propositions will be useful and their proofs can be found in [20].

Proposition 2.23. Assume that Γ is of class C2 and let θ ∈ C1(Rd,Rd). It holds that∫
Γ

(θ · ∇v + vdivτ (θ)) =

∫
Γ

θ · n(∂nv +Hv), ∀v ∈ W2,1(Ω,R),

where divτ (θ) := div(θ) − (∇θn · n) ∈ L∞(Γ) is the tangential divergence of θ, ∂nv := ∇v · n ∈
L1(Γ,R) stands for the normal derivative of v, and H stands for the mean curvature of Γ.

Proposition 2.24. Assume that Γ is of class C2 and let w ∈ H2(Ω,Rd×d). It holds that

div(w) = divτ (wτ ) +Hwn + (∂nw) n a.e. on Γ,

where divτ (wτ ) ∈ L2(Γ,Rd) is the vector whose the i-th component is defined by (divτ (wτ ))i :=
divτ ((wi)τ ) ∈ L2(Γ,R), where (wi)τ := wi− (wi ·n)n ∈ L2(Γ,Rd) and wi ∈ Rd is the i-th line of w,
and where ∂nw ∈ L2(Γ,Rd×d) is the matrix whose the i-th line is the vector ∂nwi := (∇wi)n ∈
L2(Γ,Rd), for all i ∈ [[1, d]]. Moreover it holds that∫

Γ

v · divτ (wτ ) = −
∫
Γ

w : ∇τv, ∀v ∈ H2(Ω,Rd),

where ∇τv is the matrix whose the i-th line is the tangential gradient ∇τvi := ∇vi − (∂nvi)n ∈
H1/2(Γ,Rd), for all i ∈ [[1, d]].
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2.4 Some required boundary value problems
As mentioned in Introduction, the major part of the present work consists in performing the

sensitivity analysis of a Signorini problem with respect to shape perturbation. To this aim one has
to recall some classical boundary value problems: a Dirichlet-Neumann problem and a Signorini
problem. Our aim in this subsection is to recall basic notions and results concerning these boundary
value problems for the reader’s convenience. Since the proofs are very similar to the ones detailed
in the paper [2], they will be omitted here.

Let d ∈ {2, 3} and Ω be a nonempty bounded connected open subset of Rd with a Lipschitz
continuous boundary Γ := ∂Ω. Let us assume that Γ is decomposed as ΓD ∪ ΓS, where ΓD and ΓS

are two measurable pairwise disjoint subsets of Γ, such that ΓD has a positive measure. In that
case,

H1
D(Ω,Rd) :=

{
v ∈ H1(Ω,Rd) | v = 0 a.e. on ΓD

}
,

is a linear subspace of H1(Ω,Rd).
Moreover, we assume that Ω is an elastic solid satisfying the linear elastic model (see, e.g., [36])

σ(v) = Ae(v),

where σ is the Cauchy stress tensor, A the stiffness tensor, and e is the infinitesimal strain tensor
defined by

e(v) :=
1

2
(∇v +∇v⊤),

for all displacement field v ∈ H1(Ω,Rd). We also assume that all coefficients of A are constant
(denoted by aijkl for all (i, j, k, l) ∈ {1, ..., d}4), and there exists one constant α > 0 such that all
coefficients of A and e (denoted by ϵij for all (i, j) ∈ {1, ..., d}2) satisfy

aijkl = ajikl = alkij ,
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

aijklϵij(v1)(x)ϵkl(v2)(x) ≥ α

d∑
i=1

d∑
j=1

ϵij(v1)(x)ϵij(v2)(x),

for all displacement field v1, v2 ∈ H1(Ω,Rd) and for almost all x ∈ Ω. Thus,

⟨·, ·⟩H1
D(Ω,Rd) :

(
H1

D(Ω,Rd)
)2 −→ R

(v1, v2) 7−→
∫
Ω

Ae(v1) : e(v2),

is a scalar product on H1
D(Ω,Rd) (see, e.g., [14, Chapter 3]), and we denote by ∥·∥H1

D(Ω,Rd) the
corresponding norm. Moreover, from the assumptions on A, note that Ae(v) = A∇v, for all v ∈
H1

D(Ω,Rd).
We denote by n the outward-pointing unit normal vector to Γ. Therefore, for any v ∈ L2(Γ,Rd),

one has v = vnn + vτ , where vn := v · n ∈ L2(Γ,R) and vτ := v − vnn ∈ L2(Γ,Rd). In particular, if
for some v ∈ H1(Ω,Rd), the stress vector Ae(v)n is in L2(ΓS,Rd), then we use the notation

Ae(v)n = σn(v)n + στ (v),

where σn(v) ∈ L2(ΓS,R) is the normal stress and στ ∈ L2(ΓS,Rd) the shear stress.
We also denote, for all (x, y,M) ∈ Rd × Rd × Rd×d, by xy⊤ the matrix whose the i-th line

is given by the vector xiy, where xi ∈ R is the i-th component of x, and by div(M) the vector
whose the i-th component is defined by (div(M))i := div(Mi), where Mi is the i-th line of M, for
all i ∈ [[1, d]].

In the sequel, consider k ∈ L2(Ω,Rd), h ∈ L2(ΓS,Rd) and w ∈ H1
D(Ω,Rd).
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2.4.1 A Problem with Dirichlet-Neumann Conditions

Consider the Dirichlet-Neumann problem given by−div(Ae(F )) = k in Ω,
F = 0 on ΓD,

Ae(F )n = h on ΓS,
(DN)

where the data are given at the beginning of Subsection 2.4.

Definition 2.25 (Strong solution to the Dirichlet-Neumann problem). A (strong) solution to
the Dirichlet-Neumann problem (DN) is a function F ∈ H1(Ω,Rd) such that −div(Ae(F )) = k
in D′(Ω,Rd), F = 0 a.e. on ΓD, Ae(F )n ∈ L2(ΓS,Rd) with Ae(F )n = h a.e. on ΓS.

Definition 2.26 (Weak solution to the Dirichlet-Neumann problem). A weak solution to the
Dirichlet-Neumann problem (DN) is a function F ∈ H1

D(Ω,Rd) such that∫
Ω

Ae(F ) : e(v) =

∫
Ω

k · v +
∫
ΓS

h · v, ∀v ∈ H1
D(Ω,Rd).

Proposition 2.27. A function F ∈ H1(Ω,Rd) is a (strong) solution to the Dirichlet-Neumann
problem (DN) if and only if F is a weak solution to the Dirichlet-Neumann problem (DN).

Using the Riesz representation theorem, we obtain the following existence/uniqueness result.

Proposition 2.28. The Dirichlet-Neumann problem (DN) admits a unique solution F ∈ H1
D(Ω,Rd).

2.4.2 A Signorini problem

In this part, let us assume that ΓS is decomposed, up to a null set, as ΓSN
∪ ΓSD

∪ ΓSS
,

where ΓSN
, ΓSD

and ΓSS
are three measurable pairwise disjoint subsets of ΓS. Consider the Signorini

problem given by

−div(Ae(u)) = k in Ω,
u = 0 on ΓD,

στ (u) = hτ on ΓS,
σn(u) = hn on ΓSN

,
un = wn on ΓSD

,
un ≤ wn, σn(u) ≤ hn and (un − wn) (σn(u)− hn) = 0 on ΓSS ,

(MSP)

where the data are given at the beginning of Subsection 2.4.

