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Abstract: The Donnan membrane technique (DMT), in which a synthetic or natural solution (the
“donor”) is separated from a ligand-free solution (the “acceptor”) by a cation-exchange membrane,
is a recognized technique for measuring the concentration of a free metal ion in situ, with coupling
to electrochemical detection allowing for the quantification of the free metal ion directly on site.
However, the use of the DMT requires waiting for the free metal ion equilibrium between the donor
and the acceptor solution. In this paper, we investigated the possibility of using the kinetic information
and showed that non-equilibrium experimental calibrations of Cd and Pb with the ISIDORE probe
could be used to measure free metal concentrations under conditions of membrane-controlled
diffusion transport. The application of this dynamic approach made it possible to successfully
determine the concentration of free Cd in synthetic and natural river samples. Furthermore, it was
found that the determination of free Cd from the slope was not affected by the Ca concentration ratio
between the acceptor and donor solution, as opposed to the traditional approach based on Donnan
equilibrium. This ISIDORE probe appears to be a promising tool for determining free metal ions in
natural samples.

Keywords: Donnan membrane technique; screen-printed electrode; free ion concentrations;
dynamic mode

1. Introduction

The chemical forms of dissolved metals are mainly dependent on organic ligands
that may strongly modify their bioavailability [1]. Therefore, different approaches have
been proposed to determine metal speciation in natural samples. Some approaches involve
the deployment of in situ exposure devices, such as a diffusive gradient in thin film
(DGT) [2], permeation liquid membrane (PLM) [3], or the Donnan membrane technique
(DMT) [4]. These devices, which accumulate metals after appropriate exposure in the
field, are generally collected for measurement in the laboratory by inductively coupled
plasma either with mass spectrometry (ICP-MS) or optical emission spectrometry (ICP-
OES) detection. Other approaches involve the use of in situ measurements built on the
hyphenation of a separation technique such as a gel-integrated microelectrode (GIME) [5,6]
or a permeation liquid membrane (PLM) [7] hyphenated with an electrochemical detection
system. Electrochemical techniques have also demonstrated their suitability for the in
situ analysis of metal speciation with minimal sample preparation, reducing the risk of
sample contamination and, consequently, the risk of speciation change [8]. Thus, direct in
situ measurements such as the Absence of Gradient and Nernstian Equilibrium Stripping
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(AGNES) [9–11] or competitive ligand exchange-stripping voltammetry (CLE/SV) [12]
were developed.

Regarding exposure techniques, although DGT techniques have gained a certain domi-
nance among in situ exposure devices, the interpretation of their signal is not simple [13–16].
It was shown that relatively larger particles and/or humic matter could accumulate at the
gel–water interface, which raises serious questions about the interpretation of the data [17].
PLM is subject to changes in transport flux in the solution between calibration and sample
analysis that render the interpretation of dynamic information for colloidal metal com-
plexes very difficult [18]. Direct speciation measurement with AGNES is an interesting and
reliable method to determine the concentration of free metal ions in natural water such
as freshwater; nonetheless, like all stripping techniques based on mercury electrodes, it is
limited to a few metal cations [11].

Finally, DMT seems to be the best combination of signal interpretation, robustness,
and ease of use of in in situ exposure techniques. The technique was developed and used
for free metal ion measurement of cations such as Cd2+, Pb2+, Cu2+, Zn2+, and Eu3+ [19–26].
While the complexity of this equipment did not allow it to be transported to the field
for in situ measurements in natural waters, Parat et al. (2015) overcame this problem by
developing a new probe based on the hyphenation of a DMT device with a screen-printed
sensor [27]. This probe has significant advantages over traditional DMT deployment, as
detection can be performed in situ, directly in the acceptor solution, thus avoiding all the
problems inherent in sampling, transport, and storage. This technique has been used to
determine free Cd and Pb ions in natural samples such as freshwater rivers, and, due to
the small volumes of the donor and acceptor solutions, equilibrium was reached in 6 h,
much faster than the usual 36 h deployment. Although the transport of ions through ion
exchange membranes has been extensively studied [4,28–31], no work has exploited this
process in analytical applications. In this work, the dynamic information contained in the
transient metal flux was considered and compared with the equilibrium situation.

