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Abstract 17 

The fluctuation of environmental conditions drives the structure of microbial communities in 18 

estuaries, highly dynamic ecosystems. Microorganisms inhabiting estuarine sediments play a key 19 

role in ecosystem functioning. They are well adapted to the changing conditions, also threatened 20 

by the presence of pollutants. In order to determine the environmental characteristics driving the 21 

organization of the microbial assemblages, we conducted a seasonal survey along the Adour 22 

Estuary (Bay of Biscay, France) using 16S rRNA gene Illumina sequencing. Microbial diversity 23 

data were combined with a set of chemical analyses targeting metals and pharmaceuticals. 24 

Microbial communities were largely dominated by Proteobacteria (41%) and Bacteroidota 25 

(32%), showing a strong organization according to season, with an important shift in winter. The 26 

composition of microbial communities showed spatial distribution according to three main areas 27 

(upstream, middle, and downstream estuary) revealing the influence of the Adour River. Further 28 

analyses indicated that the microbial community was influenced by biogeochemical parameters 29 

(Corg/Norg and 𝛿13C) and micropollutants, including metals (As, Cu, Mn, Sn, Ti, and Zn) and 30 

pharmaceuticals (norfloxacin, oxolinic acid and trimethoprim). Network analysis revealed 31 

specific modules, organized around keystone taxa, linked to a pollutant type, providing 32 

information of paramount importance to understand the microbial ecology in estuarine 33 

ecosystems. 34 

Environmental implication 35 

The study aims to decipher the impact of anthropogenic multi-contamination on microbial 36 

communities in the Adour Estuary (France) sediments in order to identify the main environmental 37 

drivers as well as the keystone microbial taxa organizing the microbial communities. 38 

The environmental conditions (hydrological and geochemical parameters; metals and 39 

pharmaceuticals content) combined with 16S rRNA gene metabarcoding data, revealed the effect 40 

of antibiotics and metals contamination on microbial community structures. We propose that 41 

Nitrospira, identified as keystone microbial taxa establishing microbial relationships under 42 

various contamination levels, corresponds to an ideal partner that should be considered when 43 

implementing strategies for environmental management.  44 
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1 Introduction 48 

Estuaries are ecotones, transitional waters at the interface of freshwater and marine habitats. They 49 

are described as highly productive areas providing ecosystem services such as nurseries for many 50 

bird and fish species, regulation of nutrient flow and cycling, and recreational activities (Kennish, 51 

2002; Basset et al., 2013). They are highly sensitive environments showing important fluctuations 52 

of environmental parameters, including salinity, temperature, and nutrient concentrations. 53 

Estuaries have been considered as naturally stressed environments (Elliott and Quintino, 2007), 54 

further threatened by various contaminants released by human activities. Among the 55 

contaminants, metals and pharmaceuticals are of primary concern because they are biologically 56 

active compounds threatening aquatic biota, ecosystems and even human health (Fabbri and 57 

Franzellitti, 2016). These compounds are ubiquitous, being detected in various estuarine 58 

compartments, including surface water (Aminot et al., 2016; Obimakinde et al., 2017), effluent 59 

from wastewater treatment plants (Li et al., 2016), sediments (Shi et al., 2014), and aquatic 60 

organisms (He et al., 2019). Microorganisms play a crucial role in numerous environmental 61 

processes and functions, being involved in carbon, nitrogen, phosphorus cycles (Bauer et al., 62 

2013; Damashek and Francis, 2018; Watson et al., 2018). In estuarine sediments, microorganisms 63 

are highly diverse with complex organization, representing the main biotic compartment 64 

(Lozupone and Knight, 2007; Yi et al., 2020). The microbial communities are sensitive to 65 

environmental variations such as temperature and salinity, and the presence of micropollutants 66 

(Lozupone and Knight, 2007; Sun et al., 2012; Jeanbille et al., 2016). Hence, in ecosystems as 67 

much fluctuating than estuaries, the shift in microbial community structuration are likely to be 68 

observed in response to the input of metals and pharmaceuticals. The presence of pollutants, both 69 

organic and inorganic, has been shown to influence the organization of microbial communities in 70 

aquatic environments (Bordenave et al., 2004; Vercraene-Eairmal et al., 2010; Cravo-Laureau et 71 

al., 2011; Duran et al., 2015). It is thus of paramount importance to understand how 72 

micropollutants in sediment modify the microbial community structure in order to identify key 73 

microorganisms around which microbial assemblages are organized in response to the presence 74 

of a pollutant. Network analysis allows to determine the interactions between microorganisms 75 

and other organisms and their habitat (Fuhrman and Steele, 2008; Williams et al., 2014), 76 



revealing ‘specialists’ microorganisms specifically associated with a pollutant type and its biotic 77 

interactions (Lladó et al., 2015; Duran et al., 2015).  78 

The Adour Estuary (France), located in the Bay of Biscay (Atlantic Ocean), features contrasted 79 

areas that are under the influence of different human activities, exhibiting different types and 80 

levels of pollution (Stoichev et al., 2004). The upstream of the watershed is mainly agricultural 81 

with livestock activities, while downstream is highly urbanized, with industrial, port and urban 82 

activities. 83 

In this work, we hypothesize that the environmental factors influence the organization of 84 

microbial assemblage in sediments. Particularly, the presence of pollutants promotes the selection 85 

of specific taxa that represent potential biomarkers of pollution, although estuarine environments 86 

constitute highly mixing zones. The main objective of the study was thus to characterize the 87 

relationships between the microbial communities, hydrological and geochemical characteristics, 88 

and pollutants occurrence and content (metals and pharmaceuticals), in estuarine sediments along 89 

ten sampling sites located in the Adour Estuary at different seasons, in order to estimate the 90 

significant parameters driving the estuarine microbial communities. 91 

2 Material and Methods 92 

2.1 Study site and sample collection 93 

The Adour Estuary is located at the southwestern of France, extends along 308 km from the 94 

Pyrenees to the Bay of Biscay (Atlantic North-East). This mesotidal estuary presents a highly 95 

heterogenous content river discharge, with 290 m3.s-1 in annual mean and varying between 50 96 

and 3,200 m3.s-1. Three sampling campaigns were performed: May 2017 (spring), September 97 

