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ABSTRACT:   

The reaction mechanism of the Pd/Senphos-catalyzed trans-hydroboration reaction of 1,3-

enynes was investigated using various experimental techniques, including deuterium and double 

cross-over labeling experiments, X-ray crystallographic characterization of model reaction 

intermediates, and reaction progress kinetic analysis. Our experimental data are in support of an 

unusual outer-sphere oxidative addition mechanism where the catecholborane serves as a 

suitable electrophile to activate the Pd0-bound 1,3-enyne substrate to form a Pd-h3-p-allyl 

species, which has been determined to be the likely resting state of the catalytic cycle. Double 

cross-over labeling of the catecholborane points toward a second role played by the borane as a 

hydride delivery shuttle. DFT calculations reveal that the rate-limiting transition state of the 

reaction is the hydride abstraction by the catecholborane shuttle, which is consistent with the 

experimentally determined rate law: rate = k [enyne]0 [borane]1 [catalyst]1. The computed 

activation free energy DG‡ = 17.7 kcal/mol and KIE (kH/kD = 1.3) are also in line with 

experimental observations. Overall, this work experimentally establishes Lewis acids such as 

catecholborane as viable electrophilic activators to engage in an outer-sphere oxidative addition 

reaction and points towards this underutilized mechanism as a general approach to activate 

unsaturated substrates.  
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Introduction 

Pd-catalyzed allylic substitution has established itself as a powerful synthetic transformation 

for carbon-carbon and carbon-heteroatom bond formation.1 The key organometallic intermediate 

is the h3-Pd-p-allyl complex, and well-established approaches to catalytically access this species 

include: 1) oxidative addition of allylic-type substrates in the presence of a preinstalled leaving 

group2 or a stoichiometric oxidant with Pd(0) complexes,3 2) migratory insertion into allenes 

with Pd(II) complexes,4 and 3) migratory5 or Wacker-type6 insertion into dienes and 1,3-

enynes with Pd(II) complexes (Scheme 1).   

Scheme 1. Established Catalytic Approaches to h3-Pd-p-Allyl Complexes. 

 

 

 

An underexplored strategy to catalytically access the versatile h3-Pd-p-allyl intermediate 
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electrophilic activators via an “outer-sphere” oxidative addition mechanism (Scheme 2). In early 

work, Yamamoto reported the first catalytic7 electrophilic addition to C–C multiple bonds by a 
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recently, Tsukamoto described a Pd-catalyzed hydroalkylation of 1,3-enynes to furnish allenes 

via a proposed outer-sphere oxidative addition mechanism. 9  In these reports, alternative 

mechanisms that involve the more classical “inner-sphere” oxidative addition followed by b-

migratory insertion step have not been completely ruled out by the authors. In 2021, Chen et al. 

reported the coupling between 1,3-dienes or 1,3-enynes with N-tosylimines as the electrophilic 

activator via an outer-sphere oxidative addition mechanism that is supported by DFT 

calculations.10  

Scheme 2. Catalytically Accessing h3-Pd-p-Allyl Complexes via an Uncommon Outer-Sphere 

Oxidative Addition Mechanism. 
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In 2016, we described the first Pd-catalyzed trans-selective hydroboration reaction of 1,3-

enynes (Scheme 3).11 Essential to the observed catalytic efficiency and diastereoselectivity is the 

use of Senphos (i.e., a 1,4-azaborine-based biaryl phosphine) as the supporting ligand.12 Based 

on previously published literature on transition-metal catalyzed trans-selective hydroboration 

reaction of alkynes,13,14 the following mechanistic scenarios can be proposed (see Scheme 3): 1) 

generation of metal vinylidene intermediate as proposed by Miyaura15 and Leitner16 for their Ir, 

Rh, and Ru-based catalysts, 2) generation of metal acetylide intermediate as proposed by Chirik 

for his Co-pincer system,17 3) generation of a metallacyclopropene intermediate as proposed by 