Thus, we investigated the possibility of detecting Cd and Pb while they are accumu-
lating in the acceptor solution (dynamic mode) rather than waiting for equilibrium to be
reached in order to reduce the in situ deployment time. A calibration curve was performed
during metal accumulation and compared to that obtained at Donnan equilibrium. Both
calibrations were then compared to theoretical free Cd and Pb in synthetic samples, and
the behaviour of metals in the membrane was discussed. Finally, the ISIDORE probe was
tested in synthetic water doped in Cd and fulvic acids and in a river sample naturally
contaminated with Cd.

2. Donnan Membrane Technique (DMT)

The ISIDORE probe is based on Donnan’s principle of membrane equilibrium [4].
Cations of the donor solution are transported across the membrane to the acceptor until
the equilibrium of the Donnan membrane is reached. At equilibrium, the charge-corrected
ionic activity ratios in the donor and acceptor solution are equal (Equation (1)):

(
ai,donor

ai,acceptor

) 1
zi

=

(
aj,donor

aj,acceptor

) 1
zj

, (1)

where ai,donor is the activity of ion “i” in the donor solution in mol·L−1, ai,acceptor is the
activity of ion “i” in the acceptor solution in mol·L−1, aj,donor is the activity of ion “j” in
the donor solution in mol·L−1, aj,acceptor is the activity of ion “j” in the acceptor solution in
mol·L−1, zi is the charge of ion “i”, and zj is the charge of ion “j”.

The main limitation of the first DMT devices was the long equilibration time of the
order of a few days. Parat et al. proposed to enlarge the inner diameter of the rings to
obtain a larger membrane surface area and to reduce the thickness of the central ring and,
consequently, the volume of the acceptor solution [27]. Thus, these modifications reduced
equilibration times by approximately 6 h for environmentally relevant concentrations of
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Cd and Pb. In addition, coupling the DMT cell to an electrochemical detection system
allowed for the direct determination of the free ion concentration without having to bring
the acceptor solution to the laboratory for ICP-MS analyses.

3. Results and Discussion
3.1. Non-Equilibrium ISIDORE Probe Calibration

The donor solution was simultaneously spiked with Cd and Pb. For each concentration,
the experiments were performed until the Donnan equilibrium was reached in order to
determine the plateau and the accumulation slope. Figure 1 shows that whatever the
studied element, the accumulation curve across the membrane is classically broken down
into four parts. First of all, time is required before an analytical signal is obtained in the
acceptor solution. This behaviour is associated with the initial accumulation of metal in
the membrane [27,29]. After this delay, a linear accumulation (slope) is obtained for both
elements, followed by a non-linear region, before finally reaching a flat region or plateau
that corresponds to the Donnan equilibrium [29].
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Figure 1. Accumulation curves obtained with the ISIDORE probe with the following total concentra-
tions in donor: Cd at 130 nM (�) and Pb at 72 nM (•). Composition of donor and acceptor solutions:
3 mM Ca(NO3)2 buffered at pH 4.6 with 5 mM acetate buffer. Analytical conditions: electrodeposition
step 120 s at −1.6 V with flux of 2 mL·min−1, equilibration time 10 s at −1.6 V without flux, and
stripping current Is = 10 µA without flux.

The average plateau value was calculated from the average of all plateau points, while
the slope value was calculated by keeping the points recording from 0 h 31 min to 2 h 34 min
for Cd and from 1 h 16 min to 4 h 22 min for Pb, corresponding to the linear accumulation
of free metals in the DMT (Figure 1). For both metals, good linearity with correlation factors
larger than 0.99 was obtained during the accumulation phase, indicating that the flux of
metal ions across the membrane is constant and opening up the possibility of using the
slope as dynamic information (Figure 1).

This experiment was repeated for the four concentrations of Cd and Pb. For each
concentration, the slope and plateau values were determined and plotted against the free
ion concentration in the donor estimated by Visual Minteq (Figure 2). As expected, the metal
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ion flux depends on the concentration of free metal in the donor, with higher concentrations
resulting in higher fluxes. Thus, for both metals, the slope value of accumulation increases
linearly with the free ion concentration in the donor, suggesting that this value can be used
for calibration.
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slope (B) for Cd (�) and Pb (•). The analytical conditions are the same as in Figure 1.