Definition 2.29 (Strong solution). A (strong) solution to the problem (MSP) is a function u ∈
H1(Ω,Rd) such that −div(Ae(u)) = k in D′(Ω,Rd), u = 0 a.e. on ΓD, un = wn a.e. on ΓSD

,
Ae(u)n ∈ L2(ΓS,Rd) with στ (u) = hτ a.e. on ΓS, σn = hn a.e. on ΓSN

, un ≤ wn, σn(u) ≤
hn and (un − wn)(σn(u)− hn) = 0 a.e. on ΓSS

.

Definition 2.30 (Weak solution). A weak solution to problem (MSP) is a function u ∈ K1
w(Ω)

such that ∫
Ω

Ae(u) : e(v − u) ≥
∫
Ω

k · (v − u) +

∫
ΓS

h · (v − u) , ∀v ∈ K1
w(Ω),

where K1
w(Ω) is the nonempty closed convex subset of H1

D(Ω,Rd) defined by

K1
w(Ω) :=

{
v ∈ H1

D(Ω,Rd) | vn = wn a.e. on ΓSD
and vn ≤ wn a.e. on ΓSS

}
.
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One can prove that a (strong) solution is a weak solution but, to the best of our knowledge,
without additional assumption, one cannot prove the converse. To get the equivalence, we need
to assume, in particular, that the decomposition ΓD ∪ ΓSN

∪ ΓSD
∪ ΓSS

of Γ is consistent in the
following sense.

Definition 2.31 (Consistent decomposition). The decomposition ΓD ∪ ΓSN ∪ ΓSD ∪ ΓSS of Γ is
said to be consistent if

1. for almost all s ∈ ΓSS
, s ∈ intΓ(ΓSS

);

2. the nonempty closed convex subset K1/2
w (Γ) of H1/2(Γ,Rd) defined by

K1/2
w (Γ) :=

{
v ∈ H1/2(Γ,Rd) | v = 0 a.e. on ΓD, vn = wn a.e. on ΓSD

and vn ≤ wn a.e. on ΓSS

}
,

is dense in the nonempty closed convex subset K0
w(Γ) of L2(Γ,Rd) defined by

K0
w(Γ) :=

{
v ∈ L2(Γ,Rd) | v = 0 a.e. on ΓD, vn = wn a.e. on ΓSD

and vn ≤ wn a.e. on ΓSS

}
.

Proposition 2.32. Let u ∈ H1(Ω,Rd).

1. If u is a (strong) solution to the problem (MSP), then u is a weak solution to the prob-
lem (MSP).

2. If u is a weak solution to the problem (MSP) such that Ae(u)n ∈ L2(ΓS,Rd) and the de-
composition ΓD ∪ ΓSN

∪ ΓSD
∪ ΓSS

of Γ is consistent, then u is a (strong) solution to the
problem (MSP).

Proposition 2.33. The problem (MSP) admits a unique weak solution u ∈ H1
D(Ω,Rd) which is

given by
u = proxIK1

w(Ω)
(F ),

where F ∈ H1
D(Ω,Rd) is the unique solution to the Dirichlet-Neumann problem (DN), and proxιK1

w(Ω)

stands for the proximal operator associated with the indicator function ιK1
w(Ω) considered on the

Hilbert space (H1
D(Ω,Rd), ⟨·, ·⟩H1

D(Ω,Rd)), where ιK1
w(Ω) is defined by ιK1

w(Ω)(v) := 0 if v ∈ K1
w(Ω),

and ιK1
w(Ω)(v) := +∞ otherwise.

Remark 2.34. Note that, from Remark 2.10, the unique weak solution u ∈ H1
D(Ω,Rd) to the

problem (MSP) is also characterized by the projection operator since proxιK1
w(Ω)

= projK1
w(Ω).

3 Main results
Let d ∈ {2, 3} and f ∈ H1(Rd,Rd). Let Ωref be a nonempty connected bounded open subset

of Rd with Lipschitz boundary Γref := ∂Ωref . We assume that Γref = ΓD∪ΓSref
, where ΓD and ΓSref

are two measurable pairwise disjoint subsets of Γref , such that ΓD has a positive measure. We
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consider the set of admissible shapes Uref defined in (1.2). Note that, all shapes in Uref have ΓD

as common boundary part. We assume that, for all Ω ∈ Uref , Ω is an elastic solid satisfying the
linear elastic model with all the same assumptions and notations described at the beginning of
Subsection 2.4.

We consider the shape optimization problem (1.1). From Subsection 2.4.2, note that the Sig-
norini energy functional J , given by (1.3), can also be expressed as

J (Ω) = −1

2

∫
Ω

Ae (uΩ) : e (uΩ) ,

for all Ω ∈ Uref .
In the whole section let us fix Ω0 ∈ Uref . Our aim here is to prove that, under appropriate

assumptions, the functional J is shape differentiable at Ω0, in the sense that the map

C2,∞
D (Rd,Rd) −→ R

θ 7−→ J ((id + θ)(Ω0)),

is Gateaux differentiable at 0, and to give an expression of the Gateaux differential, denoted
by J ′(Ω0), which is called the shape gradient of J at Ω0. To this aim we have to perform
the sensitivity analysis of the Signorini problem (SPΩ) with respect to the shape, and then to
characterize the material and shape directional derivatives.

This section is separated as follows. In Subsection 3.1, we perturb the Signorini problem
with respect to the shape. In Subsection 3.2 we characterize the material derivative as solution
to a variational inequality (see Theorem 3.5). Then, with additional regularity assumptions, we
characterize the material and shape derivatives as being weak solutions to Signorini problems (see
Corollaries 3.6 and 3.8). Finally, in Subsection 3.3, we prove that the Signorini functional J is
shape differentiable at Ω0, and we provide an expression of its shape gradient (see Theorem 3.10
and Corollary 3.11).

3.1 Setting of the shape perturbation
Consider θ ∈ C2,∞

D (Rd,Rd) and, for all t ≥ 0 sufficiently small such that id + tθ is a C2-
diffeomorphism of Rd, consider the shape perturbed Signorini problem given by

−div(Ae(ut)) = f in Ωt,
ut = 0 on ΓD,

στt(ut) = 0 on ΓSt ,
ut,nt ≤ 0, σnt(ut) ≤ 0 and ut,ntσnt(ut) = 0 on ΓSt ,

(SPt)

where Ωt := (id + tθ)(Ω0) ∈ Uref , Γt := (id + tθ)(Γ0) and nt is the outward-pointing unit normal
vector to Γt. From Subsection 2.4.2, there exists a unique solution ut ∈ H1(Ωt,Rd) to (SPt) which
satisfies ∫

Ωt

Ae(ut) : e(v − ut) ≥
∫
Ωt

f · (v − ut), ∀v ∈ K1(Ωt),

where
K1(Ωt) :=

{
v ∈ H1

D(Ωt,Rd) | vnt
≤ 0 a.e. on ΓSt

}
.