2017 (summer), and from January to February 2018 (winter). Samples were collected at low tide 98 

slackwater, the tidal coefficient ranged between 78 and 109. Estuarine sediments were sampled in 99 

ten sites from maximum salinity intrusion in the Adour River (site 1) and in the Nive River (site 100 

2) to the downstream estuary (site 10) (Fig. 1). Sites were selected in order to sample both 101 

upstream preserved sites and downstream contaminated sites according to area structuration and 102 

previous observations (Stoichev et al., 2004; Point, 2004; Cavalheiro et al., 2017). Triplicate of 103 

surface sediment samples (0 - 1 cm) were collected in sealable plastics bags. In total, the analyses 104 



were performed on 90 samples (10 sites * 3 replicates * 3 seasons). Samples were transported in 105 

coolers at approximately 4°C and in the dark to the laboratory, within 2h. Samples were then 106 

stored at -20°C until analysis. During sample collection, an aliquot of each replicate was stored 107 

specifically in 2 mL Eppendorf tubes directly shock-frozen in liquid nitrogen carriers and stored 108 

at −80°C prior microbial DNA extraction. 109 

2.2 Hydrological and geochemical characteristics 110 

Sediments were freeze-dryed in a freeze-dryer (VaCo2 - Zirbus, Germany). Dry sediments were 111 

visually homogenized, plants, stone and other debris were manually removed. An aliquot of 1 g 112 

was collected for grain size distribution characterization by laser diffraction (Mastersizer 2000, 113 

Malvern). Sediments were then grinded in a planetary ball mill (PM 100, Retsch) and stored at -114 

20°C. Sediments water contents (%WC) were obtained by measuring the weight loss before and 115 

after drying at 60°C for 48h. Total carbon and particulate organic carbon (TC and POC) were 116 

analyzed by infrared spectroscopy via high temperature combustion on a Shimadzu TOC-117 

LCSH/CSN/SSM-5000A analyzer. POC was measured after removal of carbonates with 1.2 N 118 

HCl from 200 mg of powdered sample. Sediments for carbon and nitrogen isotopic compositions, 119 

particulate organic nitrogen (PON) and C/N ratios were weighed into silver cups and 120 

decarbonated using 1.2 N HCl, and then analyzed using an elemental analyzer (Flash 2000, 121 

Thermo Fisher Scientific) coupled to an isotope ratio mass spectrometer (IRMS; Isoprime, GV 122 

Instruments). Chlorophyll-a was measured in sediments by spetrophotometry according to 123 

Lorenzen (1967) and Aminot and Kérouel (2004) using a Shimadzu UV-1800 spectrophotometer. 124 

All concentrations were expressed in dry weight. River discharge values were obtained from 125 

HYDRO database (http://hydro.eaufrance.fr). 126 

2.3 Micropollutants characterization: Metals, trace elements and 127 

pharmaceuticals analyses 128 

Trace metals and metalloids (Ag, As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sn, Th, Ti, U, V, 129 

Zn) except Hg were measured in 0.05 to 1 g sample of dry sediments after an acid digestion and 130 

by inductively coupled plasma-mass spectrometry (ICP-MS; 7500 series, Agilent). Briefly, 3 mL 131 

of HNO3 (70%, Instra Analysed, J.T. Baker) and 1 mL of HCl (37%, Ultrex, Fisher Scientific) 132 

http://hydro.eaufrance.fr/


were added to dried sediment samples in acid-cleaned and uncolored PP tubes (DigiTUBE, SCP 133 

Science). Sediments solutions were heated on a hot plate at 85°C for 4h (DigiPREP, SCP 134 

Science). Then, 1 mL of hydrogen peroxide (30-32%, Optima, Fisher Chemical) was added drop 135 

by drop and solutions were heated again at 85°C for 2h (DigiPREP, SCP Science). Final volumes 136 

were adjusted to 15 mL with ultrapure water (MilliQ, Millipore). Solutions were centrifugated 137 

and the supernatants were filtered with 0.22 µm PTFE (Millipore) syringe filters. Filtrates were 138 

spiked with internal standards (Bismuth, Bi). Samples were analyzed by ICP-MS using the 139 

external calibration method with internal standard correction (Bi) and limits of detection are 140 

detailed in Table S1. 141 

Quality of analyses was controlled with Standard Reference Materials (SRM 1944, National 142 

Institut of Standards & Technology), with mean recoveries ranging, with a few exceptions (2 out 143 

of 16), from 42 to 128%. Total mercury (Hg) content was measured by atomic absorption 144 

spectrophotometry (AAS) (Costley et al., 2000) using Advanced Mercury Analyzer (AMA-254, 145 

LECO). To avoid any grain size effect, trace metal concentrations were normalized with thorium 146 

(Th) concentrations (Lanceleur et al., 2011). For further analyses and statistics, triplicate samples 147 

were averaged per site. 148 

A total of 43 pharmaceuticals was measured in surface sediment by liquid chromatography 149 

coupled to tandem mass spectrometry (LC- MS/MS), including 7 non-steroidal anti-inflammatory 150 

drugs (acetaminophen, aspirin, niflumic acid, diclofenac, ibuprofen, ketoprofen and phenazone), 151 

22 antibiotics (ampicillin, azithromycin, ciprofloxacin, clarithromycin, doxycycline, 152 

erythromycin, flumequine, josamycin, metronidazole, norfloxacin, ofloxacin, oxolinic acid, 153 

piperacillin, rifampicin, roxithromycin, spiramycin, sulfadiazine, sulfamethazine, 154 

sulfamethoxazole, tetracycline, trimethoprim and tylosin), 3 anxiolytics (lorazepam, nordazepam 155 

and oxazepam), 3 cardiovascular drugs (atenolol, losartan and metoprolol), as well as an 156 

antiarrhythmic agent (amiodarone), an anticancer drug (cyclophosphamide), one hormone 157 

(norethindrone), a diuretic (hydrochlorothiazide), a compound from fibrate group of medications 158 

(gemfibrozil), a diuretic and carbonic anhydrase inhibitor (acetazolamide), a neuroleptic 159 

(carbamazepine) and caffeine. The latter can be considered as a stimulant and can be used as a 160 

domestic sewage tracer since it is one of the most consumed substances worldwide (Quadra et al., 161 