3.2. Behaviour of Cd and Pb in the Membrane

The behaviour of the two metal ions is quite different since the plateau is reached
after approximately 5 h for Cd but requires more than 10 h for Pb (Figure 1). In order
to understand the difference in behaviour between Cd and Pb, we sought to determine
whether the diffusion of the free metals across the membrane was controlled by solution
diffusion or diffusion in the membrane. The charged membrane constitutes a Donnan
phase where the metal ion concentrations will be higher than in the two adjacent solutions
(donor and acceptor). Furthermore, as these solutions are kept well mixed by continuous
circulation, the thicknesses of the inner and outer diffusion layers are fixed after a short
initial transient time. Finally, as the electrolyte concentration is assumed to be equal in the
acceptor and donor, there is no electrostatic potential gradient in the membrane, and ion
transport between the solution and the membrane will be controlled by the diffusion layer
at the membrane interface.

The problem can be formulated as two diffusion layers (one on the acceptor side and
one on the donor side) separated by a negatively charged membrane that can be crossed by
cationic species. From a mathematical point of view, this is a complex problem described
by a set of differential equations varying in time and space. The two transport equations in
the solution are similar, simplifying the problem somewhat, and can be further simplified
if one type of transport is clearly dominant over the other. The two types of transport are
called membrane-controlled or solution-controlled diffusion.

Weng et al. presented a detailed mathematical formulation of the problem and
a detailed numerical solution as well as an approximated analytical solution to solu-
tion diffusion control (valid if the complexation in the donor and acceptor are equal)
(Equation (2)) [30]:

Ci,tot, acc

Ci, tot,don
= A1·t with A1 =

AeDi
δVacc

, (2)

and membrane diffusion-controlled fluxes (Equation (3)):

Ci, acc

Ci, don
= A2·t with A2 =

AeDi,mBZi

δmVaccPi
, (3)

where Ci,tot,acc and Ci,tot,don are the total concentrations of ion i in the acceptor and donor
solutions, respectively, while Ci,ac and Ci,don are the concentration of the free ion i in
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the acceptor and donor solutions, t is the time (s), Ae is the effective surface area of the
membrane, Di is the diffusion coefficient of ion i in water, Di,m is the apparent diffusion
coefficient of ion i in the membrane (Di,m = Di/λi m2·s−1 with λi the tortuosity factor for
ion i in the membrane), B is the Boltzmann factor, δ is the thickness of diffusion layer in
solution, δm is the thickness of the membrane, Vacc is the volume of the acceptor solution,
and Pi,ac and Pi,don are the complexation factors in the acceptor and donor solutions.

In order to understand whether there is solution diffusion control or membrane dif-
fusion control for our systems, we performed calibration curves for Cd and Pb. When
the transport is controlled by solution diffusion (Equation (2)), all parameters are previ-
ously estimated, respectively, DCd (7.3 × 10−10 m2·s−1) and DPb = 8.1 × 10−10 m2·s−1) [32],
Vacc (7× 10−6 m2), and δ = 1× 10−4 m in our previous work [27], and finally Ae = 2.74× 10−4 m2

which corresponds to 20% of the membrane surface, as suggested by Weng 2005 [30]. Using
these values, we obtained a prediction for the time to reach 95% of equilibrium concentration
(t95%) of 2 h 55 min for Cd and 2 h 33 min for Pb, which is much shorter than the experimental
results. Indeed, using these parameter values, Equation (2) does not provide a good fit to the
experimental curves (Cd Figure 3A and Pb Figure 3C), suggesting that Cd and Pb transport
are not controlled by solution diffusion.
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Figure 3. Experimental versus theoretical curves for Cd and Pb when transport is controlled, either
by diffusion in the solution (A,C) or by diffusion in the membrane (B,D) for 4 free concentrations
of Cd (� 32 nM, # 69 nM, ∆ 101 nM, and ? 134 nM) and Pb (� 14 nM, # 19 nM, ∆ 31 nM, and
? 40 nM). Experimental points before 30 min were not taken into account as they correspond to the
delay required to fill the membrane.