Following the usual strategy in shape optimization literature (see, e.g., [5, 20]), using the change
of variables id + tθ and the equality

nt ◦ (id + tθ) =
(I + t∇θ⊤)−1n

∥(I + t∇θ⊤)−1n∥
,
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where n := n0 (see, e.g., [39, Chapter 2, Proposition 2.48 p.79]) and || · || is the Euclidean norm
on Rd, we prove that ut := ut ◦ (id + tθ) ∈ K1

t (Ω0) ⊂ H1
D(Ω0,Rd) satisfies∫

Ω0

JtA
[
∇ut (I + t∇θ)

−1
]
: ∇(v − ut) (I + t∇θ)

−1 ≥
∫
Ω0

ftJt · (v − ut) , ∀v ∈ K1
t (Ω0), (3.1)

where K1
t (Ω0) := {v ∈ H1

D(Ω0,Rd) | v · (I + t∇θ⊤)−1n ≤ 0 a.e. on ΓS0
}, ft := f ◦ (id + tθ) ∈

H1(Rd,Rd) and Jt := det(I + t∇θ) ∈ L∞(Rd,R) is the Jacobian. Thus, using the characterization
of the proximal operator (see Definition 2.9), ut can be expressed as

ut = proxι
K1

t (Ω0)
(Ft),

where Ft ∈ H1(Ω0,Rd) is the unique solution to the parameterized variational equality∫
Ω0

JtA
[
∇Ft (I + t∇θ)

−1
]
: ∇v (I + t∇θ)

−1
=

∫
Ω0

ftJt · v, ∀v ∈ H1
D(Ω0,Rd),

and proxι
K1

t (Ω0)
is the proximal operator associated with the indicator function ιK1

t (Ω0) considered

on the space H1
D(Ω0,Rd) endowed with the perturbed scalar product

(v1, v2) ∈
(
H1

D(Ω0,Rd)
)2 7→

∫
Ω0

JtA
[
∇v1 (I + t∇θ)

−1
]
: ∇v2 (I + t∇θ)

−1 ∈ R.

Here, the main difficulty is that the indicator function ιK1
t (Ω0) depends on the parameter t, thus

it would required an extended notion of twice epi-differentiability depending on a parameter in
order to apply the Proposition 2.15, like we did in our paper [3]. Nevertheless, it is not necessary
since, for all v ∈ K1

t (Ω0), one has (similarly to [25, Chapter 5 p.111] and [39, Chapter 4 Section
4.6 p.205])

(I + t∇θ)
−1

v ∈ K1(Ω0),

and reciprocally, for all φ ∈ K1(Ω0),

(I + t∇θ)φ ∈ K1
t (Ω0).

Thus, from Inequality (3.1), one proves that ut := (I + t∇θ)−1ut ∈ K1(Ω0) satisfies∫
Ω0

JtA
[
∇
(
(I + t∇θ)ut

)
(I + t∇θ)

−1
]
: ∇

(
(I + t∇θ)

(
φ− ut

))
(I + t∇θ)

−1

≥
∫
Ω0

(
I + t∇θ⊤

)
ftJt ·

(
φ− ut

)
, ∀φ ∈ K1(Ω0), (3.2)

and can be expressed as
ut = proxιK1(Ω0)

(Gt),

where Gt ∈ H1
D(Ω0,Rd) is the unique solution to the parameterized variational equality∫

Ω0

JtA
[
∇((I + t∇θ)Gt) (I + t∇θ)

−1
]
: ∇((I + t∇θ)φ) (I + t∇θ)

−1

=

∫
Ω0

(
I + t∇θ⊤

)
ftJt · φ, ∀φ ∈ H1

D(Ω0,Rd),
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and proxιK1(Ω0)
is the proximal operator associated with the Signorini indicator function ιK1(Ω0)

considered on the perturbed Hilbert space (H1
D(Ω0,Rd), ⟨·, ·⟩t), where ⟨·, ·⟩t is the scalar product

defined by

(v1, v2) ∈
(
H1

D(Ω0,Rd)
)2 7→∫

Ω0

JtA
[
∇((I + t∇θ) v1) (I + t∇θ)

−1
]
: ∇((I + t∇θ) v2) (I + t∇θ)

−1 ∈ R.

The previous difficulty is solved since the Signorini indicator function ιK1(Ω0) does not depend
on the parameter t ≥ 0. Nevertheless, we face here to a perturbed Hilbert space due to the
scalar product ⟨·, ·⟩t that is t-dependent, thus we could not apply Theorem 2.15. To overcome this
difficulty let us rewrite Inequality (3.2) as (using the equality B : CD = BD⊤ : C for all B,C,D ∈
Rd×d)∫

Ω0

JtA
[
∇
(
(I + t∇θ)ut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇
(
(I + t∇θ)

(
φ− ut

))
≥

∫
Ω0

(
I + t∇θ⊤

)
ftJt ·

(
φ− ut

)
, ∀φ ∈ K1(Ω0),

then adding to both members
〈
ut, φ− ut

〉
H1

D(Ω0,Rd)
, one deduces

〈
ut, φ− ut

〉
H1

D(Ω0,Rd)
≥

∫
Ω0

(
I + t∇θ⊤

)
ftJt · (φ− ut)

−
∫
Ω0

(
JtA

[
∇ut (I + t∇θ)

−1
] (

I + t∇θ⊤
)−1 −A∇ut

)
: ∇

(
φ− ut

)
− t

∫
Ω0

JtA
[
∇ut (I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇
(
∇θ

(
φ− ut

))
− t

∫
Ω0

JtA
[
∇
(
∇θut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇
(
φ− ut

)
− t2

∫
Ω0

JtA
[
∇
(
∇θut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇
(
∇θ

(
φ− ut

))
, ∀φ ∈ K1(Ω0).

Thus ut is also expressed as
ut = proxιK1(Ω0)

(Et),

where Et ∈ H1
D(Ω0,Rd) stands for the unique solution to the parameterized variational equality

⟨Et, φ⟩H1
D(Ω0,Rd) =

∫
Ω0

(
I + t∇θ⊤

)
ftJt · φ

−
∫
Ω0

(
JtA

[
∇ut (I + t∇θ)

−1
] (

I + t∇θ⊤
)−1 −A∇ut

)
: ∇φ

− t

∫
Ω0

JtA
[
∇ut (I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇(∇θφ)

− t

∫
Ω0

JtA
[
∇
(
∇θut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇φ

− t2
∫
Ω0

JtA
[
∇
(
∇θut

)
(I + t∇θ)

−1
] (

I + t∇θ⊤
)−1

: ∇(∇θφ), ∀φ ∈ H1
D(Ω0,Rd), (3.3)
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and where proxιK1(Ω0)
is the proximal operator associated with the Signorini indicator func-

tion ιK1(Ω0) considered on the Hilbert space (H1
D(Ω0,Rd), ⟨·, ·⟩H1

D(Ω0,Rd)), which is t-independent.
Now the next step is to derive the differentiability of the map t ∈ R+ 7→ Et ∈ H1

D(Ω0,Rd)
at t = 0. To this aim let us recall first that (see [20]):

(i) the map t ∈ R+ 7→ Jt ∈ L∞(Rd) is differentiable at t = 0 with derivative given by div(θ);

(ii) the map t ∈ R+ 7→ (I + t∇θ)
−1 ∈ L∞(Rd,Rd×d) is differentiable at t = 0 with derivative

given by −∇θ;

(iii) the map t ∈ R+ 7→
(
I + t∇θ⊤

)−1 ∈ L∞(Rd,Rd×d) is differentiable at t = 0 with derivative
given by −∇θ⊤;

(iv) the map t ∈ R+ 7→
(
I + t∇θ⊤

)
ftJt ∈ L2(Rd,Rd) is differentiable at t = 0 with derivative

given by fdiv(θ) +∇fθ +∇θ⊤f .