2020). Internal standard solutions were composed of carbamazepine-d10, atenolol-d7, 162 



ciprofloxacin-d8, norfloxacin-d5, ofloxacin-d3, diazepam-d5, nordazepam-d5 and ibuprofen-d3. 163 

All internal standards were purchased from Sigma-Aldrich. Extraction of pharmaceuticals in 164 

surface sediment was performed following the micro-QuEChERS (Quick, Easy, Cheap, 165 

Effective, Rugged and Safe) method coupling solid extraction protocol (Ben Salem et al. 2016; 166 

Siedlewicz et al. 2016; Azaroff, et al. 2020) and liquid SPE pre-concentration protocol (Gros et 167 

al. 2017). As previously described, the sample volume was adapted to reduce the matrix effect 168 

(Maillet et al. 2017; Guironnet et al. 2022) optimizing the recovery of important sensitive 169 

pharmaceuticals (Peysson and Vulliet, 2013). Briefly, extraction was processed by adding to 200 170 

mg of dry sediment spiked with 40 µL of internal standard solutions (at 50 mg.L-1 in methanol), a 171 

mixture of 1 mL methanol (MeOH), 1 mL supersaturated aqueous ammonium chloride solution 172 

and 200 µL Na2EDTA at 0.1 mol.L-1 (Sigma Alrich). Samples were sonicated for 8 min and 173 

centrifuged 5 min at 4,500 rpm. Supernatant were collected and transferred into 50 mL 174 

polypropylene tubes. Sample volume was adjusted to 50 mL with ultrapure water (MilliQ, 175 

Millipore). Solutions were loaded in Oasis HLB cartridges (60 mg, 3 cc) (Waters) previously 176 

conditioned with 3 mL MeOH followed by 3 mL MeOH at 1 mL.min−1. After loading samples, 177 

cartridges were rinced with 5 mL ultrapure water and dried at room temperature for 20 min. 178 

Elution solvent was 5 mL MeOH at flow rate 1 mL.min−1. Samples were evaporated under a 179 

gentle air stream (TurboVap LV, Biotage). Dried extracts were then reconstituted in 1 mL 180 

MeOH:H2O (MilliQ) (5: 95, v:v) and stored at -20°C prior to analysis by LC-MS/MS using an 181 

Acquity UPLC system connected to a Xevo TQ MS (Triple quadru- pole) with an electrospray 182 

(ESI) interface (Waters). An internal calibration with deuterated analogs was used to quantify 183 

concentrations of target compounds. Two matrix-matched calibration curves were prepared using 184 

200 mg of sediments with different granulometry (sandy and silty) spiked with increasing 185 

concentration of target pharmaceuticals ranging from 0 to 500 ng.g-1. Solvent blanks 186 

(MeOH:H2O, 5: 95, v:v) and procedural blanks were prepared to evaluate system performances 187 

and detection limits (Table S1). Recoveries were measured from sediment samples adding a 188 

mixture of selected pharmaceuticals at the concentration of 200 ng.g-1. With a few exceptions (6 189 

out of 44 compounds), recoveries ranged between 80 and 110%. 190 



2.4 Microbial community composition 191 

Total DNA was extracted from environmental samples (~500 mg of wet sediment) using 192 

PowerSoil DNeasy (Qiagen) according to the manufacturer’s instructions. The microbial 193 

universal primers 515F-Y 5’-GTGYCAGCMGCCGCGGTAA-3’ (Parada et al., 2016) and 926R 194 

5’-CCGYCAATTYMTTTRAGTTT-3’ (Quince et al., 2011) were used to amplified V4-V5 195 

hypervariable 16S rRNA gene regions. Triplicate polymerase chain reaction (PCR) reaction 196 

mixtures containing 1 µL of DNA at 10 ng.µL-1, 2X AmpliTaq Gold DNA Polymerases (Thermo 197 

Fisher Scientific), 0.5 μM forward primer, 0.5 µM indexed reverse primer in a final reaction 198 

volume of 25 µL. PCR amplification conditions were an initial denaturing step of 10 min at 95°C 199 

followed by 35 cycles of 95°C for 30 s, 60°C for 30 s and 72°C for 45 s and then a final extantion 200 

of 7 min at 72°C. Per sample, a pool of triplicate PCR reaction was sent to Genotoul (INRA 201 

Toulouse, France) for sequencing process. Amplicon were sequenced using MiSeq Illumina 2x 202 

250 bp. Sequences were processed in R software (version 4.0.2) (R Core Team, 2020). R package 203 

dada2 (version 1.16.0) was used to analyze and cleaned 16S rRNA gene sequence reads and 204 

identified amplicon sequence variants (ASVs) (Callahan et al., 2016a) according to the default 205 

settings. The ASV identification was done using pseudo-pooling sample strategy. The taxonomic 206 

assignment of ASVs was made using SILVA SSU (small subunit) database (version 138) (Quast 207 

et al., 2013) and IDTAXA (Murali et al., 2018). The treatment of ASV and taxonomic table were 208 

processed with R package phyloseq (version 1.32.0) following instruction from Callahan et al. 209 

(2016b) but also including a rarefaction step (calculated on observed richness, R). After diversity 210 

analysis, within ASV and taxonomic table, replicates were merged by mean by site. 211 

2.5 Statistical analysis 212 

All graphics and statistical analyses were processed using R software (R Core Team, 2020). All 213 

analyses were performed on thorium-normalized data and average triplicates for chemical data. 214 

For sequencing data, the mean of triplicate for each sample was used to build the ASV table. 215 

Principal component analysis (PCA) and non-metric multidimensional scaling (NMDS) were 216 

performed using vegan package (Oksanen et al., 2020) based on Bray-Curtis dissimilarity. 217 

Analysis of similarity (ANOSIM) were performed based on 999 permutation using vegan 218 

package. Permutational multivariate analysis of variance (PERMANOVA) based on 1,000 219 



permutations using Bray-Curtis matrices and vegan R package were used to estimate the relative 220 

contribution of environmental variables. Canonical-correlation analysis (CCA) with 9,999 Monte 221 