Fürstner for his Ru catalyst system.18 Additional scenarios include: 4) inner-sphere oxidative 

addition (OA) of the borane to the metal followed by syn b-migratory insertion (b-MI) and 

cis/trans isomerization and reductive elimination,19 and 5) outer-sphere oxidative addition with 

the borane serving as the electrophile. In 2018 Shi et al. reported a computational mechanistic 

study of the Pd/Senphos-catalyzed trans-hydroboration of 1,3-enynes.20 Key features of the 

DFT-predicted mechanism (Scheme 3, scenario 5) include: 1) an outer-sphere oxidative addition 

step where an H-B(cat) cooperatively activates the Pd-bound substrate as a Lewis acid 

electrophile, 2) the H-B(cat) additionally serves as a hydride shuttle to deliver a hydride to the Pd 

catalyst in an intermolecular fashion prior to reductive elimination.  

 

Scheme 3. Pd-Catalyzed Trans-Hydroboration of 1,3-Enynes: Possible Mechanistic Scenarios. 

 

 



 6 

  

H–B(cat), 4 mol% L
2 mol% Pd2dba3

CH2Cl2, 15 min -  3.5 h
RT, 1.25 M

R1

R3

R1 R3

B(pin)then pinacol
R2 R2

N

B

Me

PPh2

R’
L =

H

R’ = Et, i-PrR3 = H, alkyl

Senphos

> 30 examples

Liu (2016)

Possible mechanistic scenarios:

[M] •
R

HH

B(pin)

R

H[M]

B(pin)

H

[M]

RH

(pin)B–H
[M] •

R

H

B(pin)

H H

R

R

[M]H

B(pin)[M]

(pin)B–H

B(pin)

H H

R

R

[M] R

B(pin)

H [M]

(pin)B R

H

H R

(pin)B–H

R R

Ru

Me
Me Me
Me Me

(pin)B

R H

R
Ru

Me
Me Me
Me Me

(pin)B

R H

R

Ru

Me
Me Me
Me Me

(pin)B

R
R

HRu

Me
Me Me
Me Me

L
L

R

R

R

B(pin) R

H

1) 2)

3)

LnPd0

Pd
H

B(cat)
R3

LnH

R1

Pd
B(cat)

Ln
H

R1

Pd

B(cat)

R3

(cat)B–H

R3

R1

H

R1

B(cat)

R3

4)

N

B Pd
Et

Me
LnPd0

PPh2

Ph

Me

Ph
Me

B(cat)

H/H

Ph
• B(cat)

Me

H

PdLn

LnPd0

H–B(cat)

outer-sphere
oxidative
addition

hydride
abstractionPh

• B(cat)
MePdLn

H-B(cat)

H
B(cat)

H

hydride
transfer

Ph
• B(cat)

MePdLn
H/H
H/H-B(cat)

reductive
elimination

LnPd0

Ln

5) Shi et al. (2018):  IEF-PCM(CH2Cl2)-B3LYP-D3/SDD-f(Pd), 6-311G**(other atoms)

Features:
1) H-B(cat) cooperatively  
    activates the alkyne in an 
    outer-sphere oxidative 
    addition mechanism
2) H-B(cat) also serves as a 
    hydride shuttle

π-complex

Int1



 7 

To date, no experimental mechanistic data have been reported to distinguish among the 

above outlined mechanistic scenarios for the Pd/Senphos-catalyzed trans-hydroboration of 1,3-

enynes. The possibility of the outer-sphere oxidation is intriguing as our Pd-catalyzed trans-

hydroboration would represent the first example using boron as the activating electrophile and 

would point toward the outer-sphere oxidative addition as a general approach for activating 

unsaturated compounds via the versatile h3-Pd-p-allyl intermediate with possible catalyst control 

over site-, regio-, and diastereoselectivity. In this work, we disclose experimental mechanistic 

data in the form of 1) kinetic data (i.e., determination of the reaction orders, kinetic isotope effect 

(KIE)), 2) X-ray crystallographic data for the critical outer-sphere oxidative addition 

intermediate, and 3) double-crossover labeling experiment, in support of the proposed outer-

sphere oxidative addition mechanism. Furthermore, we provide more refined computational 

results that corrects a few inconsistencies between Shi’s 2018 calculations and the experimental 

mechanistic observations.  