Lemma 3.1. The map t ∈ R+ 7→ Et ∈ H1
D(Ω0,Rd) is differentiable at t = 0 and its derivative,

denoted by E′
0 ∈ H1

D(Ω0,Rd), is the unique solution to the variational equality given by

⟨E′
0, φ⟩H1

D(Ω0,Rd) =

∫
Ω0

(
fdiv(θ) +∇fθ +∇θ⊤f

)
· φ

+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
: ∇φ

−
∫
Ω0

Ae(u0) : e (∇θφ)−
∫
Ω0

Ae (∇θu0) : e (φ) , ∀φ ∈ H1
D(Ω0,Rd). (3.4)

Proof. Using the Riesz representation theorem, we denote by Z ∈ H1
D(Ω0,Rd) the unique so-

lution to the above variational inequality (3.4). From linearity and using differentiability re-
sults (i), (ii), (iii), (iv), one gets∥∥∥∥Et − E0

t
− Z

∥∥∥∥
H1

D(Ω0,Rd)

≤

C(Ω0, d,A, θ)

(∥∥∥∥∥
(
I + t∇θ⊤

)
ftJt − f

t
−

(
fdiv(θ) +∇fθ +∇θ⊤f

)∥∥∥∥∥
L2(Rd,Rd)

+
∥∥ut − u0

∥∥
H1

D(Ω0,Rd)
+

o(θ, t)

t

∥∥ut

∥∥
H1

D(Ω0,Rd)

)
,

for all t ≥ 0 sufficiently small, where C(Ω0,A, θ, d) > 0 is a constant which depends on Ω0,A, θ, d,
and where o stands for the standard Bachmann–Landau notation, with |o(θ,t)|

t → 0 when t → 0+.
Therefore, to conclude the proof, we only need to prove the continuity of the map t ∈ R+ 7→
ut ∈ H1

D(Ω0,Rd) at t = 0. To this aim let us take φ = u0 in the variational formulation of ut

and φ = ut in the variational formulation of u0 to get that∥∥ut − u0

∥∥
H1

D(Ω0,Rd)
≤

C(Ω0,A, θ, d)
(∥∥(I + t∇θ⊤

)
ftJt − f

∥∥
L2(Rd,Rd)

+
∥∥ut

∥∥
H1

D(Ω0,Rd)
(t+ o(θ, t))

)
,

for all t ≥ 0 sufficiently small. Then, to conclude the proof, we only need to prove that the
map t ∈ R+ 7→

∥∥ut

∥∥
H1

D(Ω0,Rd)
∈ R is bounded for t ≥ 0 sufficiently small. Let us take φ = 0 in the

variational formulation of ut to get that
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∥∥ut

∥∥2
H1

D(Ω0,Rd)
≤ C(Ω0,A, θ, d)

∥∥(I + t∇θ⊤
)
ftJt

∥∥
L2(Rd,Rd)

∥∥ut

∥∥
H1

D(Ω0,Rd)

+ C(Ω0,A, θ, d)
∥∥ut

∥∥2
H1

D(Ω0,Rd)
(t+ o(θ, t)) ,

for all t ≥ 0 sufficiently small. Thus, one deduces

∥∥ut

∥∥
H1

D(Ω0,Rd)
≤

C(Ω0,A, θ, d)(
∥∥(I + t∇θ⊤

)
ftJt

∥∥
L2(Rd,Rd)

1− C(Ω0,A, θ, d) (t+ o(θ, t))
,

for all t ≥ 0 sufficiently small, and using the continuity of the map t ∈ R+ 7→ (I + t∇θ⊤)ftJt ∈
L2(Rd,Rd) (see (iv)), the proof is complete.

3.2 Twice epi-differentiability, material and shape directional deriva-
tives

In the previous Subsection 3.1, we have expressed ut = proxιK1(Ω0)
(Et) and characterized in

Lemma 3.1 the derivative of the map t ∈ R+ 7→ Et ∈ H1
D(Ω0,Rd) at t = 0. Thus, we will use

Proposition 2.15 to differentiate the map t ∈ R+ 7→ ut ∈ H1
D(Ω0,Rd) at t = 0 and then to deduce

the material directional derivative. To this aim the twice epi-differentiability of the Signorini
indicator function ιK1(Ω0) has to be investigated. Hence, from Lemma 2.14, we have to prove that
the set K1(Ω0) is polyhedric. This result has already been proved in [25, Lemma 5.2.9 p.116]
involving some concepts from convex analysis and capacity theory, reminded in Subsections 2.1
and 2.2.

Lemma 3.2. The nonempty closed convex subset K1(Ω0) of H1
D(Ω0,Rd) is polyhedric at u0 ∈

K1(Ω0) for E0 − u0 ∈ NK1(Ω0)(u0), and one has

TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥

=
{
φ ∈ H1

D(Ω0,Rd) | φ · n ≤ 0 q.e. on Γu0n

S0
and ⟨E0 − u0, φ⟩H1

D(Ω0,Rd) = 0
}
,

where Γu0n

S0
:= {s ∈ ΓS0

| u0n(s) = 0}.

Using the previous lemma and Lemma 2.14, one can deduce the following proposition.

Proposition 3.3. The Signorini indicator function ιK1(Ω0) is twice epi-differentiable at u0 ∈
K1(Ω0) for E0 − u0 ∈ NK1(Ω0)(u0) and

d2eιK1(Ω0)(u0|E0 − u0) = ιTNK1(Ω0)
(u0)∩(R(E0−u0))

⊥ .

The twice epi-differentiability of the Signorini indicator function allows us to prove that the
map t ∈ R+ 7→ ut ∈ H1

D(Ω0,Rd) is differentiable at t = 0.

Theorem 3.4. Consider the framework of Subsection 3.1. Then the map t ∈ R+ 7→ ut ∈
H1

D(Ω0,Rd) is differentiable at t = 0 and its derivative, denoted by u
′
0 ∈ TNK1(Ω0)

(u0) ∩ (R(E0 −
u0))

⊥, is the unique solution to the variational inequality〈
u
′
0, φ− u

′
0

〉
H1

D(Ω0,Rd)
≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (φ− u
′
0

)
+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇θu0)− div(θ)Ae(u0)

)
: ∇

(
φ− u

′
0

)
17



−
〈
Ae(u0)n,∇θ

(
φ− u

′
0

)〉
H−1/2(Γ0,Rd)×H1/2(Γ0,Rd)

, (3.5)

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥.