Carlo permutation tests were conducted, with variables that present significant contribution on 222 

the PERMANOVA and ASV table at the genus taxonomic level, using vegan package. 223 

2.6 Co-occurrence networks construction 224 

Co-occurrence network was built from overall ASV profil (all campaign, all site) merge by site, 225 

under Molecular Ecology Network Analyses pipeline (MENAp) using a random matrix theory 226 

(RMT) based method (Zhou et al., 2011; Deng et al., 2012). Based on the relative proportion of 227 

ASVs abundance and ASVs present in a minimum of 37% of all samples (all campaigns 228 

included), networks were constructed using Pearson correlation matrix (Zhou et al., 2011). 229 

Within networks, modules, groups of nodes showing higher densities connections within each 230 

group than between (Newman, 2004), were identified by fast greedy modularity optimization 231 

(Newman, 2004; Clauset et al., 2004). Modules composed of a minimum of 5 nodes were 232 

conserved in further analysis. Gephi 0.9.2 was used to visualize resulting networks and modules 233 

(Bastian et al., 2009).  234 

3 Results and discussion 235 

3.1 Geochemical parameters and contamination level 236 

Although the sites on the Adour Estuary were located in different areas, i) downstream and 237 

middle-stream estuarine area under urban contributions and ii) upstream area under agricultural 238 

and fluvial influence (Fig. 1), surface sediments exhibited homogenous geochemical patterns 239 

(Table S2). According to the isotopic signatures and C/N ratios, sediments were dominated by 240 

river derived organic matter with a slight proportion of organic matter from sewage treatment 241 

plants for urban sites (Savoye et al., 2012; Kubo and Kanda, 2017). These geochemical 242 

parameters did not show significant seasonal variations, but the chlorophyll-a and POC contents 243 

were higher in spring and summer, especially in downstream sites, suggesting that a major 244 

amount of sediment organic matter in the Adour Estuary came from autochthonous primary 245 

production (Kubo and Kanda, 2017).  246 



The PCA, explaining 46% of the variance on the first two axes, showed that the samples were 247 

distinguished mainly by hotspots values (Fig. 2). The third axis of the PCA, explaining additional 248 

11% of the variance, was also driven by the same hotspot values (Fig. S1). Nevertheless, the 249 

separation of samples according to location can be mainly observed along the axis 2, while the 250 

axes 1 and 3 discerned the samples mainly according to the season (Fig. 2, Fig. S1). The PCA 251 

showed the main distribution of samples as follows: i) the middle-stream sites were linked to 252 

metoprolol and abiotic parameters (water content and fraction < 50 m), and Mn in winter and 253 

summer, ii) the upstream sites were linked to norfloxacin in summer and in winter, and Mo in 254 

spring, and iii) the downstream sites were associated to norethindrone, As and Sb in summer, to 255 

oxolinic acid in winter, and to Mo and Zn in spring (Fig. 2). However, the seasonal variability of 256 

both hydrological and geochemical parameters was not significant contrary to that observed in 257 

previous studies on the Adour Estuary (Stoichev et al., 2004), and even other estuaries (Shi et al., 258 

2014; Aminot et al., 2016). The highest concentration of antibiotics was found in winter (Table 259 

S3), which corresponds to the highest Adour River discharge season contrarily to that observed in 260 

other estuaries (Liu and Wong, 2013; Aminot et al., 2016). The contamination profile of the 261 

Adour Estuary was characterized by higher contaminant concentrations in the middle (mainly site 262 

7) or downstream estuarine Urban area (sites 8, 9 and 10), than upstream area (Fig. 2; Tables S3 263 

to S6). Since it has been shown that the presence of contaminants plays a crucial role in shaping 264 

the structure of microbial communities (Misson et al., 2016; Jacquiod et al., 2018; Wang et al., 265 

2021), the microbial communities were characterized in order to decipher the environmental 266 

parameters controlling the microbial assemblages. 267 

 268 

3.2 Microbial community diversity and composition 269 

The composition of microbial communities, determined by 16S rRNA sequencing, provided 270 

16,288 ASVs (Amplicon Sequences Variants) coming from 1,629,171 reads (after filtration and 271 

chimera removal). A mean of 1,819 ASVs ± 494 (richness, R) per sample was obtained, which 272 

was consistent with previous reports showing similar diversity in estuarine sediments (Yan et al., 273 

2018). Observed richness rarefaction curves showed a plateau (Fig. S2), suggesting that the 274 

sequencing effort was sufficient to collect most of the diversity. The microbial 𝛼-diversity 275 



(Simpson evenness) was homogenous among samples (Table S7), indicating that the microbial 276 

diversity level was not affected by the presence of contaminants. It was surprising to observe 277 

such similar diversity indexes in sediments presenting different contaminant types and contents 278 

since previous studies showed that the presence of pollutants affects (increase or decrease) the 279 

microbial diversity (Johnston and Roberts, 2009; Duran et al., 2015; Jacquiod et al., 2018; Li et 280 

al., 2020). However, similar observations have been reported when comparing contaminated and 281 

non-contaminated sediments (Paissé et al., 2008; Ben Salem et al., 2019). The legacy of 282 

microbial communities exposed to fluctuating presence of contaminants combined with the 283 

coalescence of microbial communities, mixing microbial communities along tidal estuarine 284 

continuum, may explain the homogenous microbial diversity observed in the Adour Estuary. This 285 

was also previously proposed in river sediments (Yin et al., 2015).   286 

After rarefaction step, in total 42 phyla were observed in this study. More than 80% of the 287 

relative abundance corresponded to two phyla: Proteobacteria (41 ± 3%) and Bacteroidota (32 ± 288 

6%) (mean ± SD of all samples) (Fig. 3). The dominance of these two phyla is consistent with the 289 

major groups found in estuarine environments (Fortunato and Crump, 2015; Guo et al., 2018; 290 

Vidal-Durà et al., 2018), where they play a critical role in biogeochemical cycles (Xia et al., 291 

2013). Proteobacteria were dominated by Gammaproteobacteria (23 ± 9%) and 292 

Alphaproteobacteria (9 ± 3%). The Burkholderiales order, formerly affiliated to 293 

Betaproteobacteria class now affiliated to Gammaproteobacteria, dominated the 294 