 

Results and Discussion 

In our initial work, we determined that a deuterium-labeled substrate 1-D under our reported 

optimized conditions gave product without isomerization of the label (eq 1). This observation is 

inconsistent with the mechanisms involving metal vinylidene AND metal acetylide intermediates 

(Scheme 3, scenarios 1 and 2). Additionally, the E alkene configuration of 1-D is retained in the 

hydroboration product, which is inconsistent with an h3-h1 p-allyl walk mechanism to achieve 

trans-hydroboration selectivity after a hypothetical syn inner-sphere b-migratory insertion of a 

Pd-boryl species into the alkyne.  
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against a control compound in situ (i.e., 3-cis) that informs about the extent of background 

scrambling. We determined that 3-cis forms in substantial amount when the concentration of 

catecholborane is low relative to the optimized ([catecholborane] > 1.25 M) conditions.25 We 

performed the double crossover experiments under low-borane concentrations to minimize 

borane background scrambling. As can be seen from Scheme 4, entry 1 ([borane] = 0.07 M), the 

isotopic distribution (Mw 269, 270, 271) for 3-trans is 1.0 : 1.9 : 1.1 while the corresponding 

isotopic distribution for the control 3-cis is 1.0 : 0.5 : 0.8. This observation indicates that 

background borane scrambling occurs to a relatively small extent under the reaction conditions 

and that the observed complete scrambling of the labels in 3-trans is induced by the reaction 

mechanism. Furthermore, when the borane concentration is doubled (Scheme 4, entry 2 vs. entry 

1), the background scrambling is accelerated as indicated by the isotopic distribution for 3-cis 

(1.0 : 1.0 : 1.0) while the corresponding distribution for 3-trans (1.0 : 2.0 : 1.2) remains 

essentially independent of the borane concentration. Finally, we conducted a positive control 

experiment where the isotopically labeled boranes 2a and 2b are pre-mixed for four hours to 

allow for scrambling prior to being subjected to the reaction mixture. As expected, the observed 

isotopic ratios for both 3-trans (1.0 : 2.0 : 1.2) and 3-cis (1.0 : 1.7 : 1.0) show substantial 

scrambling of the labels as a result of the background exchange. Overall, we conclude that the 

observed isotopic ratios of products 3-trans and 3-cis under the conditions shown in Scheme 4 

are more consistent with the outer-sphere oxidative addition mechanism for the formation of 3-

trans (Scenario 5 in Scheme 3) and not consistent with any of the other proposed scenarios 

illustrated in Scheme 3.  

 

Scheme 4. Double-Crossover Labeling Experiment is Consistent with the Hydride Shuttle 

Mechanism Proposed in the Outer-Sphere Oxidative Addition Scenario. 
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ability of a Lewis acid to activate a Pd0/1,3-enyne complex in an outer-sphere oxidative addition 

fashion. As a result, we conclude that among the mechanistic scenarios listed in Scheme 3, 

Scenario 5 is the only mechanism that is fully consistent with the experimental observations 

presented thus far.  
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(3)  rate = kH [1]0 [2]1 [Pd/L]1  

With the experimental reaction orders established, the rate constant kH in equation 3 can then 

be determined as kH = 0.90 ± 0.042 M-1·min-1 (see ESI). The corresponding rate constant for the 

reaction with a deuterated borane 2-D is kD = 0.79 ± 0.016 M-1·min-1, resulting in a kinetic 

isotope effect (KIE = kH/kD) value of 1.1. It is worth noting that primary KIE values involving 

breaking of B–H bonds are typically small in magnitude (< 2.0).32  
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hydride transfer step. The zero-order dependence in enyne 1 is the result of saturation kinetics 

due to the catalyst resting state, and the first-order dependence in borane 2 is due to the 

requirement of an additional borane as a hydride shuttle starting from the catalyst resting state.  