Unlike Equation (2), there are three unknown parameters in Equation (3): the tortu-
osity factor λi, the Boltzman factor B, and the degree of complexation in the acceptor Pi.
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Weng et al. (2010) suggested a tortuosity factor of 60 for copper and calculated B values of
29 and 9.6 for Ca(NO3)2 concentrations of 2 mM and 20 mM, while the Pi values depend
on the acceptor solution composition [33]. In our case, the best estimate for B is a value of
13.7; however, this is a rough estimate as our electrolyte is a mixture of 3 mM Ca(NO3)2
and 5 mM acetate buffer for which the calculation of a Donnan factor is quite involved. The
best description of the Cd and Pb transport data for the four concentrations was obtained
for a Pi,ac of 2.75 and 8 (Cd Figure 3B, Pb Figure 3D), leading to prediction times to reach
equilibrium (t95%) at 4 h 22 min and 11 h 27 min, which are in good agreement with the
experimentally determined times. According to Weng et al., there is no significant effect of
the ligands on the equilibrium time when Pi is relatively small (<50) [30]. Thus, it is clear
that both Cd and Pb transport is controlled by diffusion in the membrane.

Membrane diffusion control provides a simple dynamic equation describing the
accumulation of metal ions in the acceptor over time since only free metal ions contribute
to transport and accumulation. For trace metal speciation, membrane diffusion control
is preferable to solution diffusion control because of its simplicity since, for all practical
purposes, the DMT functions as an ion-selective electrode, where only the free metal
concentration is relevant during both calibration and sample measurements. On the
other hand, if solution diffusion control is the control mechanism, Equation (2) must be
modified to take into account the contribution of labile complexes to transport and the
impact of the different diffusion coefficients of metal complexes in the transport and in the
thickness of the diffusion layer as described by Domingos et al. for the Permeation Liquid
Membranes (PLM) [18].

Although metal transport by diffusion in solution or in the membrane can be ap-
proximated by models, the fit is not perfect, especially for higher metal concentrations.
This is probably due to an incomplete physico-chemical description of the membrane,
namely the Donnan effect and its impact on transport across the membrane and the fact
that in our device, the outer and inner geometries are quite different, which can impact the
solution transport. A better theoretical description of this transport is therefore required,
for example, to explain the differences between Cd and Pb ions.

3.3. Analysis of Synthetic and Natural Samples

Finally, the Isidore probe was applied to synthetic and natural Cd-doped samples.
Figure 4 shows the free Cd concentrations determined from the plateau (Donnan equi-
librium) and the slope (dynamic accumulation) for different samples. As expected, the
calibration curve is close to the y = x line, which confirms the idea that it is possible to
cut the measurement time in half using the slope instead of the plateau. However, the
results of the river samples show differences in free Cd concentrations depending on the
determination method, slope or plateau (Table 1). This behaviour is particularly marked for
the synthetic river samples, which show an overestimation between 34 and 64% (Figure 5
red triangles). Table 1 shows that this overestimation of the calculated equilibrium con-
centration is not linked to the presence of fulvic acids. Therefore, this overestimation may
involve the behaviour of Ca during the experiment. Indeed, during the calibration of the
ISIDORE probe, the composition of the donor and acceptor solutions are identical (3 mM),
and therefore the Ca concentration in the donor and acceptor solutions is in equilibrium. In
the case of synthetic and natural waters, we noticed an imbalance in the Ca composition,
with ratios [Ca2+]don/[Ca2+]acc between 0.4 and 0.7. Similar ratios are observed for natural
samples, but the effects are probably attenuated due to the lower concentrations of free Cd.
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Figure 4. [Cd2+]slope versus [Cd2+]plateau for the different samples: calibration, Cd-doped synthetic
river with fulvic acids at 5 mg/L (4 replicates) or without fulvic acids (3 replicates), and natu-
ral samples doped in Cd (Uzein river—4 replicates) or naturally contaminated in Cd (Riu Mort
river—1 replicate). Samples were spiked with 89 nM Cd except for the Riu Mort sample, which was
naturally contaminated with Cd (36 nM). The analytical conditions are the same as in Figure 1.

Table 1. Free Cd concentrations obtained according to the method plateau or slope.