Gammaproteobacteria (20 ± 6%). Interestingly, the abundances of Alphaproteobacteria and 295 

Burkholderiales showed significant seasonal variability (pairwise wilcox test, p-value < 0.05) 296 

with opposite trends. From summer/spring to winter, corresponding to the intrusion of freshwater 297 

in the estuary due to higher Adour River discharge in winter, the abundance of 298 

Alphaproteobacteria decreased (from 11 to 7%) while that of Burkholderiales increased (from 16 299 

to 25%). It is likely that the variation of the abundance of these taxa was a consequence of the 300 

variation of the Adour River discharge (maximum in winter) and the intrusion of freshwater in 301 

the estuary. Accordingly, previous reports showed that Burkholderiales occur commonly in 302 

estuarine and freshwater ecosystems (Aylagas et al., 2017; Roberto et al., 2018) while 303 

Alphaproteobacteria have been identified as a major group in marine microbial communities 304 

(Pommier et al., 2007; Zinger et al., 2011). The Bacteroidetes phylum, which members have been 305 

identified to play a crucial role in the degradation of biopolymers (e.g. chitin, cellulose) 306 



(Fernández-Gómez et al., 2013; Kirchman, 2002), was dominated by the Bacteroidia class (30 ± 307 

6%), especially by the Flavobacteriales order (Table S8). In accordance with previous report 308 

showing the critical role of the Flavobacterium genus in the microbial loop (detrital food web) 309 

(Kisand et al., 2002), the dominance of the Flavobacterium genus suggested that the organic 310 

matter played a key role in the organization of microbial communities in the Adour Estuary. 311 

Besides, several phyla were present in lower abundance in the bacterial community, including 312 

Deltaproteobacteria (Desulfobacterota; Waite et al., 2020), (5.5 ± 2.7%), Acidobacteriota (4.2 ± 313 

2.2%), Verrucomicrobiota (3.1 ± 2.4%), Actinobacteriota (1.7 ± 0.9%), Planctomycetota (1.7 ± 314 

0.8%), Chloroflexi (1.6 ± 0.8%), and Firmicutes (1.2 ± 0.9%). Members of these phyla are 315 

commonly found in estuarine or freshwater environments (Feng et al., 2009; Guo et al., 2018; 316 

Vidal-Durà et al., 2018). The Archaea were found at low abundance (< 1%) showing also 317 

seasonal variation, particularly in the estuarine Urban area, being not detected in spring while 318 

showing the highest abundance (1%) in winter. Despite such low abundance, it is worth to take 319 

into account Archaea since they are known to play an important role in biogeochemical cycles, 320 

especially the nitrogen cycle, methanogenesis and even metal resistance (Webster et al., 2015). 321 

The low abundance of Archaea in our study was in accordance with previous studies in similar 322 

ecosystems (Kaci et al., 2016; Vidal-Durà et al., 2018), although methodological bias 323 

underestimating Archaea, such as high variability of 16S rRNA gene for multiples Archaea 324 

lineages and a lack of specificity of universal primers for Archaea (Bahram et al., 2019), cannot 325 

be excluded. Crenarchaeota, Halobacterota and Euryarchaeota, were the main phyla, 326 

Crenarchaeota representing the more abundant archaeal phylum (> 0.2%; Fig. 3). These archaeal 327 

phyla are usually observed in estuarine sediment (Abreu et al., 2001; Kaci et al., 2016). 328 

3.3 Spatial and seasonal variation in microbial community 329 

structure 330 

ANOSIM showed that the microbial communities in the Adour sediment were grouped according 331 

to season (R = 0.78, p-value = 0.001), further confirmed by the hierarchical clustering (Fig. 4A) 332 

revealing that the microbial communities in winter were separated from those of the other 333 

seasons (ANOSIM, R = 1, p-value = 0.001). These results suggested that the microbial 334 

communities were influenced by seasonal parameters such as temperature and Adour River 335 

discharge (Table S2). Nevertheless, differences between microbial communities were also 336 



observed along the Adour Estuary (ANOSIM, R = 0.15, p-value = 0.028), the NMDS analysis 337 

showing three clear clusters (Fig. 4B): microbial communities of upstream sites (1 and 2) being 338 

separated from those of the middle sites (3, 4, 5, 6 and 7) and downstream sites (8, 9 and 10). 339 

Noteworthy, the seasonal effect can be seen within these clusters in which the spring and summer 340 

microbial communities are clearly separated (Fig. 4A). Such observation was in accordance with 341 

the level of contaminant concentrations observed along the Adour Estuary showing a gradient of 342 

increasing pollutant concentration from upstream to downstream (Fig. 2; Tables S5 and S6), but 343 

the clear separation of the most upstream sites (1 and 2) from the other sites confirmed that they 344 

are under freshwater influence. It is likely that despite the microbial communities exhibited 345 

seasonal variations, they were adapted to both hydrological/geochemical conditions and 346 

contaminant concentrations prevailing at each site, as observed in other estuaries (Wang, L. et al., 347 

2013; She et al., 2016; Guo et al., 2019).  348 

3.4 Influence of micropollutants on microbial assemblages 349 

3.4.1 Major parameters shaping microbial assemblages 350 

Correlation and PERMANOVA analyses revealed that the microbial communities were 351 

influenced by 12 main environmental parameters (p-value < 0.05), including 6 metal(loid)s (As, 352 

Cu, Mn, Sn, Ti and Zn), 3 pharmaceuticals (norfloxacin, oxolinic acid and trimethoprim), 353 

Corg/Norg, 𝛿13C, a parameter linked to organic matter transformation processes and the season 354 

(Table 1). Additional collinear parameters V, Co, losartan and flumequine respectively associated 355 

to As, Mn, Zn and oxolinic acid were also revealed (Table 1). Interestingly, the correlation of Zn, 356 

proxy used as urban water marker (Pringault et al., 2012), with losartan, antihypertensive drug, 357 

supported the urban contamination. However, oxolinic acid and flumequine, two quinolone 358 

antibiotics, are used in aquaculture and farming (cattle, pig and poultry) as well (Delépée et al., 359 

2004). The presence of losartan together with Zn probably modifies the effect of Zn on microbial 360 

communities that has been shown to affect microbial activities (Pringault et al., 2008, 2010, 361 