Proof. For all t ≥ 0, ut ∈ H1
D(Ω0,Rd) is given by

ut = proxιK1(Ω0)
(Et),

where Et ∈ H1(Ω0,Rd) stands for the unique solution to the parameterized variational equal-
ity (3.3). Moreover the map t ∈ R+ 7→ Et ∈ H1

D(Ω0,Rd) is differentiable at t = 0 with its
derivative E′

0 ∈ H1
D(Ω0,Rd) solution to the variational inequality (3.4). Therefore, from Proposi-

tion 3.3 one can apply Proposition 2.15 to deduce the differentiability of the map t ∈ R+ 7→ ut ∈
H1

D(Ω0,Rd), with its derivative u
′
0 ∈ H1

D(Ω0,Rd) given by

u
′
0 = proxι

TK1(Ω0)
(u0)∩(R(E0−u0))⊥

(E′
0),

which, from definition of the proximal operator (see Definition 2.9), leads to〈
E′

0 − u
′
0, φ− u

′
0

〉
H1

D(Ω0,Rd)
≤ 0,

for all φ ∈ TNK1(Ω0)
(u0)∩(R (E0 − u0))

⊥. Using the variational equality satisfied by E′
0 (see (3.4)),

one gets〈
u
′
0, φ− u

′
0

〉
H1

D(Ω0,Rd)
≥

∫
Ω0

(
fdiv(θ) +∇fθ +∇θ⊤f

)
·
(
φ− u

′
0

)
+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
: ∇

(
φ− u

′
0

)
−
∫
Ω0

Ae(u0) : e
(
∇θ

(
φ− u

′
0

))
−
∫
Ω0

Ae (∇θu0) : e
(
φ− u

′
0

)
,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥, which is also (see the notations introduced at the
beginning of Subsection 2.4)

〈
u
′
0, φ− u

′
0

〉
H1

D(Ω0,Rd)
≥

∫
Ω0

div(fθ⊤) ·
(
φ− u

′
0

)
+

∫
Ω0

f · ∇θ
(
φ− u

′
0

)
+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
: ∇

(
φ− u

′
0

)
−
∫
Ω0

Ae(u0) : e
(
∇θ

(
φ− u

′
0

))
−
∫
Ω0

Ae (∇θu0) : e
(
φ− u

′
0

)
,

for all φ ∈ TNK1(Ω0)
(u0)∩ (R (E0 − u0))

⊥. Using the divergence formula (see Proposition 2.22) and
the equality div (Ae(u0)) = −f in H1(Ω0,Rd), we obtain the result.

Since ut = (I + t∇θ)ut, it is possible now to state and prove the first main result of this paper
that characterizes the material directional derivative.

18



Theorem 3.5 (Material directional derivative). Consider the framework of Theorem 3.4. Then
the map t ∈ R+ 7→ ut ∈ H1

D(Ω0,Rd) is differentiable at t = 0 and its derivative (that is, the
material directional derivative), denoted by u′

0 ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+ ∇θu0, is the

unique solution to the variational inequality

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (φ− u′
0)

+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
: ∇(φ− u′

0)

− ⟨Ae(u0)n,∇θ (φ− u′
0)⟩H−1/2(Γ0,Rd)×H1/2(Γ0,Rd) , (3.6)

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0, where

TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0 ={

φ ∈ H1
D(Ω0,Rd) | φ · n ≤ (∇θu0) · n q.e. on Γu0n

S0
and ⟨E0 − u0, φ−∇θu0⟩H1

D(Ω0,Rd) = 0
}
.

Proof. Since ut = (I + t∇θ)ut, then one deduces from Theorem 3.4 that u′
0 = u

′
0 + ∇θu0 ∈

H1
D(Ω0,Rd). Moreover, from the variational formulation of u′

0 (see (3.5)), one deduces

⟨u′
0 −∇θu0, φ+∇θu0 − u′

0⟩H1
D(Ω0,Rd) ≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (φ+∇θu0 − u′
0)

+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇θu0)− div(θ)Ae(u0)

)
: ∇(φ+∇θu0 − u′

0)

− ⟨Ae(u0)n,∇θ (φ+∇θu0 − u′
0)⟩H−1/2(Γ0,Rd)×H1/2(Γ0,Rd) ,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥, and this is also

⟨u′
0 −∇θu0, φ− u′

0⟩H1
D(Ω0,Rd) ≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (φ− u′
0)

+

∫
Ω0

(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇θu0)− div(θ)Ae(u0)

)
: ∇(φ− u′

0)

− ⟨Ae(u0)n,∇θ (φ− u′
0)⟩H−1/2(Γ0,Rd)×H1/2(Γ0,Rd) ,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0, which concludes the proof.

In [9], [25, Chapter 5 Section 5.2 p.111] and [39, Chapter 4 Section 4.6 p.205], the authors get the
same result using the conical differentiability of the projection operator. Since K1(Ω0) is polyhedric
at u0 ∈ K1(Ω0) for E0 − u0 ∈ NK1(Ω0)(u0), then from Mignot’s theorem (see [26]) the projection
operator on K1(Ω0) is conically differentiable at u0 for E0 − u0, and its conical derivative is given
by projTNK1(Ω0)

(u0)∩(R(E0−u0))
⊥(E′

0), which is exactly proxι
TK1(Ω0)

(u0)∩(R(E0−u0))⊥
(E′

0). Nevertheless,

to the best of our knowledge, no one notices that it was possible to improve this result under
additional assumptions, in order to characterize the material derivative as weak solution to a
boundary value problem. Indeed, as mentioned in [9, 21], it is possible to replace q.e. in the
set TNK1(Ω0)

(u0) ∩ (R (E0 − u0))
⊥ by a.e. under some hypotheses, like, for instance, if Γu0n

S0
=

intΓS0
(Γu0n

S0
). Moreover, if we assume that the decomposition ΓD ∪ ΓS0 of Γ0 is consistent (see

Definition 2.31 with ΓSS := ΓS0 and w = 0) and some regularity assumptions on u0 and θ, then
they allow us to characterize the material derivative as weak solution to a Signorini problem.
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Corollary 3.6. Consider the framework of Theorem 3.5 with the additional assumptions that the
decomposition ΓD ∪ ΓS0

of Γ0 is consistent, u0 ∈ H3(Ω0,Rd) and Γu0n

S0
= intΓS0

(Γu0n

S0
). Then

the material directional derivative u′
0 ∈ TNK1(Ω0)

(u0) ∩ (R (E0 − u0))
⊥
+∇θu0 is the unique weak

solution to the Signorini problem

−div(Ae(u′
0)) = −div(Ae(∇u0θ)) in Ω0,
u′
0 = 0 on ΓD,

στ (u′
0) = hm(θ)τ on ΓS0

,
σn(u′

0) = hm(θ)n on Γ
S
u0n
0,N

,

u′
0n = (∇θu0)n on Γ

S
u0n
0,D

,

u′
0n ≤ (∇θu0)n , σn(u′

0) ≤ hm(θ)n and
(
u′
0n − (∇θu0)n

) (
σn(u′

0)− hm(θ)n
)
= 0 on Γ

S
u0n
0,S

,

where hm(θ) := ((Ae(u0))∇θ⊤ + A(∇u0∇θ) − σn(u0)(div(θ)I +∇θ⊤))n ∈ L2(Γ0,Rd), and ΓS0 is
decomposed, up to a null set, as ΓS

u0n
0,N

∪ ΓS
u0n
0,D

∪ ΓS
u0n
0,S

, where

ΓS
u0n
0,N

:= {s ∈ ΓS0
| u0n(s) ̸= 0} ,

ΓS
u0n
0,D

:= {s ∈ ΓS0
| u0n(s) = 0 and σn(u0)(s) < 0} ,

ΓS
u0n
0,S

:= {s ∈ ΓS0
| u0n(s) = 0 and σn(u0)(s) = 0} .