The rate expression also explains the dependence of the trans/cis diastereoselectivity of the 

hydroboration on the borane concentration. As described in the double-crossover experiment 

section, higher borane concentration favors the trans-hydroboration vs. cis-hydroboration (See 

Figures S1-S2). It is important to note that the resting state of the catalyst remains the outer-

sphere oxidative addition intermediate Int1 for both the formation of the trans- and cis-

hydroboration products. We already established that the trans-hydroboration reaction is first 

order in borane (eq 3). On the other hand, the cis-hydroboration reaction is expected to be zero 

order in borane; the transition state (see Scheme 4) involves only one borane molecule, resulting 

in an “apparent saturation kinetics” with respect to the borane due to the catalyst resting state 

structure. Thus, the first-order borane dependence for trans hydroboration vs. predicted zero-

order borane dependence for cis hydroboration is consistent with higher borane concentrations 

favoring the formation of the trans product.  

Although our experimental data support in general the outer-sphere oxidative mechanism 

outlined by Shi (Scheme 3, Scenario 5),20 we do note several discrepancies between our 

experimental observations and Shi’s computed reaction pathway. First, Shi’s calculations predict 

product inhibition, but product inhibition is not observed in our reaction progress kinetic 

analysis. Second, Shi’s calculations predict the Pd0-bound product to be the resting state of the 

catalytic cycle, which is inconsistent with our kinetic analysis that rather assigns the outer-sphere 

oxidative addition adduct being the resting state. Shi’s computed energy profile for the trans-

hydroboration would predict a rate law that is first order in enyne and second order in borane 

(due to the resting state being the Pd0-bound product), which is not experimentally observed. 

Additionally, no transition state corresponding to a hydride transfer between boron and Pd has 

been located on the potential energy surface. In view of these discrepancies/shortcomings, we 

optimized the computational methods, accurately scrutinizing the potential energy surface (PES), 
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and present here a refined reaction coordinate energy diagram for the Pd/Senphos catalyzed 

trans-hydroboration of 1,3-enyne 1.   

Density Functional Theory (DFT)33 calculations were carried out at SMD(CH2Cl2)34,35-

TPSS 36 -D3(BJ) 37 /SDD+f(Pd), 38  6-31G**(other atoms) level of theory. The geometrical 

parameters of intermediates and transition states are available in the Electronic Supporting 

Information (ESI). Consistent with experimental data and previous calculations, this reaction 

occurs via an outer-sphere oxidative addition mechanism, where the Lewis acidic catecholborane 

(H–B(cat), blue color) activates the p-complex (i.e., enyne substrate bound to the Pd0), affording 

the outer-sphere oxidative addition adduct Int1 (Figure 2). In the next step, the borohydride is 

then transferred to a second H-B(cat) (red color). In contrast to Shi’s calculations20 where no 

transition state was attributed to this hydride transfer, we successfully located the associated 

transition states. Our calculations reveal that the hydride transfer process occurs in two steps, 

Step 1: B–H bond activation (blue) by the shuttle borane (red) via TS2 (H(blue)…B(blue): 1.263 

Å, and H(blue)…B(red): 1.694Å) to form hydride bridged diborane complex Int2 

(H(blue)…B(blue): 1.344 Å, H(blue)…B(red): 1.387 Å, ÐB(blue)–H(blue)–B(red): 180°), Step 

2: hydride abstraction by the shuttle borane (red) via the rate-limiting TS3 to form Int3 where the 