2012). The CCA also shows the link of Zn with pharmaceuticals, especially with the antibiotic 362 

norfloxacin (Fig. 5, Fig. S3). Interestingly, the CCA revealed that the abundance of 9 bacterial 363 

genera correlated with norfloxacin concentration (Fig. 5). Most of the genera are usually found in 364 

anaerobic digesters such as Acetobacteroides, Acidaminobacter, Simplicispira, Leucobacter, 365 



Williamwhitmania, and Comamonas (Su et al., 2014; Wen et al., 2017; Szabó et al., 2017; 366 

Schumann and Pukall, 2017; Mei et al., 2020). 367 

Additionally, the CCA showed the distribution of microbial communities according to their 368 

location in the estuary along the axis 2 (explaining 11% of the variation), while they were 369 

distributed according to the season mainly winter along the axis 1 (explaining 20% of the 370 

variation) and mainly spring along the axis 3 (explaining 8% of the variation; Fig. S3). The CCA 371 

showed that: i) the upstream sites were driven by trimethroprim in spring and summer, and 372 

oxolinic acid in winter, ii) the middle-stream sites were associated to the organic carbon/nitrogen 373 

ratio (Corg/Norg) in spring and summer, and to Cu and Ti in winter, and iii) the downstream sites 374 

were driven by As and Sn in spring and summer, and by Cu and Ti in winter (Fig. 2. Fig. S3). 375 

Farming activities, such as cattle, sheep, pig and poultry breeding and aquaculture, on the 376 

watersheds could be related with the exposure of microbial communities to antibiotics 377 

(trimethoprim and oxolinic acid) probably on upstream sites. Several bacterial genera were found 378 

associated with trimethoprim, including genera belonging to Plantomycetes (Gemmata and 379 

Fimbriiglobus) known to exhibit wide antibiotic resistance (Godinho et al., 2019).  380 

Similarly, twelve genera were associated to oxolonic acid. The majority exhibit potential 381 

antibiotic resistance, including two members of Chitinophagaceae (Terrimonas and 382 

Ferruginibacter) (Cui et al., 2021), Haliscomenobacter (Zhang et al., 2020), Geobacter (Kashefi 383 

et al., 2003), Deefgea (Chen et al., 2010), JGI 0001001-H03 belonging to Blastocatellaceae 384 

(Jauregi et al., 2021) or again Haliangium, a genus known to synthetize antimicrobial compound 385 

(Sun et al., 2016). Moreover, the CCA showed the association of As and Sn with specific 386 

bacterial genera, including among them Desulfosarcina, Defluviitaleaceae UCG-011, 387 

Propionigenium, Ruminococcus, Malonomonas, Macellibacteroides described as anaerobic 388 

bacteria (Schink and Pfennig, 1982; Dehning and Schink, 1989; Jabari et al., 2012), together with 389 

the cyanobacteria Chroococcidiopsis, Calothrix (Boone and Castenholz, 2001) and other aerobic 390 

bacteria such as Craurococcus, Imperialibacter, Rubellimicrobium (Saitoh et al., 1998; Wang, H. 391 

et al., 2013; Jiang et al., 2019). 392 



3.4.2 Microbial co-occurrence network description 393 

The interactions between various microbial functional groups are pivotal for ensuring ecosystem 394 

functioning, as shown for fluctuating polluted environments (McGenity et al., 2012; Duran et al., 395 

2015). In order to deeper describe the microbial relationships and their interactions with 396 

contaminants (metals and pharmaceuticals), a co-occurrence network was constructed based on 397 

strong and significant Spearman correlations. The microbial network contained 347 nodes and 398 

404 edges, with topological features of complex systems such as scale-free, small-world, and 399 

modularity (M) (Table S9) indicating non-random network as previously proposed (Wan et al., 400 

2020). The microbial network possessed high connectivity and modularity (Table S9) suggesting 401 

stability and resilience of the system as reported for microbial networks in paddy soil (Wan et al., 402 

2020) and marine coastal sediment (Jeanbille et al., 2016). Following the 16S rRNA gene 403 

composition, the microbial network was dominated by Proteobacteria (40%), Bacteroidetes 404 

(25%), Desulfobacterota (7%), Acidobacteriota (6%), Planctomycetota (4%), and 405 

Verrucomicrobiota (4%) (Fig. 6A1).  406 

Modularity analysis identified a total of 17 modules structuring the network, each composed of 9 407 

to 29 nodes. Noteworthy, the modules were mainly composed by ASVs occurring in summer 408 

and/or spring (Fig. S6), probably because the ASV associated to winter did not show the minimal 409 

occurrence required for network construction (Liu et al., 2015), in accordance with the seasonal 410 

variability observed by CCA (Fig. 5). The modules correspond to groups of strongly connected 411 

ASVs within the group but with very few connections outside the group. Modules showing 412 

significant correlations (p-value < 0.05) with the most significant pollutants (PERMANOVA, 413 

Table 1) were detected (Fig. 6B).  414 

Some modules showed negative correlations with environmental parameters (Fig. 6B) suggesting 415 

that these modules gathered microbial taxa either sensitive to metals (modules 4, 5, 6, 9, 12 and 416 

15) or to antibiotics (modules 8 and 11). Such sensitive microbial taxa might be useful to report 417 

ecosystem quality, as for example in the MicrogAmbi integrative microbial community index 418 

combining sensitive and tolerant taxa (Aylagas et al., 2017). However, further investigations are 419 

required to understand the role of such sensitive microbial taxa in the ecosystem functioning. The 420 

other modules showed positive correlations with either antibiotics (modules 1, 6, 9, and 15) or 421 

metals (modules 8, 10, 11, and 16) (Fig. 6B). It was surprising that none of the modules correlate 422 



with both antibiotics and metals since several studies have shown co-selection of resistances to 423 

these two kinds of compounds (Baker-Austin et al., 2006; Liu et al., 2021).  424 

3.4.3 Antibiotics correlated modules  425 

Regarding the modules positively correlated to antibiotics, four were correlated to both oxolinic 426 

acid and trimethoprim (modules 1, 6, 9, and 15), while the module 7 was correlated only with 427 

oxolinic acid (Fig. 6B). Both antibiotics, used in human and animal therapies, have been detected 428 

together in effluents of wastewater treatment plants (Rodriguez-Mozaz et al., 2020). The modules 429 

correlated with both trimethoprim and oxolinic acid (modules 1, 6, 9, and 15) were structured 430 

around ASVs affiliated to Hydrogenophaga, Ignavibacterium, Leptospira genera, and 431 