Proof. Since u0 ∈ H2(Ω0,Rd) and θ ∈ C2,∞
D (Rd,Rd), one deduces that

div
(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)

)
∈ L2(Ω0,Rd).

Moreover, since Ae(u0)n ∈ L2(Γ0,Rd) and that the decomposition ΓD ∪ ΓS0
of Γ0 is consistent,

then u0 is a (strong) solution to the Signorini problem (SPt) for the parameter t = 0 (see Proposi-
tion 2.32). Thus στ (u0) = 0 a.e. on ΓS0

, and using the divergence formula (see Proposition 2.22)
in Inequality (3.6), we get that

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥

∫
ΓS0

hm · (φ− u′
0)

−
∫
Ω0

div
(
div(Ae(u0))θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)
)
· (φ− u′

0) , (3.7)

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+ ∇θu0. Furthermore, one has div (Ae (∇u0θ)) ∈

L2(Ω0,Rd) from u0 ∈ H3(Ω0,Rd). Thus, using the equality

div (Ae (∇u0θ)) = div
(
div(Ae(u0))θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)
)
,

in L2(Ω0,Rd), it follows that

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥ −

∫
Ω0

div (Ae (∇u0θ)) · (φ− u′
0) +

∫
ΓS0

hm · (φ− u′
0) ,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0. Moreover, since

H :=
{
v · n ∈ H1/2(ΓS,R) | v ∈ H1

D(Ω0,Rd)
}
,

is a Dirichlet space (see Example 2.21), then, for all v ∈ H1
D(Ω0,Rd), v · n ∈ H1/2(ΓS,R) admits a

unique quasi-continuous representative for the q.e equivalence relation (see Proposition 2.19), thus
it follows that (see [9, Remark 3.12 p.13] for details)
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TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥

=
{
φ ∈ H1

D(Ω0,Rd) | φ · n ≤ 0 a.e. on Γu0n

S0
and ⟨E0 − u0, φ⟩H1

D(Ω0,Rd) = 0
}
.

Furthermore, since u0 is a (strong) solution, it follows from the Signorini unilateral conditions that

⟨E0 − u0, v⟩H1
D(Ω0,Rd) =

∫
Γ0

Ae(E0 − u0) · v =

∫
ΓS0

σn(u0)vn =

∫
Γ
S
u0n
0,D

σn(u0)vn = 0,

for all v ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥, and since σn(u0)vn ≤ 0 a.e. on ΓS
u0n
0,D

and σn(u0) < 0

a.e. on ΓS
u0n
0,D

, one deduces that vn = 0 a.e. on ΓS
u0n
0,D

, for all v ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥,
which concludes the proof from Subsection 2.4.2.

Remark 3.7. Note that, from the proof of Corollary 3.6, one can get, under the weaker assump-
tion u0 ∈ H2(Ω0,Rd), that the material directional derivative u′

0 is the solution to the variational
inequality (3.7) which is, from Subsection 2.4.2, the weak formulation of a Signorini problem,
with the source term given by −div(div(Ae(u0))θ

⊤+(Ae(u0))∇θ⊤+A(∇u0∇θ)−div(θ)Ae(u0)) ∈
L2(Ω0,Rd). It is important to note that, to the best of our knowledge, there is no regularity re-
sult for the solution to the Signorini problem with respect to the data. Obtaining this regularity
result in our case is a highly nontrivial work and is not the main focus of this paper. However,
we can mention the works [34, 35] which deal with regularity results for variational inequalities
concerning the Stokes equations, and also [7, Chapter 1, Theorem I.10 p.43] which concerns a
scalar Signorini-type problem.

Thanks to Corollary 3.6, we are now in a position to characterize the shape directional deriva-
tive.

Corollary 3.8 (Shape directional derivative). Consider the framework of Corollary 3.6 with the
additional assumption that Γ0 is of class C3. Then the shape directional derivative, defined by u′

0 :=

u′
0 − ∇u0θ ∈ TNK1(Ω0)

(u0) ∩ (R (E0 − u0))
⊥
+ ∇θu0 − ∇u0θ is the unique weak solution to the

Signorini problem

−div(Ae(u′
0)) = 0 in Ω0,
u′
0 = 0 on ΓD,

στ (u
′
0) = hs(θ)τ on ΓS0 ,

σn(u
′
0) = hs(θ)n on Γ

S
u0n
0,N

,

u′
0n = W (θ)n on Γ

S
u0n
0,D

,

u′
0n ≤ W (θ)n, σn(u

′
0) ≤ hs(θ)n and (u′

0n −W (θ)n) (σn(u
′
0)− hs(θ)n) = 0 on Γ

S
u0n
0,S

,

where W (θ) := (∇θu0)− (∇u0θ) ∈ H1/2(Γ0,Rd),

hs(θ) := θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)
−∇(Ae(u0)n)θ − σn(u0)

(
divτ (θ)I +∇θ⊤

)
n ∈ L2(Γ0,Rd),

and where ∂n (Ae(u0)n) := ∇(Ae(u0)n)n stands for the normal derivative of Ae(u0)n, and ∂n (Ae(u0))
is the matrix whose the i-th line is the vector ∂n (Ae(u0)i) := ∇(Ae(u0)i)n, where Ae(u0)i is the i-th
line of the matrix Ae(u0), for all i ∈ [[1, d]].