Synthetic River Natural Samples

Cd Cd + FA Uzein + Cd Riu Mort

Slope 0.059 ± 0.007 0.055 ± 0.006 0.034 ± 0.004 0.034
Plateau 0.087 ± 0.013 0.080 ± 0.003 0.041 ± 0.004 0.021

Plateau-corrected 0.049 ± 0.011 0.052 ± 0.015 0.031 ± 0.007 0.021

In the DMT system, the presence of a multivalent cation in the background solution
(usually, Ca2+) is necessary to compete with the target metal for binding to the membrane
and to ensure sufficient transport of the target cation through the membrane [25]. However,
according to Equation (1), the concentration of Cd measured in the acceptor solution
at Donnan equilibrium is equal to that measured in the donor solution only when the
concentration of Ca is the same on both sides [4]. The Cd concentration determined from
the plateau was therefore corrected by the ratio [Ca2+]don/[Ca2+]acc. Figure 5 shows the
Cd concentrations determined from the slope versus the Cd concentrations determined
from the plateau after correction according to Equation (1). A good correlation is obtained
between the two methods (r2 = 0.92) regardless of the type of samples. These results show
that the Ca concentration is an important parameter to consider when determining the free
metal concentration at equilibrium, but it does not seem to affect the accumulation rate
of Cd in the acceptor solution. Determining the free ion metal during the accumulation
time appears to be an interesting alternative to the Donnan equilibration method because
this approach is both faster and not affected by the Ca concentrations in the donor and
acceptor solutions.
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spiked with 89 nM Cd except for the Riu Mort sample, which was naturally contaminated with Cd
(36 nM). The analytical conditions are the same as in Figure 1.

4. Materials and Methods
4.1. Reagents

Stock solutions of Cd, Pb, and Hg at 1000 mg·L−1 were obtained from Merck. Potas-
sium nitrate (KNO3—Trace Select), nitric acid (HNO3 69–70%, Baker Instra-Analysed
for trace metal analysis), sodium hydroxide (NaOH Baker Analysed), hydrochloric acid
(HCl Baker Instra-Analysed for trace metal analysis), and ethylenediaminetetraacetic acid
(EDTA) were purchased from Aldrich. Acetic acid (CH3COOH, Trace Select) and sodium
acetate trihydrate (CH3COONa, 3H2O Trace select) were obtained from Fluka. Magne-
sium sulphate (MgSO4·7H2O, Pro Analysis), calcium chloride (CaCl2·2H2O, Pro analysis),
and calcium nitrate (Ca(NO3)2) were purchased from Merck. Sodium hydrogen carbonate
(NaHCO3) was obtained from Scharlau. Nordic Aquatic Fulvic acid Reference (1R105F) and
Suwannee River Fulvic Acid Standard II (2S101F) were purchased from the International
Humic Substances Society (Denver, CO, USA).

Ultra-pure milli-Q water (resistivity 18.2 MΩ cm) was employed in all the experiments.
A stock solution of acetate buffer (0.1 M, pH 4.6) was prepared by mixing appropriate
amounts of CH3COOH and CH3COONa. A stock solution of synthetic river water was
prepared as follows: 10 mM NaHCO3, 1 mM MgSO4, 2 mM CaCl2, and 0.5 mM KNO3,
which corresponds to an ionic strength of 19 mM and a pH of 7.5 ± 0.2.

The cation exchange membrane (VWR International, Radnor, PA, USA) used in this
work has a matrix of polystyrene/divinylbenzene with sulphonic acid groups that are fully
deprotonated above pH 2. The ion-exchange capacity is 0.8 meq g−1, the thickness of the
membrane δm is 1.6 × 10−4 m, and its surface area is 5.3 cm2 [4].

4.2. Equipment

Stripping Chronopotentiometry (SCP) measurements were performed with an Eco
Chemie µ-Autolab III potentiostat controlled by the GPES 4.9 (Eco Chemie) software
package. Temperature and pH were checked with a multi-parameter analyser (WTW 340i).
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The flow-cell (DropSens) was modified to fit the homemade screen-printed sensor (SPE).
The SPE was prepared in the laboratory by means of a carbon commercial ink (Electrodag®

PF 407A) for the working and counter electrodes and an Ag/AgCl 3:2 ink (Electrodag®

6037 SS) for the pseudo-reference electrode [27]. Prior to any electrochemical measurements,
a thin layer of mercury was deposited onto the surface of the screen-printed electrode.
The Hg deposition on the working surface area was carried out using an acetate buffer
solution (0.1 M, pH = 4.6) doped in Hg at 0.83 mM. ICP-MS measurements were performed
with an Agilent ICP-MS (7500 series, Agilent Technology, Santa Clara, CA, USA) and
Ca concentration was measured by an iCAP 6000 series (Thermo Scientific™, Waltham,
MA, USA).