H2B(cat)– anion is completely released from the cationic Pd complex. Then, the H2B(cat)– anion 

shifts toward the PdII metal in a barrierless process to form a precomplex Int4 with a hydride 

bridging the Pd and borane (Pd…H: 1.631 Å, B…H: 1.580 Å). In Int4, we also note a change 

from a Pd-h3-p-allyl coordination to a Pd-h1-alkenyl coordination to maintain a 16e PdII 

configuration. A hydride is then transferred to Pd via transition state TS4, affording the h1-

alkenyl-Pd-hydride intermediate Int5 that might be very weakly coordinated to the leaving H-

B(cat). In TS4, the Pd…H bond distance is 1.608 Å and the B...H distance is 1.711 Å, with a sum 

of bond angles around the boron atom SÐB: 354.2°. In Int5, Pd…H bond distance is 1.583 Å and 

the B...H distance is 1.984 Å, with SÐB: 358.3°. It is worth noting that in Shi’s calculations the 

hydride transfer from boron to Pd was predicted to be the rate-limiting step. However, the 

corresponding transition state was located with a Pd…H bond distance of 5.087 Å, which is 

inconsistent with a hydride transfer. Rather, the located transition state more likely corresponds 

to the breaking of Pd cation–arene (catecholborate) interaction. From Int5, the shuttle borane is 

released in a barrierless manner to form Int6, which then undergoes a three-centered reductive 
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elimination via TS5 to furnish the product that is h2 coordinated to the Pd catalyst (Int7). Ligand 

substitution with a new 1,3-enyne substrate starts a new catalytic cycle.  

The present calculation formally identifies the Pd-enyne p-complex as the resting state of 

the catalyst with the caveat that the outer-sphere oxidative addition adduct Int1 can, within 

reasonable computational error range, be considered as the resting state as well.39,40 The rate-

limiting transition state TS3 involves the hydride abstraction step by the borane shuttle and is 

17.7 kcal/mol above the resting state. This relatively small rate-limiting barrier (DG‡) is 

consistent with the fast reaction times (15 minutes – 3.5 hours) observed at room temperature. 

Finally, we calculated a KIE (kH/kD = 1.3) based on the illustrated reaction profile in Figure 2, 

which is in line with the observed experimental data (kH/kD = 1.1).  

 

Figure 2.  Energy profile (DG in kcal/mol) for the Pd/Senphos catalyzed trans-hydroboration 
process computed at SMD(CH2Cl2)-TPSS-D3(BJ)BJ/SDD+f(Pd), 6-31G**(other atoms) level of 
theory.  

  

Conclusion 

In summary, we investigated the reaction mechanism of the Pd/Senphos-catalyzed trans-

hydroboration reaction of 1,3-enynes using various experimental techniques, including reaction 

progress kinetic analysis, X-ray crystallographic characterization of a model outer-sphere 

oxidative addition species, and double cross-over labeling experiment. Our experimental data 

establish catecholborane as a suitable electrophile to cooperatively activate the Pd0-bound 1,3-

enyne substrate via the unusual outer-sphere oxidative addition mechanism. The resulting outer-
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sphere oxidative addition adduct is proposed to be the resting state of the catalytic cycle and 

features the versatile Pd-h3-p-allyl motif and the characteristic k2-h2-BC-coordination by the 

Senphos ligand as evidenced by single-crystal structure analysis of the model compound. The 

results of the double cross-over labeling of the catecholborane are consistent with the borane 

serving an additional role as a hydride shuttle. We also refined a previously reported 

computational mechanistic study and determined that the rate-limiting transition state of the 

reaction is the hydride abstraction by the catecholborane shuttle, which is consistent with the 

experimentally determined rate law. The computed activation free energy DG‡ = 17.7 kcal/mol 

and KIE (kH/kD = 1.3) is also in line with experimental observations. Overall, this work 

experimentally establishes Lewis acids such as catecholborane as viable electrophilic activators 

to engage in an outer-sphere oxidative addition reaction and points towards outer-sphere 

oxidative addition as a likely general approach to activate unsaturated substrates.  
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