Proof. Since u′
0 := u′

0−∇u0θ, one deduces from the weak formulation of u′
0 and using the divergence

formula that,
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⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥∫

Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇(φ− u′

0)

−
∫
Ω0

div(θ)Ae(u0) : e (φ− u′
0)−

∫
ΓS0

Ae(u0)n · ∇θ (φ− u′
0) +

∫
ΓS0

(θ · n) f · (φ− u′
0) ,

for all φ ∈ TNK1(Ω0)
(u0) ∩ (R (E0 − u0))

⊥
+∇θu0 −∇u0θ. Moreover, one has∫

Ω0

div (Ae(u0)) θ
⊤ : ∇v =

∫
Ω0

div (Ae(u0)) · ∇vθ = −
∫
Ω0

Ae(u0) : ∇(∇vθ) +

∫
Γ0

Ae(u0)n · ∇vθ,

and also

−
∫
Ω0

div(θ)Ae(u0) : e(v) =

∫
Ω0

θ · ∇(Ae(u0) : e(v))−
∫
Γ0

θ · n (Ae(u0) : e(v)) ,

for all v ∈ C∞(Ω0,Rd). Therefore, using the equality(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)

)
: ∇v + θ · ∇(Ae(u0) : e(v))−Ae(u0) : ∇(∇vθ) = 0,

a.e. on Ω0, one deduces using the divergence formula that∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇v

−
∫
Ω0

div(θ)Ae(u0) : e (v)−
∫
Γ0

∇θ⊤ (Ae(u0)n) · v +
∫
Γ0

(θ · n) f · v

=

∫
Γ0

θ · n (−Ae(u0) : e(v) + f · v) +∇v⊤(Ae(u0)n) · θ −∇θ⊤(Ae(u0)n) · v,

for all v ∈ C∞(Ω0,Rd). Furthermore, since Γ0 is of class C3 and u0 ∈ H3(Ω0,Rd), Ae(u0)n
can be extended into a function defined in Ω0 such that Ae(u0)n ∈ H2(Ω0,Rd). Thus, it holds
that Ae(u0)n · v ∈ W2,1(Ω0,Rd), and one can use Proposition 2.23 to get that∫

Γ0

θ · n (−Ae(u0) : e(v) + f · v) +∇v⊤(Ae(u0)n) · θ −∇θ⊤(Ae(u0)n) · v

=

∫
Γ0

θ · n (−Ae(u0) : e(v) + f · v + ∂n (Ae(u0)n · v) +HAe(u0)n · v)

−
∫
Γ0

(
∇(Ae(u0)n)θ +∇θ⊤(Ae(u0)n) + divτ (θ)Ae(u0)n

)
· v,

for all v ∈ C∞(Ω0,Rd). Moreover, since −div(Ae(u0)) = f ∈ H1(Ω0,Rd), one deduces from
Proposition 2.24 that∫

Γ0

θ · n (f +HAe(u0)n) · v =

∫
Γ0

Ae(u0) : ∇τ (v (θ · n))− (θ · n) ∂n (Ae(u0)) n · v,

for all v ∈ C∞(Ω0,Rd). Therefore, using the following equalities

Ae(u0) : ∇τ (v (θ · n)) = θ · n (Ae(u0) : ∇τv) + Ae(u0)∇τ (θ · n) · v, a.e. on Γ0,
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and
Ae(u0) : ∇τv = Ae(u0) : e(v)−∇v⊤(Ae(u0)n) · n a.e on Γ0,

one gets∫
Γ0

θ · n (−Ae(u0) : e(v) + f · v + ∂n (Ae(u0)n · v) +HAe(u0)n · v)

−
∫
Γ0

(
∇(Ae(u0)n)θ +∇θ⊤(Ae(u0)n) + divτ (θ)Ae(u0)n

)
· v

=

∫
Γ0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · v

−
∫
Γ0

(
∇(Ae(u0)n)θ +

(
divτ (θ)I +∇θ⊤

)
Ae(u0)n

)
· v,

for all v ∈ C∞(Ω0,Rd). Thus,∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇v

−
∫
Ω0

div(θ)Ae(u0) : e (v)−
∫
Γ0

∇θ⊤ (Ae(u0)n) · v +
∫
Γ0

(θ · n) f · v

=

∫
Γ0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · v

−
∫
Γ0

(
∇(Ae(u0)n)θ +

(
divτ (θ)I +∇θ⊤

)
Ae(u0)n

)
· v,

for all v ∈ C∞(Ω0,Rd), and one deduces by density of C∞(Ω0,Rd) in H1(Ω0,Rd) that

⟨u′
0, φ− u′

0⟩H1
D(Ω0,Rd) ≥

∫
ΓS0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · (φ− u′
0)

−
∫
ΓS0

(
∇(Ae(u0)n)θ + σn(u0)

(
divτ (θ)I +∇θ⊤

)
n
)
· (φ− u′

0) ,

for all φ ∈ TNK1(Ω0)
(u0)∩ (R (E0 − u0))

⊥
+∇θu0 −∇u0θ, which concludes the proof from Subsec-

tion 2.4.2.

Remark 3.9. Note that u′
0 and u′

0 are not linear with respect to the direction θ. This nonlinearity
is standard in shape optimization for variational inequalities (see, e.g., [3, 21] or [39, Section 4]),
and justifies the names of material and shape directional derivatives.

3.3 Shape gradient of the Signorini energy functional
Thanks to the characterization of the material and shape directional derivatives obtained in

the previous section, we are now in a position to prove the shape differentiability of the Signorini
energy functional (1.3).

Theorem 3.10. Consider the framework of Theorem 3.5. Then the Signorini energy functional J
admits a shape gradient at Ω0 in the direction θ ∈ C2,∞

D (Rd,Rd) given by
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J ′(Ω0)(θ) =

∫
Ω0

div (θ)
Ae (u0) : e (u0)

2
−
∫
Ω0

div (Ae (u0)) · ∇u0θ −
∫
Ω0

Ae (u0) : ∇u0∇θ

−
∫
ΓS0

θ · n (f · u0) + ⟨Ae(u0)n,∇θu0⟩H−1/2(Γ0,Rd)×H1/2(Γ0,Rd) .

Proof. By following the usual strategy developed in the shape optimization literature (see, e.g., [5,
20]) to compute the shape gradient of J at Ω0 in the direction θ ∈ C2,∞

D (Rd,Rd), one gets

J ′(Ω0)(θ) = −1

2

∫
Ω0

div(θ)Ae(u0) : e(u0) +

∫
Ω0

Ae(u0) : ∇u0∇θ − ⟨u′
0, u0⟩

H1
D

(Ω0,Rd)
.

Moreover, one has

⟨u′
0, u0⟩

H1
D

(Ω0,Rd)
=

〈
u
′
0, u0

〉
H1
D

(Ω0,Rd)

+ ⟨∇θu0, u0⟩
H1
D

(Ω0,Rd)
,

and, since u
′
0 ± u0 ∈ TNK1(Ω0)

(u0) ∩ (R (E0 − u0))
⊥, one deduces from the variational formulation

of u′
0 (see Inequality (3.5)) and the divergence formula that

⟨u′
0, u0⟩H1

D(Ω0,Rd) =

∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)
)
: ∇u0

+

∫
ΓS0

θ · n(f · u0)− ⟨Ae(u0)n,∇θu0⟩H−1/2(Γ0,Rd)×H1/2(Γ0,Rd) .

Then, using the equality div (Ae(u0)) θ
⊤ : ∇u0 = div (Ae(u0)) · ∇u0θ a.e. on Ω0, one concludes

the proof.

As we did for the material directional derivative, the presentation of Theorem 3.10 can be
improved under additional assumption.

Corollary 3.11. Consider the framework of Theorem 3.10 and assume that u0 ∈ H2(Ω0,Rd). Then
the Signorini energy functional J admits a shape gradient at Ω0 in the direction θ ∈ C2,∞

D (Rd,Rd)
given by

J ′(Ω0)(θ) =

∫
ΓS0

(
θ · n

(
Ae(u0) : e(u0)

2
− f · u0

)
+Ae(u0)n · (∇θu0 −∇u0θ)

)
.