4.3. ISIDORE Probe

The design of the ISIDORE probe measurement is explained in detail by Parat and
Pinheiro [27]. Briefly, a DMT cell containing the acceptor solution is immersed in a donor
solution, i.e., river water. The acceptor solution, in which the free metal ions present in the
donor solution will accumulate, is connected to a flow-cell in which an SPE is placed. The
circulation of the solution from the DMT to the measuring cell is achieved by means of a
peristaltic pump (Labcraft Hydris 05) (Figure 6).

Before analysis, the DMT membranes were prepared by shaking them several times
in succession with EDTA (0.1 M) to remove trace metal impurities, then 1 M Ca(NO3)2
and 3 mM Ca(NO3)2, which is the concentration of the background electrolyte solution
used in the experiment. In the last step, the pH is controlled to ensure no more protons
are released.
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donor. The acceptor solution is connected to the flow-cell in which the SPE has been placed [27].

For all the experiments described below, the acceptor solution is composed of a
mixture of 3 mM of Ca(NO3)2 solution and 5 mM acetate buffer in order to maintain a
constant pH (4.6 in this study) during the electrodeposition of the metal on the surface of
the electrode [34] and also to avoid overlap of Cd and Pb peaks [27].
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The ISIDORE probe was calibrated for four different concentrations of Cd and Pb, cor-
responding to free Cd concentrations of 39, 78, 117, and 157 nM and free Pb concentrations
of 14, 28, 43, and 56 nM. The assembly of a clean DMT and a new SPE was performed for
each concentration. The background solution in both donor and acceptor solutions was
3 mM Ca(NO3)2 buffered at pH 4.6 with 5 mM of acetate buffer. The acetate buffer was
used to keep the pH constant on both sides throughout the experiment. As there were
no ligands in the acceptor solution, the concentration of free ions in the donor solution
corresponds to that measured in the acceptor solution. The donor solution was kept under
stirring throughout the experiment.

Electrochemical detection was carried out in two steps, a deposition step followed by
a stripping step. In the first step, the deposition potential of −1.6 V was maintained for
120 s under a solution flow of 2 mL·min−1, after which the flow was stopped for 10 s and
the potential maintained at −1.6 V. Then, in the stripping step, the potential signal was
measured as a function of time under an applied stripping current of Is = 10 µA.

4.4. Natural Samples

Two freshwater rivers were used. The first river is the “Luy de Béarn”, a 76.6 km
long French river that starts at Andoins (Pyrénées-Altantiques, southwestern France) and
ends at Gaujacq, where the “Luy de Béarn” merges with the Adour. For this river, named
here the “Uzein River”, two points were sampled, one upstream and one downstream of
the Uzein wastewater treatment plant north of Pau (France). The second river selected
was the “Riou Mort”, a small river (21.1 km) tributary of the “Lot” (the second longest
river in France) in the Massif Central. Due to the presence of the Decazeville coalfield, the
“Riou-Mort” river is naturally contaminated with Cd and Zn [35]. Sample analyses are
presented in Table 2.

Table 2. Composition of natural river samples.

Riou Mort Uzein River

pH 7.5 7.44 ± 0.04
Conductivity (µS/cm) 354 285 ± 13

DOC (mg/L) nd ** 1.5
Ca2+ (mM) * 3.7 3.2 ± 0.3

Cd (nM) 37 nd **
* after dopping; ** nd—not detected.

5. Conclusions

In this study, the possibility of determining free ion concentrations with the Donnan
membrane technique was investigated in order to reduce the measurement time. Com-
parisons of the concentration determined at Donnan equilibrium (traditional method, 6
h) with that calculated during accumulation showed that the free ion concentration could
be estimated with the ISIDORE probe after only 3 h of accumulation for the two metals,
Cd and Pb. Comparison between the theoretical and experimental curves showed that
Cd and Pb transport was both controlled by diffusion in the membrane. The application
of the ISIDORE probe on synthetic and natural river samples showed a good correlation
between the two approaches, dynamic and equilibrium, and revealed that special attention
should be paid to the Ca concentration when determining the free Cd concentration from
the plateau.
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