Comamonadaceae family, which represented keystone ASVs by exhibiting the highest 432 

connectivity within the network (Fig. 6C). The Comamonadaceae family, harboring a large 433 

diversity of metabolisms (Willems, 2014), to which Hydrogenophaga genus belongs. 434 

Ignavibacterium album, the unique member of Ignavibacteriaceae family, was isolated from 435 

microbial mats developed in hot spring water streams (Iino et al., 2010). Some species of 436 

Leptospira sp. are pathogen, responsible of leptospirosis, a disease targeting humans and animals 437 

(Costa et al., 2015). These three genera have been reported to show resistance to trimethoprim 438 

and/or oxolinic acid, as well as to other antibiotic (Chakraborty et al., 2010; Iino et al., 2010; 439 

Gerzova et al., 2014). In addition, the modules included several less connected ASVs, which 440 

related genera were reported as trimethoprim resistant, such as: Geobacter (modules 1 and 6) 441 

(Kashefi et al., 2003), Gemmata (module 1) (Cayrou et al., 2010), and Pseudomonas (module 15) 442 

(Meng et al., 2020) that is also known as oxolinic acid resistant (Concha et al., 2021). It is also 443 

worth to note that other genera, including Luteolibacter (module 1) (Pascual et al., 2017), 444 

Nitrospira (modules 1 and 9) (Mehrani et al., 2020), or Terrimonas, Hyphomicrobium, 445 

Ferruginibacter (module 9) (Cui et al., 2021) have been described as antibiotic resistant taxa. The 446 

presence of well-structured microbial modules around antibiotic-resistant taxa represents an 447 

important concern for human health that should be considered in monitoring aquatic 448 

environment. 449 



3.4.4 Metal(loid)s correlated modules 450 

Regarding the modules positively correlated to metal(loid)s (Fig. 6B), one was correlated to Mn 451 

(module 10) and three to As (modules 8, 11, and 16). The concentration of these elements ranged 452 

between 176 and 1,100 µg.g-1 for Mn and 6.6 and 19 µg.g-1 for As (Tables S4 and S6). These 453 

concentrations are between the lowest effect level (LEL; 460 and 6 µg.g-1 for Mn and As 454 

respectively) and the severe effect level (SEL; 1100 µg.g-1 and 33 µg.g-1 for Mn and As 455 

respectively) for sediment (Persuad et al., 1993), indicating that Mn and As can reach a moderate 456 

contamination level in the Adour Estuary.  457 

The module 10, significantly correlated to Mn, included keystone ASVs affiliated to Lewinella, 458 

uncultured IheB3-7 bacteria, and two ASVs corresponding to the families of Comamonadaceae 459 

and Rhodobacteraceae (Fig. 6C2). Lewinella and the uncultured IheB3-7 bacteria are marine 460 

bacteria, typically found in sediment and deep-sea systems respectively (Nakagawa et al., 2005). 461 

Interestingly, several members of Comamonadaceae family are recognized as manganese-462 

oxidizing bacteria (Breda et al., 2017). Mn-oxides have been shown to be involved in the 463 

nitrogen cycle, Mn geochemistry being important for controlling redox processes in sediments 464 

(Anschutz et al., 2019). Beside these keystone ASVs, the module gathered several ASVs that 465 

have been described for their Mn removal capacity such as ASVs associated to the 466 

Flavobacteriaceae and Pirellulaceae families (Carmichael et al., 2013; Molari et al., 2020), 467 

Nitropira and Oscillatoria genera (Gerasimenko et al., 2013; Palomo et al., 2016) as well as 468 

metal(loid)s resistant genera such as Arenimonas and Roseomonas (Li, F. et al., 2021; Wang, F. 469 

et al., 2021).  470 

The modules correlated to As were organized around keystone ASVs affiliated to 471 

Rhodobacteraceae and Holophagaceae (module 8), Ekhidna, Pir4 lineage and TRA3-20 family 472 

(module 11) and Nitrospira (module 16) (Fig. 6C3). Some of the genera have been described as 473 

As resistant taxa, including the genera of the Rhodobacteraceae (Crognale et al., 2019) and 474 

Holophagaceae (Islam et al., 2005; Stroud et al., 2014) families, and members of the Nitrospira 475 

genera (Palomo et al., 2018). Such observations supported their structuring role in As resistant 476 

modules. It was particularly interesting to found Nitrospira, a nitrite-oxidizing genera able to 477 

perform complete nitrification (comammox), which has been demonstrated to carry As resistance 478 

mechanisms (Palomo et al., 2018). Nitrospira might play a crucial role promoting the formation 479 



of bacterial assemblages in association with other ASVs related to Dechloromonas (module 8) 480 

and Aquabacterium (module 16) As resistant genera (Suhadolnik et al., 2017). Additionally, the 481 

modules correlated with As included sulphate-reducing bacteria (SRB) Desulfonatronobacter, 482 

Desulfuromonadia (module 16), and Desulfobulbus (module 8), which have been shown involved 483 

in As methylation and demethylation processes (Chen et al., 2019). Such observation is in 484 

accordance with several studies reporting the presence of SRB and other sulphate-reducing 485 

microorganisms (SRM) in As rich environments (Dias et al., 2008; Bruneel et al., 2008; 486 

Giloteaux et al., 2013; Liu et al., 2018). SRM might play a crucial role in the organization of 487 

microbial networks in response to As.  488 

The presence of ASVs related to Nitrospira in almost all modules significantly correlated with 489 

pollutants was the most striking observation, which suggested that the presence of Nitrospira is 490 

an essential link in the microbial networks. Such omnipresence of Nitrospira is probably 491 

explained by its involvement on the nitrogen cycle, particularly via comammox, combined with 492 

its capacity to face the presence of organic and inorganic contaminants (Palomo et al., 2018). The 493 

presence of Nitrospira has been reported in microbial networks in various ecosystems, including 494 

wastewater treatment plant (Petrovski et al., 2020), saline soil (Li, X. et al., 2021), alpine 495 

grassland (Qi et al., 2021), agricultural soil (Han et al., 2021), estuarine mudflat (Wang, X. et al., 496 