Proof. Let θ ∈ C2,∞
D (Rd,Rd). Since u0 ∈ H2(Ω0,Rd), it follows from Theorem 3.10 that

J ′(Ω0)(θ) = −1

2

∫
Ω0

θ · ∇(Ae(u0) : e(u0)) +

∫
Γ0

θ · nAe(u0) : e(u0)

2
+

∫
Ω0

Ae (u0) : e (∇u0θ)

−
∫
Γ0

Ae (u0) n · ∇u0θ −
∫
Ω0

Ae (u0) : ∇u0∇θ −
∫
ΓS0

θ · n (f · u0) +

∫
ΓS0

Ae(u0)n · ∇θu0.

Moreover, since

Ae(u0) : e (∇u0θ) = Ae(u0) : ∇u0∇θ +
1

2
θ · ∇(Ae(u0) : e(u0)) a.e. on Ω0,

one deduces

J ′(Ω0)(θ) =

∫
Γ0

θ·n
(
Ae(u0) : e(u0)

2

)
−
∫
Γ0

Ae(u0)n·∇u0θ−
∫
ΓS0

θ·n(f ·u0)+

∫
Γ0

Ae(u0)n·∇θu0,

which completes the proof since θ = 0 on ΓD.
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Remark 3.12. Consider the framework of Theorem 3.10. It is interesting to note that the scalar
product ⟨u′

0, u0⟩H1
D(Ω0,Rd) is linear with respect to the direction θ, while u′

0 is not. This leads to
an expression of the shape gradient J ′(Ω0)(θ) in Theorem 3.10 that is linear with respect to the
direction θ, thus to the shape differentiability of the Signorini energy functional J at Ω0. Note
that the shape gradient J ′(Ω0)(θ) depends only on u0 (and not on u′

0), therefore its expression
is explicit with respect to the direction θ, and there is no need to introduce any adjoint problem
to perform numerical simulations. Nevertheless, for other cost functionals, some difficulties can
appear to correctly define an adjoint problem due to nonlinearities in shape gradients, and may
constitute an interesting area for future researches. This was already noticed in our paper [3,
Remark 3.15 p.21] in the context of a scalar Tresca friction problem.

4 Numerical simulations
In this section we numerically solve an example of the shape optimization problem (1.1) in the

two-dimensional case d = 2, by making use of our theoretical results obtained in Section 3. The
numerical simulations have been performed using Freefem++ software [18] with P1-finite elements
and standard affine mesh. We could use the expression of the shape gradient of J obtained in
Theorem 3.10 but, in order to simplify the computations, we chose to use the expression provided
in Corollary 3.11 under the additional assumption u0 ∈ H2(Ω0,Rd) that we assumed to be true at
each iteration.

4.1 Numerical methodology
Consider an initial shape Ω0 ∈ Uref . Note that Corollary 3.11 allows to exhibit a descent

direction θ0 of the Signorini energy functional J at Ω0 by finding the solution θ0 to the variational
equality

⟨θ0, θ⟩H1
D(Ω0,Rd) = −J ′(Ω0)(θ), ∀θ ∈ H1

D(Ω0,Rd),

since it satisfies J ′(Ω0)(θ0) = −∥θ0∥2H1
D(Ω0,Rd) ≤ 0.

In order to numerically solve the shape optimization problem (1.1) on a given example, we
have to deal with the volume constraint |Ω| = |Ωref | > 0. To this aim, the Uzawa algorithm (see,
e.g., [5, Chapter 3 p.64]) is used, and one refers to [3, Section 4] for methodological details.

Let us mention that the Signorini problem is numerically solved using the Nitsche’s method
(see, e.g., [10, 11, 29]). In a nutshell, the solution u0 ∈ H1

D(Ω0,Rd) is approximated by uh
0 ∈ Vh

which is the solution to the Nitsche’s formulation∫
Ω0

Ae(uh
0 ) : e(v

h)− γ

∫
ΓS0

σn(u
h
0 )σn(v

h) +
1

γ

∫
ΓS0

[
u0

h
n − γσn(u

h
0 )
]
+

[
vhn − γσn(v

h)
]

=

∫
Ω0

f · vh, ∀vh ∈ Vh,

where Vh is the classical P1-finite elements space whose elements are null on ΓD (see [11] for
numerical analysis details). We also precise that, for all i ∈ N∗, the difference between the Signorini
energy functional J at the iteration 20 × i and at the iteration 20 × (i − 1) is computed. The
smallness of this difference is used as a stopping criterion for the algorithm.
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4.2 Two-dimensional example and numerical results
In this subsection, let d = 2 and f ∈ H1(R2,R2) given by

f : R2 −→ R2

(x, y) 7−→ f(x, y) :=
(
1
2 exp(x

2)η(x, y) 0
)
,

where η ∈ C∞
0 (R2,R) is a cut-off function chosen appropriately so that f satisfies the assumptions

of the present paper. The reference shape Ωref is the unit disk of R2, and the fixed part ΓD is
given by

ΓD =

{
(cosα, sinα) ∈ Γref | α ∈

[
π

6
,
5π

6

]
∪
[
7π

6
,
11π

6

]}
,

(see Figure 1). The volume constraint is |Ωref | = π and the initial shape is Ω0 := Ωref . We assume
that all shapes in Uref are isotropic, which means that their mechanical properties are identical in
all directions. In that case, for all Ω ∈ Uref , the Cauchy stress tensor is given, for all v ∈ H1

D(Ω,Rd),
by

σ(v) = 2µe(v) + λtr (e(v)) I,

where tr (e(v)) is the trace of the matrix e(v), and µ ≥ 0, λ ≥ 0 are Lamé parameters (see, e.g., [36]).
In what follows, we consider µ = 0.3846, λ = 0.5769, and one presents the numerical results
obtained for this two-dimensional example using the methodology described in Subsection 4.1.

Ωref

ΓD

ΓSref

Figure 1: Unit disk Ωref and its boundary Γref = ΓD ∪ ΓSref
.

In Figure 2 is represented the initial shape (left) and the shape which solves Problem (1.1)
(right). On top are the vector values of the solution u to the Signorini problem (SPΩ). Note that
the black boundary shows where σn(u) = 0, while the yellow boundary shows where un = 0. At
the bottom is shown the values of the integrand of J . It seems that the area where the integrand
of J is the lowest (in orange) has been shifted to the left by "pushing" the left boundary (which
corresponds to the part where there is no compressive stress), while in return, the right boundary
(which corresponds to the contact part) has been pulled.

Figure 3 shows the values of J (left) and the volume of the shape (right) with respect to the
iteration. We observe that J is lower at the final shape, than at the initial shape, with some
oscillations due to the Lagrange multiplier in order to satisfy the volume constraint.
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Figure 2: Initial shape (left) and the shape minimizing J (right), under the volume con-
straint |Ωref | = π. On top is shown the vector values of the Signorini solution, while at bottom is
shown the values of the integrand of J .

Figure 3: Energy (left) and the volume (right) with respect to the iteration.
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