2021). Such cosmopolitan behaviour suggests that Nitrospira is a “good friend”, an ideal partner 497 

for microorganisms for the colonization of a wide range of habitats. Such capability is 498 

particularly interesting for treatments of contaminated sediments, making Nitrospira a potential 499 

bio-augmentation agent. 500 

4 Conclusion 501 

Our study shows the stratification of microbial communities along an estuarine continuum 502 

highlighting the fragmentation according to habitat filtering despite the mixing zone that 503 

represents the conditions conductive to the coalescence of microbial communities. Specific 504 

microbial communities were observed, depending on the occurrence and level of contaminants, 505 

that allowed to detect specific and keystone taxa representing “specialists” particularly well 506 

adapted to the presence of contaminants. Such “specialist” taxa, like Hydrogenophaga, 507 

Ignavibacterium, Dechloromonas and Oscillatoria represent potential bio-indicators or 508 



“sentinels” to be included in integrative indices for evaluating the ecological status of aquatic 509 

environments. The network analysis showed that the microbial communities were organized in 510 

specialized modules around these “specialists” keystone taxa. The modules were tailored to 511 

respond specifically to the presence of a contaminant type, providing useful information to 512 

understand how the environmental parameters shape the organization of microbial assemblages. 513 

Particularly, Nitrospira was found to be an ideal partner for establishing microbial relationships 514 

under various conditions, which should be considered in environmental management. The results 515 

pave the way for future studies, particularly at the functional level, for deciphering the metabolic 516 

networks involved in the ecosystem functioning in estuarine ecosystems. 517 
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Figure captions  985 

Fig. 1. Sampling area and site location along the Adour Estuary. Sites are identified by 986 

numbers and colors. Shapes indicate site position along the estuary, (■) upstream, (●) middle and 987 

(▲) downstream.  988 

Fig. 2. Comparison of Adour Estuary sites based on hydrological and geochemical 989 

parameters and pollutants content. PCA for (A) sites discriminating by sampling season and 990 

site position, and (B) variables including metals (red), pharmaceuticals (purple), geochemical 991 

parameters (blue) concentrations and abiotic parameters (black). 992 

Fig. 3. Microbial community composition. Relative abundance (average of three replicates) of 993 

dominant microbial groups (phylum, class or order) observed by site and season in Adour Estuary 994 

sediment. NA, not assigned sequences; Other, taxa with abundance below 0.2% for phyla and 995 

classes and 1 % for orders.  996 

Fig. 4. Comparison of microbial community composition. A) Hierarchical clustering based on 997 

Bray-Curtis dissimilarity computed on ASVs composition using the Ward D2 linkage method. 998 

The analysis was performed on the average of three replicates. The four groups were determined 999 

according to the explained inertia (83% with four groups). The seasons are identified by colors: 1000 

spring (green), summer (pink) and winter (yellow). B) NMDS showing k-means clusters, based 1001 

on the Bray-Curtis distances with samples pooled by site (without taking account to the season).  1002 

Fig. 5. Correlations between microbial community structures (genus level) with the 1003 

environmental chemical parameters by CCA. The sites, the chemicals (arrows), and the ASVs 1004 

at the genus level (grey points) are plotted. The bacterial genera discussed in the text are shown 1005 

in red. 1006 

Fig. 6. Adour sediments microbial communities network analysis. (A) Global network 1007 

representation where each node corresponds to an ASV, node size is proportional to the node 1008 

betweenness. Networks are first colored according to phylum (A1) where NA, designated not 1009 

assigned sequences and Other, phyla with abundance below 1%. Or, they are colored by (A2) 1010 

modules, where modules significantly positively correlated with environmental parameters 1011 



selected are identified in colors and Others designed nodes that does not belong to these modules. 1012 

(B) Heatmap of correlation between modules and environmental variables indicating Spearman 1013 

correlation values (p-value). Only correlation with p-value higher or equal to 0.05 were 1014 

represented. (C) Adour sediments microbial communities modules representation. Visualization 1015 

of selected modules correlated to trimethoprim and oxolinic acid (C1), to Mn (C2) and to As (C3) 1016 

illustrating ASVs within each module and their interactions. Each node corresponds to an ASV, 1017 

node size is proportional to the node betweenness. Modules are identified by colors according to 1018 

the legend in (A2). For a better resolution version of the Fig., see Fig. S4 for (A1) and (A2) and 1019 

Fig. S5 for (C1), (C2) and (C3).  1020 
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Table 1 Contribution of environmental variables on the organization of microbial communities 1022 

by PERMANOVA based on Bray-Curtis index. Monte Carlo’s level of significance (p) below 1023 

0.05 are indicated in bold. Only the most significant collinear variables (coefficientpear ≥ |0.85|) 1024 

revealed by PERMANOVA are indicated. 1025 

Environmental 

variable 

Pseudo-F 

ratio (F) 

R2 p* Correlation between 

variables 

(coefficientpear) 

As 4.47 0.061 0.007 Vanadium (0.87) 

Cr 2.09 0.028 0.065  

Cu 4.25 0.058 0.001  

Mn 3.39 0.046 0.019 Cobalt (0.90) 

Sn 5.91 0.081 0.001  

Ti 6.95 0.095 0.002  

Zn 4.96 0.068 0.002 Losartan (0.85) 

Acetaminophen 2.24 0.030 0.052  

Caffeine 2.05 0.028 0.066  

Lorazepam 1.81 0.025 0.126  

Metoprolol 1.57 0.021 0.151  

Norfloxacin 2.57 0.035 0.048  

Ofloxacin 2.25 0.031 0.074  

Oxolinic acid 2.61 0.036 0.043 Flumequine (0.85) 

Trimethoprim 3.77 0.051 0.011  

Corg/Norg 2.91 0.040 0.028  

𝛿13C 4.22 0.058 0.008  

Season 2.70 0.073 0.021  

 

 

*: Monte Carlo approximated level of significance 
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